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Abstract

Cable-Driven Parallel Robots (CDPR) employ extendable cables to control the pose of an end-
effector (EE). If the number of cables is smaller than the degrees of freedom of the EE, and ca-
bles have no special arrangement reducing the EE freedoms, the robot is underactuated, and
the EE is underconstrained: as a consequence, the EE preserves some freedoms even when
all actuators are locked, which may lead to undesirable free motions. This paper proposes a
novel methodology for the identification of the EE inertial parameters of these robots. Iner-
tial parameters are useful, for example, in the application of feedforward control techniques.
The main merit of our approach is that it does not require force or torque measurements,
and only a subset of the robot kinematic variables needs to be measured. The method con-
sists in the application of the EE internal-dynamics equations along a free-motion trajectory,
also referred to as self-motion zero dynamics. This results in an over-determined system of
equations that are linear in the EE inertial parameters (the Free-motion Internal-Dynamics
Identification Model, FIDIM); the said system is solved according to the Total-Least-Square
technique. Free-motion trajectories that are optimal for identification purposes are investi-
gated and experimentally tested on a 4-cable robot. FIDIM is then applied, statistical analysis
is performed, and the experimental results are cross-validated against additional free-motion
trajectories.

Keywords: Underactuated robots, underconstrained robots, cable-driven parallel robots,
inertial parameter estimation.

1. Introduction

A cable-driven parallel robot (CDPR) is a parallel manipulator that employs cables, instead
of rigid-link legs, to move an end-effector (EE). A CDPR equipped with aµ-DoF EE and n actu-
ated cables, with n < µ, is generally underactuated1., and only a subset of the EE coordinates

∗Corresponding author
Email address: edoardo.ida2@unibo.it (Edoardo Idà)

1There may be special cable arrangements on the EE that may reduce the EE freedoms and, thus, may result in the
robot being fully actuated [1]
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can be controlled directly, with the remaining ones being determined by the system mechan-5

ical equilibrium. An underactuated CDPR (UACDPR in short) is always underconstrained,
thus its EE preserves mobility even if its actuators are locked [2]. Accordingly, if the EE is not
in a static configuration when cable lengths are not varying, it exhibits (possibly dangerous)
oscillatory free motions in the Cartesian space [3]. The Cartesian free motions of an under-
actuated parallel robot, which occur when actuators are locked, are conceptually analogous10

to the joint-space self motions of overactuated serial robots, which may occur when the EE is
fixed [4].

UACDPR may be employed in a variety of applications, in which a simpler mechanical
system and enhanced workspace accessibility justify limited robot mobility and controllabil-
ity [5–7]. Thus, the study of UACDPRs is attracting the interest of more and more researchers,15

who have dealt with geometrico-static problems [8, 9], equilibrium stability analysis [10, 11],
trajectory planning [2, 12–18], system-parameter identification [3, 19], performance evalua-
tion [20], and control [21–24].

In order to limit EE oscillations during motion, feedforward [2, 17, 18] controllers based
on EE dynamics can be employed: in this case, the system inertial parameters must be known.20

They may be estimated by means of CAD tools or, if high accuracy is needed in their evalu-
ation, they must be identified. Classical inertial-parameter identification models aim at de-
termining the mass of the moving links, the position of their centers of mass, and their in-
ertia matrices with respect to (w.r.t. in short) to some body-fixed frames. In addition, the
actuators inertia, friction coefficients, and their drive current gains can also be determined25

[25]. The need of a precise identification of the EE inertial parameters in an UACDPR is
especially justified if a feed-forward control scheme, with cable length as a system input,
is used. In fact, the computation of actuator position set-points relies on the evaluation of
the robot non-controllable freedoms while following a prescribed trajectory of the controlled
ones [2, 13, 17, 18]: the non-controllable freedoms are found by numerically integrating the30

EE internal dynamics, which is influenced by the inertial parameters of the EE, which are thus
the EE base parameters [26].

In the field of cable-driven robots, standard [27, 28] or simplified [29] identification method-
ologies were applied to redundantly-actuated CDPRs or single winches [30]. The authors of
[27, 28] employed an Output-Error Identification Method, based on the direct dynamic model,35

for the identification of both actuator and EE inertial parameters of an over-constrained CDPR.
The proposed method results in an overdetermined system of nonlinear equations, which re-
quire actuator positions, actuator torques, and the EE pose to be experimentally measured
or estimated. The EE inertial parameters of an over-constrained CDPR were identified in [29]
according to a two-step cascaded Inverse-Dynamics Identification Model, where the inertia40

matrix is found after the EE mass and center-of-mass position are identified first. The iden-
tification model proposed in [29] is linear, thus computationally simpler than the output-
error method, but it requires additional inputs, such as the EE angular velocity and acceler-
ation, and the EE linear acceleration, obtained by means of an inertial measurement unit;
moreover, since actuator dynamics is not taken into consideration, cable tensions are directly45

measured by force sensors. A drawback is that, due to the cascaded nature of the identifica-
tion model, errors in the identification of the first group of parameters cumulate with those
of the second group. In [30] the authors focused on the identification of winch parameters
(in the frequency domain), whose dynamics was modelled as a discrete-time second-order
spring-mass-damper: the identification was carried out by measuring motor positions and50

cable forces.
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A few studies also exist on identification of EE parameters in robotic systems which are
practically coincident to UACDPRs [31–34], even though their target application is inertial-
parameter measurement per-se. The authors of [31–34] developed and studied an instru-
mentation for the precise measurement of inertial parameters of a suspended body; the in-55

strumentation employs 3 or 4 fixed-length cables, attached to the fixed frame and the mobile
platform by universal joints. Thanks to this set-up, encoders on the universal joints connect-
ing the cables to the frame allow the measurement of the cable angular position and ulti-
mately the estimation of the EE pose. Additionally, an axial force sensor, embedded between
each universal joint and each cable, measures the cable tension, which is required by the60

adopted identification method. One of the most notable innovations of [31–34] is the use of
the EE free motion as excitation trajectory for identification: this makes the instrumentation
simpler (cables do not need to be actuated), and avoids the computation of (possibly) com-
plicated exciting trajectories, which are required by standard techniques [28, 29].

