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ABSTRACT
Phononic materials structured at the macro- or nano-scale are at the forefront of materials research for controlling transport of sound and
heat, respectively. Besides the structure length scale, the exact geometry has been found to be of relevance as well. In this work, we provide
an extensive finite element investigation of the effect of the shape of periodically dispersed inclusions in a 2D matrix on propagation and
attenuation of an acoustic wave packet. We show that, by significantly complexifying the shape from circular to fractal-like (dendrite shape),
phonon scattering at wavelengths comparable with the inner structure of the inclusion is enhanced, leading to a strong attenuation that can
be fitted by a compressed exponential function, while in the circular case, the diffusive regime is observed.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0056496

I. INTRODUCTION

Heterogeneous architectured materials are of particular interest
in engineering applications.1 These are man-made structural mate-
rials that have been developed for obtaining ad hoc properties, which
cannot be generally found in nature. They are obtained by engineer-
ing at different scales the mixing of different materials, either in a
random spatial distribution (composite materials) or with the arti-
ficial repetition of regular patterns (metamaterials). Depending on
their application, the length scale of such patterns can span from the
nanometer to the macroscopic range, being smaller than, or compa-
rable to, the wavelength of the phenomena that the material is meant
to affect.

This concept has, indeed, been largely exploited for efficiently
manipulating long-wavelength acoustic phonons, which assure
sound propagation at low frequency, through the introduction in
materials of periodic interfaces on a macroscopic scale [phononic
crystal (PC)].2–5 In recent years, they have attracted increasing atten-
tion among the scientific community due to their extraordinary
acoustic and elastic wave propagation performances obtained by

designing the phase gradient at the sub-wavelength scale, such as
negative refraction, waveguiding, cloaking, and band gaps.6–9

Thanks to both engineering and theoretical progress, they have
also been introduced in thermal science, with a microstructure in
the nanometer scale. Thermal transport is intimately related to
the sound propagation (acoustic transfer) in materials because in
insulators and semiconductors, the main heat carriers are acoustic
phonons.10 Specifically, at room temperature, heat is mainly carried
by phonons with THz frequencies and nanometric wavelengths. As
such, a periodic nanostructuration has proved to be promising for
affecting phonon dispersions and their ability in transporting heat.11

It is important to remind here that phonons participate to thermal
transport through two different contributions: a propagative one,
which depends on the phonon mean-free path, heat capacity, veloc-
ity, and vibrational density of states (DOS),12 and a diffusive one,
involving the phonon diffusivity rather than the mean-free path and
velocity,13–15 the latter dominating at higher energies and smaller
wavelengths. The propagative contribution can be reduced through
the presence of interfaces, which scatter or eventually trap phonons.
This contribution is directly related to the coherent phonon
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transport, which can be understood on the basis of the wave nature
of phonons. Much work has been recently done for investigating
these coherent phenomena.16–18 Depending on the relative impor-
tance of the diffusive contribution, in fact, the reduction but also the
improvement of thermal conductivity have been reported in differ-
ent nanostructured systems.19–21 Numerous atomistic simulations of
out-of-equilibrium phonon transport have also been reported in dif-
ferent systems.22–30 Recent works have looked at the phonon dynam-
ics to get a better insight into transport properties and found exotic
behaviors such as an energy localization between pores,31 asym-
metric transport (rectification),32 or the filtering of high-frequency
phonons.33

It is, thus, clear that, depending on the length scale at play, the
design of the phononic crystal structure contributes directly to the
performance of filtering, hindering, and guiding the propagation of
acoustic waves (phonons), responsible for the sound propagation
when their wavelength is macroscopic and for the thermal transport
at room temperature when their wavelength is nanometric.26,33–36

Many theoretical studies have tried to shed light on the key
parameters of the phononic crystals that determine the effect of the
interfaces on acoustic and thermal transport. It is worth mention-
ing that research studies on mechanical and geometrical properties
of the nano-interfaces are at the core of the design of the struc-
tured materials, involving, for example, the shape and dimensions
of the inclusion and the contrast of properties between the mate-
rials on the two sides of the interfaces. Recently, we have shown
that circular interfaces in a 2D nanophononic material differently
affect phonons of different wavelengths, and it is necessary to look
at all phonons relevant for heat transport at a certain temperature
and their perturbed dynamics, for being able to understand thermal
conductivity in such nanocomposites.29,30 In that work, we could
highlight that the rigidity contrast between the two phases is a deter-
minant parameter controlling the strength of the scattering, which
affects the phonons with a wavelength comparable with the nanos-
tructuration length scale, significantly anticipating the propagative-
to-diffusive crossover in an amorphous matrix. A better under-
standing of the mechanisms at play and the role of the different
parameters could be acquired with a more complete and system-
atic parametric study on the combined effect of rigidity contrast,
interface density, nanostructure length scale, and phonon wave-
length. Our results allowed us to identify different transfer regimes
(propagative, diffusive, localized, or mixed regimes) in an elastic
nanophononic 2D crystal and to show that softer inclusions are
more efficient for energy attenuation, but rigid inclusions are also
able to pin the vibrational energy at specific frequencies.37 In addi-
tion, the existence of an optimal radius of circular inclusion clearly
shows that, instead of monotonously increasing the volume fraction
until the percolation effect is dominant, other geometrical parame-
ters of the interface are relevant, such as shape, asymmetry, inclu-
sion inter-distance, and interface-to-volume ratio. Finally, when the
size of the nanostructure becomes comparable to the wavelength of
the excitation, various complex behaviors may occur that affect the
acoustic attenuation with non-monotonous frequency dependence.
Among such phenomena are the acoustic resonances of the inclu-
sions, multiple reflections between the inclusions, or the interfacial
modes.

In contrast to the most work focusing on the periodic cir-
cular in 2D (spherical in 3D) interfaces, there are only few

investigations conducted with geometrical variations. First, the spe-
cific non-aligned arrangement of circular holes (where holes can be
considered as the limit of soft inclusion) is reported to have possibly
stronger phonon attenuation than the perfectly periodic arrange-
ment. Similarly, the emerging of the gradient-index PCs is meant
to independently control the size of each unit hole.38 The impact
of disorder on the coherent phonon transport has also been inves-
tigated, showing the strong phonon confinement and localization
induced by randomness.16,39 Then, recent experimental studies sug-
gested that the non-circular holes might be more efficient in the ther-
mal conductivity reduction and acoustic attenuation compared to
conventional circular ones.40,41 For example, pacman-shaped holes
showed a 40% reduction in thermal conductivity compared to cir-
cular ones at room temperature, due to the high surface-to-volume
ratio and possible additional resonances.41 It has also been proposed
to optimize the inclusion shape in phononic structures using the
homogenized model of strongly heterogeneous elastic composites;42

however, this model is limited to simple shapes and topological iso-
morphism. Topology optimization of metamaterials seems to be a
promising alternative43,44 but is still limited to the current level of
nanotechnology manufacturing.

