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Introduction

A cable-driven parallel robot (CDPR) is a parallel manipulator that employs cables, instead of rigid-link legs, to move an end-effector (EE). A CDPR equipped with a µ-DoF EE and n actuated cables, with n < µ, is generally underactuated 1 ., and only a subset of the EE coordinates can be controlled directly, with the remaining ones being determined by the system mechanical equilibrium. An underactuated CDPR (UACDPR in short) is always underconstrained, thus its EE preserves mobility even if its actuators are locked [START_REF] Idà | Rest-to-rest trajectory planning for underactuated cable-driven parallel robots[END_REF]. Accordingly, if the EE is not in a static configuration when cable lengths are not varying, it exhibits (possibly dangerous) oscillatory free motions in the Cartesian space [START_REF] Idà | Natural oscillations of underactuated cable-driven parallel robots[END_REF]. The Cartesian free motions of an underactuated parallel robot, which occur when actuators are locked, are conceptually analogous to the joint-space self motions of overactuated serial robots, which may occur when the EE is fixed [START_REF] Burdick | On the inverse kinematics of redundant manipulators: Characterization of the self-motion manifolds[END_REF].

UACDPR may be employed in a variety of applications, in which a simpler mechanical system and enhanced workspace accessibility justify limited robot mobility and controllability [START_REF] Fink | Planning and control for cooperative manipulation and transportation with aerial robots[END_REF][START_REF] Barbazza | Design and optimal control of an underactuated cable-driven micro-macro robot[END_REF][START_REF] Scalera | Design and experimental validation of a 3-dof underactuated pendulumlike robot[END_REF]. Thus, the study of UACDPRs is attracting the interest of more and more researchers, who have dealt with geometrico-static problems [START_REF] Abbasnejad | Direct geometrico-static problem of underconstrained cable-driven parallel robots with n cables[END_REF][START_REF] Berti | Solving the direct geometrico-static problem of underconstrained cabledriven parallel robots by interval analysis[END_REF], equilibrium stability analysis [START_REF] Carricato | Stability Analysis of Underconstrained Cable-Driven Parallel Robots[END_REF][START_REF] Surdilovic | Practical stability of under-constrained cable-suspended parallel robots[END_REF], trajectory planning [START_REF] Idà | Rest-to-rest trajectory planning for underactuated cable-driven parallel robots[END_REF][START_REF] Cunningham | The winch-bot: A cable-suspended, under-actuated robot utilizing parametric self-excitation[END_REF][START_REF] Zoso | Point-to-point motion planning of a parallel 3-dof underactuated cable-suspended robot[END_REF][START_REF] Park | Anti-sway trajectory generation of incompletely restrained wire-suspended system[END_REF][START_REF] Lefrançois | Point-to-point motion control of a pendulum-like 3-dof underactuated cable-driven robot[END_REF][START_REF] Hwang | Trajectory generation to suppress oscillations in underconstrained cable-driven parallel robots[END_REF][START_REF] Hwang | Oscillation reduction and frequency analysis of under-constrained cable-driven parallel robot with three cables[END_REF][START_REF] Idà | Robust trajectory planning of under-actuated cable-driven parallel robot with 3 cables[END_REF], system-parameter identification [START_REF] Idà | Natural oscillations of underactuated cable-driven parallel robots[END_REF][START_REF] Idá | Automatic self-calibration of suspended under-actuated cable-driven parallel robot using incremental measurements[END_REF], performance evaluation [START_REF] Idà | A new performance index for underactuated cable-driven parallel robots[END_REF], and control [START_REF] De Rijk | Out-of-plane vibration control of a planar cable-driven parallel robot[END_REF][START_REF] Zarei | Oscillation damping of nonlinear control systems based on the phase trajectory length concept: An experimental case study on a cable-driven parallel robot[END_REF][START_REF] Jafari Harandi | Point-to-point motion control of an underactuated planar cable driven robot[END_REF][START_REF] Jamshidifar | A reaction-based stabilizer for nonmodel-based vibration control of cable-driven parallel robots[END_REF].

In order to limit EE oscillations during motion, feedforward [START_REF] Idà | Rest-to-rest trajectory planning for underactuated cable-driven parallel robots[END_REF][START_REF] Hwang | Oscillation reduction and frequency analysis of under-constrained cable-driven parallel robot with three cables[END_REF][START_REF] Idà | Robust trajectory planning of under-actuated cable-driven parallel robot with 3 cables[END_REF] controllers based on EE dynamics can be employed: in this case, the system inertial parameters must be known.

They may be estimated by means of CAD tools or, if high accuracy is needed in their evaluation, they must be identified. Classical inertial-parameter identification models aim at determining the mass of the moving links, the position of their centers of mass, and their inertia matrices with respect to (w.r.t. in short) to some body-fixed frames. In addition, the actuators inertia, friction coefficients, and their drive current gains can also be determined [START_REF] Briot | Global identification of joint drive gains and dynamic parameters of parallel robots[END_REF]. The need of a precise identification of the EE inertial parameters in an UACDPR is especially justified if a feed-forward control scheme, with cable length as a system input, is used. In fact, the computation of actuator position set-points relies on the evaluation of the robot non-controllable freedoms while following a prescribed trajectory of the controlled ones [START_REF] Idà | Rest-to-rest trajectory planning for underactuated cable-driven parallel robots[END_REF][START_REF] Zoso | Point-to-point motion planning of a parallel 3-dof underactuated cable-suspended robot[END_REF][START_REF] Hwang | Oscillation reduction and frequency analysis of under-constrained cable-driven parallel robot with three cables[END_REF][START_REF] Idà | Robust trajectory planning of under-actuated cable-driven parallel robot with 3 cables[END_REF]: the non-controllable freedoms are found by numerically integrating the EE internal dynamics, which is influenced by the inertial parameters of the EE, which are thus the EE base parameters [START_REF] Gautier | Numerical calculation of the base inertial parameters of robots[END_REF].