As detailed above, most of the strategies proposed in the literature to identify robot inertial65

parameters present common theoretical aspects, such as [35]:

• a dynamic model that is linear in the inertial parameters is formulated, so that param-
eters can be algebraically isolated;

• an over-determined linear system of equations is obtained, by applying the dynamic
model to a sufficient number of configurations along some trajectory of the robot;70

• inertial parameters are determined by using linear regression techniques.

On the practical side, additional considerations often lead to identification best practices:

• identifiability of inertial parameters can be investigated, so that non-identifiable or
non-essential ones are eliminated from the dynamic model [35]; in fact, when a pa-
rameter is intrinsically not identifiable or non-essential, it has a minimal influence on75

the dynamic model: by eliminating it, identifiable parameters are estimated with higher
precision and the dynamic model is simplified;

• robot trajectories for identification should be optimal with respect to some identifiabil-
ity criterion, in order to increase the accuracy of the regression analysis;

• after parameters are identified, statistical-error-analysis tools should be employed to80

draw conclusions on the experimental results: in case statistical errors are large, exper-
iments should be disregarded and re-performed.

This paper proposes a novel methodology for the identification of UACDPR EE inertial
parameters. The main contributions are the following.

1. The method takes advantage of the internal dynamics and free-motion kinematics (that85

is, a zero dynamics [36, 37]) of the underactuated EE; in this way, contrary to state-of-
the-art identification procedures for CDPRs [28, 29, 31], force or torque measurements
are avoided, and only a subset of the EE coordinates needs to be measured or estimated.
This feature is particularly beneficial for two reasons, since it avoids (i) the integration
of expensive sensing equipment, and (ii) the use of their (usually) noisy data for iden-90

tification. Pulley and actuator friction parameters, as well as actuator inertia, are not
estimated and would require methods similar to [28, 29], but EE inertial parameters are
sufficient for most feedforward control techniques used for UACDPR [2, 13, 17, 18].
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2. The application of the internal-dynamics equations along a free-motion trajectory pro-
vides an over-determined system of linear equations, the Free-Motion Internal-Dynamics95

Identification Model (FIDIM), which is solved according to the Total-Least-Square (TLS)
method [38]. The TLS method provides an optimal solution by minimizing both mod-
elling and measurements errors, compared to Least-Square or Output-Error methods,
which only minimize modelling errors [39].

3. Optimal free-motion trajectories are investigated, and extensive simulations show that100

randomly exciting EE oscillations about different equilibria may be sufficient for ob-
taining optimal identification results. This means that there is possibly no need to cal-
culate complex optimal excitations.

The rest of the paper is structured as follows. Section 2 presents UACDPRs models, with
a focus on internal dynamics and free-motion kinematics. Section 3 establishes the novel105

FIDIM , and introduces its solution technique: the Total-Least-Square method. An optimal
free-motion excitation strategy is introduced in Sec. 4, and applied in Sec. 5, where iden-
tification experiments, and their results, are discussed. Conclusion and outlook are finally
reported in Sec. 6.

2. UACDPR Modelling110

This Section briefly presents the kinematic and dynamic models of an UACDPR. The con-
tent is drawn from [2, 3], and it is succinctly reported here only to introduce the nomenclature
and the equations that are necessary for the subsequent development. An UACDPR consists
of a mobile platform coupled to the base by n cables, with n < µ, and µ = 6 in SE(3). Cables
can be coiled and uncoiled by motorized winches. Ox y z is an inertial frame, whereas P x ′y ′z ′

115

is a mobile frame attached to the EE, whose pose is described by the position vector p of P ,
and a rotation matrix R, parametrized by a minimal set of orientation parameters ε, namely

R = R(ε). EE generalized coordinates are denoted by ζ= [
pT εT

]T
.

2.1. UACDPR geometry

Each cable is guided into the workspace by a swivel pulley, mounted on an hinged support.
Each cable enters the pulley in point Di , that lies on the swivel axis, tangentially exits the
pulley in point Bi , and is attached to the EE in point Ai . ai and a′

i are the position vectors of
Ai w.r.t. O and P , respectively. bi denotes the position of Bi w.r.t. O and, if pulley kinematics
is accounted for, depends on the EE pose [2] (Fig. 1). If cables are assumed to be massless and
inextensible2, the constraint imposed by each cable onto the EE is:

ρT
i ρi −

[
li − ÚBi Di

]2 = 0 (1)

where ρi
∆= ai −bi , and li is the total cable length, comprising the rectilinear part ‖ρi‖ and the120

arc ÚBi Di wrapped onto the pulley.

2These assumptions are reasonable if the robot is small- to medium-size, and employs polymer-fibre cables, such
as the prototype used for the experiments reported in Section 5.
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Figure 1: EE Free-Body Diagram

2.2. UACDPR free-motion kinematics

Ifω is the angular velocity of the EE, the EE twist is v = [ṗT ωT ]T and its linear relationship
with ζ̇ is given by:

v = D(ε)ζ̇, D(ε)
∆=

[
I3×3 03×3

03×3 H(ε)

]
(2)

where I3×3 ∈ R3×3 and 03×3 ∈ R3×3 are identity and null matrices, and H(ε) depends on the
parametrization used to describe the orientation [2].

The rate of change of li , l̇i , can be computed as [3]:

Ξv = l̇, Ξ
∆= [ξ1 · · · ξn]T , l̇

∆= [l̇1 · · · l̇n]T (3)

where matrixΞ ∈Rn×6 is the kinematic Jacobian of the manipulator, l̇ is the array stacking the
time derivatives of the total cable lengths, and ξi is a zero-pitch screw directed as the cable-
direction unit vector ti (see Fig. 1), and passing through Ai :

ξi =
[

ti

a′
i × ti

]
(4)

Generally rank(Ξ) = n, but it decreases in a direct-kinematics singularity [40].125

If the lengths of the n cables are not varying in time, all kinematic constraints are active
(that is, cables are taut), and Ξ has full column rank, the EE can still move on a variety of di-
mension λ= 6−n in SE(3), thus preserving λDoFs. Consequently, λ components of ζ are free
to vary, and are called free pose components ζ f . The remaining n components of ζ are called
dependent pose components ζd , since they depend on the value of the fixed cable lengths l0130

and free pose components ζ f . In turn, this also means that the fixed cable lengths l0 are ge-
ometrical constant parameters when analyzing free-motion, and only need to be estimated
once.