In this work, we propose to investigate the impact of a com-
plex inclusion shape on acoustic propagation and attenuation at
nanometric wavelengths. To this purpose, we have chosen to work
on a realistic nanocomposite, as can be naturally obtained using
vitrification of some metallic glasses. Specifically, we will work on
a Ti45Zr25Nb6Cu5Be17Sn2 bulk metallic glass (BMG), which, once
produced by casting techniques, exhibits dendrite-phase titanium
precipitates at the micrometric scale, as shown in Fig. 1. Bulk metal-
lic glasses are promising structural materials because of their excel-
lent properties such as high yield strength, excellent corrosion resis-
tance, and low stiffness.45–48 However, at the same time, BMGs lack
ductility and always fail in an apparently brittle manner, which seri-
ously limits their applications.49–52 Impressively, a larger dendrite-
phase dimension offers higher ductility but decreases the yield
strength of the composites. It has been proposed that the dendrite
inclusions actually suppress the catastrophic failure due to the prop-
agation of shear bands and, thus, enhance the global plasticity.53,54 In
addition, the alloy compositional design could be employed to mod-
ulate the mechanical properties of the BMG, indicating a potential

FIG. 1. Cross sectional SEM image of the as-cast Ti45Zr25Nb6Cu5Be17Sn2, and
the dendrite phase (light gray) distributes homogeneously in the glass matrix (dark
gray).
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of tuning, for example, the stiffness ratio between the matrix and
the dendrite.55 The multi-branch, tree-like geometry of these inclu-
sions is of particular interest for understanding the role of a complex
geometry in acoustic attenuation. Compared to the simple shapes, its
fractal property determines a remarkably high interface-to-volume
ratio, leading to potentially good sound attenuation performance. It
is, thus, an ideal sample for our study.

To have a deep understanding of the role of the dendritic
shape inclusion in acoustic attenuation and dynamic properties of
the phononic crystal, we have performed finite element simula-
tions of out-of-equilibrium acoustic wave-packet propagation in 2D
nanocomposite periodically distributed circular and dendritic inclu-
sions. This has allowed us to establish a direct comparison between
simple and complex geometries.

This work is organized as follows: in Sec. II, we give a brief
introduction on the in situ formed dendrite phase, and we describe
how we extract a cluster of dendritic structures from a SEM image;
in Sec. III, we describe how the finite element calculations are per-
formed; in Sec. IV, we compare the acoustic attenuation properties
in two media containing softer or stiffer inclusions with dendritic
and circular shapes; finally, we discuss the results, and we conclude
in the last part.

II. THE DENDRITIC SHAPE OF THE INCLUSIONS
In this section, we will present the preparation of the Ti-based

metallic glass containing a dense dendrite phase.45,55 Based on the
SEM images of the samples, instead of looking at the whole den-
drite phase, we use a representative cluster of the dendritic struc-
ture as the elementary pattern periodically distributed in our model
phononic crystal. As for the mechanical properties of the model, we
have chosen to use the same properties as in Ref. 37, referring thus
to a well-known system. This choice is motivated by the possibility
to compare wave-packet propagation results previously obtained on
circular inclusions with the ones on dendritic inclusions and, thus,
get a direct understanding of the impact of a fractal-like interface
shape.

A. Material composition and preparing process
Ingots with the nominal composition Ti45Zr25Nb6Cu5Be17Sn2

are prepared by arc-melting the mixture of high purity elements
(>99.9 wt. %) under a Ti-gettered argon atmosphere. The ingots
were re-melted at least five times to ensure the homogeneity. Plate
samples (5 × 20 × 60 mm3) were prepared by casting into a water-
cooled copper mold. The dendrite phase (light gray regions) was
found to distribute uniformly within the featureless glass matrix
(dark gray regions). Volume fractions of the dendrite phase were
analyzed by the Image-Pro Plus software, resulting in a volume frac-
tion of 66% ± 2%. The dendrites have an average size (measured as
the diameter of the circular approximation to its shape) of about
30 μm, with a typical single-branch diameter of 3 μm. The size and
volume fractions are sensitive to the cooling rate and the alloy com-
position.56 Some mechanical properties are given in Appendix A
(Tables IV and V), and more details on sample preparation and
materials properties can be found in Refs. 45 and 55.

In the following, the exact size of the inclusions will not mat-
ter much. We will keep only their shape and volume fractions.
Thanks to the scalability of our numerical calculations, lengths will

be expressed in units of L (the average distance between the inclu-
sions) and frequency in units of ω0 = 2πcL/L, with cL being the lon-
gitudinal wave velocity. The inclusions with a reported diameter of
30 μm are not supposed to affect the thermal transport at room tem-
perature, but only acoustic wave propagation at GHz frequencies.
However, playing with the exact value of L, it will be possible to
also consider the effect of the inclusion shape on thermal transport:
for example, by choosing L ≈ nm, the effect on thermal transport at
room temperature can be investigated.

B. Reconstruction of the dendritic shape inclusion
In this work, we focus on a cluster of dendritic structures as

shown in Fig. 2(1), which is extracted from Fig. 1. It is interest-
ing to focus on this representative zone: its global shape seems to
be comparable to a circular inclusion, while its internal tree-like
structure may induce different acoustic features. For this aim, a
non-dimensional analysis is expected to be carried out by scaling
the above cluster of dendrites and the circular inclusion to a quasi-
equivalent dimension. As shown in Fig. 2, this cluster of dendrites
is encapsulated inside a square block. The square block containing a
dendritic inclusion is then used as an elementary brick in the finite
element simulation.

Referring to the labels in Fig. 2, the imaging procedure from
the SEM image to a finite element mesh is: (1) The region of inter-
est (ROI) is selected and extracted from the original SEM image. (2)
Using Matlab toolbox Image Labeler, pixel-level labeling is manually
performed in which pixels belonging to either the dendritic inclu-
sion or to the matrix are labeled accordingly. Of course, there are
human factors in the steps of determining the two areas, but we
have found that the manual method provides a better result than the
tested automatic imaging methods such as Canny edge detector,57

level sets,58 region growing,59 and watershed.60 (3) The binary label-
ing information is then transformed into a binary image in which
redundant parts are removed. The ROI is the white zone, and the
matrix is the black zone. (4) Contour detection gives accurate inter-
faces between the dendritic cluster and the matrix, and the width of
the interfaces is one pixel. (5) The interfaces are segmented into sep-
arate zones, and each zone consists of a closed curve. Here, we have
17 independent zones. (6) To form the final geometry, we sequen-
tially import pixel coordinates of the 17 zones into COMSOL Mul-
tiphysics to create interpolation curves. Each closed curve creates a
part of the dendritic inclusion inside which mechanical properties
are homogeneous. The surrounding zone forms the matrix whose
mechanical properties are different from the inclusion. Finally, P-1
triangle elements are employed to generate the displayed elemen-
tary mesh including both the inclusion and the matrix. It is essential
that the number of nodes on the four boundaries of the square are
defined a priori as the same and the nodes are equally spaced, for
the reason of compatibility, given that we will copy and arrange
this elementary mesh in the horizontal direction and implement the
periodic boundary condition on the upper and lower boundaries, as
shown in Fig. 3.

C. Volume fraction of the inclusion
In this work, we prepared two models: one with dendritic inclu-

sions and another with circular inclusions used for comparison.
Since we are interested in the role of inclusion shape, we must ensure
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FIG. 2. Flowchart from SEM to the finite element model: (1) Region of interest extracted from SEM image, (2) pixel-level labeling using Matlab toolbox Image Labeler, (3)
binary image, (4) contour detection, (5) independent zone detection, and (6) mesh generation.

the best possible equivalence of the circular and dendritic inclu-
sions, apart from the interface shape. As discussed previously, all
the parameters involved in the material constitutive laws (the elas-
tic moduli here) are scale-invariant, resulting in the same invariance
for the whole model. We, thus, give all lengths in terms of trivial
length L, the distance between the inclusions. Equivalently, the fre-
quency unit is chosen as ω0 = 2πcL/L, which is used to define the

FIG. 3. 2D simulation model of a solid with dendritic (top panel) and circular (bot-
tom panel) inclusions: this semi-infinite solid can be represented by modeling only
the part inside the red rectangle with Periodic Boundary Conditions (PBCs) and
Perfect Matched Layers (PMLs) as drawn. Black patterns represent the inclusions
(Ω represents the simulation domain and ∂Ω indicates boundary conditions).

unit time t0 = L/cL in the equation of motion with cL being the lon-
gitudinal wave velocity. The relative size of the inclusions is then
chosen in order to reproduce the data already obtained in Ref. 37
for circular inclusions. As in Ref. 37, the apparent diameter of the
inclusion is, thus, chosen here as 5/6 L. It corresponds to the exact
diameter of the circular inclusions and to the longest axis of the den-
dritic inclusion. Therefore, the outer contour length is comparable
between the two types of inclusions, which can be considered as the
primary interface. However, the volume fraction for the dendritic
inclusion (shown in Fig. 2) and in 2D corresponding to a surface
fraction is then measured as 28% and 35%, while for the circular
inclusion, it is 54% and 54%, respectively. The latter, which is close
to twice the inclusion area of the former, intuitively allows for a more
efficient scattering according to the results in Ref. 37. The geomet-
rical and materials parameters used are summarized in Table I, and
materials parameters are shown in Table II.

In the following, we will analyze the role of inclusion shape
in acoustic attenuation in periodically arranged nanocomposites. As
we are primarily interested in thermal transport, it is possible to scale
the dendritic diameter to the nanometric length scale, pertinent for
thermal transport at room temperature. For L = 6 nm, for example,
as in Ref. 37, the reference frequency will be ω0 = 8.34 THz, while for
L = 30 μm, ω0 = 1.67 GHz.

TABLE I. List of inclusion (i) and matrix (m) volume fractions and the largest axis for
circular and dendritic inclusions.

Circular Dendritic

Φi (%) 54.54 28.35
Φm (%) 45.46 71.65
Largest axis 5

6 L 5
6 L
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TABLE II. List of parameters and reference dimensions.

Em (GPa) νm Ei/Em νi

92.2561 0.34761 0.2 or 10 0.347
ρ (kg/m3) cL (m/s) ω0 (rad/s) ω/ω0

230361 7966 8.34 × 1012 0.3–4.8

III. NUMERICAL TOOLS
We used finite element numerical calculations to study the

vibrational properties of a 2D semi-infinite elastic system with den-
dritic and circular inclusions positioned along a cubic lattice. The
computational model consists of nine squares, aligned in the hor-
izontal direction. There is no initial inclusion-free block in this
model. The size of each square is defined as L, thus determining the
distance between inclusions as L/6. The wave packet is generated
imposing a displacement on the left side of the first square around
t = 0,

U(ω, t) = U0 exp(−(t − 3t0)2

2t2
0
) sin(ωt), (1)

where U0 is a constant value, ω is the frequency of this quasi-
monochromatic excitation, and t0 = 3π

ω is the half period of the exci-
tation. A displacement parallel to the boundary corresponds to a
transverse excitation, while the one perpendicular to the boundary
corresponds to a longitudinal excitation. For the sake of simplicity,
we will consider here only longitudinal excitations.

As shown in Fig. 3, periodic boundary conditions (PBCs) are
implemented along the vertical direction at the top and bottom of
the sample. Perfect Matched Layers (PMLs) are applied on the right
side to limit the wave reflection as much as possible. The techni-
cal details about the boundary conditions and the time integration
scheme can be found in the Appendix in Ref. 37.

Like in our previous works performed on a medium with
periodic circular inclusions,61 the matrix material is linearly elas-
tic with isotropic homogeneous elastic behavior characterized by
a typical Young’s modulus of Em = 92.25 GPa, a mass density of
ρ = 2303 kg/m3, and a Poisson ratio of ν = 0.347.62 For the inclu-
sions, Poisson’s ratio is supposed to be the same, while Young’s
modulus Ei is taken as another control variable and defined as
Ei = Em × Ei

Em
, the latter being the stiffness ratio of 0.2 or 10. Table II

summarizes the values of the parameters used in this work:

IV. ACOUSTIC TRANSPORT IN AN ISOTROPIC
HOMOGENEOUS MATERIAL WITH DENDRITIC
INCLUSIONS

A set of transient simulations of longitudinal wave-packet
propagation are done using FEM for both media with dendritic and
circular inclusions. From the results, we analyze the envelope of the
kinetic energy in order to identify the attenuation regime. In addi-
tion, the penetration length and diffusivity are calculated to com-
pare the attenuation ability for the two types of inclusions. Finally,
long-wavelength and instantaneous sound speeds are estimated for
some representative cases. In the following, the kinetic energy Ek is
normalized by the maximum value at x = 0.

A. Envelope of the kinetic energy
As said before, the wave packet is created by imposing a dis-

placement on the left side of the sample. Its propagation is then
followed along the sample, in the x direction. Due to the pres-
ence of interfaces and related spatial inhomogeneities, the wave-
packet wave-vector k does not remain constant, the wave packet
being scattered by the inclusions. To understand how such scattering
affects the energy transfer, we measure the envelope of the kinetic
energy induced in the system by the propagation of the wave packet,
summed over the y direction. The energy envelope is defined for
each excitation frequency ω as

Pω(x) = max
t

Ek(x, t), (2)

where Ek(x, t) is the instantaneous kinetic energy supported by the
frame located in x with a width of Δx = L/60.

In Fig. 4, we present the envelopes of the kinetic energy as a
function of position on a semi-log scale and for different normalized
frequencies ω/ω0 with Ei

Em
= 0.2. Surprisingly, for low frequencies, up

to ω
ω0
= 1.2 included, the circular inclusions strongly attenuate the

wave packet, which is almost unaffected by the presence of the den-
dritic inclusions. The strong effect of circular inclusions has been
previously understood as a consequence of the localization of the
energy due to a resonance of the inclusions that keeps the acoustic
energy.37 However, the irregularly shaped dendritic inclusion does
not lead to such resonance phenomena. As such, we can conclude
that for low frequencies and long wavelengths, the high interface
density of the dendritic inclusion is not dominant in determining the
wave-packet attenuation. The situation is reversed above ω

ω0
= 1.56.

From this frequency, the dendritic inclusions become more effi-
cient in attenuating the wave packet, and such attenuation strongly
increases with increasing frequency, i.e., decreasing wavelength. In
the circular case, the attenuation is almost constant for frequencies
above ω

ω0
= 2.16, suggesting a saturation of the attenuation effect of

circular inclusions in the matrix. We can understand the change in
the attenuation efficiency regime as due to the major importance of
the tree-like interface in dendritic inclusions at wavelengths com-
parable with the dendritic structure length scale, i.e., of order of
≈ L/10.

We can also identify the different regimes directly from the
envelopes of the kinetic energy. Indeed, in the case of weak scatter-
ing (propagative regime), a global exponential attenuation similar to
the Beer–Lambert law can be observed,37,63,64

Pω(x)∝ exp(−x/Λ(ω)), (3)

while for strong scattering, for example, due to the larger rigid-
ity contrasts as in this work (Ei/Em = 0.2 or 10), the algebraic
attenuation of the envelope,

Pω(x)∝ 1/x, (4)

is the signature of a diffusive process (diffusive regime).37,64 Since
Fig. 4 is given on a semi-log scale, the propagative regime that fol-
lows an exponential decay gives a straight line with a negative slope.
In Fig. 4, as exemplified by the green dotted line for ω/ω0 = 0.60 and
0.96 in the case of dendritic inclusions, an evident exponential decay
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FIG. 4. Comparisons of envelopes between circular (blue) and dendritic (red) inclusions with Ei

Em
= 0.2 for different normalized frequencies ω/ω0 (where ω0 = 2πcL/L)

on a semi-log scale: total simulation time 8400 dt with dt = Δl/cL (Δl is linked to mesh size). For the cases ω/ω0 = 0.60 and 0.96, the green dotted line represents an
exponential decay. For the cases ω/ω0 = 1.20, 1.56, 2.16, and 4.80, the black dashed and violet dashed lines represent 1/x and compressed exponential fits, respectively.
For the case ω/ω0 = 0.96, as an example, we report the level P = P0/e, with P0 the starting energy value as a black solid line: its intersection with the envelop determines
the penetration length.

can be recognized at low frequencies. At higher frequencies, we find
1/x behavior for both the cases of dendritic (ω/ω0 = 1.20) and circu-
lar inclusions (ω/ω0 = 2.16 and 4.80), which can be then verified on
the log–log plot, where the 1/x behavior corresponds to a straight
line with a fixed slope, as shown in Fig. 5. Interestingly, for the
dendritic case with ω/ω0 = 1.56, 2.16, and 4.80, the envelope follows
neither the B–L fit nor the diffusive fit. If we use a compressed expo-
nential function, such as P ∝ exp(−(x/Λ)β) with β > 1, the best fit
value of β is 1.32, 1.34, and 1.44, respectively. Such a compressed
exponential behavior marks a strong difference from the case of cir-
cular inclusions, where the diffusive regime is well followed, with a
reduction in the oscillation amplitude, as better visible in Fig. 5. In
the case of dendritic inclusions, instead, the novel compressed expo-
nential regime exemplifies, in fact, the succession of two regimes: if
at the beginning the diffusive law seems to be followed, this leaves
space very rapidly to a much stronger attenuation. In both regimes,
oscillations are present, similar to the circular inclusion case, with
a possibly larger amplitude at high frequency, indicating that the
energy is pinned within the inclusions.

In order to get insight into the appearance of this new atten-
uation regime in the dendritic sample, we report in Fig. 6 the
snapshots of the displacement field for low frequency (ω/ω0 = 0.6),
medium frequency (ω/ω0 = 1.2), and high frequency (ω/ω0 = 4.8)
at the half time (4200 dt) and at the final time (8400 dt) for both
samples. For ω/ω0 = 0.6, the energy is localized and pinned to the

first inclusions in the case of circular inclusion but spreads rapidly
in the dendritic ones without huge dispersion, meaning that the
wavefront propagates ahead followed by an energy tail. At the
medium frequency ω/ω0 = 1.2, the energy is dispersed in space,
and the attenuation length in the two samples is quite comparable.
At the high frequency ω/ω0 = 4.8, the energy is scattered violently
at the inclusion–matrix interfaces. In the case of circular inclu-
sions, energy is only scattered few times when crossing the circular
interface. In addition, due to the large curvature of the circle com-
pared with the short wavelength, there is little but existing energy
that keeps spreading ahead along the x direction. On the contrary,
for dendritic inclusions, energy is totally scattered due to the ran-
dom orientations of the normals at the interface and high interface
density.

To conclude, different regimes can be identified: (1) exponen-
tial attenuation is observed mainly in the low frequency range, which
relates directly to the propagative contribution; (2) a diffusive regime
is observed at higher frequencies, which can be identified through
the P ∝ 1/x behavior and is related directly to the diffusive con-
tribution; (3) a localized (mixed diffusive-localized) regime can be
found at some specific frequencies, for example, ω/ω0 = 0.6 for cir-
cular inclusions, which most effectively prevents the energy trans-
port; (4) a compressed exponential attenuation regime is found in
the high-frequency range for dendritic inclusions, where the ini-
tially diffusive regime seems to be replaced by a stronger attenuation,
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FIG. 5. Figure 4 on a log–log scale. Blue lines are for the circular inclusions, and red lines are for the dendritic inclusions. In this representation, the diffusive A/x behavior,
with A being a fitting parameter, corresponds to a linear decrease, as evidenced by the black dashed lines.