In the field of cable-driven robots, standard [START_REF] Chellal | An identification methodology for 6-dof cable-driven parallel robots parameters application to the INCA 6D robot[END_REF][START_REF] Chellal | Model identification and vision-based h∞ position control of 6-dof cabledriven parallel robots[END_REF] or simplified [START_REF] Tempel | Estimating inertial parameters of suspended cabledriven parallel robots -use case on CoGiRo[END_REF] identification methodologies were applied to redundantly-actuated CDPRs or single winches [START_REF] Kraus | System identification and cable force control for a cable-driven parallel robot with industrial servo drives[END_REF]. The authors of [START_REF] Chellal | An identification methodology for 6-dof cable-driven parallel robots parameters application to the INCA 6D robot[END_REF][START_REF] Chellal | Model identification and vision-based h∞ position control of 6-dof cabledriven parallel robots[END_REF] employed an Output-Error Identification Method, based on the direct dynamic model, for the identification of both actuator and EE inertial parameters of an over-constrained CDPR. The proposed method results in an overdetermined system of nonlinear equations, which require actuator positions, actuator torques, and the EE pose to be experimentally measured or estimated. The EE inertial parameters of an over-constrained CDPR were identified in [START_REF] Tempel | Estimating inertial parameters of suspended cabledriven parallel robots -use case on CoGiRo[END_REF] according to a two-step cascaded Inverse-Dynamics Identification Model, where the inertia matrix is found after the EE mass and center-of-mass position are identified first. The identification model proposed in [START_REF] Tempel | Estimating inertial parameters of suspended cabledriven parallel robots -use case on CoGiRo[END_REF] is linear, thus computationally simpler than the outputerror method, but it requires additional inputs, such as the EE angular velocity and acceleration, and the EE linear acceleration, obtained by means of an inertial measurement unit; moreover, since actuator dynamics is not taken into consideration, cable tensions are directly measured by force sensors. A drawback is that, due to the cascaded nature of the identification model, errors in the identification of the first group of parameters cumulate with those of the second group. In [START_REF] Kraus | System identification and cable force control for a cable-driven parallel robot with industrial servo drives[END_REF] the authors focused on the identification of winch parameters (in the frequency domain), whose dynamics was modelled as a discrete-time second-order spring-mass-damper: the identification was carried out by measuring motor positions and cable forces.

A few studies also exist on identification of EE parameters in robotic systems which are practically coincident to UACDPRs [START_REF] Gobbi | A method for measuring the inertia properties of rigid bodies[END_REF][START_REF] Tang | An improved pendulum method for the determination of the center of gravity and inertia tensor for irregular-shaped bodies[END_REF][START_REF] Previati | Measurement of the mass properties of rigid bodies by means of multi-filar pendulums -influence of test rig flexibility[END_REF][START_REF] Previati | Large oscillations of the trifilar pendulum: Analytical and experimental study[END_REF], even though their target application is inertialparameter measurement per-se. The authors of [START_REF] Gobbi | A method for measuring the inertia properties of rigid bodies[END_REF][START_REF] Tang | An improved pendulum method for the determination of the center of gravity and inertia tensor for irregular-shaped bodies[END_REF][START_REF] Previati | Measurement of the mass properties of rigid bodies by means of multi-filar pendulums -influence of test rig flexibility[END_REF][START_REF] Previati | Large oscillations of the trifilar pendulum: Analytical and experimental study[END_REF] developed and studied an instrumentation for the precise measurement of inertial parameters of a suspended body; the instrumentation employs 3 or 4 fixed-length cables, attached to the fixed frame and the mobile platform by universal joints. Thanks to this set-up, encoders on the universal joints connecting the cables to the frame allow the measurement of the cable angular position and ultimately the estimation of the EE pose. Additionally, an axial force sensor, embedded between each universal joint and each cable, measures the cable tension, which is required by the adopted identification method. One of the most notable innovations of [START_REF] Gobbi | A method for measuring the inertia properties of rigid bodies[END_REF][START_REF] Tang | An improved pendulum method for the determination of the center of gravity and inertia tensor for irregular-shaped bodies[END_REF][START_REF] Previati | Measurement of the mass properties of rigid bodies by means of multi-filar pendulums -influence of test rig flexibility[END_REF][START_REF] Previati | Large oscillations of the trifilar pendulum: Analytical and experimental study[END_REF] is the use of the EE free motion as excitation trajectory for identification: this makes the instrumentation simpler (cables do not need to be actuated), and avoids the computation of (possibly) complicated exciting trajectories, which are required by standard techniques [START_REF] Chellal | Model identification and vision-based h∞ position control of 6-dof cabledriven parallel robots[END_REF][START_REF] Tempel | Estimating inertial parameters of suspended cabledriven parallel robots -use case on CoGiRo[END_REF].

As detailed above, most of the strategies proposed in the literature to identify robot inertial parameters present common theoretical aspects, such as [START_REF] Khalil | Modeling, identification and control of robots[END_REF]:

• a dynamic model that is linear in the inertial parameters is formulated, so that parameters can be algebraically isolated;

• an over-determined linear system of equations is obtained, by applying the dynamic model to a sufficient number of configurations along some trajectory of the robot;

• inertial parameters are determined by using linear regression techniques.

On the practical side, additional considerations often lead to identification best practices:

• identifiability of inertial parameters can be investigated, so that non-identifiable or non-essential ones are eliminated from the dynamic model [START_REF] Khalil | Modeling, identification and control of robots[END_REF]; in fact, when a parameter is intrinsically not identifiable or non-essential, it has a minimal influence on the dynamic model: by eliminating it, identifiable parameters are estimated with higher precision and the dynamic model is simplified;

• robot trajectories for identification should be optimal with respect to some identifiability criterion, in order to increase the accuracy of the regression analysis;

• after parameters are identified, statistical-error-analysis tools should be employed to draw conclusions on the experimental results: in case statistical errors are large, experiments should be disregarded and re-performed.

This paper proposes a novel methodology for the identification of UACDPR EE inertial parameters. The main contributions are the following.

1. The method takes advantage of the internal dynamics and free-motion kinematics (that is, a zero dynamics [START_REF] Byrnes | Local stabilization of minimum-phase nonlinear systems[END_REF][START_REF] Luca | Zero dynamics in robotic systems[END_REF]) of the underactuated EE; in this way, contrary to state-ofthe-art identification procedures for CDPRs [START_REF] Chellal | Model identification and vision-based h∞ position control of 6-dof cabledriven parallel robots[END_REF][START_REF] Tempel | Estimating inertial parameters of suspended cabledriven parallel robots -use case on CoGiRo[END_REF][START_REF] Gobbi | A method for measuring the inertia properties of rigid bodies[END_REF], force or torque measurements are avoided, and only a subset of the EE coordinates needs to be measured or estimated. This feature is particularly beneficial for two reasons, since it avoids (i) the integration of expensive sensing equipment, and (ii) the use of their (usually) noisy data for identification. Pulley and actuator friction parameters, as well as actuator inertia, are not estimated and would require methods similar to [START_REF] Chellal | Model identification and vision-based h∞ position control of 6-dof cabledriven parallel robots[END_REF][START_REF] Tempel | Estimating inertial parameters of suspended cabledriven parallel robots -use case on CoGiRo[END_REF], but EE inertial parameters are sufficient for most feedforward control techniques used for UACDPR [START_REF] Idà | Rest-to-rest trajectory planning for underactuated cable-driven parallel robots[END_REF][START_REF] Zoso | Point-to-point motion planning of a parallel 3-dof underactuated cable-suspended robot[END_REF][START_REF] Hwang | Oscillation reduction and frequency analysis of under-constrained cable-driven parallel robot with three cables[END_REF][START_REF] Idà | Robust trajectory planning of under-actuated cable-driven parallel robot with 3 cables[END_REF].