When actuators are locked, the EE motion is called free motion, and the EE kinematics can
be described by setting l̇ = 0n×1 in (3):

Ξv = 0n×1 (5)
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It was shown in [3] that the free twist v, namely the expression of v that satisfies Eq. (5), can
be expressed as a function of the EE λ residual DoFs as:

v =Ξ⊥ζ̇ f (6)

whereΞ⊥ is a specific expression of the right nullspace of matrixΞ: its derivation can be found
in [3]. Consequently, the EE free-twist time derivative v̇ can be obtained by differentiating Eq.
(6) w.r.t. time:

v̇ =Ξ⊥ζ̈ f + Ξ̇⊥
ζ̇ f (7)

It should be noted that Ξ̇
⊥

, as any first-order time derivative, is linearly dependent on ζ̇ f and

can be symbolically computed by differentiating the analytical expression ofΞ⊥ w.r.t. time.135

2.3. UACDPR Internal Dynamics

The non-linear dynamic model of an UACDPR emerges from the EE mechanical equilib-
rium, subject to cable constraints, inertial actions, and external wrenches [2]:

Mv̇+Cv−φ=−ΞTτ (8)

M
∆=

[
mI3×3 −ms̃′

ms̃′ IP

]
, C

∆=
[

03×3 −mω̃s̃′
03×3 ω̃IP

]
, φ

∆= m

[
g

s̃′g

]
(9)

where m is the EE mass, IP is the EE inertia matrix about its reference point P expressed in
the inertial frame, the symbol ∼ over a vector denotes its skew-symmetric representation, and
τ ∈Rn is an array containing the cable-tension magnitudes. φ ∈R6 is the external wrench due
to gravity (Fig. 1), s′ is the center of mass position w.r.t. P in the inertial frame, and g is the140

gravitational acceleration.
The EE internal dynamics, that is, the second-order nonholonomic constraint that the

system variables must satisfy regardless of actuation and constraint actions [41], is obtained
by pre-multiplying Eq. (8) byΞ⊥,T :

Ξ⊥,T (
Mv̇+Cv−φ)= 0λ×1 (10)

3. Free Internal Dynamic Identification Model

In this Section, the linearity of UACDPR internal dynamics in the inertial parameters is
outlined, and the FIDIM established. More specifically, it is shown that:

1. classical identification models may present difficulties in their application to CDPRs,145

because of the specific design of the actuators of this class of manipulators;

2. the internal dynamics of the EE can be used to derive a novel formulation of the identi-
fication problem, which is particularly suitable for UACDPRs;

3. the internal dynamics does not depend on the EE mass, but only on the EE center-of-
mass location and its specific inertia tensor (that is, its inertia tensor divided by the EE150

mass), and it is linear in these parameters;
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4. identification of the EE center-of-mass location and its specific inertia matrix can be
performed without recurring to any force or torque measurement, since it only requires
a direct measurement or estimation of λ EE coordinates, namely the free ones;

5. inertial parameters can be calculated as the TLS solution of an over-determined system155

of equations, obtained computing the internal dynamics over a sampled free-motion
trajectory.

3.1. Computation of the identification model

Classical models for identification of EE inertial parameters aim at determining the EE
mass, the EE center-of-mass position, and the EE inertia matrix components, which are the
base parameters necessary to describe the EE dynamics [26]. To do so, EE dynamic equations
are first rearranged, so that a linear equation in the inertial parameters is formulated. To this
end, Eq. (8) may be rewritten as:[

m(p̈−g)−ms̃′α−mω̃s̃′ω
IPα+ ω̃IPω+ms̃′(p̈−g)

]
=−ΞTτ (11)

The left-hand side of Eq. (11) can be algebraically manipulated in order to isolate the EE
dynamic parameters. First, the vector product rule a×b =−b×a is applied, so that:[

m(p̈−g)+m (α̃+ ω̃ω̃)s′
IPα+ ω̃IPω−m( ˜̈p− g̃)s′

]
=−ΞTτ (12)

Then, we consider that s′ ∆= R P s′, and IP
∆= R P IP RT , where P s′ and P IP are the (constant)

center-of-mass coordinates and inertia tensor w.r.t. P expressed in the moving frame:[
m(p̈−g)+m (α̃+ ω̃ω̃)R P s′

R P IP RTα+ ω̃R P IP RTω−m( ˜̈p− g̃)R P s′
]
=−ΞTτ (13)

If we consider the following identity in the product of a generic symmetric matrix S and a
vector v :

Sv = v̄S̆ (14)

where:

S
∆=

Sxx Sx y Sxz

Sx y Sy y Sy z

Sxz Sy z Szz

 v
∆=

vx

vy

vz

 (15)

v̄
∆=

vx 0 0 vy vz 0
0 vy 0 vx 0 vz

0 0 vz 0 vx vy

 S̆
∆= [

Sxx Sy y Szz Sx y Sxz Sy z
]T

(16)

Equation (13) can be rewritten as:[
m(p̈−g)+m (α̃+ ω̃ω̃)R P s′

(R Pα+ ω̃R Pω) ˘P IP −m( ˜̈p− g̃)R P s′

]
=−ΞTτ (17)

where Pα = RTα and Pω = RTω are the angular acceleration and velocity vectors expressed
in the moving frame.160
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Finally, the EE dynamics can be expressed as a linear equation in the EE inertial parame-

ters m, m P s′, and ˘P IP as:
WEE (ζ, ζ̇, ζ̈)χEE =−ΞT (ζ)τ (18)

where:

WEE
∆=

[
(p̈−g) (α̃+ ω̃ω̃)R 03×6

03×1 −( ˜̈p− g̃)R (R Pα+ ω̃R Pω)

]
, χEE

∆=
 m

m P s′
˘P IP

 (19)

with WEE ∈R6×10, and χEE ∈R10×1.
The application of Eq. (18) over a trajectory which is sampled in ns configurations leads to

defining an over-determined system of 6ns equations in 10 unknowns, which can be solved
for χEE and analyzed with the tools of linear regression. To this end, the elements of WEE , Ξ,
and τ need to be computed at all trajectory time instants. The EE motion can be measured,165

for example by means of an external photogrammetry system or a laser tracker, or estimated
by means of direct kinematics or inertial measurement units. Cable tensions can be mea-
sured by means of force sensors embedded in the cable transmission [29], or estimated by
modelling its actuation unit [28]. It should be noted that, in general, the UACDPR EE pose
and its derivatives cannot be inferred by means of direct kinematics only, and additional sen-170

sors must be employed if a pose measuring device is to be avoided. As an example, encoders
on swivel axes could be employed [19], but their efficacy for pose reconstruction has not been
tested in dynamical applications.

Even though identification through Eq. (18) is theoretically feasible, there are two main
drawbacks in its use:175

• force sensors need to be embedded in the cable transmission (either at the cable at-
tachment points on the platform, or within the swivel-pulley system [42]), which com-
plicates the mechatronic design of the robot and increases its cost; in addition, force
sensors may not be particularly accurate in predicting cable tensions, since their read-
ings may be disturbed by several factors, the most important of which is friction in the180

cable transmission;

• common winch designs [42, 43] include multiple rototranslating elements, which rep-
resent severe sources of friction: high friction is a serious problem for identification,
because of its unpredictable nature; the transition between static and kinematic fric-
tion adds high-frequency effects to motor current signals, which needs to be carefully185

filtered before being used for estimating cable tensions.

Ultimately, directly measuring cable tensions, or estimating them via winch modeling, may
lead to low cable-tension accuracy, which in turn would negatively impact the overall identi-
fication process.

Thus, an alternative formulation of the identification model is here proposed, which aims
at determining EE inertial parameters, without measuring or estimating cable tensions. We

start by observing that if Eq. (18) is pre-multiplied by Ξ⊥T
, the right-hand side of Eq. (18)

vanishes:
Ξ⊥T

WEEχEE = 0λ×1 (20)

Scalar identification relations in Eq. (20) are fewer than in Eq. (18), namely λ instead of n,
so that the identification trajectory must be sampled in more points n′

s > ns , but no force or
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torque measurement is now needed: the computation ofΞ⊥ and WEE in Eq. (20) only requires
the EE pose to be measured, and its numerical differentiation. In addition, since the internal
dynamics is linear inχEE and homogeneous, its validity is not impacted by the multiplication
or division by a non-zero scalar. Thus, we can deduce that the EE internal dynamics is not
influenced by the EE mass, and we can divide Eq. (20) by m:

W′
EEχ

′
EE = 0λ×1 (21)

where:

W′
EE

∆=Ξ⊥T
WEE , χ′

EE
∆=

 1
P s′
˘P I′P

 , ˘P I′P
∆= ˘P IP /m (22)

It should be noted that in case the EE mass needs to be identified, it can be inferred by
detaching the EE and by weighting it. In case the detachment of the platform is not possible,
an alternative solution can be adding a known payload of mass ∆m to the EE in a known
location (P p′

L is the position vector of the payload center of mass in the moving frame) and
identify the new EE with the additional payload [44]. If the total center of mass of the EE with
the additional payload is denoted by P s′L , the definition of center of mass gives:

(m +∆m) P s′L = m P s′+∆mP p′
L (23)

and the EE mass m can be determined from:

m( P s′L − P s′) =∆m(P p′
L − P s′L) (24)

The knowledge of the standard deviations associated with the identified values of P s′L and P s′190

may provide a weighting strategy for the solution of the over-determined system of equations
given in Eq. (24).

Equation (21) is valid in general for UACDPRs, but it can be further specialized in order to
simplify experimental identification. In fact, in case the EE exciting trajectory is a free-motion
one, the expression of ζ and its derivatives, which are needed to compute the elements of W′

EE ,195

depends only on the constant value of the cable lengths, l0, and on the λ free coordinates of
the EE ζ f (and its derivatives).

3.2. Total-Least-Square Identification

Equation (21) is applied to n′
s configurations deriving from one or more free-motion tra-

jectories, thus establishing the FIDIM . Usually, the n′
s samples are obtained by over-sampling

the EE free coordinates at high frequency, then by band-pass filtering them, and finally by
decimating them [45]. This results in the over-determined system of equations:

Wχ= 0λn′
s×1, W =


W′

EE ,1
...

W′
EE ,n′

s

 (25)

where matrix W ∈ Rλn′
s×10 is called regressor or identification matrix and vector χ = χ′

EE ∈
R10×1 comprise the EE base inertial parameters, that is, the minimal set of independent pa-
rameters necessary to describe the EE dynamics [26]. Ideally, rank(W) = 9, and infinite so-
lutions of Eq. (25) can be found. On the other hand, there are two primary sources of er-
rors which are not considered in Eq. (25), so that in practice rank(W) = 10: measurement
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errors, and also model errors. The former errors, which depend on the measurement equip-
ment and/or the estimation methodology used to compute ζ f , may be amplified due to the

numerical differentiation needed to obtain ζ̇ f and ζ̈ f , and the strong dependence on kine-

matic parameters, since matrices Ξ⊥ and Ξ̇
⊥

are employed both for internal dynamics (c.f.
Eq. (22)) and the computation of the free twist and its derivative (c.f. Eqs. (6),(7)). As a conse-
quence, matrix W can be more realistically modelled as W+∆W. Model errors are accounted
for by considering that the right-hand side of Eq. (25) is not a zero vector, but an error vector
ε ∈Rλn′

s×1:
(W+∆W)χ= ε (26)