FIG. 6. Snapshots of three cases at 4200× and 8400× dt with Ei

Em
= 0.2 for circular and dendritic inclusions: (a) ω/ω0 = 0.6, (b) ω/ω0 = 1.2, and (c) ω/ω0 = 4.8 (Multimedia

view, supplementary material).

APL Mater. 9, 081109 (2021); doi: 10.1063/5.0056496 9, 081109-7

© Author(s) 2021

https://scitation.org/journal/apm
https://www.scitation.org/doi/suppl/10.1063/5.0056496


APL Materials ARTICLE scitation.org/journal/apm

leading to a global compressed exponential behavior. This results
from the combined effect of periodicity and complex interface shape
of the dendritic structure.

B. Penetration length and diffusivity
In Sec. IV A, by comparing the kinetic energy envelopes, we

have given the first picture of the attenuation ability in the solids with
two types of soft inclusions. Now, we will quantify this attenuation
by calculating the penetration length and the diffusivity as a function
of frequency in two extreme cases of rigidity contrast, being Ei

Em
= 0.2

and 10.0.
First, we look at the long-time penetration length, defined as

the traveled length above which the energy per unit length remains
always smaller than the maximum excitation energy per unit length
divided by e. An example is reported in Fig. 4 for ω/ω0 = 0.96, where
the abscissa of the intersection between the envelope and the A/e,
with A the maximum excitation energy (black solid line), determines
the attenuation length.

The results of the normalized penetration length lp/L are shown
in Fig. 7 for both dendritic (red triangles) and circular inclusions
(blue circles). In both cases of Ei

Em
, at low frequencies, the dendritic

inclusions do not exhibit their high-interface-density advantage.
Still, as wavelength decreases, the dendrite shape begins showing a
better performance to attenuate energy transfer with the reduced
crossover frequency ωc

ω0
ranging between 1 and 1.5, depending on the

stiffness ratio. Generally, for ω > ωc, values of the penetration length
are systematically shorter in the medium with dendritic inclusions,
which indicate a high potential for such samples for reducing the
propagative contribution to thermal transport. Interestingly, except
for the soft inclusion case at the highest frequency (ω/ω0 = 4.8),
almost all the penetration lengths are greater than the characteris-
tic length L. Finally, it is worth noting that for Ei/Em = 10, a local
minimum appears in the penetration length for both types of inclu-
sions, being around ω/ω0 = 1 in the circular case and ω/ω0 = 0.8 in
the dendritic case. This effect has already been reported and ascribed
to the collective resonance of the nanoparticles in the low fre-
quency range and is related to the effective acoustic impedance of the

FIG. 7. Normalized penetration length
of longitudinal wave packets in sam-
ples with circular (blue circles) and den-
dritic (red triangles) inclusions for Ei/Em

= 0.2 (a) and 10.0 (b). The correspond-
ing wavelength scale is reported on the
top axis.
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TABLE III. Materials properties, effective Young’s modulus, and the effective longi-
tudinal wave speed for composites with circular and dendritic inclusions with the
Poisson coefficient ν = 0.347 and density ρ = 2303 kg/m3.

Circular Dendritic

Em (GPa) 92.25
Ei/Em 0.2 1.0 10 0.2 1.0 10
Ei (GPa) 18.45 92.25 922.5 18.45 92.25 922.5
Φm (%) 45.46 71.65
Φi (%) 54.54 28.35
Eeff (GPa) 28.99 92.25 181.19 43.23 92.25 123.85
cL,eff (m/s) 4466.1 7966.1 11 164.3 5453.2 7966.1 9230.3

composite, its frequency position being proportional to
√

Ei/Em.37

The slight dependence of this position on the inclusion shape is
related to the effective stiffness of the medium. Indeed, the ratio of
the two positions is 1.25, which is very close to the ratio between the
square roots of the effective stiffnesses (Eeff ) of the two media that
we calculate in Sec. IV C and can be found in Table III. This suggests
the existence of a mixing law of the effective mechanical properties
for the bi-phase composites.

In order to get better insight into the strong differences between
mean-free paths in the case of circular vs dendritic inclusions, local-
ized at low frequency for soft inclusions and high frequency for hard
inclusions, we have calculated using Comsol Multiphysics FEM the
phonon band structure, which is reported for the two composites

FIG. 8. Band diagram for the circular and dendritic inclusions with Ei/Em = 0.2.
The band gaps are marked by the red stripes, and the green vectors and trans-
parent regions represent the first five frequencies and the corresponding spectral
width in Fig. 4. Top: circular inclusions and bottom: dendritic inclusions.

in Figs. 8 and 9 in our frequency window (for ω/ω0 ≤ 2.5). The
periodicity of the nanostructure induces a new Brillouin Zone, with
the folding of the intrinsic phonon branches of the matrix material,
leading to a raise in a large number of optic modes and the pos-
sible appearance of forbidden gaps. Indeed, we can identify some
gaps in our investigated frequency window, both in the direction of
propagation, corresponding to the Γ − X direction, than in the other
high-symmetry directions, X −M and M − Γ. In Figs. 8 and 9, we
have reported the band gaps as red stripes and the first five inves-
tigated frequencies in green, where each frequency becomes a band
due to the spectral broadening intrinsic to our simulation. Indeed,
since the phonon wave packet has a finite coherence time
(t0 = 3π/ω), the frequency spectrum is centered at ω with a full width
at half maximum of 0.24ω. In the circular case, soft inclusions, gaps
are at normalized frequencies smaller than 1, and specifically, our
investigated frequency ω/ω0 = 0.6 falls within a bandgap in the Γ − X
direction. Still, this particular mode can propagate in the other direc-
tions, indicating that its propagation in the Γ − X direction is, in fact,
the projection in this direction of a movement in other directions
due to multiple scattering. For Ei/Em = 10, several gaps appear, in
correspondence to our investigated frequencies below 1.2. Interest-
ingly, the gap at ω/ω0 = 0.6 is now extended to all high-symmetry
directions with only slight frequency modulations, indicating that
the propagation of this wave packet will be effectively strongly hin-
dered, and indeed, we observe a strong minimum in the mean-free
path. Concerning the dendritic case, gaps are generally narrower
than those in the circular case and with little coincidence with our

FIG. 9. Band diagram for the circular and dendritic inclusions with Ei/Em = 10. The
band gaps are marked by the red stripes, and the green vectors and transparent
regions represent the first five frequencies and the corresponding spectral width in
Fig. 4. Top: circular inclusions and bottom: dendritic inclusions.
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investigated frequencies. The lack of the large bandgap at 0.6 for
Ei/Em = 10 in all directions explains the absence of the strong mini-
mum in the mean-free path. At high frequency, ω/ω0 > 1.2, and no
gaps are present in the propagation direction, indicating that if prop-
agation is mainly affected by the modification of the band structure
at low frequency, in this range, the dominant effect is the multiple
scattering from the fine interface structure of the dendrite. This is,
indeed, confirmed by the absence of a wave front in Figs. 6(b) and
6(c).

We have discussed here how the nanostructure affects the
wave-packet propagation. As previously mentioned, when it comes
to energy transport, there exists a diffusive contribution as well. In
order to investigate it in the presence of different inclusions and,
thus, understand how thermal transport could be affected, we first
identified the situation where the diffusive regime can be recognized
from the time evolution of the wave-packet average position ⟨x⟩(t).
For this aim, we have calculated this position as

⟨x⟩(t) = ∑ixiEk(i, t)
∑iEk(i, t) , (5)

where xi is the position of the ith frame with width Δx in the x direc-
tion and Ek(i, t) is the instantaneous total kinetic energy supported

by that frame. In the case of a diffusive process, the squared devia-
tion σ2(t) is proportional to the time t, with a slope related to the
one-dimensional diffusivity,

σ2(t) = 2D(ω)t, (6)

where D is the diffusivity and the spreading σ reads

σ(x, t) =
√
⟨(x − ⟨x⟩)2⟩

=
¿
ÁÁÀ∑i(Ek(i, t) × x2

i )
∑iEk(i, t) − ⟨x⟩2. (7)

As an example, σ2 of random longitudinal wave packets nor-
malized by L2 as a function of time step is shown in Fig. 10 for
four frequencies. In the high-frequency range, in both samples, we
clearly find a σ2 ∝ t relation, indicating the diffusive transport of
energy, from which the diffusivity D can be fitted. It is worth under-
lining that in the sample with dendritic inclusions, we find a diffusive
time evolution of the wave packet even at frequencies for which the
anomalous stronger-than-diffusive attenuation appears. Concerning
the sample with circular inclusions, interestingly, we observe the

FIG. 10. Comparison of σ2
/L2 of random longitudinal wave packets in samples with circular (blue circles) and dendritic (red crosses) inclusions with Ei/Em = 0.2 for different

normalized ω/ω0.
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presence of a short plateau for ω/ω0 = 0.96, which can be under-
stood as the signature of localization. Indeed, in the localized regime,
the wave packet is pinned so that ⟨x⟩ = constant as well as σ2, thus
giving a plateau. This localized regime is similar to the localization
of phonon wave packets observed in previous MD simulations of
glasses and disordered phononic crystals (PnCs), for example, in
Refs. 39 and 62

The results of diffusivity are shown in Fig. 11. We can draw
similar conclusions as for the penetration length, that is, at high
frequencies, the dendritic shape of the inclusions leads to a lower
diffusivity than that in the circular case. If this conclusion seems to
be universal, independent on the stiffness ratio, it is interesting to
note that for Ei

Em
= 10, the diffusive contribution is reduced by the

dendritic shape of the inclusions at all wavelengths. If now we com-
pare the diffusivity between Ei

Em
= 0.2 and Ei

Em
= 10, we remark that

the overall diffusivity in the soft inclusion case is lower than that of
the hard inclusion case, which is coherent with the conclusions in
Ref. 37.

C. Sound velocity
In composite nanophononic materials, the wave propagation

velocity will be mainly influenced by two factors: the effective rigid-
ity of the medium and the properties of the interfaces. In the follow-
ing, we will investigate two types of wave speed: (1) effective wave

FIG. 11. Normalized diffusivity of random longitudinal wave packets in samples
with circular (blue circles) and dendritic (red triangles) inclusions for Ei/Em = 0.2
(a) and 10.0 (b). The corresponding wavelength scale is reported on the top axis.

speed at low frequencies and (2) the instantaneous wave speed. The
latter is especially useful when it is difficult to get a stationary speed
(independent of time), due to the strong elastic heterogeneity of the
medium.

1. Long-wavelength speed
Long-wavelength speed for longitudinal waves can be calcu-

lated as

cL,e f f =
¿
ÁÁÀ Eeff (1 − ν)

ρ(1 + ν)(1 − 2ν) , (8)

where Eeff is effective Young’s modulus of the composite estimated
by the Reuss model, which states that the elastic modulus of a
composite can be expressed as

Eeff =
1

Φi × 1
Ei
+Φm × 1

Em

, (9)

where Ei (Em) is Young’s modulus of the inclusion (matrix) and Φi
(Φm) is the volume fraction of the inclusion (matrix).

We summarize the material properties, effective Young’s mod-
ulus, and effective longitudinal wave speeds in Table III. From the
estimated wave speeds, it is clear that the long-wavelength wave
speed increases compared to the homogeneous solid with Ei/Em = 1
in the case Ei/Em > 1 and decreases in the case Ei/Em < 1 whatever
the shape of inclusion is. We find that, both for a more rigid or a
softer inclusion, the long-wavelength speed is more strongly affected
for a larger volume fraction, i.e., in the case of the circular inclu-
sions. The same conclusion can be drawn from the phonon band
diagram, from which we have estimated the phonon density of states
(DOS) by counting the number of modes at each frequency interval
(Δω/ω0 = 0.1) over all k-values. It is worth reminding that, follow-
ing the Debye prediction, the DOS is proportional to the frequency
(2D) with a slope inversely proportional to the square of the velocity.
As shown in Fig. 12, the slope for Ei/Em = 0.2 is larger than that of

FIG. 12. Number of modes vs reduced frequency ω/ω0 for circular and dendritic
cases with Ei/Em = 0.2 or 10. In the 2D case, the density of states is proportional
to the frequency with the slope being inversely proportional to the square of the
velocity according to the Debye prediction.
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Ei/Em = 10, indicating a smaller effective sound velocity. It is noted
that the difference in slope between two cases for Ei/Em = 0.2 is also
larger than that of Ei/Em = 10, meaning that the slope of DOS and,
thus, the sound velocity for the composites with soft inclusions are
more sensitive to the volume fraction. Using the Debye approxima-
tion, we can estimate the effective sound velocity for all the inves-
tigated elastic contrasts starting from the softest inclusion case and
using the scaling law,

c =
√

A0√
A

c0, (10)

where A0 and c0 = 4466.1 are the slope and effective sound velocity
for the circular inclusions and Ei/Em = 0.2 and A and c are the slope
and effective sound velocity for any other case. For the circular inclu-
sions with Ei/Em = 10, we, thus, obtain c = 10 842. For the dendritic
inclusions, c = 5346 and 8862 for Ei/Em = 0.2 and 10, respectively,
in good agreement with the values in Table III, close to the esti-
mation given by the effective medium approximation. The speed at
such wavelengths is, thus, essentially determined by the elastic mod-
uli of the phases and the volume fraction of the secondary phase,
independent of the inclusion shape.

This global measurement does not reflect, however, the diver-
sity of behaviors that we have seen in Secs. IV A and IV B and,
specifically, the facts that the dendritic shape can strongly affect

both propagation and energy diffusion at some wavelengths and
the wave packet can be trapped between inclusions. Such differ-
ences will affect the wave-packet speed at wavelengths comparable
with the nanostructure, i.e., when the wave packet is actually per-
turbed by the presence of the inclusions in its propagation behav-
ior. For this reason, we address in the following the instantaneous
speed.

2. Instantaneous wave speed at high frequencies
When the wavelength approaches the nanostructure length

scale (size and inter-distance between scatterers), the phonon-
interface scattering becomes more important and wave speed begins
to deviate from the long-wavelength value. As the wave packet
moves in a highly heterogeneous medium, its velocity is not homo-
geneous in space or in time, the wave packet being scattered in dif-
ferent directions, backward included. Therefore, we need to calculate
the instantaneous speed defined as

cins =
∂⟨x⟩(t)

∂t
, (11)

where ⟨x⟩ has been defined in Eq. (5) and needs to be smoothed,
because the energy oscillates back and forth in the medium, due
to the multiple reflections from the interfaces. This can be clearly
seen in Appendix B, Fig. 14. The real, non-smoothed, instantaneous

FIG. 13. Instantaneous wave speed cins normalized to cL in samples with dendritic (red crosses) and circular (blue circles) inclusions and a stiffness ratio of Ei/Em = 0.2.
See the text for the details on the calculation.
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speed will necessarily sharply fluctuate and even assume negative
values for back reflections. By smoothing ⟨x⟩, Eq. (11) will, instead,
give us the average speed of energy transport in a relatively short
time. In this work, we use the Bezier interpolation as detailed in
Appendix B.

We select four frequencies from low to high: ω/ω0 = 0.6, 0.96,
1.56, and 4.8, with Ei/Em = 0.2. The corresponding instantaneous
wave speeds are calculated and shown in Fig. 13. Note the initial
increase due to the establishment of the wave packet inside the sam-
ple, at earlier times for higher frequencies. Only the part after this
initial increase must be considered in the following. First, for ω/ω0
= 0.6 and dendritic inclusions, cins exhibits a plateau showing a
quasi-constant instantaneous speed of ≈ 0.45cL = 3580 m/s. This
speed is always lower than the estimated long-wavelength value
reported in Table III, which is 5453 m/s for Ei/Em = 0.2, indicat-
ing a slight attenuation of energy transport. Conversely, this plateau
does not exist for the circular inclusion case because it is already
in the diffusive-localized regime where energy is pinned in the first
inclusions. The instantaneous velocity in the circular inclusion case
is always lower than the one in the dendritic inclusion case, meaning
that energy moves more slowly in the medium with circular inclu-
sions at all time. This is in agreement with the smaller penetration
length found at this frequency in the circular inclusion sample than
that in the dendritic one, as shown in Fig. 7(a). For ω/ω0 = 0.96, the
instantaneous speeds in the two samples are quite similar to each
other, which, once again, is in good agreement with our findings on
the penetration length. ω/ω0 = 0.96 can be considered as a separation
point, because at the following two frequencies ω/ω0 = 1.56 and 4.8,
the instantaneous speed in the circular inclusion samples is system-
atically larger than that in the dendritic case, meaning that at high
frequency, the dendritic sample is more efficient in slowing down
and reducing energy transport.

To conclude, the analysis of the instantaneous speed gives a
more obvious picture of the crossover of the attenuation perfor-
mance from the circular inclusion case at low frequencies to the den-
dritic inclusion case at high frequencies for Ei/Em = 0.2, especially
when the wave-vector no longer exists. Interestingly, this velocity is
not stationary in the frequency range studied here.

V. DISCUSSION AND CONCLUSIONS
To conclude, we have shown the effect of a complex shape in

the periodic pattern of a 2D nanophononic crystal. We have com-
pared the sound attenuation performance between two shapes of
inclusions: circular and dendritic. Our results show that the multi-
branching tree-like form of dendrites enhances phonon–interface
scattering and phonon attenuation specifically for wavelengths com-
parable with the dendritic structure length scale regardless of the
rigidity ratio. Unlike the circular inclusion, which has only one char-
acteristic length, the sub-interfaces inside the dendritic inclusion
provide a continuous source of scattering leading to an increase in
sound attenuation. This leads to a stronger reduction in both the
penetration length and the apparent diffusivity in samples with den-
dritic inclusions when the wavelength becomes smaller than the
first characteristic length even for far smaller volume fractions of
inclusions. Moreover, the instantaneous wave speed is also globally
affected, being much reduced at high frequencies by the dendritic
fine structure.

It is important to note that the better performance of materials
with dendritic vs circular inclusions does not hold at low frequen-
cies, where the larger volume fraction that characterizes the equiva-
lent circular inclusions gives the major contribution to attenuation,
besides resonance effects at specific frequencies. If, on the one side,
this could suggest to use dendritic inclusions with a larger volume
fraction for an optimized nanocomposite, it is worth reminding
that the increase in the average inclusion size will translate into an
increase in the affected wavelengths and, thus, a decrease in the cor-
responding frequencies. A compromise between the frequency range
that one aims at affecting and the extent of the attenuation, thus,
needs to be found.

Concerning the effect of the stiffness ratio between inclusions
and the matrix, for soft inclusions, the propagative contribution is
reduced also at low frequencies, while for hard inclusions, it is the
diffusive that is reduced at all frequencies. Understanding how these
modifications can affect thermal transport is not trivial. Indeed, as
said, thermal transport has both contributions, but their relative
weight depends on the intrinsic properties of the materials and on
the temperature at which the study is done.30,32 Generally, for crys-
talline materials with little intrinsic phonon attenuation, the prop-
agative contribution dominates at all temperatures, but this is not
seen in amorphous or complex crystalline materials. Still, at low
temperature, only long-wavelength phonons contribute to thermal
transport so that the propagative contribution is dominant. Further-
more, thermal conductivity should be calculated in both contribu-
tions (including diffusivity) as a function of temperature, but this is
out of the scope of this work.

In addition, as presented in the Introduction, the dendrite
phase is formed inside the glassy matrix. In addition, amorphous
materials have been used as building blocks for metamaterials
for thermal engineering. It was shown recently that an effective
elasto–viscous law must be considered in this case, in place of the
elastic material behavior used in this work to take into account the
intrinsic acoustic attenuation in glasses.65,66

Finally, it is important to note that the wave dynamics in
nanocomposites with a complex geometrical shape such as the den-
dritic one is much more complex than a simple transition from bal-
listic to diffusive energy transfer. Indeed, we have shown that above
a critical frequency ωc, the nanocomposite with circular inclusions
gives rise to a clear diffusive attenuation combined with a reduction
in oscillations, while in the same frequency range, the attenuation
appears to be only initially diffusive and then much stronger for the
dendritic inclusions while presenting similar oscillations. This is dif-
ferent from the anomalous diffusion of acoustic waves reported in
2D periodic media, characterized by the occurrence of heavy-tailed
distribution (as opposed to 1/x decay), interpreted as a consequence
of the hybridization of the ballistic and diffusive transport.32,67 In
fact, it can be fitted by a compressed exponential function with
β > 1. Therefore, this is truly another type of attenuation process due
to the combined effect of periodicity and complex interface shape,
giving a stronger attenuation than normal diffusion. The stretched
(compressed) exponential character of this attenuation could be
related, for example, to the superposition of Beer–Lambert laws with
competing mean-free paths due to different attenuation scales.68

All these results indicate that the use of a complex sub-structure
of the interfaces in a phononic material allow us to realize novel
optimized materials for acoustic attenuation, leading to applications
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as high-frequency acoustic filters or thermal insulation, depend-
ing on the length scale of the micro(nano)-structure. Indeed, all
our findings, reported in normalized units, can be easily scaled at
larger or smaller frequencies depending on a smaller or larger nano-
structure. As such, our work is more general and gives insights into
the universal effect of a complex shape onto acoustic attenuation at
all length scales.

SUPPLEMENTARY MATERIAL

See the supplementary material for the videos of wave-packet
propagation in Fig. 6.
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APPENDIX A: MECHANICAL PROPERTIES
OF THE MATERIAL

Mechanical and intrinsic properties of the
Ti45Zr25Nb6Cu5Be17Sn2 BMG composites. Young’s modulus
(E) and Hardness (H) of the dendrite phase and glass matrix in
the Ti45Zr25Nb6Cu5Be17Sn2 BMG composites measured by the
nanoindentation (Tables IV and V).

APPENDIX B: BEZIER INTERPRETATION

Before calculating the instantaneous speed, we need to pre-
treat the data of ⟨x⟩. Since when waves pass through a deeply

TABLE IV. Mechanical and intrinsic properties of the Ti45Zr25Nb6Cu5Be17Sn2 BMG
composites. Yielding strength (σy ), yielding strain (ϵy ), ultimate tensile strength
(σu), tensile strain until necking (ϵu), Young’s modulus (E), shear modulus (G), and
Poisson’s ratio (ν).55

Alloy σy (MPa) ϵy (%) σu (MPa)

Ti45Zr25Nb6–Cu5Be17Sn2 913 1.44 1521
ϵu (%) E (GPa) G (GPa) ν
10.12 85.23 ± 0.22 31.23 ± 0.13 0.365 ± 0.005

TABLE V. Young’s modulus (E) and Hardness (H) of the dendrite phase and
glass matrix in the Ti45Zr25Nb6Cu5Be17Sn2 BMG composites measured by the
nanoindentation.45

Phase component E (GPa) H (GPa)

Dendrite phase 86.4 ± 4.1 3.78 ± 0.39
Glass matrix 113.8 ± 2.5 6.13 ± 0.41

heterogeneous medium, ⟨x⟩(t) oscillates sharply, and the calculated
wave speed can be unreal and meaningless, as illustrated by the yel-
low dashed line shown in the right panel of Fig. 14. Two smooth-
ing methods are considered here: the first one is nearest neighbor
smooth (kernel smoother) defined as

Si =
∑i+n

j=i−nPj

2n
, (B1)

where Pj is the energy envelope at j and n is the number of the nearest
neighbors. The second method is Bezier interpolation smoothing.
Bezier curves can be defined for any degree n,

B(t) =
m

∑
i=0

Ci
m(1 − t)m−itiPi, t ∈ [0, 1], (B2)

FIG. 14. Average position (left) and instantaneous speed (right) for the dendritic inclusion with Ei/Em = 0.2 and ω
ω0
= 0.6 for longitudinal waves. Yellow lines: unsmoothed

data, blue lines: nearest neighbor smoother, and red lines: Bezier interpolation.
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where Ci
m is equal to the binomial coefficient and m + 1 is equal to

the length of the array P. It is reported that the Bezier based smooth
curve gives smaller fluctuations and curvatures than other regular
smoothing methods in Ref. 69, meaning that it can effectively reduce
the oscillations of the first derivative of the ⟨x⟩.

We used both methods for smoothing ⟨x⟩(t) for dendritic
inclusions with Ei

Em
= 0.2 and ω

ω0
= 0.6, in which case a wave front

can still be identified, as shown in Fig. 6; thus, a well-defined sound
speed should be given by a quasi-constant instantaneous speed. The
smoothed data of ⟨x⟩(t) are shown in the left panel of Fig. 14
by using the two smoothing methods. The Bezier curve is clearly
much closer to the real data. In the right panel, the derivative of
every ⟨x⟩(t) shows that the Bezier interpolation gives the most sta-
ble result of wave speed, while the result from the unsmoothed
data is useless with such a huge oscillation and the nearest neigh-
bors smoother result is still quite noisy. In addition, a plateau is
observed for t ∈ [8, 13] in the case of Bezier curve, which gives a
quasi-constant value of the wave speed (around 3500 m/s), confirm-
ing the prediction of the existence of a well-defined wave-vector.
However, the very beginning and end of the Bezier curve should
be ignored, because the Bezier curve must begin and end at given
points, i.e., endpoint interpolation property, causing a much sharper
oscillation than that with the nearest neighbor smoother at the two
ends. Except for those extreme points, the initial stage of accelera-
tion before the plateau corresponds to the establishment step of the
wave packet whose duration depends inversely on the wave-packet
frequency. Compared to the nearest neighbor smoother, Bezier
interpolation gives a clearer presentation and interpretation of the
instantaneous speed. Therefore, in the following work, we have cho-
sen the Bezier curve to smooth ⟨x⟩ to get the instantaneous wave
speed.
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