2. The application of the internal-dynamics equations along a free-motion trajectory provides an over-determined system of linear equations, the Free-Motion Internal-Dynamics Identification Model (FIDIM), which is solved according to the Total-Least-Square (TLS) method [START_REF] Van Huffel | The total least squares problem: computational aspects and analysis[END_REF]. The TLS method provides an optimal solution by minimizing both modelling and measurements errors, compared to Least-Square or Output-Error methods, which only minimize modelling errors [START_REF] Nocedal | Numerical optimization[END_REF].

3. Optimal free-motion trajectories are investigated, and extensive simulations show that randomly exciting EE oscillations about different equilibria may be sufficient for obtaining optimal identification results. This means that there is possibly no need to calculate complex optimal excitations.

The rest of the paper is structured as follows. Section 2 presents UACDPRs models, with a focus on internal dynamics and free-motion kinematics. Section 3 establishes the novel FIDIM, and introduces its solution technique: the Total-Least-Square method. An optimal free-motion excitation strategy is introduced in Sec. 4, and applied in Sec. 5, where identification experiments, and their results, are discussed. Conclusion and outlook are finally reported in Sec. 6.

UACDPR Modelling

This Section briefly presents the kinematic and dynamic models of an UACDPR. The content is drawn from [START_REF] Idà | Rest-to-rest trajectory planning for underactuated cable-driven parallel robots[END_REF][START_REF] Idà | Natural oscillations of underactuated cable-driven parallel robots[END_REF], and it is succinctly reported here only to introduce the nomenclature and the equations that are necessary for the subsequent development. An UACDPR consists of a mobile platform coupled to the base by n cables, with n < µ, and µ = 6 in SE (3). Cables can be coiled and uncoiled by motorized winches. Ox y z is an inertial frame, whereas P x y z is a mobile frame attached to the EE, whose pose is described by the position vector p of P , and a rotation matrix R, parametrized by a minimal set of orientation parameters , namely R = R( ). EE generalized coordinates are denoted by ζ = p T T T .

UACDPR geometry

Each cable is guided into the workspace by a swivel pulley, mounted on an hinged support. Each cable enters the pulley in point D i , that lies on the swivel axis, tangentially exits the pulley in point B i , and is attached to the EE in point A i . a i and a i are the position vectors of A i w.r.t. O and P , respectively. b i denotes the position of B i w.r.t. O and, if pulley kinematics is accounted for, depends on the EE pose [START_REF] Idà | Rest-to-rest trajectory planning for underactuated cable-driven parallel robots[END_REF] (Fig. 1). If cables are assumed to be massless and inextensible 2 , the constraint imposed by each cable onto the EE is:

ρ T i ρ i -l i -B i D i 2 = 0 (1) 
where ρ i ∆ = a i -b i , and l i is the total cable length, comprising the rectilinear part ρ i and the arc B i D i wrapped onto the pulley. 

UACDPR free-motion kinematics

If ω is the angular velocity of the EE, the EE twist is v = [ ṗT ω T ] T and its linear relationship with ζ is given by:

v = D( ) ζ, D( ) ∆ = I 3×3 0 3×3 0 3×3 H( ) (2) 
where I 3×3 ∈ R 3×3 and 0 3×3 ∈ R 3×3 are identity and null matrices, and H( ) depends on the parametrization used to describe the orientation [START_REF] Idà | Rest-to-rest trajectory planning for underactuated cable-driven parallel robots[END_REF]. The rate of change of l i , li , can be computed as [START_REF] Idà | Natural oscillations of underactuated cable-driven parallel robots[END_REF]:

Ξv = l, Ξ ∆ = [ξ 1 • • • ξ n ] T , l ∆ = [ l1 • • • ln ] T (3) 
where matrix Ξ ∈ R n×6 is the kinematic Jacobian of the manipulator, l is the array stacking the time derivatives of the total cable lengths, and ξ i is a zero-pitch screw directed as the cabledirection unit vector t i (see Fig. 1), and passing through A i :

ξ i = t i a i × t i (4)
Generally rank (Ξ) = n, but it decreases in a direct-kinematics singularity [START_REF] Conconi | A new assessment of singularities of parallel kinematic chains[END_REF].
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If the lengths of the n cables are not varying in time, all kinematic constraints are active (that is, cables are taut), and Ξ has full column rank, the EE can still move on a variety of dimension λ = 6n in SE(3), thus preserving λ DoFs. Consequently, λ components of ζ are free to vary, and are called free pose components ζ f . The remaining n components of ζ are called dependent pose components ζ d , since they depend on the value of the fixed cable lengths l 0 and free pose components ζ f . In turn, this also means that the fixed cable lengths l 0 are geometrical constant parameters when analyzing free-motion, and only need to be estimated once.

When actuators are locked, the EE motion is called free motion, and the EE kinematics can be described by setting l = 0 n×1 in (3):

It was shown in [START_REF] Idà | Natural oscillations of underactuated cable-driven parallel robots[END_REF] that the free twist v, namely the expression of v that satisfies Eq. ( 5), can be expressed as a function of the EE λ residual DoFs as:

v = Ξ ⊥ ζf (6)
where Ξ ⊥ is a specific expression of the right nullspace of matrix Ξ: its derivation can be found in [START_REF] Idà | Natural oscillations of underactuated cable-driven parallel robots[END_REF]. Consequently, the EE free-twist time derivative v can be obtained by differentiating Eq. ( 6) w.r.t. time:

v = Ξ ⊥ ζf + Ξ⊥ ζf (7) 
It should be noted that Ξ⊥ , as any first-order time derivative, is linearly dependent on ζf and can be symbolically computed by differentiating the analytical expression of Ξ ⊥ w.r.t. time.

