
HAL Id: hal-03323913
https://hal.science/hal-03323913

Submitted on 7 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proposal for a Nanomechanical Qubit
F. Pistolesi, A. N. Cleland, A. Bachtold

To cite this version:
F. Pistolesi, A. N. Cleland, A. Bachtold. Proposal for a Nanomechanical Qubit. Physical Review X,
2021, 11 (3), pp.031027. �10.1103/PhysRevX.11.031027�. �hal-03323913�

https://hal.science/hal-03323913
https://hal.archives-ouvertes.fr


Proposal for a Nanomechanical Qubit

F. Pistolesi ,1,* A. N. Cleland ,2 and A. Bachtold 3
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Mechanical oscillators have been demonstrated with very high quality factors over a wide range of
frequencies. They also couple to a wide variety of fields and forces, making them ideal as sensors. The
realization of a mechanically based quantum bit could therefore provide an important new platform for
quantum computation and sensing. Here, we show that by coupling one of the flexural modes of a
suspended carbon nanotube to the charge states of a double quantum dot defined in the nanotube,
it is possible to induce sufficient anharmonicity in the mechanical oscillator so that the coupled system can
be used as a mechanical quantum bit. However, these results can only be achieved when the device enters
the ultrastrong coupling regime. We discuss the conditions for the anharmonicity to appear, and we show
that the Hamiltonian can be mapped onto an anharmonic oscillator, allowing us to work out the energy level
structure and find how decoherence from the quantum dot and the mechanical oscillator is inherited by the
qubit. Remarkably, the dephasing due to the quantum dot is expected to be reduced by several orders of
magnitude in the coupled system. We outline qubit control, readout protocols, the realization of a CNOT
gate by coupling two qubits to a microwave cavity, and finally how the qubit can be used as a static-force
quantum sensor.

DOI: 10.1103/PhysRevX.11.031027 Subject Areas: Condensed Matter Physics

I. INTRODUCTION

Mechanical systems have important applications in
quantum information and quantum sensing—with, for
example, significant recent interest in their use for fre-
quency conversion between optical and microwave signals
[1–6], the sensing of weak forces using position detection
at or beyond the standard quantum limit [7], and demon-
strations of mechanically based quantum buses and
memory elements [8–12]. Realizing a quantum bit (qubit)
based on a mechanical oscillator is thus a highly desirable
goal, providing the quantum information community with a
new platform for quantum information processing and
storage with a number of unique features. A hallmark of
mechanical resonators is their ability to couple to a variety
of external perturbations, as any force leads to a mechanical
displacement; a mechanical qubit could thus enable
quantum sensing [13] of a wide range of force-generating

fields. Another outstanding aspect is that mechanical
oscillators can be designed to exhibit very large quality
factors [14,15], thus well isolated from their environment,
with correspondingly long coherence times. Mechanical
devices may offer the possibility to develop quantum
circuits with both a large number of qubits and a long
qubit decoherence time. This possibility is of considerable
relevance to quantum computing since the decoherence
times of superconducting qubits integrated in large-scale
circuits [16] are reduced to of order 10 μs, which is much
lower than what can be achieved when operating single
superconducting qubits [17].
A mechanical oscillator can be made into a qubit by

introducing a controlled anharmonicity, thereby introduc-
ing energy-dependent spacing in the oscillator’s quantized
energy spectrum [18,19]. The anharmonicity then enables
the controlled and selective excitation of energy states of
the system, for example, the ground and first excited state,
without populating other states, breaking the strong cor-
respondence principle that otherwise limits the quantum
control of harmonic systems.
Notwithstanding the apparent simplicity of this idea,

finding mechanical oscillators with sufficiently strong and
controllable anharmonicity is not trivial. In Refs. [18,19],
anharmonicity induced by proximity to a buckling insta-
bility has been proposed. However, such a scheme is
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difficult to achieve experimentally. Here, we consider the
possibility of coupling one of the flexural modes of a
carbon nanotube to an integrated double quantum dot, with
the dot itself defined in the nanotube (cf. Fig. 1). By
independently tuning the gate voltages for the two quantum
dots, it is possible to select the low-energy electronic states
so that only those with a single (additional) electron on the
double quantum dot are energetically accessible. The
excess electron can sit either on the left or the right dot.
This charged two-level system is electrostatically coupled
to the displacement of the oscillator, in particular, to the
second flexural mode, as illustrated in Fig. 1.
In the following, we show that for sufficiently strong

electromechanical coupling, the double quantum dot indu-
ces a bistability in the mechanical mode by reducing and
then changing the sign of the quadratic term of the effective
mechanical potential. We find that for strong, but none-
theless reachable coupling constants, it is possible, in this
way, to generate an anharmonicity that is sufficient to
transform the mechanical oscillator into a qubit; however,
this process requires entering the so-called ultrastrong
coupling regime, where the coupling strength is larger
than the mechanical energy level spacing.
Remarkably, we also find that in the dispersive limit of

large detuning of the oscillator frequency and the electronic
two-level system energy splitting, the problem can be
mapped onto the Hamiltonian of the quantum-anharmonic
oscillator, allowing us to use results from that system in this
work. Following a description of the anharmonically

coupled system, we investigate the decoherence induced
by the charged two-level system on the mechanical qubit,
as well as how standard protocols for quantum manipula-
tion can be implemented. The reduction of the pure-
dephasing rate of the mechanical qubit with respect to that
of the charged two-level system can be made larger than
103 with parameters accessible experimentally. We show
how qubit readout and manipulation can be achieved as
well as how a CNOT gate for two nanomechanical qubits
could be realized by coupling them to the same microwave
cavity. We also show that the mechanical qubit can be used
as a quantum sensor for any static force that could displace
the oscillator. The static-force sensitivity can reach values
as good as 10−21 N=Hz1=2.

II. MODEL

We consider a nanomechanical system [20–27] based
on a suspended carbon nanotube (cf. Fig. 1) similar to
those demonstrated by a number of groups [28–31]. It
has been shown that it is possible to use multiples gates
to fine-tune the electrostatic potential along the sus-
pended part of the nanotube [29,32,33]. It is thus possible
to form a double-well potential to engineer a double
quantum dot. We consider the case when only two states,
each with one excess electron, are energetically acces-
sible [34], the other states being at higher energy due to
the Coulomb interaction. The two single-charge states,
corresponding to an electron on the left or right dot, are
coupled by a hopping term t=2. Their relative energy
difference ϵ can be controlled by varying the two gate
voltages. The two states couple to the nanotube flexural
modes. By placing the double dot in the center of the
nanotube, the coupling of the two charge states with the
second (antisymmetric) mechanical mode is maximized
(cf. Fig. 1).
A model Hamiltonian capturing the basic physics of this

system can be written as

H ¼ p2

2m
þmω2

mx2

2
þ ϵ

2
σz þ

t
2
σx − ℏg

x
xz

σz; ð1Þ

where the first two terms describe the relevant mechanical
mode of frequency ωm=2π with effective mass m, dis-
placement x, and momentum p, and we have introduced the
zero-point quantum fluctuation xz ¼ ðℏ=2mωmÞ1=2, with ℏ
the reduced Planck constant. The electronic response has
been reduced to a two-level system, where the two Pauli
matrices σz and σx represent the dot charge energy splitting
and interdot charge hopping, respectively. Finally, ℏg=xz is
the variation of the force acting on the mechanical mode
when the charge switches from one dot to the other. The
value and sign of g can be tuned over a large range by
adjusting the gate voltages [14]. In Appendix A, we give a
microscopic derivation of the Hamiltonian with the explicit
form of the coupling terms.

(b)

t/2

(a)

Double-quantum dot

FIG. 1. Schematic of the proposed setup. A suspended carbon
nanotube hosting a double quantum dot, whose one-electron
charged state is coupled to the second flexural mode. (a) Sketch
of the electronic confinement potential and of the two main
parameters, the hopping amplitude t and the energy difference ϵ
between the two single-charge states. (b) Physical realization.
One of the gate electrodes is connected to a microwave cavity for
dispersive qubit readout.
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III. BORN-OPPENHEIMER PICTURE

To gain insight into the physics of the problem, it is
instructive to first consider a semiclassical Born-
Oppenheimer picture valid for ℏωm ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ ϵ2

p
. We diag-

onalize H given by Eq. (1), neglecting the p2 term and
regarding x as a classical variable. The two eigenvalues
read

ε�ðxÞ ¼ mω2
mx2=2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵ − 2ℏgx=xzÞ2 þ t2

q
=2: ð2Þ

In the spirit of the Born-Oppenheimer approximation, the
energy profile ε� can be regarded as an effective potential
for the oscillator, which depends on which charge quantum
level is occupied. Taylor-expanding ε�ðxÞ for small x and
ϵ ¼ 0, one finds

ε� ¼ � t
2
þmω2

m

2

�
1� 4ℏg2

ωmt

�
x2 ∓ 4m2ω2

mℏ2g4

t3
x4 þ…:

ð3Þ

The coupling to the double dot leads to a renormalization of
the quadratic coefficient and the appearance of quartic and
higher terms. The interaction stiffens the resonating fre-
quency of the upper branch while softening the lower one.
In particular, for g > gscc ¼ ðωmt=4ℏÞ1=2, the quadratic
coefficient of the lower branch becomes negative, which
leads to a double-well potential and a bistability similar to
that predicted for a single quantum dot coupled to a
mechanical oscillator [25,27,35–37].
Figure 2 shows the evolution of the two branches of the

potential as a function of the coupling constant g for an
experimentally accessible value of t ¼ 20ℏωm. One clearly
sees the formation of the double-well potential for g > gscc .
For g ¼ gscc , the potential of the lower branch is purely

quartic (thick line). Thus, one expects that tuning g close to
this critical value, it should be possible to modify, over a
large range, the ratio between the quadratic and quartic
terms and, consequently, tune the degree of anharmonicity
of the system at will.

IV. FULL QUANTUM DESCRIPTION

A. Conditions for anharmonicity

The validity of the qualitative description of the previous
section can be confirmed in the general case by numerical
diagonalization of the Hamiltonian given by Eq. (1) in a
truncated Hilbert space. Using a basis comprising the 102

lowest harmonic oscillator states largely suffices to reach
convergence, and we find the Hamiltonian eigenvectors jni
and eigenstates En for the problem. The result for the
lowest set of energy levels is shown in Fig. 3.
We first notice that for g ∼ gscc , the ground state crosses

the lowest noninteracting electronic level, indicated by the
dashed line −t=2, preceding the formation of two bound
states in the double well. Note that one expects that this
crossing should occur for a coupling larger than gscc since,
for this value, the problem reduces to a quartic oscillator,
for which the ground state has a positive value [38], similar
to the harmonic oscillator zero-point motion ℏωm=2.
For g ≫ gscc , the above-mentioned bound states have the
same energy (cf. the upper-right inset in Fig. 3) and are
sufficiently far from each other that their overlap is neg-
ligible. In Fig. 3, the third level remains well separated from
the first two and merges with the fourth level for large g. We
introduce the transition frequencies ωnm ¼ ðEn − EmÞ=ℏ.
The anharmonicity, defined as

15 10 5 0 5 10 15

10

0

10

20

x xz

t

g=0

g=3.5 m

g=3.5 m

FIG. 2. Effective potentials εþðxÞ (red) and ε−ðxÞ (blue) from
Eq. (2) for t=ℏωm ¼ 20 and the values of ð4g=ωmÞ2 ¼ 0, 10, 20,
30, 40, 50, with the first and last lines explicitly indicated in the
figure. The potential for g ¼ gscc ¼ ωm

ffiffiffi
5

p
is shown with a

thicker line.
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FIG. 3. Lowest-lying energy eigenvalues En of the Hamiltonian
(1) for ϵ ¼ 0 and t ¼ 20ℏωm as a function of g=ωm. The Born-
Oppenheimer potential given by Eq. (2) and the energy levels
are shown in the insets for g ¼ 0 and g ¼ 3.2ωm. The dashed
line indicates the lowest noninteracting electronic level −t=2.
The semiclassical critical value for the bistability is gscc =ωm ¼ffiffiffi
5

p
≈ 2.23. The value of g ¼ g5% ≈ 1.8ωm for which the anhar-

monicity is 5% is also shown.

PROPOSAL FOR A NANOMECHANICAL QUBIT PHYS. REV. X 11, 031027 (2021)

031027-3



a ¼ ω21 − ω10

ω10

; ð4Þ

thus diverges as we increase g from 0 to a value of the order
of gscc . As discussed in the Introduction, this anharmonicity
is crucial for enabling quantum control of the qubit formed
by the first two levels, j0i and j1i. A minimum requirement
is that the transition frequency ω10 between j0i and j1i
needs to differ from ω12 between j1i and j2i by much more
than the spectral linewidth of the states. As a practical
example, in the superconducting transmon qubit [39], an
anharmonicity of the order of 5% suffices to afford full
quantum control of the qubit states. In the following, we
will thus consider 5% anharmonicity as a (somewhat
arbitrary) requirement, which is sufficient to find the
relevant coupling scale required to implement the mechani-
cal qubit.
Resorting again to numerical diagonalization, we present

in Fig. 4 a contour plot for the dependence of the
anharmonicity on the parameters t and g. The thick contour
line for a ¼ 0.05 defines the function g5%, which gives the
required coupling to obtain a 5% anharmonicity. The region
for t < 2ℏωm presents a more complex structure. Aweaker
coupling is required to reach the needed anharmonicity.
However, in this region, the first two levels inherit the
properties of the double quantum dot to a large extent, so
we will not discuss this further. Here, we explore the
mechanical qubit in the parameter range when t > 2ℏωm,
so the nature of the two lowest energy states of the coupled
system remains mechanical. A sizable anharmonicity can

only be reached when operating the device near or in the
ultrastrong coupling regime, g > ωm, as seen in Fig. 4.

B. Eigenstates

It is interesting to investigate the nature of the two qubit
states j0i and j1i. In the position representation, the wave
function is given by ψnσðxÞ ¼ hx; σjni, where jni is the
Hamiltonian eigenstate and jx; σi is the eigenstate of the
displacement x and σz operators with eigenvalues x and σ,
respectively. The wave function ψnσðxÞ can be chosen to be
real-valued. Instead of looking directly at ψnσðxÞ, it is more
interesting to consider the averages of the operators σi as a
function of x: hσiiðxÞ ¼

P
σ;σ0 ψnσðxÞ½σi�σσ0ψnσ0 ðxÞ. Since

by symmetry hσyi ¼ 0, only hσxi ¼ 2ψnþψn− and hσzi ¼
ψ2
nþ − ψ2

n− are nonvanishing.
We display in Fig. 5 these two components as well as the

total probability for the oscillator displacement ψ2 ¼
ψ2
nþ þ ψ2

n− (blue curve in Fig. 5). The function hσziðxÞ
gives the distribution of the charge (green curve in
Fig. 5), while hσxiðxÞ indicates the strength of the coherent
superposition of the two charge states (yellow curve in
Fig. 5). These two quantities are in competition. From the
figure, one sees that for weak coupling, hσziðxÞ ≈ 0, and
the displacement probability distribution coincides with
−hσxiðxÞ. At the value of g ¼ g5%, the distribution of the
charge depends on x, for both states. Finally, for the
bistable case with g=ωm ¼ 3.0, one reaches the limit where
jhσziðxÞj is close to the displacement probability, indicating
a full correlation between the displacement and the charge.
In the figure, we also show the distribution of the harmonic
oscillator states. One clearly sees that for g ¼ g5%, the two
states are still mainly eigenstates of the mechanical
oscillator.

C. Mapping in the dispersive regime

The numerical diagonalization shows that the semi-
classical picture provides a good qualitative description.
A natural question is then how far one can extend this
picture. For this reason, we look for a unitary trans-
formation U that could map the Hamiltonian given in
Eq. (1) onto that of a simple anharmonic oscillator. In the
limit of g=jt=ℏ − ωmj ≪ 1, known as the dispersive limit,
we find a U such that, at fourth order in g, we can write
HT ¼ U†HU, with

HT ¼ t
2
σz þ

ℏωm

4
½α1p̂2 þ α2x̂2 þ σzðα3x̂2 þ α4x̂4Þ�: ð5Þ

[We discarded the constant ℏ3g2ωm=ðt2 − ℏ2ω2
mÞ.] Here,

we introduce the quadratures x̂ ¼ x=xz ¼ a† þ a,
p̂ ¼ p=ðmωmxzÞ ¼ iða† − aÞ, with ½x̂; p̂� ¼ 2i, where a
and a† are the creation and destruction operators for the
harmonic oscillator eigenstates. The four coefficients read

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

t m

g
m

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

g5

0.10

0.05

0

0.05
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0.30

FIG. 4. Contour plot of the anharmonicity a in the ðt; gÞ plane.
The contour line for a ¼ 0.05 is thicker, and it defines the
function g5%ðtÞ. The kink at t ≈ 1.54ℏωm of this function, better
seen in the inset, is due to the avoided crossing between the
charge and oscillator eigenstates that occurs at that value of t. It
indicates the region where the eigenstate begins to have a
predominantly charge nature.
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α1 ¼ 1þ 128ℏ6g4t2ω2
m

Δ6Δ2
3

; α2 ¼ 1 −
16ℏ4g4t2

Δ4Δ2
3

; ð6Þ

α3 ¼
4ℏtg2

ωmΔ2
; α4 ¼ −

4ℏ3tg4ð3t2 þ ℏ2ω2
mÞ

3ωmΔ6
; ð7Þ

where Δ2 ¼ t2 − ðℏωmÞ2, Δ2
3 ¼ t2 − 9ðℏωmÞ2. The deriva-

tion and the definition of U are given in Appendix B.
Remarkably, we find that within this approximation, it is

possible to map the problem onto a new description with
two anharmonic oscillators, one for each charge branch.
The upper branch is unstable if we stop the expansion at x4

since it has a negative quartic term. This description thus
holds for a small but nonzero value of the ratio ℏωm=t,
giving a more accurate description than the simpler Born-
Oppenheimer approach.
The anharmonic oscillator is a well-studied problem

[40]. When the quadratic part is positive, it is convenient to
write the lower branch of Eq. (5) in the standard form,

H ¼ ℏω0
mðx̂2 þ p̂2 þ λx̂4Þ=4: ð8Þ

This can be done by the scaling x̂ ¼ ξx̂0 and p̂ ¼ p̂0=ξ, so
the commutation relation is preserved ½x̂0; p̂0� ¼ 2i, with

ξ ¼ ½α1=ðα2 − α3Þ�1=4: ð9Þ

The renormalized resonant frequency reads ω0
m ¼

ωm½α1ðα2 − α3Þ�1=2, and the quartic coefficient is

λ ¼ α4α
1=2
1

ðα2 − α3Þ3=2
: ð10Þ

Note that we now consider only positive values of ω0
m, but

Eq. (5) also holds in the bistable region. The anharmonicity
a defined in Eq. (4) becomes a function of λ only. Using the
expression (1.17) of Ref. [40] for the eigenvalues in terms
of λ and Eq. (10), one can obtain an analytical expression
for the anharmonicity in terms of the parameters ωm, t, and
g that agrees with the numerics with reasonable accuracy, as
can be seen in Fig. 6. One finds that the 5% anharmonicity
is achieved for λc ≈ 0.0225 (the exact numerical result
is λc ¼ 0.0220).

D. Operators acting on the qubit

In order to study the control, readout, and decoherence
of the qubit formed by the two states j0i and j1i, it is
necessary to find the projection of the physical operators
σi, x̂, and p̂ in the Hilbert space spanned by fj0i; j1ig.
In this space, any operator can be written as a linear
combination of the unit matrix (τ0) and the three Pauli
matrices, which we define here as fτx; τy; τzg, to dis-
tinguish them from the operators σi acting in the charge
space. The Hamiltonian of the qubit then simply reads
ℏω10τz=2. One can calculate numerically the matrix
elements of any operator in the qubit subspace and then
obtain its form in terms of a sum of the four τ matrices.
We find, for the charge variables [in the representation of
Eq. (1)],
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FIG. 5. Wave functions of the two qubit states j0i (upper panels) and j1i (lower panels) for t=ℏωm ¼ 20, g=ωm ¼ 0.1, 1.8, and 3.0. We
plot −hσxiðxÞ (yellow), hσziðxÞ (green), and ψnþðxÞ2 þ ψn−ðxÞ2 (blue). Note that for small coupling, the yellow and blue lines perfectly
overlap. The probability of occupation of the first single-harmonic oscillator states is indicated in the insets.
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σxjqb ¼ β1τ0 þ β2τz

σyjqb ¼ β3τy

σzjqb ¼ β4τx;

ð11Þ

and for the oscillator variables

x̂jqb ¼ β5τx

p̂jqb ¼ β6τy:
ð12Þ

The six coefficients can be obtained numerically, but
it is also interesting to obtain approximate analy-
tical expressions for them, which can be achieved by
using the unitary transformation introduced above (see
Appendix B):

β1 ¼ −1þ 4ðℏgÞ2 ðℏωmÞ2 − tℏωmξ
2 þ t2ξ4

Δ4ξ2
þ g4β1;4;

ð13Þ

β2 ¼ −2ðℏgÞ2 ðℏωmÞ2 þ t2ξ4

Δ4ξ2
þ g4β2;4; ð14Þ

β3 ¼
2ℏ2gωm

Δ2ξ
þ g3β3;3; ð15Þ

β4 ¼
2ℏgtξ
Δ2

þ g3β4;3; ð16Þ

β5 ¼ ξ −
2ℏ3g2tωmξ

Δ4
þ g4β5;4; ð17Þ

β6 ¼
1

ξ
−
2ℏ3g2tωm

Δ2ξ
þ g4β6;4: ð18Þ

The coefficients for g3 and g4 are given by Eqs. (B15)–
(B20) in Appendix B.

We show in Fig. 7 the behavior of the analytic coef-
ficients as a function of g=ωm for t=ℏωm ¼ 20 and com-
pare to the exact numerical results. The analytical
expressions again give a good description in the interesting
range g < g5%. In particular, these expressions allow us
to recognize that β2 and β3 are parametrically small
for g ≈ ωm ≪ t=ℏ.
Another important result given by the expressions for the

βi is the charge component of the qubit. This component
can be identified with the value of the β4 coefficient, which
gives the projection of the charge operator σz in the qubit
space. This coefficient vanishes linearly in g, and it remains
small up to g ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωmt=ℏ

p
when t ≫ ℏωm. In this case, we

thus expect that the qubit has a predominantly mechanical
character in its degrees of freedom, measured by the β5 and
β6 coefficients, which remain of the order of unity.

E. Qubit manipulation

The values of β are also crucial to understanding how to
manipulate the qubit. This is achieved using a completely
classical oscillating voltage applied to a nearby wire, turned
on for some duration with a calibrated amplitude. The
anharmonicity of the system allows this classical signal to
achieve quantum control. One can find the effect of an
oscillating voltage on the qubit by considering how this
voltage couples to the σi and x̂ operators. In Appendix A,
we derive these couplings for a potential Vac

g12 applied to the
two gates controlling the electrochemical potential of each
dot [cf. Eq. (A24)]. We find that the potential couples to σz
and x̂ with the coefficients λev and λmvxz, respectively (see
Appendix A for the explicit expressions). Since both x̂ and
σz project onto τx, we find that the coupling to the
oscillating field is just λvτxVac

g12, with

λv ¼ λmvxzβ5 þ λevβ4: ð19Þ
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FIG. 6. Comparison between numerical (solid line) and ana-
lytical (dashed line) dependence of the anharmonicity parameter
a for three values of the coupling g=ωm ¼ 0.5, 1, and 1.5.
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This result indicates that one can use standard methods to
manipulate the qubit state, e.g., by using nuclear magnetic
resonance methods by driving the qubit states at a fre-
quency ωD with pulses that induce, in the rotating frame, a
term ℏðω10 − ωDÞτz=2þ λvV0

g12τx [41]. The anharmonicity
guarantees that the second excited state will not be
populated by these manipulations.

F. Qubit readout

Reading out the state of the qubit can be realized by
coupling the system to a microwave superconducting cavity
and using a dispersive interaction, analogous to what is
done with superconducting qubits [42,43]. The coupling
can be obtained from the expression of the coupling to an
oscillating voltage [cf. Eqs. (A22) and (A23)] with the
substitution Vac → Vzðbþ b†Þ, where b is the destruction
operator of the photons in the cavity and Vz is the zero-
point voltage of the cavity. The coupling Hamiltonian reads

Hqb−cav ¼ ℏgvτxðbþ b†Þ; ð20Þ

with ℏgv ¼ λvVz [cf. Eq. (19)]. A standard method is then
to perform a dispersive measurement of the superconduct-
ing cavity frequency, modified by an amount that depends
on the qubit state. By performing a unitary transformation
[44], one can eliminate the term τx from the Hamiltonian
and obtain, for the qubit and cavity Hamiltonian,

H=ℏ ¼ ω10τz=2þ ðωc þ χτzÞb†b; ð21Þ

where ωc is the cavity resonant frequency and χ ¼
g2v=ðω10 − ωcÞ the dispersive frequency shift. Since the
resonating frequency now depends on the qubit state, this
allows us to perform an efficient, quantum, nondestructive
readout of the qubit state.
This picture remains qualitatively correct, but in analogy

with what happens in the transmon qubit [45], when the
anharmonicity is small, one needs to include the other
system states to calculate the dispersive coupling correctly.
In Appendix C, we present the calculation of χ for the
problem at hand by using second-order perturbation theory
in the coupling constant to the cavity. In this picture, the
eigenstates can be labeled according to the branch (σ ¼ �)
in Fig. 2 with jnσi and eigenstate energy Enσ. We find that
the second excited state, j2i ¼ j2−i, and two other excited
states of the upper branch (j0þi and j1þi) with an
excitation energy of the order of t contribute. The parameter
χ entering Eq. (21) reads χ ¼ χm þ χe, with

χmðωcÞ ≈
ðgecβ4;1Þ2ðω21 − ω10Þ
ðωc − ω21Þðωc − ω10Þ

ð22Þ

dominant for ωc ≈ ω10 and

χeðωcÞ ≈
g2ecðδ11 − δ00Þ

2ðωc − δ11Þðωc − δ00Þ
; ð23Þ

for ωc ≈ δ00. Here, β4;1 ¼ 2ℏgξt=Δ2 ≪ 1 is the first-order
contribution to β4 [cf. Eq. (16)], δnm ¼ ðEnþ − Em−Þ=ℏ,
and ℏgec ¼ λevVz. One can see that χm is proportional to the
anharmonicity and thus vanishes in the harmonic case. The
expression for χe also vanishes when the coupling constant
vanishes, but it does not require an anharmonicity:

δ11 − δ00 ≈
4g2t
Δ2

: ð24Þ

At lowest order, this value is just the difference of the
semiclassical resonating frequencies of the upper and lower
branches. This dispersive coupling relies on the intrinsic
anharmonicity of the charge two-level system.
We can further simplify Eq. (22) by considering ωc

close to ω10: The small numerator is compensated by a
vanishing denominator, and one obtains χm ≈ ðgecβ4;1Þ2=
ðω10 − ωcÞ, which remarkably coincides with the standard
form of the dispersive coupling. Even if this seems
independent of the anharmonicity, note that it is necessary
that jω21 − ω10j > gecβ4;1 for the calculation to be valid;
this condition sets the constraint on the anharmonicity
a > gecβ4;1=ω10. Choosing the detuning to the minimum
value allowed by second-order perturbation theory, gecβ4;1,
one obtains χmax

m ≈ gecβ4;1 < aω10. Since ωc ≈ ω10, a qual-
ity factor larger than 1=a would be largely sufficient to
detect the qubit state.
Similar arguments can be applied to the expression for

χe, leading to χmax
e ≈ gec. In this case, the limitation is less

severe since the condition jδ11 − δ00j > gec does not
involve the anharmonicity. Using Eq. (24), we get approx-
imately gec < 4g2=t. This result suggests that it may be
more convenient to tune the cavity to this resonance and
exploit the χe dispersive coupling to read out the qubit state.
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FIG. 8. Quantity jχjωm=g2ec for t=ℏωm ¼ 10, g=ωm ¼ 1.2164
(for which a ¼ 0.05) as a function of ωc=ωm in two different
regions of the spectrum: close to ω10 < ω12 and close to
δ00 < δ11, left and right panels, respectively. The thick blue line
gives the numerical calculation, the thin red line the expressions
(22) and (23), shown in the left and right panels, respectively.
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These analytical expressions are obtained as a perturba-
tive expansion in g=t, but the expressions remain accurate
in the range of coupling of interest for our purposes, as
shown as an example in Fig. 8.

V. DECOHERENCE

The double quantum dot and the mechanical oscillator
are unavoidably coupled to the environment, which induces
decoherence and incoherent transitions between energy
levels. The decoherence rate of the double quantum dot
charge qubit is much larger than that of the mechanical
resonator, so it will limit the performances of the mechani-
cal qubit. The best values for the decoherence rate are in the
MHz range [46].
In order to study how the nanomechanical qubit inherits

the decoherence of its two subsystem components, we
begin by constructing a simple model for the coupling of
the subsystems to the environment.
We write the coupling Hamiltonian as

HI ¼ ÂcÊ1 þ x̂Ê2; ð25Þ

where Âc ¼ P
i¼x;y;z viσi ¼ v⃗ · σ⃗ is the most general oper-

ator in the charge subspace (see, for instance, Ref. [47]).
The operators Ê1 and Ê2 are given by the sum of operators,
which, themselves, involve many degrees of freedom that
model the environment of the charge and the mechanical
oscillator, respectively (the coupling constant is absorbed
in the Ê operators so that Âc and x̂ are dimensionless).
We assume that we know the correlation functions
CiðtÞ ¼ hÊiðtÞÊið0Þi, as well as their Fourier transforms
SiðωÞ ¼

R
dteiωtCiðtÞ, and that the charge and mechanical

environments are independent, hÊ1ðtÞÊ2ð0Þi ¼ 0. If SiðωÞ
is a sufficiently smooth function for ω close to the qubit
resonant frequency, the three parameters vi give a complete
description of the coupling to the environment of the charge
system. For the mechanical oscillator, we parametrize the
coupling to the environment with a single damping rate γ.
One can then use the standard procedure, integrating out

the environmental degrees of freedom and finding an
equation for the reduced density matrix ρ in the Born-
Markov and rotating-wave approximations. The rate equa-
tions have the standard form

_ρnn ¼ −ρnn
X
p≠n

Γn→p þ
X
p≠n

ρppΓp→n; ð26Þ

_ρnm ¼ −
�X
p≠n

Γn→p=2þ
X
p≠m

Γm→p=2þ Γϕ
nm

�
ρnm; ð27Þ

where ρnm ¼ hnjρjmi is the matrix element of ρ in the
eigenstate basis jni of the Hamiltonian (1) with eigenvalues
En. The rates read

Γn→m ¼ 2πS1ðωnmÞjAc
nmj2 þ 2πS2ðωnmÞjxnmj2;

Γϕ
nm ¼ πS1ð0ÞðAc

nn − Ac
mmÞ2 þ πS2ð0Þðxnn − xmmÞ2;

where Onm ¼ hnjOjmi and Γϕ
nm is the pure dephasing rate.

These equations hold at nonzero temperature T, with
SiðωÞ ¼ Sið−ωÞeℏω=kBT where kB is the Boltzmann con-
stant. When only two levels are present, one finds

_ρ00 ¼ −ρ00Γ0→1 þ ρ11Γ1→0; ð28Þ

_ρ01 ¼ −ρ01ðΓ0→1 þ Γ1→0 þ 2Γϕ
01Þ=2: ð29Þ

The last equation defines the coherence time of the qubit
T2 ¼ 2=ðΓ0→1 þ Γ1→0 þ 2Γϕ

01Þ. In the following, we focus
on the two rates Γ1→0 and Γ

ϕ
01. (We do not consider the case

of equally spaced levels inducing transfer of coherence
between higher energy states [48].)

A. Noninteracting case

Let us begin with the noninteracting case (g ¼ 0) in
order to define the rates. We have two independent
systems: the double quantum dot and the mechanical
oscillator. For the oscillator, one finds Γm

1→0 ¼ 2πS2ðωmÞ ¼
γð1þ nthÞ, where nth ¼ 1=ðeℏωm=kBT − 1Þ and Γm;ϕ

12 ¼ 0.
For the charge system, we begin by diagonalizing the
Hamiltonian H0 ¼ ðϵσz þ tσxÞ=2, performing a rotation by
an angle θ¼ arctanðt=ϵÞ around the y axis:UðθÞ ¼ e−iθσy=2.
One has

UðθÞ†σxUðθÞ ¼ cos θσx − sin θσz; ð30Þ

UðθÞ†σzUðθÞ ¼ sin θσx þ cos θσz; ð31Þ

with σy invariant. The charge Hamiltonian coupled to the
environment then becomes

H0 ¼ U†HU ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ ϵ2

p
σz þ v⃗0 σ⃗ Ê1; ð32Þ

with v0x ¼ cos θvx þ sin θvz, v0z ¼ − sin θvx þ cos θvz, and
v0y ¼ vy, which gives the rates

Γc
1→0ðθÞ ¼ 2πS1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ t2

p
Þ½ðcos θvx þ sin θvzÞ2 þ vy2�;

ð33Þ

Γc;ϕ
01 ðθÞ ¼ 4πS1ð0Þðsin θvx − cos θvzÞ2: ð34Þ

According to these equations, the pure dephasing and
decay rates depend on the value of θ (i.e., the ratio ϵ=t).
Since the environmental spectrum depends only on the
charge energy splitting, the ratios
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RD ≡ Γc
0→1ð0Þ

Γc
0→1ðπ=2Þ

¼ v2x þ v2y
v2z þ v2x

; ð35Þ

Rϕ ≡ Γc;ϕ
01 ð0Þ

Γc;ϕ
01 ðπ=2Þ

¼ v2z
v2x

ð36Þ

depend only on the values of vi. One can then, at least in
principle, measure the rates for the same energy splittingffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ ϵ2

p
and the two values of θ, 0 and π=2. This approach

gives RD and Rϕ, which can be used to express vy and vz in
terms of vx:

v2y ¼ ½RDð1þ RϕÞ − 1�v2x; ð37Þ

v2z ¼ Rϕv2x: ð38Þ

B. Interacting case

We can now consider the interacting case. We exploit
the fact that the operators σi and x̂ in the subspace
spanned by fj0i; j1ig can be written in terms of the τi
operators [Eqs. (11) and (12)]. We neglect the decay rate
from and to the third level, which is small, as it is only
due to oscillator damping and vanishes exponentially
for kBT ≪ ℏωm. Then, we obtain the following results
for the decay and decoherence rates of the nanomechanical
qubit:

Γqb
1→0 ¼ 2πS1ðω10Þðv2zβ24 þ v2yβ23Þ þ 2πS2ðω10Þβ25;

Γqb;ϕ
01 ¼ 4πS1ð0Þv2xβ22:

Using the relations (37) and (38) and assuming that
Siðω10Þ ≈ SiðωmÞ, we find

Γqb
1→0 ¼ Γc

1→0ðπ=2Þ
Rϕβ

2
4 þ ½RDð1þ RϕÞ − 1�β22

1þ Rϕ

þ β25γð1þ nthÞ; ð39Þ

Γqb;ϕ
01 ¼ β22Γ

c;ϕ
01 ðπ=2Þ: ð40Þ

In the region of interest, we can use the analytical
expressions for βi. For ℏωm=t ≪ 1, we can drop the term
proportional to β22 ≪ β24 and obtain

Γqb
1→0 ≈

Rϕ

1þ Rϕ

4ℏ2g2t2ωm

Δ4ω0
m

Γc
1→0ðπ=2Þ

þ ωm

ω0
m

�
1 −

4ℏ3g2tωm

Δ4

�
γð1þ nthÞ: ð41Þ

The pure dephasing is controlled by β22 ≈ ðℏg=tÞ4 ≪ 1. The
dephasing is thus strongly reduced in the nanomechanical
qubit in comparison to the charge system.

We can numerically evaluate the reduction of the decay
and pure-dephasing rates for the case RD ¼ Rϕ ¼ 1.
The result for Γqb

1→0ðg5%Þ=Γqb
1→0ðg ¼ 0Þ and Γqb;ϕ

10 ðg5%Þ=
Γqb;ϕ
10 ðg ¼ 0Þ is shown in Fig. 9 as a function of t for γ ¼ 0.

As expected from the analytical expressions, the larger the
value of t, the larger the reduction in the decoherence,
which is a natural consequence of the mechanical nature of
the qubit in this limit.

VI. TWO-QUBIT GATE

We have shown that a carbon-nanotube oscillator can be
used as a qubit and how manipulation and readout can be
performed. To use these devices to manipulate quantum
information, an entangling two-qubit gate is required. In
this section, we discuss a possible implementation of the
CNOT gate, known to be a universal gate. We follow
the idea presented in Ref. [49] that exploits the coupling of
two superconducting qubits to the same microwave cavity
and that has been successfully implemented as reported
in Ref. [50].
We consider the effective coupling generated by a micro-

wave cavity between two nanomechanical qubits. In the case
of qubits that can bewell approximated as two-level systems,
the coupling to the cavity is of the form of Eq. (20):

ℏgðaÞv τðaÞx ðbþ b†Þ, where the index a takes the value 1 or
2 to indicate the two qubits. One can show that this induces a

coupling term in the Hamiltonian, Jτð1Þx τð2Þx . The driving of
the first qubit at the resonant frequency of the second qubit

can be described by a Hamiltonian term ℏA cosðωDtÞτð1Þx ,

whereA is the intensity andωD ¼ ωð2Þ
10 the driving frequency.

Taking into account the effective coupling induced between

the two qubits, this translates into the term ℏJzxτ
ð1Þ
z τð2Þx in the

rotating frame Hamiltonian, with
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1

FIG. 9. Ratio of the decay rate Γqb
1→0ðg5%Þ=Γqb

1→0ðg ¼ 0Þ and
pure decoherence rate Γqb;ϕ

10 ðg5%Þ=Γqb;ϕ
10 ðg ¼ 0Þ as a function of

t=ℏωm. We assume RD ¼ Rϕ ¼ 1, and we neglect oscillator
damping (γ ¼ 0). The vertical dashed line indicates the beginning
of the region where the qubit becomes dominated by the two
charge states, i.e., where t < 1.54ℏωm (cf. also inset of Fig. 4).
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Jzx ¼
4gð1Þv gð2Þv Aωcω

ð1Þ
10

ðωð1Þ
10

2 − ωð2Þ
10

2Þðω2
c − ωð2Þ

10

2Þ
: ð42Þ

This term is the required gate generating function leading

to the evolution operator e−itJJzxτ
ð1Þ
z τð2Þx ¼ cosðJzxtJÞ−

i sinðJzxtJÞτð1Þz τð2Þx , that allows the CNOT gate to be
performed, modulo single-qubit rotations, in a time
tJ ¼ π=2Jzx.
Thus, one expects that this operation can be applied to

the mechanical qubits, but since the anharmonicity is not
very large, we need to investigate the contributions of the
higher lying states. We proceed similarly to what we did for
the dispersive coupling in Sec. IV F. A perturbative
calculation is described in Appendix C. It gives

Jzx ¼
Agð1Þec g

ð2Þ
ec β

ð2Þ
1;4

gð1Þec
2ðωc − ωð2Þ

10 Þ
½χð1Þm ðωð2Þ

10 Þ þ χð1Þe ðωð2Þ
10 Þ�: ð43Þ

The expression holds for small g=t. We note that the

coefficient diverges for ωc ¼ ωð2Þ
10 , while in contrast to what

is found for the dispersive coupling, no divergence is
present for ωc close to δ00. We already discussed the

functions χm and χð1Þe in Sec. IV F; we note here that χe
diverges when its argument equals δð1Þ00 or δð1Þ11 . Since, in

general, ωð2Þ
10 ≪ δð1Þ00 ≈ δð1Þ11 , the contribution of χð1Þe is much

smaller than that of χð1Þm , which diverges when its argument

equals ωð1Þ
10 and ωð1Þ

12 . Figure 10 shows the dependence of

the factor K ¼ Jzxω
ð1Þ
m ðωc − ωð2Þ

10 Þ=gð1Þec g
ð2Þ
ec A as a function

of the ratio ωð2Þ
m =ωð1Þ

m . Both the exact numerical (solid line)
and analytical expression Eq. (43) (dashed line) are shown.

The double peak corresponds to the values for which ωð2Þ
10

equals either ωð1Þ
10 or ωð1Þ

21 [cf. Eq. (22)].
This result shows that by driving qubit 1, it is possible to

induce a time-dependent evolution that generates the
CNOT gate.

VII. PROSPECT FOR EXPERIMENTAL
IMPLEMENTATION

The results found in the previous two sections are
very promising for the experimental realization of a nano-
mechanical qubit. In this section, we discuss possible
experimental implementations using currently available
technology. As discussed in the Introduction, the double
quantum dot can be realized in a suspended carbon nano-
tube and coupled to the second mechanical flexural
mode of the nanotube. Such a device has recently been
measured at 2 K [29], reporting values of t=2πℏ ¼
49–96 GHz with a tunable value of ϵ, and a second
mechanical mode of frequency ωm=2π ¼ 327 MHz with
a mechanical quality factor Q ¼ 4 × 103 and a coupling
constant g=2π ¼ 320 MHz. Taking these parameters, we
have t=ℏωm up to 150–300, and g=ωm ≈ 1, noting that, of
course, t can be tuned to lower values. Choosing t ¼ 7ℏωm,
we can operate on the g5% line (cf. Fig. 4) without changing
other parameters. At this value of g, we already have a
sizable reduction of both the decoherence and decay rates
of the mechanical qubit, Γ1→0 and Γϕ

10 [cf. Fig. 9], com-
pared to that of the charge double quantum dot. The
experiment at 2 K realized with a device fabricated on a
Si substrate reports an incoherent tunneling rate Γ1→0

estimated to 2π × 510 MHz, which is clearly too large
to use for qubit operations. However, improvements should
be possible by operating the device at 10 mK to suppress
the decoherence induced by low-frequency vibrations
(phonon) modes, by producing devices on sapphire sub-
strates that host a minimal number of charge fluctuators,
and by current-annealing the nanotube in situ in the dilution
fridge to remove all the contamination adsorbed on the
surface of the nanotube [51]. Double-dot structures have
been created in nonsuspended carbon nanotubes and have
been coupled to superconducting cavities [52].
One can thus target a mechanical resonator cooled at

10 mK with ωm=2π in the range of 0.6–1 GHz using a
nanotube that is shorter and/or is under mechanical tension.
Avalue of t=ℏωm ¼ 10will then require a coupling constant
of the order of 1.1ℏωm, which can be obtained by reducing
the nanotube-gate separation and/or increasing the voltage
appliedon thegate electrode.With thesevalues, the reduction
of the pure-dephasing decoherence rate of the mechanical
qubit with respect to that of the double quantum dot will be
about 103. Assuming that the decoherence rate of the order of
3 MHz can be obtained (as was achieved in GaAs double
quantum dots [46]) and that it is mainly limited by pure
dephasing, it should be possible to implement most of the
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FIG. 10. Coefficient K of the contributions to Jzx that diverge

like ωð1Þ
m =ðωc − ω10Þð2ÞÞ [divided by the two coupling constants

and the driving intensity gð1Þec g
ð2Þ
ec A] as a function of ω

ð2Þ
m . The solid

line is the numerical result, and the dashed line is the analytical

one, Eq. (43). The other parameters are gð1Þ ¼ gð2Þ ¼ 1.264ℏωð1Þ
m ,

tð1Þ ¼ 10ℏωð1Þ
m , and tð2Þ ¼ 10.5ℏωð1Þ

m .
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standard protocols for quantum computation using a
mechanical qubit with a 3-kHz decoherence rate. Note that
we did not consider the decoherence induced by the
mechanical damping. Assuming aQ of 106, which has been
experimentally observed in suspended carbon nanotubes
[14], this would give a decoherence rate of only 500 Hz.
Another possible implementation consists in using a non-
suspended GaAs double quantum dot with a 3-MHz charge
decoherence rate coupled to a suspendedmetal beam, such as
a carbon nanotube.
With these parameters, one could implement a CNOT

gate by choosing ωð1Þ
10 =2π ¼ 500 MHz and ωð2Þ

10 =2π ¼
550 MHz (these values are reduced with respect to the
oscillator mechanical frequencies), and tune the cavity to

ωc=2π ¼ 475 MHz. For tðaÞ=ℏωðaÞ
m ≈ 10, one obtains K of

the order of 1. We assume a coupling constant gec=2π ¼
50 MHz of the order as what was reported in Ref. [53] for
carbon nanotubes coupled to superconducting cavities.
With these values and a drive A=2π also of the order of
50 MHz, which is the detuning between the two qubit
frequencies, one finds that Jzx=2π ≈ 2.5 MHz, which is of
the same order as what was used in Ref. [50] to implement
the CNOT gate in superconducting qubits.
With the chosen value ofωm, the typical range forω01=2π

does not exceed 500 MHz. This is sufficient to perform
single- and two-qubit operations, but error correction could
be difficult since a very low level of thermal occupation is
required. In the long term, it seems feasible to increase the
mechanical frequency to higher values; a qubit splitting of
1 GHz is the target for implementing error correction.

VIII. QUANTUM SENSING OF A STATIC FORCE
WITH THE NANOMECHANICAL QUBIT

As an important application, we discuss here the pos-
sibility of using the nanomechanical qubit for quantum
sensing. A mechanical oscillator can couple to a variety of
forces; independently of the nature of the force, the
additional term in the Hamiltonian describing this coupling
can be written as HF ¼ Fx, with F the external force. In
terms of the nanomechanical qubit operators, this gives
HF ¼ FγFτx=2, with γF ¼ 2xzβ5 [cf. Eq. (12); we intro-
duced a factor of 2 for convenience in the notation]. One
can then use the protocols for qubit preparation and readout
in order to measure F with great sensitivity.
As a relevant example, we consider here the Rabi

measurement protocol, as described in Sec. IV D of
Ref. [13]. In a nutshell, it consists in preparing the qubit
in the ground state and then letting it evolve in the presence
of the static force F according to the Hamiltonian

H ¼ ℏðω10τz þ ωFτxÞ=2; ð44Þ
with ωF ¼ FγF=ℏ. This process induces a Larmor-like
precession with a Rabi frequency ωR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
10 þ ω2

F

p
of the

pseudospin representing the qubit state in the Bloch sphere
around the direction of the effective magnetic field vector
ðωF; 0;ω10Þ. The probability P1 of measuring the qubit in
the excited state oscillates as

P1 ¼
ω2
F

ω2
R
sin2ðωRt=2Þ: ð45Þ

For large t, the sine part of the expression is very sensitive
to a small variation of ωR and thus of the force. For a
detection time td such that ωRtd ¼ π=2þ kπ, with k a large
integer, one finds

δP1 ≈
�
ωF

ωR

�
3 γFtd
2ℏ

F: ð46Þ

The sensitivity thus increases with the oscillation time td.
This is mainly limited by the coherence time of the qubit.
One also sees that in order to have a large signal, it is better
to have ωF of the same order or larger than ω10. In our case,
this could be achieved using the gate voltage that generates
an additional, controllable static force to the oscillator. The
most fundamental source of uncertainty in quantum sensing
is the binomial fluctuation of the qubit readout outcome.
Following Ref. [13], a rough estimate of the signal-to-noise
ratio that can be achieved with this method gives the
minimum detectable static force per unit bandwidth as

δFmin ≈
ℏ

γF
ffiffiffiffiffi
T2

p ; ð47Þ

where T2 is the coherence time. Using typical values
for carbon nanotube resonators ωm ¼ 2π × 600 MHz,
m ¼ 10−21 Kg, one has xz ≈ 4 × 10−12 m. Using T2 ∼
50 μs from the 3-kHz decoherence rate for the nanotube
mechanical qubit estimated in the last section, the static-
force sensitivity is about 10−21 N=Hz1=2. For comparison,
the resolution in static-force measurements is 10−17 N using
optically levitated particles [54] and 10−12 N with atomic-
force cantilevers in high vacuum and at low temperatures
[55], while a sensitivity of 10−15 N=Hz1=2 can be achieved
using optical tweezers in liquids [56]. One finds that when
the electronic contribution to the decoherence is neglected
with respect to the mechanical part, then quantum sensing
can reach sensitivities of the order of the standard quantum
limit [57].

IX. CONCLUSIONS

In conclusion, we have shown that coupling a double
quantum dot capacitively to the second flexural mode of a
suspended carbon nanotube, and appropriately tuning the
hopping amplitude between the two charge states of the
quantum dot, one can introduce a strong anharmonicity in
the spectrum of the mechanical mode. This approach
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enables one to directly address the first two energy
quasimechanical eigenstates without populating the third
state (cf. Fig. 4). These two states form a qubit with mainly
a mechanical character. Manipulation and readout are then
possible with standard techniques, but at the same time, we
found that the coupling to the environment is strongly
reduced. The main benefit is the reduction by up to 3–4
orders of magnitude of the pure-dephasing rate, with
respect to the double quantum dot. Combined with the
expectation of improved dephasing times, this suggests the
potential for nanomechanical qubits with very long coher-
ence times. Furthermore, the production of mechanical
devices using conventional microfabrication techniques is
promising for scalability.
The mechanical qubit can be used to couple to a wide

number of modalities for external fields, including accel-
eration, magnetic forces, or other forces. We have shown
that any fields that induce forces on the mechanical
oscillator can be detected with unprecedented sensitivity,
using quantum preparation and detection protocols.
We have shown that the nanomechanical qubits can be

coupled to each other by microwave cavities, allowing the
implementation of a CNOT gate with purely microwave
control. In principle, all other operations involving multiple
qubits can be obtained by applying the CNOT gate and
single-qubit operations.
On the more technical side, we also found a unitary

transformation, valid in the dispersive limit of g=jt=ℏ−
ωmj ≪ 1, that maps the problem to the anharmonic
oscillator, giving the explicit expressions of the main
physical operators in the qubit subspace.
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APPENDIX A: ELECTROSTATICS AND
DERIVATION OF THE COUPLING CONSTANTS

Here, we give a derivation of the Hamiltonian. Thus, we
need to calculate the electrostatic energy of the system.

The only subtle point is the contribution of the voltage
sources, as is well known for the Coulomb blockade
problem [58]. One needs the electrostatic energy as a
function of the charges in the system and not of the
voltages, which is particularly important for the expression
of the mechanical force. Following Ref. [34] (Appendix A),
the electrostatic problem of N conductors plus a ground
conductor can be treated by introducing a capacitance

matrix Cð0Þ
ij for which the charges on the conductor i can be

related to the potentials of the other conductors:

Qi ¼
XN
j¼0

Cð0Þ
ij Vj: ðA1Þ

Here, Cð0Þ
ii ¼ P

i≠j cij and Cð0Þ
ij ¼ −cij, where cij is the

capacitance between conductor i and j and, clearly, tC ¼ C.
In the list of conductors, we include the ground with the
index 0. The relation given by Eq. (A1) cannot be inverted
since the capacitance matrix has a vanishing determinant,
which just indicates that one can shift all the potential by a
constant. One can then set one of the potentials to 0, say, the
ground, and eliminate one line of the matrix, which we
choose to be that related to the charge on the ground. The
N × N capacitance matrix obtained in this way, Cij, is then
invertible, and one can write

Vi ¼
XN
j¼1

ðC−1ÞijQj: ðA2Þ

The total energy of the system is U ¼ P
N
i¼0 ViQi=2. With

our choice of V0 ¼ 0, it reduces to U ¼ P
N
i¼1 ViQi=2 ¼

tVQ=2, where we introduced the vector notation for
the charge and the potentials. Using the capacitance matrix,
we have

U ¼ 1

2
tVCV ¼ 1

2
tQC−1Q: ðA3Þ

In typical problems, one needs to include potential sources.
These sources can be modeled with metallic leads with a
macroscopic capacitance to the ground CB → ∞, and the
charge on this islandQB → ∞withQB=CB ¼ VB constant.
In the following, without loss of generality, we assume that
the capacitances of all sources have the same value CB.
The relevant energy for the problem at hand is the energy

expressed as a function of the charges in the metallic
islands and leads. The mechanical displacement x of any
mechanical element of the circuit induces a change in
the capacitance matrix, which acquires a dependence on
the displacementCðxÞ. (For simplicity, we consider a single
mechanical mode whose displacement is parametrized
by the variable x; generalization to several modes is
straightforward.)
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The expression for the potential energy is thus

UðQ; xÞ ¼ 1

2
tQCðxÞ−1Q: ðA4Þ

From this expression, we can find the expression of the
potential energy as a function of the charges in the dots
and x. We can then eliminate the charges in the leads by
using their potentials. For this purpose, we need to invert
the matrix C, exploiting the large CB limit. Following
Ref. [34], we first divide the indices in c and v, for charge
nodes and voltage sources, respectively. We can write

C ¼
�
Ccc Ccv

Cvc Cvv

�
: ðA5Þ

The inverse of this matrix can be written as follows:

ðC−1Þcc ¼ C−1
cc þ C−1

cc CcvDCvcC−1
cc ; ðA6Þ

ðC−1Þvc ¼ −DCvcC−1
cc ; ðA7Þ

ðC−1Þvv ¼ C−1
vv ð1 − CvcC−1

cc CcvDÞ; ðA8Þ

where D ¼ ðCvv − CvcC−1
cc CcvÞ−1. Since we eliminated the

ground metal island, the only macroscopic matrix elements
left are in the diagonal part of Cvv ∼ CB [cf. Eq. (A17) in
the following]. We can then greatly simplify the inverse
since, to leading order in CB, one has D ¼ 1=CB,

ðC−1Þcc ¼ C−1
cc ; ðA9Þ

ðC−1Þvc ¼ −CvcC−1
cc =CB; ðA10Þ

ðC−1Þvv ¼ 1=CB: ðA11Þ

This result allows us to express the energy as follows:

U ¼ 1

2
tQcC−1

cc Qc − tQcC−1
cc CcvQv=CB þ 1

2
tQvQv=CB;

ðA12Þ

butQv=CB ¼ Vv are the source voltages and the last term is
independent of Qc. We thus have

U ¼ 1

2
tQcC−1

cc Qc − tQcC−1
cc CcvVv: ðA13Þ

1. Couplings

From this expression, we can derive the coupling to the
mechanical displacement and to the voltage applied to a
nearby gate electrode. For this purpose, we include the
x dependence of the capacitances and the substitution
Vv ¼ VDC

v þ Vac
v , where VDC

v is the static part and Vac
v

the oscillating part of the voltage. If a gate electrode is part
of an electromagnetic cavity, one can obtain the coupling to
the photon creation and destruction operators via the
substitution Vac

v ¼ Vz
vðbv þ b†vÞ, where Vz

v is the zero-point
voltage of the cavity and bv the destruction operator for the
photons.
We now need a description in terms of the charge

fields. Let us associate to each charge variation δqic the
occupation operator ni with eigenvalues 0 or 1 so that
the operator for the total number of charges can be written
as Qc ¼ Q0

c þ
P

i niδq
i
c. The index i can take into account

spin or other degrees of freedom, and we include a back-
ground frozen charge Q0

c. By including this expression in
Eq. (A13), at lowest order in x, we obtain

U ¼ UC þ x
X
i

ni

�
λemi þ

X
j≠i

njλemij

�

þ
X
i

niλevivV
AC
v þ xλmv

v VAC
v ; ðA14Þ

where

UC ¼
X
i

nitδqicC−1
cc

�
Q0

c−CcvVDC
v þ

X
j

1

2
δqjcnj

�
ðA15Þ

is the pure Coulomb part and the other three terms
describe the interaction between the 3 degrees of free-
dom, x, Vac, and ni, which are associated with the indices
m, v, and e, respectively. (We discarded the constant
U0 ¼ tQ0

cC−1
cc Q0

c=2 − tQ0
cC−1

cc CcvVDC
v .) Here,

λemi ¼ ∂x

��
tQ0

c þ
tδqic
2

�
C−1
cc − VDC

v CvcC−1
cc

�
δqic ðA16Þ

and λemij ¼ tδqic∂xC−1
cc δq

j
c=2 are the electromechanical cou-

plings, λeviv ¼ −tδqicC−1
cc Ccv the voltage-electron coupling,

and λmv
v ¼ −tQ0

c∂xðC−1
cc CcvÞ the mechanical oscillator-

voltage coupling.

2. Single- and double-dot cases

We now consider two examples.
Single dot.—In this case, we have four metallic entities:

one for the dot; three for the left, right, and gate leads
[cf. Fig. 11(a)]. The matrix C reads

C ¼

0
BBB@

C1 −CR −CL −Cg

−CR CB þ CR 0 0

−CL 0 CB þ CL 0

−Cg 0 0 CB þ Cg

1
CCCA;

ðA17Þ
with obvious notation for the capacitances and with
C1 ¼ CL þ CR þ Cg. From this expression one obtains
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Ccc ¼ C1, Ccv ¼ −ðCR; CL; CgÞ, and Cvv ¼ CB þ
diagðCR; CL; CgÞ. We assume that only Cg depends on
x, which gives ∂xCcc ¼ ∂xCg ¼ C0

g and ∂xCcv ¼
−C0

gð0; 0; 1Þ. We also have δqic ¼ −e (with e the electron
charge), and for simplicity, we report the expressions for
VL ¼ VR ¼ 0. We then have, for the couplings,

λemi ¼ eC0
g½Q0 − ðC1 − CgÞVg − e=2�=C2

1; ðA18Þ

λemij ¼ −e2C0
g=ð2C2

1Þ, and λmv
v ¼−C0

gQ0ðCR;CL;Cg−C1Þ=
C2
1. The last coupling constant is related to λem. Using the

value of Q0 that minimizes the electrostatic energy,
Q0 ¼ −CgVg, and assuming jQ0j ≫ e, one obtains, for
the single-dot coupling constant, λemi ¼ −eC0

gVg=C1. Note
that, in this limit, we also have λemij =λ

em
i ¼ e=2C1Vg ≪ 1.

Double dot.—Let us consider a double dot, with each dot
coupled to a gate voltage [cf. Fig. 11(b)]. The capacitance
matrix is

Ccc ¼
�

C1 −Cm

−Cm C2

�
; ðA19Þ

Ccv ¼ −
�
CL Cg1 0 0

0 0 Cg2 CR

�
; ðA20Þ

and Cvv ¼ CB þ diagðCL;Cg1;Cg2;CRÞ. Here, C1 ¼
CL þ Cm þ Cg1 and C2 ¼ CR þ Cm þ Cg2. We can distin-
guish two types of n operators: one for dot 1 (n1) and the
other for dot 2 (n2). We have δq1c ¼ ð−e; 0Þ and

δq2c ¼ ð0;−eÞ. For simplicity, in the following, we assume
a symmetric situation CL ¼ CR ¼ C, VL ¼ VR ¼ 0,
C1 ¼ C2 ¼ CS, Q0

c ¼ ðQ0; Q0Þ, and Vv ¼ ð0; Vg1;
Vg2; 0Þ. For our specific problem, for which the interesting
mechanical mode is the second one, we assume that
Cg1ðxÞ ¼ Cg2ð−xÞ by symmetry, so C0

g1 ¼ −C0
g2. With this

hypothesis, we find for the coupling constants,

λem1 þ λem2 ¼ −
eC0

gðCþ 2CmÞðVg1 − Vg2Þ
C2
S − C2

m
;

λem1 − λem2 ¼ eC0
g½2Q0 − e − CðVg1 þ Vg2Þ�

C2
S − C2

m
;

λev1v ¼ −e
ðCCS; CgCS; CgCm; CCmÞ

C2
S − C2

m
;

λev2v ¼ −e
ðCCm;CgCm; CgCS; CCSÞ

C2
S − C2

m
;

λmv
v ¼ Q0C0

g
ð−C; 2Cm þ C;−2Cm − C;CÞ

C2
S − C2

m
;

and λem12 ¼ 0. For Vg1¼Vg2¼Vg, λem1 ¼ −λem2 ¼ λem, lead-
ing to the Hamiltonian term that we used in the main text:
λemxðn1 − n2Þ. When we reduce the Hilbert space to the
two charge states (1, 0) and (0, 1), this Hamiltonian term
can be written as λemxσz ≡ −ℏgðx=xzÞσz. In this basis,
n1 ¼ ðσz þ 1Þ=2 and n2 ¼ ð1 − σzÞ=2, which gives

g ¼ eC0
g½2CVg þ e − 2Q0�xz
2ℏðC2

S − C2
mÞ

: ðA21Þ

For the case Q0 ¼ −CgVg, jQ0j ≫ e, and Cm ≪ CS, we
obtain g ¼ eC0

gVgxz=ℏCS, which coincides with the single-
dot coupling constant. We also have the coupling of the
charge of the dots to the voltages of the gate electrodes:

Hev ¼ eCg

2

�
1
Vac
g1 þ Vac

g2

CS − Cm
þ σz

Vac
g1 − Vac

g2

CS þ Cm

�
: ðA22Þ

Finally, the direct coupling between the mechanical oscil-
lator and the voltages of the gate electrodes is

Hmv ¼ Q0C0
g
Cþ 2Cm

C2
S − C2

m
xðVac

g1 − Vac
g2Þ: ðA23Þ

In order to compare the last two coupling constants, we can
write this part of the Hamiltonian as follows:

H ¼ ½λevσz þ λmvxzðaþ a†Þ�Vac
g12; ðA24Þ

with λev ¼ eCg=½2ðCS þ CmÞ�, λmv ¼ Q0C0
gðCþ 2CmÞ=

ðC2
S − C2

mÞ, Vac
g12¼Vac

g1 −Vac
g2 , and we use x¼ xzðaþa†Þ.

(a)

(b)

FIG. 11. Network of capacitances representing the (a) single-
and (b) double-dot circuits. The capacitances CB are used to
model the voltage sources.
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The ratio of the two coupling constants is then of the
order of

λmvxz
λev

¼ Q0

e

C0
g

2Cg
xz

Cþ 2Cm

CS − Cm
: ðA25Þ

In general, this ratio is small, about ðQ0=eÞðxz=LÞ, where
L ¼ Cg=C0

g is typically of the order of the distance of the
nanotube from the gate. Thus, the oscillating voltage field
couples mainly to the charge degree of freedom.

APPENDIX B: MAPPING OF THE
HAMILTONIAN ON THE ANHARMONIC

OSCILLATOR IN THE DISPERSIVE REGIME

In this appendix, we show that the Hamiltonian for the
systemwe are considering given by Eq. (1) can bemapped in
the dispersive regime on the Hamiltonian of an anharmonic
oscillator. We begin by considering H for ϵ ¼ 0. It reduces
to H ¼ tσx=2þ ℏωma†a − ℏgðaþ a†Þσz. Performing a
rotation of π=2 around the y axis in the charge space
with the operator Ur ¼ e−iπσy=4 ¼ ð1 − iσyÞ=

ffiffiffi
2

p
, one has

that U†
rσxUr ¼ σz and U†

rσzUr ¼ −σx, with σy left
unchanged. The Hamiltonian is then in the standard form
for the Rabi model:

H1 ¼ U†
rHUr ¼

t
2
σz þ ℏωma†aþ ℏgðaþ a†Þσx: ðB1Þ

This model has a long history describing the coupling of
electromagnetic radiation to a two-level system, but only
very recently has it been diagonalized analytically [59]. In
practice, it is difficult to make use of this solution, but for
the case considered in the present paper, an approximate
solution, which holds in the so-called dispersive limit of
jt − ℏωmj ≪ g, could be sufficient to obtain an accurate
description of the system.As described inRef. [60], a unitary
transformation D1 exists such that

H2 ¼ D†
1H1D1 ¼ t

σz
2
þ ℏωm

4
ðp̂2 þ x̂2Þ þ σzx̂2

tℏg2

Δ2
þ…

ðB2Þ
where we recall Δ2 ¼ t2 − ðℏωmÞ2, x̂ ¼ a† þ a, and
p̂ ¼ iða† − aÞ, with ½x̂; p̂� ¼ 2i. The Hamiltonian is quad-
ratic in x̂ and p̂ and commutes with σz. It can thus be
diagonalized as

H2 ¼ tσz=2þ
X
σ¼�

½ℏωσπσð1=2þ a†σaσÞ�; ðB3Þ

where

x̂ ¼
X
σ

ξσða†σ þ aσÞπσ; p̂ ¼
X
σ

ξ−1σ iða†σ − aσÞπσ;

ðB4Þ

with

ωσ ¼ ωm½1þ 4σtℏg2=ωmΔ2�1=2 ðB5Þ

the mechanical frequency of each branch, πσ ¼ ð1þ σσzÞ=2
the projector on the σ branch, ξσ ¼ ðωm=ωσÞ1=2, and
½aσ; a†σ0 � ¼ δσ;σ0 . Note that this result reduces to the Born-
Oppenheimer picture for ℏωm=t → 0. It describes two
harmonic oscillators, with different resonating frequencies,
the lower branch being softened and the upper being
hardened by the interaction.
The transformation found in Ref. [60] allows us to

simplify the Hamiltonian only at order 2 in ℏg=jt − ℏωmj.
For our purposes, we need a transformation allowing
us to obtain the form of the Hamiltonian up to the quartic
terms in x̂. For this reason, we look for a higher-order
unitary transformation D that allows us to map H1 to
HT ¼ D†H1D (the full unitary transformation acting on H
includes the rotation U ¼ UrD), with HT given by Eq. (5)
of the main text, valid at order 4 in g=ðt=ℏ − ωmÞ.
In general, one can express any unitary transformation

as D ¼ eA, where A ¼ −A†. We begin by expressing
the transformation of Ref. [60] in terms of the operators
x̂ and p̂:

A1 ¼
iℏg
Δ2

ðtσyxþ ℏωmσxpÞ: ðB6Þ

The transformed operators can be found using the standard
relation:

eAOe−A ¼
X
n

1

n!
CO
n ; ðB7Þ

with CO
n ¼ ½A;CO

n−1� and CO
0 ¼ O. Performing the expan-

sion at order 2 for O ¼ H1 and A ¼ A1, one obtains the
expression for H2. Performing the expansion at order 4
generates the sought-after terms x4, but also other terms
proportional to x3σx, xpxσy, and x2p2σz. In order to
eliminate these terms, we add two terms to the A1 operator
so that A ¼ A1 þ g3A3 þ g4A4. By inspection of the terms
generated, one can realize that A3 should involve only cubic
terms in x̂ and p̂, while A4 involves only quartic terms.
These terms are multiplied by any of the three Pauli
matrices and the unit matrix. This leaves 12 free parameters
for A3 and 15 free parameters for A4. By imposing that the
cubic and quartic terms (apart from x4) vanish, we find an
explicit expression for A3 and A4,
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A3 ¼
4itℏ3

3Δ2
3Δ6

½4σxtℏωm½x̂ p̂ x̂ð3ℏ2ω2
m − t2Þ þ 2ℏ2ω2

mp̂3�

þ σy½8t2ℏ2ω2
mp̂ x̂ p̂þx̂3ð−t4 þ 6t2ℏ2ω2

m þ 3ℏ4ω4
mÞ��;
ðB8Þ

A4 ¼
iσzðx̂3p̂þ p̂x̂3Þtℏ5ωmð11t2 − 3ℏ2ω2

mÞ
6Δ2

3Δ6
: ðB9Þ

This procedure leads to the Hamiltonian (5) with the
coefficients given by Eqs. (6) and (7). Note that the
coefficients α1 and α2 are very close to 1 in the limit
ℏωm=t ≪ 1 since the corrections scale like ðℏg=tÞ4
and ℏ4g4ω2

m=t6.
Thus, we have shown that the Born-Oppenheimer picture

gives a qualitatively correct description of the problem,
even deep in the quantum regime when ℏωm is not
negligible in front of t. This result implies a nontrivial
unitary transformation that, in contrast to the Born-
Oppenheimer picture, mixes the mechanical and charge
degrees of freedom. The second important difference is that

the coefficients for the quadratic and quartic terms differ
from the ones of the semiclassical case. These differences
are, of course, important if a quantitative description of the
anharmonicity is needed.

1. Form of the operators in qubit Hilbert space

In order to study the decoherence and the way in which
the mechanical qubit can be manipulated, it is important to
obtain the projection of the main operators on the Hilbert
subspace formed by the lowest two Hamiltonian eigen-
states. This projection, of course, can be found numerically
in a straightforward way, but it is also useful to have
simple, though approximate, expressions for the form of the
operators. For this purpose, one can apply the unitary
transformations U ¼ UrD, introduced above, to find the
expression of the relevant operators in the base for which
the Hamiltonian reduces to the form (5) at order g4. We
are interested in the Pauli matrices for the charge sector and
the x̂ and p̂ operators for the oscillator sector. Let us
define OT ¼ U†OU.
We obtain

σTx ¼ σz þ 2ℏg
p̂σyℏωm − σxx̂t

Δ2
− 2ℏ2g2

σzx̂2t2 þ 2tℏωm þ p̂2σzðℏωmÞ2
Δ4

þ oðg3Þ; ðB10Þ

σTy ¼ σy − 2ℏ2gωm
p̂σx
Δ2

þ ℏ3g2ωm
σxtðx̂ p̂þp̂ x̂Þ − 2p̂2σyℏωm

Δ4
þ oðg3Þ; ðB11Þ

σTz ¼ −σx − 2ℏgt
x̂σz
Δ2

þ ℏ2g2t
2σzx̂2t − σyℏωmðx̂ p̂þp̂ x̂Þ

Δ4
þ oðg3Þ; ðB12Þ

x̂T ¼ x̂þ 2ℏ2gωm
σx
Δ2

þ 2ℏ3g2
σzx̂tωm

Δ4
þ oðg3Þ; ðB13Þ

p̂T ¼ p̂ − 2ℏgt
σy
Δ2

þ 2ℏ3g2
σzp̂tωm

Δ4
þ oðg3Þ: ðB14Þ

The projection in the subspace of the first two excited
states can be readily calculated by neglecting the quartic
term of the Hamiltonian given by Eq. (5). This method
implies a scaling of the x̂ and p̂ operators by the factor
ξ ¼ ξ− defined by Eq. (9): x̂ → ξx̂ and p̂ → p̂=ξ. The result
at order 4 in g shows that only six components are non-
vanishing out of a possible 16. These components are given
by Eqs. (11) and (12) in the main text. The expression for

the β coefficients is given in the main text [Eqs. (13)–(18)]
to order g2. From these expressions, one can see how the
different degrees of freedom are mixed by the interaction.
For instance, the displacement acquires a σx component,
which, in this basis, is the charge operator. On the other
side, the charge operator σz acquires a component of the
displacement operator. Here, we give the g3 and g4 terms
(we use ℏ ¼ 1 in these expressions):

β14 ¼
16tð6ω2

mt3ð9ξ4 þ 2Þξ4 − 4ω3
mt2ð15ξ4 þ 16Þξ2 þ 9ω4

mtð3ξ8 þ 4ξ4 þ 8Þ − 18ω5
mξ

6 þ 14ωmt4ξ6 − 9t5ξ8Þ
3Δ8Δ2

3ξ
4

; ðB15Þ

β24 ¼
16tð−4ω2

mt3ð9ξ4 þ 2Þξ4 þ 2ω3
mt2ð15ξ4 þ 16Þξ2 − 6ω4

mtð3ξ8 þ 4ξ4 þ 8Þ þ 9ω5
mξ

6 − 7ωmt4ξ6 þ 6t5ξ8Þ
3Δ8Δ2

3ξ
4

; ðB16Þ
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β33 ¼
96ω3

mt2ðξ4 þ 2Þ − 32ωmt4ξ4

3Δ6Δ2
3ξ

3
; ðB17Þ

β43 ¼
8ð2ω2

mt3ð9ξ4 þ 4Þ þ 9ω4
mtξ4 − 3t5ξ4Þ

3Δ6Δ2
3ξ

ðB18Þ

β54 ¼
2ωmt(3ξ4ð−58ω2

mt2 − 15ω4
m þ 9t4Þ − 64ω2

mt2 − 96ωmtξ2ðt − ωmÞðωm þ tÞ)
3Δ8Δ2

3ξ
; ðB19Þ

β64 ¼
2ωmt(ξ4ð−66ω2

mt2 − 27ω4
m þ 29t4Þ − 192ω2

mt2 þ 96ωmtξ2ðt − ωmÞðωm þ tÞ)
3Δ8Δ2ξ3

: ðB20Þ

APPENDIX C: MICROWAVE CAVITY COUPLED
TO ONE AND TWO QUBITS

Let us consider a generic system coupled linearly
through the operator S to a microwave cavity. The
Hamiltonian can be written as

H=ℏ ¼ HS=ℏþ ωcb†bþ Sðb† þ bÞ; ðC1Þ

where b are the photon destruction operators, ωc the cavity
resonating angular velocity, and HS the unspecified system
Hamiltonian. We assume that S acts only in the system
Hilbert space. Let us also define the energy eigenvalues of
HS: ℏϵi with eigenstates jii such that HSjii ¼ ℏϵijii.
Assuming that S is small, we find the modification of

the eigenvalues and eigenvectors of the full system by
standard second-order perturbation theory. The unperturbed
eigenvectors of the system plus cavity are jimi with

eigenvalue εð0Þim ¼ ϵi þmωc. The first-order correction van-
ishes. The second-order one reads

εð2Þim ¼
X
j

jSijj2
�

m
ϵij þ ωc

þ mþ 1

ϵij − ωc

�
; ðC2Þ

with ϵij ¼ ϵi − ϵj. The linear part in m of this expression
gives the renormalization of the resonator frequency. It
normally depends on the system state i:

Δωi ¼
X
j

jSijj2
2ϵij

ðϵ2ij − ω2
cÞ
: ðC3Þ

Thus, the dispersive coupling χ [cf. Eq. (21)], defined as half
the variation of the resonating frequency for a transition from
the ground to the first excited state of the system, is

χ ¼ ðΔω1 − Δω0Þ=2: ðC4Þ

1. Dispersive coupling for a single qubit

As a simple example, one can consider the case HS=ℏ ¼
ϵ10τz=2 and S ¼ gvτx. One finds Δω1 ¼ −Δω0 ¼ 2g2vϵ10=
ðϵ210 − ω2

cÞ. For ωc close to ϵ10, one then recovers the value
of χ ¼ g2v=ðϵ10 − ω2

cÞ entering Eq. (21).
Using Eq. (C3), we can now find the dispersive coupling

for the nanomechanical qubit. We perform the unitary
transformation given by D1Ur, and we use for HS the
quadratic Hamiltonian H2 given in Eq. (B2). In this case,
the eigenvectors are jnσi with eigenvalues Enσ ¼ ℏnωσ þ
tRσ=2 [here, tR ¼ tþ ℏðωþ − ω−Þ is the hopping ampli-
tude renormalized by the zero-point energies]. The system
couples to the cavity through the charge and the displace-
ment operators, but since the latter coupling is much
smaller than the former, we consider, in the following,
only the charge operator σz. We write the coupling operator
in the new basis: S ¼ gecD

†
1U

†
rσzUrD1. At lowest order, it

reads [cf. Eq. (B12)]

S
gec

¼ σx þ
2ℏgt
Δ2

� ðaþ þ aþÞξþ 0

0 ða− þ a−Þξ−

�
þ…:

ðC5Þ

Substituting S into Eqs. (C3) and (C4) with the two lowest-
lying states j0−i and j1−i, we find χ ¼ χm þ χc with

χm ¼ 2g2ecβ24;1
ðω21 − ω10Þðω2

c þ ω10ω21Þ
ðω2

c − ω2
21Þðω2

c − ω2
10Þ

ðC6Þ

and

χc ¼ g2ec
ðδ11 − δ00Þðω2

c þ δ11δ00Þ
ðω2

c − δ211Þðω2
c − δ200Þ

; ðC7Þ

where we recall that β4;1 ¼ 2ℏgtξ−=Δ2 and δnm ¼
ðEnþ − En−Þ=ℏ. Note that the expression in Eq. (C6)
vanishes if the lowest-order approximation for the energy
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eigenvalues is used. A nonlinearity is needed in order to
have a finite dispersive coupling. For this reason, we do not
specify the values of ωnm and δnm for the moment. Both
expressions have a divergent behavior: χm for ωc close to
either ω01 or ω21, and χe for ωc close to either δ00 or δ11.
This behavior allows us to write the approximate Eqs. (22)
and (23) in the main text.

2. Coupling two qubits via the cavity

We now apply this approach to study two nanomechan-
ical qubits coupled to the same microwave cavity. Our main
goal is to find the expression of a system operator F, acting
only in the system Hilbert space, on the eigenvector basis of
the coupled system of the two qubits plus the microwave
cavity. We look at the m-independent part, which gives the
change of the operator in the system subspace. Applying
second-order perturbation theory with the same notation as
before, we obtain

hi0mjFjimi

¼ Fi0i þ
X
k;l≠i0

Si0kSklFli

ðϵi0k − ωcÞϵi0l

þ
X
k;l≠i

Fi0lSlkSki
ðϵik − ωcÞϵil

þ
X
kk0

Si0kFkk0Sk0i
ðϵi0k − ωcÞðϵik0 − ωcÞ

−
Fi0i

2

�X
j≠i

jSijj2
ðϵij − ωcÞ2

þ
X
j≠i0

jSi0jj2
ðϵi0j − ωcÞ2

�
: ðC8Þ

As a simple application, we can consider a system
composed of two, pure, two-level system qubits: HS ¼P

a¼1;2 ℏϵ
ðaÞ
10 τ

ðaÞ
z =2, with S ¼ P

a¼1;2 g
ðaÞ
v τðaÞx . When a drive

is applied to qubit 1, this can be modeled by a term in the

Hamiltonian ℏA cosðωDtÞτð1Þx . We thus look at how F ¼ τx
reads in the Hamiltonian eigenvector basis. Using Eq. (C8),
we find that

F ¼ Fx0τ
ð1Þ
x þ F0xτ

ð2Þ
x þ Fzxτ

ð1Þ
x τð2Þx ; ðC9Þ

with Fzx given by the expression (42) for Jzx with ω10 →
ϵ10 and A → 1.
We now consider the case of a nanomechanical qubit.

To evaluate Eq. (C8), we use the same method applied
for the single qubit. The coupling operator is now S ¼P

a¼1;2 g
ðaÞ
ec σ

ðaÞ
z . The eigenstates of the composite system

can be labeled with the four indices fn1; σ1; n2σ2g with
eigenvalues En1;σ1 þ En2;σ2 . As before, we assume we have
the exact expressions for the eigenvalues, and we use the
matrix elements given by the quadratic Hamiltonian. We

look for the contributions leading to the operator τð1Þz τð2Þx .
We find that, also in this case, F has the form of Eq. (C9).
At lowest order in the electromechanical coupling

constants, these terms are generated by selecting the

contribution of two σð1Þx and one x̂ð2Þ operators entering
the matrix elements of F and S. They have dominant

divergent terms in 1=ðωc − ωð2Þ
10 Þ. Collecting them, one

obtains

Fe
zx ¼

gð1Þec g
ð2Þ
ec β

ð2Þ
4;1

ωð2Þ
10 − ωc

�
δð1Þ11

δð1Þ11

2 − ωð2Þ
10

2
−

δð1Þ00

δð1Þ11

2 − ωð2Þ
10

2

�
; ðC10Þ

which, close to the resonance, can be written as

Fe
zx ≈ −

gð1Þec g
ð2Þ
ec β

ð2Þ
1;4

ωð2Þ
10 − ωc

ðδð1Þ11 − δð1Þ00 Þðδð1Þ00

2 þ ωð2Þ
10

2Þ
ðδð1Þ00

2 − ωð2Þ
10

2Þ2
: ðC11Þ

Even if this term appears to be a first-order contribution in
gð2Þ, we know that the numerator is of order gð1Þ2

[cf. Eq. (24)]. Thus, we also need to evaluate the next-
order contributions in Eq. (C8) that imply, for the operators
F and S, two x̂ð1Þ and one x̂ð2Þ operators. These terms are of
order gð2Þgð1Þ2. Collecting the divergent contribution as
before and evaluating it close to the divergence, we have

Fm
zx ¼

8gð1Þec g
ð2Þ
ec

ωc − ωð2Þ
10

βð1Þ1;4
2
βð2Þ1;4

ωð1Þ
10 − ωð1Þ

21

ðωð2Þ
10 − ωð1Þ

21 Þðωð1Þ
10 − ωð2Þ

10 Þ
:

ðC12Þ

The two terms Fm
zx and Fe

zx can be combined in the form
given by Eq. (43) in the main text and written using the
results obtained for the dispersive shifts χm and χe as
defined in Eqs. (C6) and (C7).
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