The TLS solution of Eq. (26) is therefore considered. This technique allows χ to be com-
puted while minimizing both ∆W and ε [38], as opposed to Least-Square and Output-Error
methods, that would only minimize ε. According to the TLS technique, the real system (W+
∆W)χ= ε is changed to its closest compatible system of the form:

Ŵχ̂= 0λn′
s×1 (27)

where rank(Ŵ) = 9 < 10 = rank(W), and Ŵ is closest to W with respect to the Frobenius norm,
i.e. Ŵ minimizes the Frobenius norm ‖Ŵ−W‖F . Accordingly, χ̂ is the solution of Eq. (27) and200

the TLS solution of Eq. (26).
Ŵ can be straightforwardly computed by performing the Singular Value Decomposition

(SVD) of W:

W = U
[

S
0(λn′

s−10)×10

]
VT (28)

where U and V are, respectively, (λn′
s ×λn′

s ) and (10×10) orthonormal matrices, and S is the
(10×10) diagonal matrices of W singular values (which we assume to be sorted in decreasing
order). Then, Ŵ is calculated as [38]:

Ŵ = W− s10U10VT
10 (29)

where s10 is the smallest singular value of W, and U10 and VT
10 are the 10-th columns of U and

VT , respectively. Then, the TLS solution of Eq. (25) is given by:

χ= V10 (30)

where χ is normalized so as to have 1 in its first element, according to the second definition
in Eq. (22).

Standard deviations σχi , with i = 2, . . . ,10, on the dynamic parameters are estimated as-
suming that errors in the identification matrix W are independent and identically distributed
with zero mean and common covariance σ2

W [35]. An unbiased estimator of the standard
deviation σW is given by [38]:

σW = s10√
λn′

s −10
(31)

and the covariance matrix of the TLS solution error is approximated by:

Cχ =σ2
W

(
1+‖χ2:10‖2

2

)(
Ŵ

T
2:10Ŵ2:10

)−1
(32)
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where χ2:10 contains every element of χ except the first one, and Ŵ2:10 contains all columns
of Ŵ except the first one. Finally, standard deviations on the inertial parameters are given by:

σχi =
√

Cχ(i , i ), i = 2, . . . ,10 (33)

where Cχ(i , i ) is the i-th diagonal term of Cχ, and its relative value with respect to the identi-
fied parameter is:

σ%χi = 100σχi /‖χi‖ (34)

If the value of σ%Xi is lower than 10%, the corresponding parameter is commonly consid-
ered to be well-identified [46]. There are mainly 2 scenarios in which the values of σ%χi may205

be large, which require different additional steps:

• in case the parameter χi is near zero, σ%χi may naturally be very large: this kind of pa-
rameters are called non-essentials [46] and can be removed from the dynamic model,
because their influence is very limited; by removing them from vector χ and the corre-
sponding column from matrix W, the TLS analysis can be re-performed with possibly210

higher-accuracy results;

• in case the parameter χi is not near zero, it means that something went wrong during
experiments, or the parameters to be estimated are not the base ones: in the former
case, the possible causes are, for examples, inadequate measurement systems, estima-
tion procedures, or excitation trajectories, and experiments should be re-performed,215

whereas the latter case requires the dynamic model to be reduced so that it explicitly
depends on base parameters only [26].

4. Optimal Free-Motion Excitation

The identification procedure requires the robot EE to perform a trajectory, so that EE co-
ordinates can be sampled and the regressor matrix W computed. The problem of generating220

optimal exciting motion was extensively studied in the literature [47]. Optimal exciting trajec-
tories commonly aim at determining robot actuator motion laws by the constrained non-linear
optimization of some cost function correlated with the identification problem [48]. Thus, ex-
periment design focuses on two aspects: how to excite the system, and what to optimize.

Actuator motion laws may be parametric polynomials [47], B-splines [49], sinusoidal [50]225

or other functions, so that the parameters upon which they depend can be determined as the
solution of the optimal excitation problem. Depending on the manipulator under study, the
choice of a type of trajectory may have specific advantages. For example, if the joints of a
serial manipulator are excited by sinusoidal motion laws, small control errors on joint angles
may introduce noise in joint speed and acceleration. Since the nominal trajectory is periodic230

and band-limited, it is quite easy to design a post-processing filter aiming at removing unde-
sired noise from speed and acceleration signals, which are needed for identification [50]. In
our case, we chose to apply the exciting motion not to actuators, but to free-coordinates: the
optimal identification results reported in [31] demonstrated this approach to be both feasible
and effective for systems similar to UACDPRs. This motion is naturally sinusoidal if the oscilla-235

tion amplitude is limited. Indeed, [3] analyzed small-amplitude free motions of the EE about
equilibrium configurations, and experimentally verified that its sinusoidal approximation is
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true in practice. Thus, the EE small-amplitude free motion has the same benefits as actua-
tor sinusoidal excitation, i.e. ease of filtering, and can beneficially be chosen as an exciting
trajectory.240

In the following, EE small-amplitude free motion is characterized in more detail, in order
to determine which excitation parameters need to be optimized. If the expression of the free
twist v and its derivative v̇ given in Eqs. (6) and (7) are substituted in Eq. (10), the free-motion
internal dynamics can be written as [3]:

M⊥ζ̈ f +C⊥ζ̇ f −φ⊥ = 0λ×1 (35)

where:
M⊥ ∆=Ξ⊥T

MΞ⊥, C⊥ ∆=Ξ⊥T
(
MΞ̇⊥+CΞ⊥

)
, φ⊥ ∆=Ξ⊥T

φ (36)

Equation (35) can be linearized about an equilibrium value of ζ f , namely ζ f 0, that depends
on the value of the constant cable lengths l0, resulting in:

M⊥
0 ∆ζ̈ f 0 +K⊥

0 ∆ζ f 0 = 0λ×1 (37)

where∆ζ̈ f 0
∆= ζ̈ f −0λ×1 and∆ζ f 0

∆= ζ f −ζ f 0. M⊥
0 is given in Eq. (36) and calculated in the equi-

librium configuration, whereas K⊥
0 is known as the Free-Motion Stiffness, and its formulation

can be found in [3].
By considering a solution of Eq. (37) in the form:

∆ζ f 0(t ) =
λ∑

j=1
∆ζ f 0, j (t ) (38)

∆ζ f 0, j (t ) = A jγ j cos(2π f j t −ϕ j ) (39)

we may conclude that the free-motion excitation is influenced, for each mode of oscillation
j = 1, . . . ,λ, by oscillation amplitude A j , eigenvector γ j , frequency f j and phase ϕ j . On the245

other hand, these parameters cannot be physically selected during an experiment, since they
depend on other physical quantities, which are to be optimized on their behalf. More specifi-
cally, these parameters depend on:

• UACDPR cable lengths, whose fixed values allow for the determination of the equilib-
rium configuration, and thus for the computation of γ j and f j ;250

• initial displacement and velocity of the free coordinates, which are the initial conditions
of the free-motion internal dynamics, and allow A j and ϕ j to be computed.

The total number of parameters to be determined is thus n+2λ, that is, n cable lengths l0 and
2λ free-motion initial conditions∆ζ f 0(0) and∆ζ̇ f 0(0). In order to simplify the experiment de-

sign,∆ζ̇ f 0(0) can be chosen to be the zero vector3, which means to assign a zero initial velocity255

to the EE free-motion. Accordingly, the EE should be displaced w.r.t. its equilibrium configu-
ration, kept still to make its velocity vanish, and then left to oscillate. It should be noted that
the oscillation about a single equilibrium configuration is unlikely to result in a satisfactory

3This implies ϕ j = 0, for every j .
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identification, since the resulting identification matrix would be biased: therefore, a better
option is to let EE oscillate about ne different equilibria, so that the optimal excitation algo-260

rithm should determine l0,k and ∆ζ f 0,k (0) (k = 1, . . . ,ne ), for a total of ne (n +λ) parameters.
Note that, in case an equal number of samples per equilibria ne

s is chosen, the total number
of samples per identification would be n′

s = ne
s ne .

The cost function to be minimized in order to determine optimal excitation parameters is
always correlated to two main factors:265

• the elements of the covariance matrix in Eq. (32) should be small: the smaller its ele-
ments, the higher the accuracy of the identification [51];

• the numerical solution of the identification problem, that is, the SVD decomposition
of W, should be stable: slight changes in the excitation trajectory should not negatively
affect the identification-problem solution [52].270

Practically, both of these issues are tackled by minimizing:

C = s1

s9
+ 1

s9
= s1 +1

s9
(40)

Since s1 and s9 are the largest and the smallest non-zero singular value of Ŵ, minimizing
s1/s9 amounts to requiring that the condition number of Ŵ is minimum4. Since the afore-
mentioned ratio could be minimum for small or large singular values alike, the additional
minimization of 1/s9 amounts to requiring the singular values to be as large as possible. In

fact, the magnitude of the elements of matrix
(
Ŵ

T
2:10Ŵ2:10

)−1
depends on the inverse of the

singular values [52]. Thus, we propose the non-linear optimization problem:[
l0,1, . . . , l0,ne ,∆ζ f 0,1(0), . . . ,∆ζ f 0,ne

(0)
]= argmin(C ) (41)

subject to: 
τi (t ) ≤ τM , ∀i , t

τi (t ) ≥ τm , ∀i , t

−∆ζ f L ≤∆ζ f 0(t ) ≤∆ζ f L , ∀t

(42)

where τi is the i-th cable tension, τm and τM are minimum and maximum cable tension lim-
its, and ∆ζ f L is an upper limit for the oscillation of the free coordinates. These constraints
essentially require the trajectory to be (dynamically) wrench-feasible and oscillations to have
a limited amplitude. The theoretical absolute minimum value of the cost function is 1: this
information is useful because it allows us to determine how close a real experiment is to theo-275

retical optimality. In practice, a value of C < 100 is typically considered good, whereas C < 10
is optimal [47, 54].

5. Experimentation

In this Section, the optimal free-motion excitations of a 4-cable UACDPR are computed
according to the results of Section 4, and its inertial parameters are determined according280

4Note that the minimum value of the condition number is 1[53]
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(a) Swivel pulley local view (b) UACDPR Prototype

Figure 2: CDPR geometric model

Table 1: Actuators’ properties

i 1 2 3 4

di [m]


0.219

−1.316

0.527




2.295

−1.158

0.521




2.153

0.973

0.560




0.0532

0.796

0.532


ri [m] 0.025 0.025 0.025 0.025

P a′
i [m]


−0.144

−0.219

0.264




0.115

−0.233

0.270




0.142

0.220

0.266



−0.120

0.236

0.266


xi j −i −j i

yi −k −k -k -k

zi −i −j i j

to FIDIM , as proposed in Section 3. The geometrical properties of the prototype used for
experimentations (Fig. 2b) are summarized in Table 1, where i = [1;0;0]T , j = [0;1;0]T , and
k = [0;0;1]T . The coordinates of a′

i are constant in the EE frame, and denoted as P a′
i . Since

the prototype is equipped with swivel pulleys, their kinematic model parameters (see Fig. 2a)
are also reported in table 1: ri is the pulley radius, di is the position of Di , zi is the direction285

of the swivel axis, xi and yi are fixed unit vectors perpendicular to zi .

5.1. Optimal Excitation Computation

The x and y coordinates of the EE reference point were chosen as UACDPR free coordi-
nates. This choice aims at minimizing experimental effort, thus cost and complexity: these
coordinates are straightforwardly recorded by an external measurement system, if a marker is
placed on the reference point. Orientation measurements would require additional mark-
ers mounted on the platform and a mathematical model aiming at extracting orientation
information from the relative position of points. Tension and oscillation limits were set to
τm = 20N, τM = 200N and ∆ζ f L = [0.1,0.1]T m. The trajectory optimization problem in Eq.
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Table 2: Optimized cable lengths (in [m])

k 1 2 3 4 5 6 7 8 9 10 11 12

l1 1.66 1.32 1.30 1.52 1.11 1.38 1.19 1.16 1.46 1.43 1.35 1.52

l2 1.86 1.58 1.26 1.26 1.68 1.39 1.15 1.17 1.16 1.37 1.45 1.12

l3 1.68 1.99 1.57 1.27 2.19 1.36 1.65 1.63 1.24 1.27 1.42 1.17

l4 1.41 1.76 1.56 1.50 1.72 1.32 1.65 1.59 1.50 1.30 1.28 1.54

Table 3: Optimized free coordinate displacements ∆ζ f 0(0) (in [mm])

k 1 2 3 4 5 6 7 8 9 10 11 12

x 5.01 4.34 39.3 76.0 4.22 25.3 1.97 24.9 43.8 47.0 2.37 96.9

y 2.21 7.11 17.6 14.4 7.95 16.6 10.9 9.70 17.4 1.51 11.7 99.7

(41) was solved considering nominal dynamic parameters estimated by CAD:

P s′ =
 0

0
0.19

 m, ˘P I′P =



0.051
0.069
0.037

0
0
0

 Kg ·m2 (43)

Since Eq.(41) is nonlinear and its gradient is not readily available, it was numerically solved
by using fmincon MATLAB function, which employs an interior-point algorithm [39] and nu-
merically estimates cost function gradient. Additionally, a multistart algorithm was employed290

in order to automatically provide 100 randomly selected initial guesses for l0,k and ∆ζ f 0,k (0),
with k = 1, . . . ,ne . Note that the numerical solution of the optimization problem requires also
to chose the number of equilibrium configuration, ne , and the number of samples per equi-
librium, ne

s . They were tuned to ne = 12 and ne
s = 100 for optimal results, as discussed below.

The cost function was optimized5 to C = 5.94, resulting in cable lengths as in Tab. 2 and295

free-coordinate displacements as in Tab. 3. This result is very good w.r.t. identification best
practices [47, 54], thus different, and possibly more efficient, optimization techniques were
not explored.

It should be noted that the multistart algorithm provided a large number of local min-
ima with a cost function value C < 10 (the multistart optimization was run several times for300

robustness, with negligible variations in results), showing that:

• optimization results are very limitedly influenced by the choice of equilibria upon which
the EE oscillates: every time the optimization was solved, different optimal values for
cable lengths and initial free coordinate displacements were found, most of which re-
sulted in a cost function value C < 10;305

5Average computation time for each optimization performed by the multistart algorithm is 36s, on a personal
computer with an Intel I7 8th generation processor, and 16Gb of RAM.
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• the different equilibrium configurations about which the platform oscillates are ran-
domly positioned in the robot wrench-feasible reachable workspace: this fact is proba-
bly related to a low bias typically induced by randomness;

• minimal values of C are found for large free-coordinate oscillations: their maximum
values are such that cable tension values meet their limits for some t .310

Therefore, randomly selecting UACDPR equilibrium configurations and letting the platform
oscillate without cables losing tension might provide optimal identification results, since the
values of parameters resulting in a cost function C < 10 are equally optimal in practice. It
should be noted that this conclusion is true for the robot considered in this paper, but it may
not be so in other cases, mainly if special geometrical and/or inertial parameters are used.315

On the other hand, the number of different equilibria ne upon which the EE should oscil-
late, and the number of samples per equilibria ne

s , appear to have a far larger influence on the
cost-function minimal value. Simulations showed that a number of equilibria between 8 and
16, and a number of samples per equilibria ne

s between 50 and 150, performed satisfactorily,
resulting in C < 50. ne = 12 and ne

s = 100 were thus chosen because they provided C < 10 most320

of the times. It is worth observing that, depending on the measurement system employed to
estimate the EE free coordinates ζ f , the estimation-model sensitivity to measurement errors
could impact the cost-function minimal value, as well as identification overall results.

5.2. Identification results

Based on the results of optimal free-motion excitation, experimental analysis was con-325

ducted on randomly selected configurations. In order to acquire the data necessary for iden-
tification purpose:

• the platform was brought to 12 random locations, different from the ones determined in
Sec. 5.1 (and reported in Tab. 3), inside the robot wrench-feasible reachable workspace;

• the cables were commanded to hold their lengths (i.e. the motors were commanded330

to hold their angular position); encoder angular positions were recorded so as to deter-
mine the experimental value of the cable lengths l?0 ;

• cable tensions were checked to be positive, based on motor current readings;

• the platform was manually slightly displaced from the equilibria by an operator, by
holding the platform by hand;335

• operator hands were moved away from the platform, so that the latter could freely os-
cillate.

An automatic excitation strategy will be sought in the future, since this manual excitation
procedure is far from being practical or ideal, but it is sufficient for the demonstration of the
proposed identification technique.340

The position of the optical marker placed onto the EE reference point was tracked by 8
cameras of a VICON Motion Capture System6 (measurement accuracy was ±0.2 mm for each

6As an alternative to optical measurements, if the robot design allows it, EE free coordinates may be estimated by
means of cable angle measurements and direct kinematics, as proposed in [55], and applied in [31], or by means of
Inertial Measurement Units [29].
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marker’s Cartesian component, at a 100 Hz sampling rate) for a total duration of 10 s for each
experiment, thus acquiring 1001 samples per marker coordinate7. The initial values of marker
positions before oscillations were regarded as the equilibrium position of the EE.345

These recorded coordinates were then filtered by using a zero-phase finite-impulse re-
sponse low-pass digital filter with a stop-band frequency of 10 Hz. Then, signals were nu-
merically differentiated in order to obtain the linear velocity and acceleration of the reference
point, and ultimately decimated in order to obtain 100 samples per experiment. The total
number of samples was thus n′

s = 1200.350

The x and y coordinates of the marker were selected as EE free coordinates ζ f . Accord-
ingly, the experimental value of the controlled coordinates ζ?c were determined, for all t , as
the numerical solution of the non-linear problem defined by:

l1(ζ?f ,ζc )− l?1,0 = 0
...