UACDPR Internal Dynamics

The non-linear dynamic model of an UACDPR emerges from the EE mechanical equilibrium, subject to cable constraints, inertial actions, and external wrenches [START_REF] Idà | Rest-to-rest trajectory planning for underactuated cable-driven parallel robots[END_REF]:

Mv + Cv -φ = -Ξ T τ (8) M ∆ = mI 3×3 -ms ms I P , C ∆ = 0 3×3 -m ωs 0 3×3 ωI P , φ ∆ = m g s g (9) 
where m is the EE mass, I P is the EE inertia matrix about its reference point P expressed in the inertial frame, the symbol ∼ over a vector denotes its skew-symmetric representation, and τ ∈ R n is an array containing the cable-tension magnitudes. φ ∈ R 6 is the external wrench due to gravity (Fig. 1), s is the center of mass position w.r.t. P in the inertial frame, and g is the gravitational acceleration.

The EE internal dynamics, that is, the second-order nonholonomic constraint that the system variables must satisfy regardless of actuation and constraint actions [START_REF] Oriolo | Control of mechanical systems with second-order nonholonomic constraints: underactuated manipulators[END_REF], is obtained by pre-multiplying Eq. ( 8) by Ξ ⊥,T :

Ξ ⊥,T Mv + Cv -φ = 0 λ×1 (10)

Free Internal Dynamic Identification Model

In this Section, the linearity of UACDPR internal dynamics in the inertial parameters is outlined, and the FIDIM established. More specifically, it is shown that:

1. classical identification models may present difficulties in their application to CDPRs, because of the specific design of the actuators of this class of manipulators; 2. the internal dynamics of the EE can be used to derive a novel formulation of the identification problem, which is particularly suitable for UACDPRs;

3. the internal dynamics does not depend on the EE mass, but only on the EE center-ofmass location and its specific inertia tensor (that is, its inertia tensor divided by the EE mass), and it is linear in these parameters;

4. identification of the EE center-of-mass location and its specific inertia matrix can be performed without recurring to any force or torque measurement, since it only requires a direct measurement or estimation of λ EE coordinates, namely the free ones;

5. inertial parameters can be calculated as the TLS solution of an over-determined system 155 of equations, obtained computing the internal dynamics over a sampled free-motion trajectory.

Computation of the identification model

Classical models for identification of EE inertial parameters aim at determining the EE mass, the EE center-of-mass position, and the EE inertia matrix components, which are the base parameters necessary to describe the EE dynamics [START_REF] Gautier | Numerical calculation of the base inertial parameters of robots[END_REF]. To do so, EE dynamic equations are first rearranged, so that a linear equation in the inertial parameters is formulated. To this end, Eq. ( 8) may be rewritten as:

m( p -g) -ms α -m ωs ω I P α + ωI P ω + ms ( p -g) = -Ξ T τ ( 11 
)
The left-hand side of Eq. ( 11) can be algebraically manipulated in order to isolate the EE dynamic parameters. First, the vector product rule a × b = -b × a is applied, so that:

m( p -g) + m ( α + ω ω) s I P α + ωI P ω -m( p -g)s = -Ξ T τ (12)
Then, we consider that s ∆ = R P s , and I P ∆ = R P I P R T , where P s and P I P are the (constant) center-of-mass coordinates and inertia tensor w.r.t. P expressed in the moving frame:

m( p -g) + m ( α + ω ω) R P s R P I P R T α + ωR P I P R T ω -m( p -g)R P s = -Ξ T τ ( 13 
)
If we consider the following identity in the product of a generic symmetric matrix S and a vector v : Sv = vS [START_REF] Park | Anti-sway trajectory generation of incompletely restrained wire-suspended system[END_REF] where:

S ∆ =   S xx S x y S xz S x y S y y S y z S xz S y z S zz   v ∆ =   v x v y v z   (15) v ∆ =   v x 0 0 v y v z 0 0 v y 0 v x 0 v z 0 0 v z 0 v x v y   S ∆ = S xx S y y S zz S x y S xz S y z T ( 16 
)
Equation ( 13) can be rewritten as:

m( p -g) + m ( α + ω ω) R P s (R P α + ωR P ω) P I P -m( p -g)R P s = -Ξ T τ ( 17 
)
where P α = R T α and P ω = R T ω are the angular acceleration and velocity vectors expressed in the moving frame.

Finally, the EE dynamics can be expressed as a linear equation in the EE inertial parameters m, m P s , and P I P as:

W E E (ζ, ζ, ζ)χ E E = -Ξ T (ζ)τ (18) 
where:

W E E ∆ = ( p -g) ( α + ω ω) R 0 3×6 0 3×1 -( p -g)R (R P α + ωR P ω) , χ E E ∆ =   m m P s P I P   (19) 
with

W E E ∈ R 6×10 , and χ E E ∈ R 10×1 .
The application of Eq. ( 18) over a trajectory which is sampled in n s configurations leads to defining an over-determined system of 6n s equations in 10 unknowns, which can be solved for χ E E and analyzed with the tools of linear regression. To this end, the elements of W E E , Ξ, and τ need to be computed at all trajectory time instants. The EE motion can be measured, for example by means of an external photogrammetry system or a laser tracker, or estimated by means of direct kinematics or inertial measurement units. Cable tensions can be measured by means of force sensors embedded in the cable transmission [START_REF] Tempel | Estimating inertial parameters of suspended cabledriven parallel robots -use case on CoGiRo[END_REF], or estimated by modelling its actuation unit [START_REF] Chellal | Model identification and vision-based h∞ position control of 6-dof cabledriven parallel robots[END_REF]. It should be noted that, in general, the UACDPR EE pose and its derivatives cannot be inferred by means of direct kinematics only, and additional sensors must be employed if a pose measuring device is to be avoided. As an example, encoders on swivel axes could be employed [START_REF] Idá | Automatic self-calibration of suspended under-actuated cable-driven parallel robot using incremental measurements[END_REF], but their efficacy for pose reconstruction has not been tested in dynamical applications.

Even though identification through Eq. ( 18) is theoretically feasible, there are two main drawbacks in its use:

• force sensors need to be embedded in the cable transmission (either at the cable attachment points on the platform, or within the swivel-pulley system [START_REF] Pott | Cable-driven parallel robots: theory and application[END_REF]), which complicates the mechatronic design of the robot and increases its cost; in addition, force sensors may not be particularly accurate in predicting cable tensions, since their readings may be disturbed by several factors, the most important of which is friction in the cable transmission;

• common winch designs [START_REF] Pott | Cable-driven parallel robots: theory and application[END_REF][START_REF] Pham | Dynamic analysis of cable-driven parallel mechanisms[END_REF] include multiple rototranslating elements, which represent severe sources of friction: high friction is a serious problem for identification, because of its unpredictable nature; the transition between static and kinematic friction adds high-frequency effects to motor current signals, which needs to be carefully filtered before being used for estimating cable tensions.

Ultimately, directly measuring cable tensions, or estimating them via winch modeling, may lead to low cable-tension accuracy, which in turn would negatively impact the overall identification process. Thus, an alternative formulation of the identification model is here proposed, which aims at determining EE inertial parameters, without measuring or estimating cable tensions. We start by observing that if Eq. ( 18) is pre-multiplied by Ξ ⊥ T , the right-hand side of Eq. ( 18) vanishes:

Ξ ⊥ T W E E χ E E = 0 λ×1 ( 20 
)
Scalar identification relations in Eq. ( 20) are fewer than in Eq. ( 18), namely λ instead of n, so that the identification trajectory must be sampled in more points n s > n s , but no force or torque measurement is now needed: the computation of Ξ ⊥ and W E E in Eq. ( 20) only requires the EE pose to be measured, and its numerical differentiation. In addition, since the internal dynamics is linear in χ E E and homogeneous, its validity is not impacted by the multiplication or division by a non-zero scalar. Thus, we can deduce that the EE internal dynamics is not influenced by the EE mass, and we can divide Eq. ( 20) by m:

W E E χ E E = 0 λ×1 ( 21 
)
where:

W E E ∆ = Ξ ⊥ T W E E , χ E E ∆ =   1 P s P I P   , P I P ∆ = P I P /m (22) 
It should be noted that in case the EE mass needs to be identified, it can be inferred by detaching the EE and by weighting it. In case the detachment of the platform is not possible, an alternative solution can be adding a known payload of mass ∆m to the EE in a known location ( P p L is the position vector of the payload center of mass in the moving frame) and identify the new EE with the additional payload [START_REF] Gautier | Global Identification of Joint Drive Gains and Dynamic Parameters of Robots[END_REF]. If the total center of mass of the EE with the additional payload is denoted by P s L , the definition of center of mass gives:

(m + ∆m) P s L = m P s + ∆m P p L ( 23 
)
and the EE mass m can be determined from:

m( P s L -P s ) = ∆m( P p L -P s L ) (24) 
The knowledge of the standard deviations associated with the identified values of P s L and P s may provide a weighting strategy for the solution of the over-determined system of equations given in Eq. [START_REF] Jamshidifar | A reaction-based stabilizer for nonmodel-based vibration control of cable-driven parallel robots[END_REF]. Equation ( 21) is valid in general for UACDPRs, but it can be further specialized in order to simplify experimental identification. In fact, in case the EE exciting trajectory is a free-motion one, the expression of ζ and its derivatives, which are needed to compute the elements of W E E , depends only on the constant value of the cable lengths, l 0 , and on the λ free coordinates of the EE ζ f (and its derivatives).

Total-Least-Square Identification

Equation ( 21) is applied to n s configurations deriving from one or more free-motion trajectories, thus establishing the FIDIM. Usually, the n s samples are obtained by over-sampling the EE free coordinates at high frequency, then by band-pass filtering them, and finally by decimating them [START_REF] Gautier | Dynamic identification of robots with power model[END_REF]. This results in the over-determined system of equations:

Wχ = 0 λn s ×1 , W =     W E E ,1 . . . W E E ,n s     (25) 
where matrix W ∈ R λn s ×10 is called regressor or identification matrix and vector χ = χ E E ∈ R 10×1 comprise the EE base inertial parameters, that is, the minimal set of independent parameters necessary to describe the EE dynamics [START_REF] Gautier | Numerical calculation of the base inertial parameters of robots[END_REF]. Ideally, rank(W) = 9, and infinite solutions of Eq. ( 25) can be found. On the other hand, there are two primary sources of errors which are not considered in Eq. ( 25), so that in practice rank(W) = 10: measurement errors, and also model errors. The former errors, which depend on the measurement equipment and/or the estimation methodology used to compute ζ f , may be amplified due to the numerical differentiation needed to obtain ζf and ζf , and the strong dependence on kinematic parameters, since matrices Ξ ⊥ and Ξ⊥ are employed both for internal dynamics (c.f.

Eq. ( 22)) and the computation of the free twist and its derivative (c.f. Eqs. ( 6),( 7)). As a consequence, matrix W can be more realistically modelled as W + ∆W. Model errors are accounted for by considering that the right-hand side of Eq. ( 25) is not a zero vector, but an error vector

ε ∈ R λn s ×1 : (W + ∆W)χ = ε ( 26 
)
The TLS solution of Eq. ( 26) is therefore considered. This technique allows χ to be computed while minimizing both ∆W and ε [START_REF] Van Huffel | The total least squares problem: computational aspects and analysis[END_REF], as opposed to Least-Square and Output-Error methods, that would only minimize ε. According to the TLS technique, the real system (W + ∆W)χ = ε is changed to its closest compatible system of the form:

Ŵ χ = 0 λn s ×1 (27) 
where rank( Ŵ) = 9 < 10 = rank(W), and Ŵ is closest to W with respect to the Frobenius norm, i.e. Ŵ minimizes the Frobenius norm Ŵ -W F . Accordingly, χ is the solution of Eq. ( 27) and
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the TLS solution of Eq. ( 26). Ŵ can be straightforwardly computed by performing the Singular Value Decomposition (SVD) of W:

W = U S 0 (λn s -10)×10 V T ( 28 
)
where U and V are, respectively, (λn s × λn s ) and (10 × 10) orthonormal matrices, and S is the (10 × 10) diagonal matrices of W singular values (which we assume to be sorted in decreasing order). Then, Ŵ is calculated as [START_REF] Van Huffel | The total least squares problem: computational aspects and analysis[END_REF]:

Ŵ = W -s 10 U 10 V T 10 ( 29 
)
where s 10 is the smallest singular value of W, and U 10 and V T 10 are the 10-th columns of U and V T , respectively. Then, the TLS solution of Eq. ( 25) is given by:

χ = V 10 ( 30 
)
where χ is normalized so as to have 1 in its first element, according to the second definition in Eq. ( 22). Standard deviations σ χ i , with i = 2, . . . , 10, on the dynamic parameters are estimated assuming that errors in the identification matrix W are independent and identically distributed with zero mean and common covariance σ 2 W [START_REF] Khalil | Modeling, identification and control of robots[END_REF]. An unbiased estimator of the standard deviation σ W is given by [START_REF] Van Huffel | The total least squares problem: computational aspects and analysis[END_REF]:

σ W = s 10 λn s -10 (31) 
and the covariance matrix of the TLS solution error is approximated by:

C χ = σ 2 W 1 + χ 2:10 2 2
ŴT 2:10 Ŵ2:10

-1 (32) 
where χ 2:10 contains every element of χ except the first one, and Ŵ2:10 contains all columns of Ŵ except the first one. Finally, standard deviations on the inertial parameters are given by:

σ χ i = C χ (i , i ), i = 2, . . . , 10 (33) 
where C χ (i , i ) is the i-th diagonal term of C χ , and its relative value with respect to the identified parameter is:

σ %χ i = 100σ χ i / χ i ( 34 
)
If the value of σ %X i is lower than 10%, the corresponding parameter is commonly considered to be well-identified [START_REF] Pham | Essential parameters of robots[END_REF]. There are mainly 2 scenarios in which the values of σ %χ i may be large, which require different additional steps:

• in case the parameter χ i is near zero, σ %χ i may naturally be very large: this kind of parameters are called non-essentials [START_REF] Pham | Essential parameters of robots[END_REF] and can be removed from the dynamic model, because their influence is very limited; by removing them from vector χ and the corresponding column from matrix W, the TLS analysis can be re-performed with possibly higher-accuracy results;

• in case the parameter χ i is not near zero, it means that something went wrong during experiments, or the parameters to be estimated are not the base ones: in the former case, the possible causes are, for examples, inadequate measurement systems, estimation procedures, or excitation trajectories, and experiments should be re-performed, whereas the latter case requires the dynamic model to be reduced so that it explicitly depends on base parameters only [START_REF] Gautier | Numerical calculation of the base inertial parameters of robots[END_REF].

Optimal Free-Motion Excitation

The identification procedure requires the robot EE to perform a trajectory, so that EE coordinates can be sampled and the regressor matrix W computed. The problem of generating optimal exciting motion was extensively studied in the literature [START_REF] Gautier | Exciting trajectories for the identification of base inertial parameters of robots[END_REF]. Optimal exciting trajectories commonly aim at determining robot actuator motion laws by the constrained non-linear optimization of some cost function correlated with the identification problem [START_REF] Jin | Parameter identification for industrial robots with a fast and robust trajectory design approach[END_REF]. Thus, experiment design focuses on two aspects: how to excite the system, and what to optimize.

Actuator motion laws may be parametric polynomials [START_REF] Gautier | Exciting trajectories for the identification of base inertial parameters of robots[END_REF], B-splines [START_REF] Bonnet | Optimal exciting dance for identifying inertial parameters of an anthropomorphic structure[END_REF], sinusoidal [START_REF] Swevers | Dynamic model identification for industrial robots[END_REF] or other functions, so that the parameters upon which they depend can be determined as the solution of the optimal excitation problem. Depending on the manipulator under study, the choice of a type of trajectory may have specific advantages. For example, if the joints of a serial manipulator are excited by sinusoidal motion laws, small control errors on joint angles may introduce noise in joint speed and acceleration. Since the nominal trajectory is periodic and band-limited, it is quite easy to design a post-processing filter aiming at removing undesired noise from speed and acceleration signals, which are needed for identification [START_REF] Swevers | Dynamic model identification for industrial robots[END_REF]. In our case, we chose to apply the exciting motion not to actuators, but to free-coordinates: the optimal identification results reported in [START_REF] Gobbi | A method for measuring the inertia properties of rigid bodies[END_REF] demonstrated this approach to be both feasible and effective for systems similar to UACDPRs. This motion is naturally sinusoidal if the oscillation amplitude is limited. Indeed, [START_REF] Idà | Natural oscillations of underactuated cable-driven parallel robots[END_REF] analyzed small-amplitude free motions of the EE about equilibrium configurations, and experimentally verified that its sinusoidal approximation is true in practice. Thus, the EE small-amplitude free motion has the same benefits as actuator sinusoidal excitation, i.e. ease of filtering, and can beneficially be chosen as an exciting trajectory.

In the following, EE small-amplitude free motion is characterized in more detail, in order to determine which excitation parameters need to be optimized. If the expression of the free twist v and its derivative v given in Eqs. ( 6) and ( 7) are substituted in Eq. ( 10), the free-motion internal dynamics can be written as [START_REF] Idà | Natural oscillations of underactuated cable-driven parallel robots[END_REF]:

M ⊥ ζf + C ⊥ ζf -φ ⊥ = 0 λ×1 ( 35 
)
where:

M ⊥ ∆ = Ξ ⊥ T MΞ ⊥ , C ⊥ ∆ = Ξ ⊥ T M Ξ⊥ + CΞ ⊥ , φ ⊥ ∆ = Ξ ⊥ T φ (36)
Equation ( 35) can be linearized about an equilibrium value of ζ f , namely ζ f 0 , that depends on the value of the constant cable lengths l 0 , resulting in:

M ⊥ 0 ∆ ζf 0 + K ⊥ 0 ∆ζ f 0 = 0 λ×1 ( 37 
)
where 36) and calculated in the equilibrium configuration, whereas K ⊥ 0 is known as the Free-Motion Stiffness, and its formulation can be found in [START_REF] Idà | Natural oscillations of underactuated cable-driven parallel robots[END_REF].

∆ ζf 0 ∆ = ζf -0 λ×1 and ∆ζ f 0 ∆ = ζ f -ζ f 0 . M ⊥ 0 is given in Eq. (
By considering a solution of Eq. ( 37) in the form:

∆ζ f 0 (t ) = λ j =1 ∆ζ f 0, j (t ) ( 38 
)
∆ζ f 0, j (t ) = A j γ j cos (2π f j t -ϕ j ) ( 39 
)
we may conclude that the free-motion excitation is influenced, for each mode of oscillation j = 1, . . . , λ, by oscillation amplitude A j , eigenvector γ j , frequency f j and phase ϕ j . On the other hand, these parameters cannot be physically selected during an experiment, since they depend on other physical quantities, which are to be optimized on their behalf. More specifically, these parameters depend on:

• UACDPR cable lengths, whose fixed values allow for the determination of the equilibrium configuration, and thus for the computation of γ j and f j ;

• initial displacement and velocity of the free coordinates, which are the initial conditions of the free-motion internal dynamics, and allow A j and ϕ j to be computed.

The total number of parameters to be determined is thus n +2λ, that is, n cable lengths l 0 and 2λ free-motion initial conditions ∆ζ f 0 (0) and ∆ ζf 0 (0). In order to simplify the experiment design, ∆ ζf 0 (0) can be chosen to be the zero vector 3 , which means to assign a zero initial velocity to the EE free-motion. Accordingly, the EE should be displaced w.r.t. its equilibrium configuration, kept still to make its velocity vanish, and then left to oscillate. It should be noted that the oscillation about a single equilibrium configuration is unlikely to result in a satisfactory identification, since the resulting identification matrix would be biased: therefore, a better option is to let EE oscillate about n e different equilibria, so that the optimal excitation algorithm should determine l 0,k and ∆ζ f 0,k (0) (k = 1, . . . , n e ), for a total of n e (n + λ) parameters. Note that, in case an equal number of samples per equilibria n e s is chosen, the total number of samples per identification would be n s = n e s n e . The cost function to be minimized in order to determine optimal excitation parameters is always correlated to two main factors:

• the elements of the covariance matrix in Eq. ( 32) should be small: the smaller its elements, the higher the accuracy of the identification [START_REF] Gautier | Identification of inertial and drive gain parameters of robots[END_REF];

• the numerical solution of the identification problem, that is, the SVD decomposition of W, should be stable: slight changes in the excitation trajectory should not negatively affect the identification-problem solution [START_REF] Presse | New criteria of exciting trajectories for robot identification[END_REF].

Practically, both of these issues are tackled by minimizing:

C = s 1 s 9 + 1 
s 9 = s 1 + 1 s 9 ( 40 
)
Since s 1 and s 9 are the largest and the smallest non-zero singular value of Ŵ, minimizing s 1 /s 9 amounts to requiring that the condition number of Ŵ is minimum 4 . Since the aforementioned ratio could be minimum for small or large singular values alike, the additional minimization of 1/s 9 amounts to requiring the singular values to be as large as possible. In fact, the magnitude of the elements of matrix ŴT 2:10 Ŵ2:10

-1
depends on the inverse of the singular values [START_REF] Presse | New criteria of exciting trajectories for robot identification[END_REF]. Thus, we propose the non-linear optimization problem: l 0,1 , . . . , l 0,n e , ∆ζ f 0,1 (0), . . . , ∆ζ f 0,n e (0) = argmin (C ) [START_REF] Oriolo | Control of mechanical systems with second-order nonholonomic constraints: underactuated manipulators[END_REF] subject to:

     τ i (t ) ≤ τ M , ∀i , t τ i (t ) ≥ τ m , ∀i , t -∆ζ f L ≤ ∆ζ f 0 (t ) ≤ ∆ζ f L , ∀t (42) 
where τ i is the i-th cable tension, τ m and τ M are minimum and maximum cable tension limits, and ∆ζ f L is an upper limit for the oscillation of the free coordinates. These constraints essentially require the trajectory to be (dynamically) wrench-feasible and oscillations to have a limited amplitude. The theoretical absolute minimum value of the cost function is 1: this information is useful because it allows us to determine how close a real experiment is to theoretical optimality. In practice, a value of C < 100 is typically considered good, whereas C < 10 is optimal [START_REF] Gautier | Exciting trajectories for the identification of base inertial parameters of robots[END_REF][START_REF] Katsumata | Optimal exciting motion for fast robot identification. Application to contact painting tasks with estimated external forces[END_REF].

Experimentation

In this Section, the optimal free-motion excitations of a 4-cable UACDPR are computed according to the results of Section 4, and its inertial parameters are determined according 

    x i j -i -j i y i -k -k -k -k z i -i -j i j
to FIDIM, as proposed in Section 3. The geometrical properties of the prototype used for experimentations (Fig. 2b) are summarized in Table 1, where i = [1; 0; 0] T , j = [0; 1; 0] T , and k = [0; 0; 1] T . The coordinates of a i are constant in the EE frame, and denoted as P a i . Since the prototype is equipped with swivel pulleys, their kinematic model parameters (see Fig. 2a) are also reported in table 1: r i is the pulley radius, d i is the position of D i , z i is the direction 285 of the swivel axis, x i and y i are fixed unit vectors perpendicular to z i .

Optimal Excitation Computation

The x and y coordinates of the EE reference point were chosen as UACDPR free coordinates. This choice aims at minimizing experimental effort, thus cost and complexity: these coordinates are straightforwardly recorded by an external measurement system, if a marker is placed on the reference point. Orientation measurements would require additional markers mounted on the platform and a mathematical model aiming at extracting orientation information from the relative position of points. Tension and oscillation limits were set to τ m = 20N, τ M = 200N and ∆ζ f L = [0.1, 0.1] T m. The trajectory optimization problem in Eq. 

P s =   0 0 0.19   m, P I P =          0.051 0.069 0.037 0 0 0          Kg • m 2 (43) 
Since Eq.( 41) is nonlinear and its gradient is not readily available, it was numerically solved by using fmincon MATLAB function, which employs an interior-point algorithm [START_REF] Nocedal | Numerical optimization[END_REF] and numerically estimates cost function gradient. Additionally, a multistart algorithm was employed in order to automatically provide 100 randomly selected initial guesses for l 0,k and ∆ζ f 0,k (0), with k = 1, . . . , n e . Note that the numerical solution of the optimization problem requires also to chose the number of equilibrium configuration, n e , and the number of samples per equilibrium, n e s . They were tuned to n e = 12 and n e s = 100 for optimal results, as discussed below. The cost function was optimized 5 to C = 5.94, resulting in cable lengths as in Tab. 2 and free-coordinate displacements as in Tab. 3. This result is very good w.r.t. identification best practices [START_REF] Gautier | Exciting trajectories for the identification of base inertial parameters of robots[END_REF][START_REF] Katsumata | Optimal exciting motion for fast robot identification. Application to contact painting tasks with estimated external forces[END_REF], thus different, and possibly more efficient, optimization techniques were not explored.

It should be noted that the multistart algorithm provided a large number of local minima with a cost function value C < 10 (the multistart optimization was run several times for robustness, with negligible variations in results), showing that:

• optimization results are very limitedly influenced by the choice of equilibria upon which the EE oscillates: every time the optimization was solved, different optimal values for cable lengths and initial free coordinate displacements were found, most of which resulted in a cost function value C < 10;

• the different equilibrium configurations about which the platform oscillates are randomly positioned in the robot wrench-feasible reachable workspace: this fact is probably related to a low bias typically induced by randomness;

• minimal values of C are found for large free-coordinate oscillations: their maximum values are such that cable tension values meet their limits for some t .

Therefore, randomly selecting UACDPR equilibrium configurations and letting the platform oscillate without cables losing tension might provide optimal identification results, since the values of parameters resulting in a cost function C < 10 are equally optimal in practice. It should be noted that this conclusion is true for the robot considered in this paper, but it may not be so in other cases, mainly if special geometrical and/or inertial parameters are used.

On the other hand, the number of different equilibria n e upon which the EE should oscillate, and the number of samples per equilibria n e s , appear to have a far larger influence on the cost-function minimal value. Simulations showed that a number of equilibria between 8 and 16, and a number of samples per equilibria n e s between 50 and 150, performed satisfactorily, resulting in C < 50. n e = 12 and n e s = 100 were thus chosen because they provided C < 10 most of the times. It is worth observing that, depending on the measurement system employed to estimate the EE free coordinates ζ f , the estimation-model sensitivity to measurement errors could impact the cost-function minimal value, as well as identification overall results.

Identification results

Based on the results of optimal free-motion excitation, experimental analysis was conducted on randomly selected configurations. In order to acquire the data necessary for identification purpose:

• the platform was brought to 12 random locations, different from the ones determined in Sec. 5.1 (and reported in Tab. 3), inside the robot wrench-feasible reachable workspace;

• the cables were commanded to hold their lengths (i.e. the motors were commanded to hold their angular position); encoder angular positions were recorded so as to determine the experimental value of the cable lengths l 0 ;

• cable tensions were checked to be positive, based on motor current readings;

• the platform was manually slightly displaced from the equilibria by an operator, by holding the platform by hand;

• operator hands were moved away from the platform, so that the latter could freely oscillate.

An automatic excitation strategy will be sought in the future, since this manual excitation procedure is far from being practical or ideal, but it is sufficient for the demonstration of the proposed identification technique.

The position of the optical marker placed onto the EE reference point was tracked by 8 cameras of a VICON Motion Capture System 6 (measurement accuracy was ±0.2 mm for each marker's Cartesian component, at a 100 Hz sampling rate) for a total duration of 10 s for each experiment, thus acquiring 1001 samples per marker coordinate 7 . The initial values of marker positions before oscillations were regarded as the equilibrium position of the EE. These recorded coordinates were then filtered by using a zero-phase finite-impulse response low-pass digital filter with a stop-band frequency of 10 Hz. Then, signals were numerically differentiated in order to obtain the linear velocity and acceleration of the reference point, and ultimately decimated in order to obtain 100 samples per experiment. The total number of samples was thus n s = 1200.

The x and y coordinates of the marker were selected as EE free coordinates ζ f . Accordingly, the experimental value of the controlled coordinates ζ c were determined, for all t , as the numerical solution of the non-linear problem defined by:

         l 1 (ζ f , ζ c ) -l 1,0 = 0 . . . l n (ζ f , ζ c ) -l n,0 = 0 (44)
where l i (ζ f , ζ c ) is calculated as in Eq. ( 1), ζ f contains the measured free coordinates, and l i ,0 is the measured i-th cable length. Then, the EE twist and its time derivative were determined as (cf. Eqs. ( 6) and ( 7)

): v = Ξ ⊥ l ζf , v = Ξ⊥ l ζf + Ξ ⊥ l ζf (45) 
Finally, by collecting all experiment data, the TLS solution of the identification problem in Eq. ( 25), χ f r ee , was obtained as: 

χ f r ee =   1 P s P I P   =                  1 0.002 -0.0025 0.1984 0.0569 0.0627 0.0314 2e -4 -2e -4 1.6e -4                  , σ %χ, f r ee =                  0 
                 , σ W = 0.536, C = 8.36 (46) 
Additional experiments were conducted by measuring the full EE pose during free motion, by means of additional markers mounted onto the platform. Thus, the use of Eqs. ( 44) and ( 45) was avoided, since pose data were complete, and the EE twist and its derivatives could be obtained by numerically differentiating the pose. The TLS solution of the identification problem in Eq. ( 25) corresponding to these data was obtained as: 

χ f ul l =                  1 0.0016 -0.0025 0.2 0.0563 0.0627 0.0322 4.8e -5 -2.5e -4 3.4e -4                  , σ %χ, f ul l =                  0 
                 , σ W = 0.552, C = 10.26 (47) 
Both experiments show cost function values very close to the absolute minimum, thus both of them provide optimal results in practice. The relative deviations of practically nonzero parameters, the essential inertial parameters, are well below the standard 10% threshold for acceptability. The only parameters estimated with very high relative standard deviations are the off-diagonal elements of the inertia matrix, which have indeed very low magnitude. These base parameters were then disregarded according to identification best practice, since they are non-essential [START_REF] Pham | Essential parameters of robots[END_REF]. The identification problems were then modified by removing the column of W corresponding to these parameters, but the value of previously well-identified parameters, as well as their relative standard deviations, changed negligibly.

By comparing the essential parameters identified by experiments with partial and full pose measurements, the following can be noticed:

• first, the accuracy of the results did not practically change: the same parameters are well identified with relative standard deviations far below 10%;

• second, the values of the essential parameters in χ f ul l and χ f r ee , namely χ e f ul l and χ e f r ee 8 , are comparable; if we compute the percentage relative error between χ e f ul l and χ e f r ee as: 

∆χ e i ,
           (49)
we can conclude that the two results are equivalent in practice, since the relative errors between χ e f ul l and χ e f r ee are of the same order of magnitude of χ e f r ee standard deviations. The only parameter which is relatively different by comparison is the x coordinate of the center of mass. On the other hand, the absolute difference of these components is 0.4mm, which is negligible in practice for an EE whose dimension is of the decimeter order.

In order to assess whether identification results are generally valid, 22 cross-validation free-motion experiments were conducted in random configurations (different from the ones used for identification), and the EE full pose was measured. Model error ε = Wχ was calculated for each experiment, with matrix W computed according to the measured data and χ as in Eq. ( 46), and internal dynamics standard deviation σ ