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Macroscopic effects of localised measurements
in jammed states of quantum spin chains

Kemal Bidzhiev, Maurizio Fagotti,∗ and Lenart Zadnik
Université Paris-Saclay, CNRS, LPTMS, 91405, Orsay, France

A quantum jammed state can be seen as a state where the phase space available to particles
shrinks to zero, an interpretation quite accurate in integrable systems, where stable quasiparticles
scatter elastically. We consider the integrable dual folded XXZ model, which is equivalent to the
XXZ model in the limit of large anisotropy. We perform a jamming-breaking localised measurement
in a jammed state. We find that jamming is locally restored, but local observables exhibit nontrivial
time evolution on macroscopic, ballistic scales, without ever relaxing back to their initial values.

Introduction. Recent remarkable progress in quan-
tum information science owes much to the advancement
of cold-atom and trapped-ion setups [1–4]. These have
become so refined [5–8] to allow for the design of so-called
“quantum simulators” [9]. Understanding the effects of
perturbations and measurements has always been crucial
in this regard, be it due to the role of perturbations in the
decoherence process, or the one of measurements in simu-
lation protocols [10]. Integrable [11–14] and generic [15–
20] quantum circuits are potentially useful in this endeav-
our: they allow for some degree of exact treatment [21–
25] and befit experimental realisation [26, 27].

Localised measurements can be viewed as a type of
“quantum quench”, i.e., the non-equilibrium dynamics
induced by a sudden perturbation, studied in the last
decades especially in the context of relaxation in quan-
tum many-body systems (see [28] and articles therein).
Such perturbations break the homogeneity of the system,
making its study challenging. In integrable models the
most effective large-scale description of the dynamics in
the presence of inhomogeneities is arguably the so-called
“generalised hydrodynamics” (GHD) [29–31]. Although
GHD correctly predicts the large-scale dynamics of local
observables in numerous quench protocols (e.g., in the
two-temperatures scenario), the information provided by
the theory is sometimes incomplete. The first example
of this kind was exhibited in Ref. [32], considering the
massive Heisenberg model: the ingredients of GHD are
blind to observables that are odd under spin flip, entail-
ing the inclusion of an additional independent continuity
equation. An even more striking example was considered
in Refs [33–37], in which GHD keeps a symmetry that is
instead broken in the thermodynamic limit: observables
not respecting that symmetry are affected by a class of
localised perturbations at arbitrarily long times and large
distances from the inhomogeneity.

In this Letter we study the effect of a localised projec-
tive measurement in a quantum jammed state. To this
end we consider a modification of the so-called “wing-flap
protocol” (see Fig. 1) introduced in Ref. [38] to provide
insight into the quantum information scrambling. The
system is prepared in a low-entangled stationary state,
which, we assume, is also an eigenstate of the operator

measured by Alice. We then go back in time (a trivial
step, since the state is stationary) considering an alterna-
tive history in which, at some unknown but fixed ancient
time, Bob had performed an unknown projective quan-
tum measurement at an unknown but fixed large distance
from Alice. Returning to an alternative present we won-
der, following Ref. [39], whether Alice can still recover
the information she had without Bob’s intervention.

eiHt e−iHt
...

...

...

...
...

...

W

O O

Bob

Alice Alice

(1) (2) (3) (4) (5)

FIG. 1. The “wing-flap” protocol: (1) Alice measures an
observable O; (2) the system evolves for a time −t; (3) Bob
applies a “wing-flap” perturbation W ; (4) the system evolves
for a time t; (5) Alice measures O again. In Ref. [39] W is a
“blind” local projective quantum measurement at the position
of O (no information is kept), and step (5) is upgraded to a
quantum state tomography. There it was shown that, if H
describes a generic system, the local state can be recovered
with a limited amount of effort. We simplify the protocol by
trivialising the part highlighted in grey.