ln(ζ?f ,ζc )− l?n,0 = 0

(44)

where li (ζ f ,ζc ) is calculated as in Eq. (1), ζ?f contains the measured free coordinates, and l?i ,0
is the measured i-th cable length. Then, the EE twist and its time derivative were determined
as (cf. Eqs. (6) and (7)):

v =Ξ⊥
l ζ̇ f , v̇ = Ξ̇⊥

l ζ̇ f +Ξ⊥
l ζ̈ f (45)

Finally, by collecting all experiment data, the TLS solution of the identification problem in
Eq. (25), χ f r ee , was obtained as:

χ f r ee =
 1

P s′
˘P I′P

=



1
0.002

−0.0025
0.1984
0.0569
0.0627
0.0314
2e −4
−2e −4
1.6e −4


, σ%χ, f r ee =



0
4.32
3.09
0.15
0.64
0.31
1.76
80.5
99.4
136


, σW = 0.536, C = 8.36 (46)

Additional experiments were conducted by measuring the full EE pose during free motion,
by means of additional markers mounted onto the platform. Thus, the use of Eqs. (44) and
(45) was avoided, since pose data were complete, and the EE twist and its derivatives could
be obtained by numerically differentiating the pose. The TLS solution of the identification

7The recording of the optical marker position starts a while after the operator hands are moved away from the
platform, when the end-effector oscillates with small amplitude about its equilibrium configuration, so that cable
tensions also oscillates about their positive equilibrium value.
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problem in Eq. (25) corresponding to these data was obtained as:

χ f ul l =



1
0.0016
−0.0025

0.2
0.0563
0.0627
0.0322

4.8e −5
−2.5e −4
3.4e −4


, σ%χ, f ul l =



0
2.43
0.92
0.05
0.14
0.16
0.46
107
−22
23


, σW = 0.552, C = 10.26 (47)

Both experiments show cost function values very close to the absolute minimum, thus
both of them provide optimal results in practice. The relative deviations of practically non-
zero parameters, the essential inertial parameters, are well below the standard 10% threshold
for acceptability. The only parameters estimated with very high relative standard deviations
are the off-diagonal elements of the inertia matrix, which have indeed very low magnitude.355

These base parameters were then disregarded according to identification best practice, since
they are non-essential [46]. The identification problems were then modified by removing the
column of W corresponding to these parameters, but the value of previously well-identified
parameters, as well as their relative standard deviations, changed negligibly.

By comparing the essential parameters identified by experiments with partial and full360

pose measurements, the following can be noticed:

• first, the accuracy of the results did not practically change: the same parameters are
well identified with relative standard deviations far below 10%;

• second, the values of the essential parameters in χ f ul l and χ f r ee , namely χe
f ul l and

χe
f r ee

8, are comparable; if we compute the percentage relative error betweenχe
f ul l and

χe
f r ee as:

∆χe
i ,% = 100

∥∥∥∥∥χ
e
i , f ul l −χe

i , f r ee

χe
i , f r ee

∥∥∥∥∥% (48)

and we compare them with σe
%χ, f r ee :

σe
%χ, f r ee =



0
4.32
3.09
0.15
0.64
0.31
1.76


, ∆χe

% =



0
21.14
0.01
0.76
1.11
0.04
2.77


(49)

we can conclude that the two results are equivalent in practice, since the relative errors
between χe

f ul l and χe
f r ee are of the same order of magnitude of χe

f r ee standard devia-365

tions. The only parameter which is relatively different by comparison is the x coordinate

8Please note that essential parameters are the first 7 elements of both χ f ul l and χ f r ee
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Figure 3: Internal dynamics standard deviation in cross-validating experiments

of the center of mass. On the other hand, the absolute difference of these components
is 0.4mm, which is negligible in practice for an EE whose dimension is of the decimeter
order.

In order to assess whether identification results are generally valid, 22 cross-validation
free-motion experiments were conducted in random configurations (different from the ones
used for identification), and the EE full pose was measured. Model error ε = Wχ was calcu-
lated for each experiment, with matrix W computed according to the measured data and χ as
in Eq. (46), and internal dynamics standard deviation σ⊥ was calculated as:

σ⊥ =
√
εT ε

ncv
(50)

with ncv being the number of samples in the cross-validation experiments, ncv = 1001. The370

values of σ⊥ for the cross-validation experiments are reported in Fig. 3. The order of magni-
tude σ⊥ for each experiment is near σW in Eq. (46) (only one experiment has σ⊥ >σW ), thus
identification results are validated.

Based on the experimental and cross-validating results, we can ultimately conclude that
(i) the use of the free-motion internal-dynamics identification model is effective in determin-375

ing the EE base inertial parameters, and (ii) measuring the EE free coordinates and modelling
its free motion, instead of measuring the full EE pose, does not negatively affect identification
results, and thus it is a strong advantage of the proposed method.

6. Conclusions

This paper proposed a novel methodology for the identification of the inertial parameters380

of a UACDPR EE. This method, based on the use of internal-dynamics equations and free-
motion excitations, and thereby called Free-Motion Internal-Dynamics Identification Model
(FIDIM), was experimentally applied to a 4-cable UACDPR. Experimental results and cross
validations showed a remarkable accuracy of the proposed technique. This method has the
merit of avoiding the use of force/torque measurements, which are required by state-of-the-385

art methods and usually negatively impact the identification procedure because of sensor
noise. In addition, it was shown that any free-motion trajectory is optimal with respect to the
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identification problem, thus there is no need to pre-compute it during experiment design.
Lastly, it was shown that experimentation can be further simplified, by only measuring a sub-
set of the EE coordinates, the free ones, and modelling the EE free motion. These features390

both reduce identification equipment cost and simplify the identification procedure, while
preserving the accuracy of results.

In the future, we will consider different optimal excitation strategies that can be fully auto-
matic and do not require manual intervention: manual excitation of free-motion trajectories,
which is a limitation of the experimental validation of the proposed method, may not be eas-395

ily applied on real-world robots. Moreover, the external measuring device will be substituted
with a pose estimation strategy that employs low-cost proprioceptive sensors.
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