Generally, in a shift invariant quantum spin chain
the distant Bob’s measurement is not expected to have
any effect on Alice’s subsystem. In particular, Ref. [40]
showed that, in noninteracting spin chains, relaxation to
a Generalised Gibbs ensemble (GGE) is not compromised
by a localised perturbation. In our setting this implies
that, at late times, the effect of Bob’s measurement on
a finite subsystem fades away. We are not aware of any
physical argument against the generalisation of this re-
sult to interacting integrable systems. Indeed, this con-
clusion is supported by numerical investigations, which
generally show the irrelevance of localised perturbations
on the state after long-enough time. Consider, for exam-
ple, the numerical tests of the generalised hydrodynamic
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predictions of time evolution after two different states
are joined together [41]. The tests always differ in the
way the states are joined, nevertheless the asymptotic be-
haviours at large times match. In generic systems scram-
bling is even more pronounced, so a very distant quantum
measurement in a low-entangled stationary state is not
expected to have visible effects however large the time
is. Incidentally, even if the state were not stationary and
Bob measured an observable in Alice’s subsystem, Alice
would be able to recover the original local state [39].

Here we apply this protocol to the dual folded XXZ
spin-1/2 chain, which belongs to a class of effective mod-
els emerging in strong coupling limits of spin chains [42].
It corresponds to a special point of the two-component
Bariev model [43] and is described by the Hamiltonian

H = J
∑
`

(σx` σ
x
`+2 + σy` σ

y
`+2)

1− σz`+1

2
. (1)

The model can be solved exactly by introducing two
species of particles associated with spins up on either
even or odd sites [42] (see also [44]). The solution is
based on the observation that the unique nontrivial ef-
fect of H corresponds to moving a spin up by two sites
when it is adjacent to two spins down:

↑↑ ↓↓ ↓↓ ↑↑ ↑↑ ↓↓ ↑↑ ↓↓ ↑↑ .
(2)

In a configuration in which all spins down are isolated no
hopping process can occur: the aforementioned particles
cannot move because they are stacked together. There
are exponentially many such configurations with cluster-
ing properties, and we refer to them as jammed states.

We report a striking exception to the empirical rule
that a distant localised perturbation in a low-entangled
state of a quantum many-body system described by a
translationally invariant Hamiltonian does not have vis-
ible effects at infinitely large times and distances. To
the best of our knowledge, only one exception has been
reported so far and it concerns systems prepared in the
ground state when a discrete symmetry is spontaneously
broken [33–37]. Similarly, we consider an initial state
that breaks the conserved charges that completely char-
acterise a basis of energy eigenstates, but, differently, our
initial state belongs to an exponentially large degenerate
sector. We will show that, in the limit of large time, the
jammed sector is asymptotically stable under the wing-
flap protocol. Quite exceptionally, we also demonstrate
that the measurement results in a macroscopic change of
the spin profiles on ballistic scales, namely its effect does
not fade away at large times, the expectation values of lo-
cal observables instead approaching nontrivial functions
of the ratio between distance and time.

Quantum jamming. Our discussion is specialised to
the sector spanned by states |Φ〉 satisfying the jamming

condition

P↓↓(`) ≡ 〈Φ|
1− σz`

2

1− σz`+1

2
|Φ〉 = 0, ∀` . (3)

Due to (2), such states are clearly eigenstates of H with
zero energy and are jammed (see also Refs [42, 45, 46]).
Jammed states are special since they can break the two-
site shift invariance of the complete set of charges exhib-
ited in Ref. [42]. This is possible because the spectrum
has huge degeneracies associated with hidden symme-
tries, which have been shown, for example, to play a key
role in the quench dynamics within the non-interacting
sectors of the model [47].

The simplest basis of the jammed sector consists of
product states that are eigenstates of {σz` }, but one can
easily construct states with any entanglement entropy
density up to 1

2 log 2. For example, if o denotes the sub-
lattice of odd sites and e the one of even sites, the state
|↑ . . . ↑〉o⊗|ψ〉e is jammed and the entanglement entropy
of a spin block is half of that in the state |ψ〉. Particularly
interesting are (2n)-site shift invariant jammed product
states that are not eigenstates of {σz` }, e.g.,

|Ln〉 = ei
π
2n

∑
j jσ

z
j |↑← . . . ↑←〉 . (4)

This family of stationary states breaks the U(1) symme-
try generated by

∑
` σ

z
` and, for n > 1, also the 2-site

shift invariance of the model’s charges. Such states be-
long to the fully interacting sector of the model, which
is characterised by the presence of spins up on both even
and odd positions [42].

The jammed sector is invariant under measurements of
operators that commute with all elements of the set {σz` }.
Note instead that measuring other observables generally
results in leaving the sector.

Locally quasi-jammed states. Criterion (3) can be ex-
tended to inhomogeneous states that are jammed asymp-
totically in some scaling limit, for example,

lim
`,t→∞

ζ=`/t fixed

〈Φt|
1− σz`

2

1− σz`+1

2
|Φt〉 = 0, ∀ζ . (5)

We call them locally quasi-jammed states (LQJS).
We will focus on initial states belonging to the family
|Ln〉 and, for the sake of simplicity, assume Alice to mea-
sure cos( jπn )σxj − sin( jπn )σyj , with j even, so that |Ln〉 is
not affected by the measurement. The state after Alice’s
measurement is then of the form |Φ〉 = |↑ . . . ↑〉o⊗ |ϕ0〉e.
Let then Bob be in an odd position 2`′−1 and perform a
blind measurement of the spin. Since the spin is up before
the measurement, the density matrix after the measure-
ment, ρ(0), will commute with σz2`′−1; in particular it
reads

ρ(0) =
2

3
|Φ〉 〈Φ|+ 1

3
σx2`′−1 |Φ〉 〈Φ|σx2`′−1 . (6)

The coefficients 2/3 and 1/3 come from considering a
(blind) projective measurement – see the Supplementary
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FIG. 2. Profile of the rescaled jamming criterion tP↓↓(`/t)
at times t = 10, 50 after the flip of the central spin up (in an
odd position) of the state |L1〉 = |↑←↑← . . .〉. The data inside
the light cone are in excellent agreement with conjecture (15).
The jamming condition is locally restored as P↓↓(`/t) ∼ 1/t.

material (SM) [48]. Nevertheless, the structure of the
density matrix would remain the same also under more
general measurement protocols. A local measurement
can break condition (3) only locally and, because the de-
fect is moved over the jammed state as a quasiparticle
would be moved under the effect of a hopping Hamilto-
nian (in some nontrivial background – see also Ref. [49]),
it is reasonable to expect the validity of (3) in the limit of
large time. We can then foresee an LQJS to emerge, i.e.,
a state where (5) holds. This expectation is supported
by our numerical investigation – see Fig. 2.

Notwithstanding the initial state being shift invariant
by a finite number of sites, Bob’s measurement locally
breaks that symmetry. We find that, while shift invari-
ance is locally restored, it remains globally broken, as in
the systems that can be described by generalised hydro-
dynamics. Contrary to the latter case, however, the two-
site shift invariance, which is a symmetry of a complete
set of local conservation laws, is generally not restored,
even locally. Figure 3, for instance, shows that the xy-
plane spin profiles remain staggered on the sublattice of
even sites, however long the time after the initial pertur-
bation to the state |L2〉 is: only 4-site shift invariance
is locally restored. This property is shared with non-
abelian integrable systems like the quantum XY model,
where the late time behaviour is generally not captured
by a macro-state characterised by the complete set of
one-site shift invariant charges [47].

Dynamics after a local spin flip. Since |Φ〉 is an eigen-
state, the time evolution of (6) can be immediately de-
duced from that of

|Ψ(0)〉 = σx2`′−1 |Φ〉 ≡ (σx0 |↑ . . . ↑〉)o ⊗ |ϕ0〉e , (7)

where, without loss of generality, we have set `′ = 0. The
state at time t can then be represented as follows

|Ψ(t)〉 =
∑
n

(σxn |↑ . . . ↑〉)o ⊗ |ϕn(t)〉e , (8)

FIG. 3. Spin profiles 〈σx〉ζ (red) and 〈σy〉ζ (blue) at times

t = 10, 50 after having flipped the central spin up (in an odd
position) of the state |L2〉 = |↑←↑→ . . .〉. The profile of σz

asymptotically approaches zero. Nontrivial profiles emerge
on even sites, whereas spins on odd positions relax to their
original values along the z direction, and are not shown. The
data for 〈σy〉ζ are in excellent agreement with conjecture (15).

where the unnormalized wave functions |ϕn(t)〉e of spins
on the sublattice of even sites satisfy

i∂Jt |ϕn(t)〉 = Kn−1,n |ϕn(t)〉+
+ (1− σzn−1) |ϕn−1(t)〉+ (1− σzn) |ϕn+1(t)〉 (9)

with |ϕn(0)〉 = δn,0 |ϕ0〉. Here Kn−1,n = σxn−1σ
x
n +

σyn−1σ
y
n. Note that this is a system of log2

√
D equa-

tions for |ϕn(t)〉, which are states belonging to subspaces
of size

√
D, where D denotes the size of the Hilbert space.

The dynamical equation (9) is block-diagonal in the
Fourier space defined by

|ϕ̃P (t)〉 =
∑
n

einPΠ−n |ϕn(t)〉 , (10)

where Π is the 1-site shift operator on the sublattice, such
that Π−1 = Π† and Π(O`)o(e)Π

† = (O`+1)o(e). Specifi-
cally, we find

|ϕ̃P (t)〉 = e−iH̃(P )t |ϕ0〉 , (11)

where the independent time evolutions labelled by P are
generated by

H̃(P ) = J
[
K−1,0 + (e−iPΠ(1− σz−1) + h.c.)

]
. (12)

Since Π is a sublattice shift, P is the eigenvalue of the mo-
mentum generating the two-site shifts on the full lattice.
Indeed, denoting by U the map |ϕn(t)〉 7→ Π |ϕn−1(t)〉
we find U |ϕ̃P (t)〉 = eiP |ϕ̃P (t)〉.

If the sites −1 and 0 of the sublattice are both occupied
by a spin up, the state is destroyed by H̃(P ): a quarter
of the Hilbert space is a nullspace of H̃(P ). The nontriv-
ial action of H̃(P ) in the remaining space corresponds
to moving a configuration of N spins up on a lattice of
L = log2

√
D sites with periodic boundary conditions
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through a two-site defect at −1 and 0. If both spins at
−1 and 0 are down, H̃(P ) acts as a right or left global
shift of the spins up by one site. If instead there is a sin-
gle spin up at −1 or 0, either that spin is moved to the
other site or all spins up are globally shifted in the oppo-
site direction. Importantly, once all spins up have passed
across the defect, the relative distances between them
are the same as in the initial configuration. This key ob-
servation allows us to represent each configuration as an
effective particle propagating by a hopping Hamiltonian
(with localised defects that can be seen as a deformation
of the space), on an extended lattice of L+N − 1 sites.
The mapping is described in the SM [48]. We find the
energies to be parametrised as EP (k) = 4J cos(k + P ),
where the momentum k of the effective particle and P
satisfy

ei(L+N−1)k+iNP = 1, eiLP = 1 . (13)

This mapping can also be exploited to compute the over-
laps between the states and the matrix elements of the
spin operators [48], providing therefore all the ingredients
for the exact computation of the scaling profiles, such as
the ones depicted in Figs 2 and 3.

For example, for odd x (for the general expression see
SM [48]) the jamming condition (3) after the local spin
flip can be written as (after the projective measurement
there is instead an additional overall factor 1/3)

P↓↓(x, t) =
1

L2

∑
N

∑
χ
(1)
N ,χ

(2)
N

〈ϕ0|χ(1)
N 〉 〈χ

(2)
N |ϕ0〉×

〈χ(1)
N | ↓〉〈↓ |0 χ

(2)
N 〉 e

id x2 e(P1−P2)+it(EP1
(k1)−EP2

(k2)) .

(14)

Here, χN = (k;P, . . .) denotes the eigenstates and . . .
stands for additional quantum numbers characterising
the exponentially large sectors at fixed k and P . The
sum excludes the jammed states, since the latter are de-
stroyed by the observable. It turns out that the sum over
the additional quantum numbers can be carried out an-
alytically, and one can reduce the entire expression to a
finite number of sums, which will be discussed in a more
technical work still in preparation [50]. We only antici-
pate that a thorough analysis of (14) shows that, first, the
terms with N/L ∼ 1/2 contribute the most and, second,
the asymptotic behaviour is determined by some singular
points of the averaged matrix elements of the observable
(the projector on two neighbouring spins down).

Numerical simulations. Our effective sublattice de-
scription of time evolution also has some numerical ad-
vantages. First, it almost doubles the system size acces-
sible to exact diagonalisation techniques. In particular,
systems with 26 spins can be simulated in a reasonable
time with an ordinary laptop. As a matter of fact, it
is also possible to perform semi-analytical calculations
after having reduced expressions like (14) to finite num-
bers of sums. In that way it is possible to reach total

system sizes of up to ∼ 60 sites (L ∼ 30) in few days of
single-processor computational time (the numerical effort
is expected to scale as L5.5 − L6). Our main numerical
checks have been however based on DMRG algorithms,
which are much more efficient.

Profiles. We observe that, at large times, the numer-
ical data are in excellent agreement with two ballistic-
scale conjectures (i.e., f(x, t)→ f(ζ = x

t ))

tP↓↓(ζ) ≈ a

[1− ( ζ
v±

)2]
1
2

, 〈σy〉ζ ≈ b[1− ( ζ
v±

)2]
1
2 , (15)

with v± = ±16J/3, and whose assessment of validity
is still in progress [50]. The constant prefactors in the
scaling functions are well approximated by a ≈ 0.06
and b ≈ 0.24. These conjectures are consistent with
the prediction for the maximal velocity of quasiparti-
cle excitations on top of a jammed state v±[|Φ〉] =
±8J/

(
1 + 2

L 〈Φ|S
z|Φ〉

)
, which was derived in Ref. [51].

Can Alice recover the local state? After a time t, the
reduced density matrix of Alice’s site, assumed to be at
an odd distance x+1 from Bob’s past blind measurement
at site −1, reads

ρAlice = (1+ ~px,t · ~σ)/2 , (16)

with ~px,t = 1
3 (〈σx〉ζ − 2 cos πxn , 〈σ

y〉ζ + 2 sin πx
n , 0). Here

ζ = x/t, and the expectation values refer to the dynamics
after the local spin flip – see Fig. 3 and SM [48] for details.
For ζ in the light-cone ~p is slightly tilted from the initial
(pre-measurement) direction, the tilt itself depending on
Bob’s position. As far as we can see, this makes it im-
possible for Alice to fully recover the information she had
without Bob’s measurement.

What is general. We argue that a key role in the phe-
nomenon is played by the fact that the movement of ex-
citations over jammed states, i.e., the jamming-breaking
impurities, is associated with a few-sites shift of a string
of jammed particles (see also Ref. [49]). In this way the
state can store memory of its past.

The effect seems to remain stable even under generic
Hamiltonian perturbations preserving the jammed states.
We have checked it for a perturbation of the form V =

g
∑
`
1−σz`

2

1−σz`+1

2 K`+2,`+3. Flipping a single spin again
results in macroscopic reorganisation of the spin profiles,
albeit it now takes place in diffusive-scale coordinates
` ∼

√
t (see SM [48] for numerical evidence). Thus,

the phenomenon could be observed also in non-integrable
systems, in the appropriate scaling limit.

Summary. We addressed the question of how a lo-
cal measurement in a jammed state of an interacting
quantum system affects the late-time dynamics of dis-
tant local observables. The measurement triggers a bal-
listic dynamics in which jamming is locally restored but
the profile of observables remains irremediably affected
by the perturbation. Arguably, this prevents the full re-
covery of locally damaged information in the wing-flap
protocol, which is instead expected quite generally [39].
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Our work gives rise to several questions. Firstly, the
precise role of symmetry breaking for the observed phe-
nomenon is yet to be clarified. Our initial states always
break some symmetries (e.g., U(1), Z2, or two-site shift
invariance – see also Ref. [49]), however, a similar be-
haviour has been observed (after the completion of this
paper) in a different setting where no symmetry seems to
be broken [52].

The second question is that of repeated projective mea-
surements, recently identified as the cause of dynami-
cal phase transition in certain quantum many-body sys-
tems [53–56]. Their effects on the observables, as well as
on the restoration of jamming pose an intriguing open
problem that could be investigated in the dual folded
XXZ model even analytically.

Acknowledgements. We thank Viktor Eisler for useful
discussions. This work was supported by the European
Research Council under the Starting Grant No. 805252
LoCoMacro.

During the peer-review process of this manuscript,
Ref. [52] provided a new example of a setting where a
localised perturbation remains relevant at late times.
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The effective dynamics generated by H̃(P )

Here we describe the idea behind the diagonalisation of
the effective Hamiltonian H̃(P ) from Eq. (12) of the main
text. Detailed method will be presented in a separate
publication [50]. Consider a configuration of N spins up;
the effective Hamiltonian

H̃(P ) = JK−1,0 + Je−iPΠ(1− σz−1)+

+JeiPΠ−1(1− σz0)
(S.1)

maps it into a superposition of identical configurations
shifted by one site to the right (left), with a phase e−iP

(resp. eiP ). Repeated action of H̃(P ) propagates config-
uration in this manner until a spin up comes onto posi-
tion −1 (or 0). The term JK−1,0 then kicks in: the spin
up jumps to position 0 (resp. −1) without acquiring a
phase, while the rest of spins up retain their positions.
Here is an example of nontrivial microscopic dynamics
considering only the part of a superposition that moves
in one direction:

t

-5 -4 -3 -2 -1 0 1 2 3 4 5

↑↑↑↑↑↑
↑↑↑↑↑↑
↑↑↑↑↑↑

↑↑↑↑↑↑
↑↑↑↑↑↑

↑↑↑↑↑↑
↑↑↑↑↑↑

↑↑↑↑↑↑

2J

2JeiP

For the coordinate of the effective particle (in blue) we
have chosen a shifted centre-of-mass position

X(`) =
1

N

N∑
j=1

`j +
N − 1

2N
(N − 2N−). (S.2)

Here `j are positions of spins up, N their total number,
and N− denotes the number of cases `j < 0. The sec-
ond term in (S.2) ensures that X(`) changes by 1 even if
only one of the spins up jumps between the sites −1 and
0, while the rest of spins up retain their positions (the
corresponding hopping of the effective particle is repre-
sented by the red curved arrows in the above diagram).
The system is thus described by a hopping Hamiltonian
on the lattice Λ = X[`] + Z with defects accounting for
the change in the coupling constants whenever a spin up
jumps between the sites −1 and 0 (in red).

The defects can be removed via a unitary transforma-
tion, which leads to a hopping model with single-particle
energy levels

EP (k) = 4J cos(k + P ) , (S.3)

where k denotes the momentum of the effective parti-
cle. The eigenstates of the effective Hamiltonian (S.1)
are now parametrised as |k;P, d〉, where d is a collection
of distances between subsequent spins up, defined so as
to be preserved by the dynamics:

dj = `j+1 − `j − 1 + θ(`j+1 < 0)− θ(`j < 0). (S.4)

For a finite sublattice size L = log2

√
D one needs to

consider periodic boundary conditions, where k and P
are instead quantised according to

eiLP = 1, ei(L+N−1)k+iNP = 1. (S.5)

Quantisation of P follows from the momentum P being
associated with a shift operator Π on the sublattice. The
factor eiNP in the quantisation condition for k is a re-
sult of the unitary transformation that removes the N
defects and effectively adds a phase to each hopping pro-
cess caused by the defect. Factor ei(L+N−1)k comes from
the lag acquired by the configuration w.r.t. to the po-
sition of the effective particle, when the latter traverses
the system. Each time a spin up jumps from 0 to −1,
the right-most spin up remains fixed, except if it itself
jumps between these two sites. The total acquired lag is
therefore N−1 sites, so the configuration needs L+N−1
steps before returning to its initial position.

As a proof of concept, Fig. S1(a) shows the com-
parison between the DMRG-based algorithm and exact-
diagonalisation of Hamiltonians H̃(P ).

Jamming condition P↓↓(x, t)

In this section we describe the ingredients for the
computation of the local jamming condition P↓↓(x, t) =
1
4 〈Ψ(t)|(1− σzx)(1− σzx+1)|Ψ(t)〉 in Eq. (14) of the main
text. Representation

|Ψ(t)〉 =
∑
n

(σxn |↑ . . . ↑〉)o ⊗ |ϕn(t)〉e (S.6)

of the wave function is useful to reduce the computa-
tion to the sublattice of even sites, where the condition
becomes

P↓↓ =
1

2

{
〈ϕ x

2+1(t)|1− σzx
2
|ϕ x

2+1(t)〉 x even ,

〈ϕ x+1
2

(t)|1− σzx+1
2

|ϕ x+1
2

(t)〉 x odd .
(S.7)
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FIG. S1. Panel (a) shows the profile tP↓↓(x, t) at t = 0.8, for L = 13 (a chain of 26 spins), computed with a DMRG-based
algorithm and exact diagonalisation of the effective Hamiltonians (S.1). Panel (b) shows contributions to P↓↓ coming from
summing the elements with given N (and hence 〈Sz〉) at x = 0 and t = 1/2 for the sublattice sizes 5 ≤ L ≤ 13. Data are fitted
with Gaussian curves centered around the sublattice magnetisation 2〈Sz〉 = 2N − L = −1. The full width at half maximum
scales sublinearly with the sublattice size. The term with the highest contribution is N = (L− 1)/2.

The operators on the right-hand side act on the state of
the sublattice – their indices have been changed accord-

ingly. Using Eqs (10), (11) of the main text, we then
obtain

P↓↓ =
1

L2

∑
N

∑
d
(1)
N ,d

(2)
N

∑
P1,P2
eiLP=1

∑
k1,k2

ei(L+N−1)k+iNP=1

ei
(
x
2+

3+(−1)x

4

)
(P1−P2)ei4Jt(cos(k1+P1)−cos(k2+P2))×

×〈ϕ0|k1;P1, d
(1)
N 〉 〈k1;P1, d

(1)
N |

1− σz−[1+(−1)x]/2

2
|k2;P2, d

(2)
N 〉 〈k2;P2, d

(2)
N |ϕ0〉 .

(S.8)

The matrix element and the overlaps between the wave
functions can be computed exactly by employing the
mapping between a configuration of spins up and an ef-

fective particle [50]. Here we only report the resulting
formulas for the case |ϕ0〉 = |← . . .←〉 (i.e. after a local
measurement in the state |L1〉). For k1 6= k2 they read

〈← . . .← |k;P, dN 〉 =
1− eiP

eik − 1

N∑
`=1

ei(2`−1−2N+
∑N−1
n=N+1−` dn)kei(`−1)P√

2L(L+N − 1)
,

〈k1;P1, dN |
1−σz0

2 |k2;P2, dN 〉 =
1− ei(P2−P1)ei(k2−k1)

ei(k2−k1) − 1

N−1∑
`=0

ei(2`+1−2N+
∑N−1
n=N−` dn)(k2−k1)+i`(P2−P1)

L+N − 1
,

〈k1;P1, dN |
1−σz−1

2 |k2;P2, dN 〉 = ei(k1−k2) 〈k1;P1dN |
1−σz0

2 |k2;P2, dN 〉 ,

(S.9)

whereas the limit k1 = k2 has to be performed carefully,
taking the quantisation conditions (S.5) into account. We
point out that the numerical computation of the fixed-N
terms in (S.8) for small system sizes (via exact diago-
nalisation) suggests that the main contribution to the
jamming condition P↓↓(x, t) at fixed x and t comes from

the terms with N ∼ L/2 – see Fig. S1(b). This numerical
observation can be proved analytically and holds for any
sublattice size L [50].
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Reduced density matrices

The purpose of this section is to explain Alice’s and
Bob’s reduced density matrices. Bob performs a blind
projective measurement on one of the spins up in a fac-
torised state. Suppose that the axis of the measure-
ment is fixed. It can be obtained by rotating the z-axis
by an angle φ ∈ [0, π) around the xy-plane unit vec-
tor n̂ϕ = (cosϕ, sinϕ, 0), parametrised by ϕ ∈ [0, 2π).
Had Bob read off the result of the measurement, the spin
would have collapsed into the state

ρ(Φ, ϕ) = ei
φ
2 n̂ϕ·~σ |↑〉 〈↑| e−i

φ
2 n̂ϕ·~σ . (S.10)

In our protocol, described in the main text, the measure-
ment is instead blind: Bob does not read off its result.
Hence, due to a classical uncertainty, the state after the
measurement is computed as an average w.r.t. the Haar
measure:

ρBob =

∫ 2π

0

dϕ

2π

∫ π

0

dφ

π
ρ(φ, ϕ)

(
π

2
cos

φ

2

)
=

=
2

3
|↑〉 〈↑|+ 1

3
|↓〉 〈↓| .

(S.11)

The weight π
2 cos φ2 in the integral is the probability for

the nonzero projection of the spin up onto the measure-
ment axis.

At time t after Bob’s blind projective measurement at
site −1, the density matrix of the system reads

ρ(t) =
2

3
|Φ〉 〈Φ|+ 1

3
|Ψ(t)〉 〈Ψ(t)| , (S.12)

where |Ψ(0)〉 = σx−1 |Φ〉, and |Φ〉 = |Ln〉 is a jammed
state given in Eq. (4) of the main text. Alice’s reduced
density matrix at site x (at an odd distance x + 1 from
Bob’s measurement) in general reads

ρAlice = (1+ ~px,t · ~σ)/2 , (S.13)

where

~px,t = (Tr[ρ(t)σxx ],Tr[ρ(t)σyx],Tr[ρ(t)σzx]) . (S.14)

In the jammed state |Φ〉 = |Ln〉 Alice finds (note that x
is even)

〈Φ|σxx |Φ〉 = − cos πxn ,

〈Φ|σyx |Φ〉 = sin πx
n ,

〈Φ|σzx |Φ〉 = 0 .

(S.15)

On the other hand, in the time-evolved part of the state,
|Ψ(t)〉, the expectation values of Pauli matrices asymp-
totically depend only on the ray ζ = x/t (we assume large

distance x and time t), i.e., 〈Ψ(t)|σαx |Ψ(t)〉 = 〈σα〉ζ ,
α ∈ {x, y, z}. In particular, the z-component of spin at
an even site far from Bob’s measurement is asymptoti-
cally zero, i.e., 〈σz〉ζ = 0 (see Fig. 3 of the main text).
States |Φ〉 and |Ψ(t)〉 enter the classical mixture (S.12)
with probabilities 2/3 and 1/3, respectively, whence we
finally obtain

~px,t = 1
3

(
〈σx〉ζ − 2 cos πxn , 〈σ

y〉ζ + 2 sin πx
n , 0

)
. (S.16)

Perturbation preserving the jammed states

In this section we report the effects of a perturbation
that breaks integrability while preserving the jammed
sector. Specifically, we consider the Hamiltonian

H ′ = H + g
∑
`

1− σz`
2

1− σz`+1

2
K`+2,`+3 . (S.17)

Fig. S2 shows 〈σx〉 after that a spin in a jammed state
of the perturbed Hamiltonian H ′ is flipped. The expec-
tation value exhibits diffusive scaling. This allows for a
description of the local observables by macrostates de-
pending on the diffusive-scale coordinate `/

√
t.

FIG. S2. The profile 〈σx` 〉t in the diffusive-scale coordi-

nates `/
√
t, at times t = 4 (blue) and 8 (red) after flip-

ping up the central spin (in an odd position) of the state
|L4〉 = |↑←↑→ · · ·〉. The initial state evolves under H ′ with
g =
√

2. Nontrivial profiles emerge on even sites, while spins
on odd positions (not shown) relax to their original values
along the z-axis. The inset shows the jamming condition√
tP↓↓(`, t) for different times in the diffusive-scale coordi-

nates: P↓↓(`, t) vanishes with time, implying the emergence
of LQJS on diffusive scales. The decay of the jamming con-
dition (up to DMRG-accessible times) seems to point at the
scaling ∼ 1/

√
t, but longer times would be required for a con-

clusive answer.
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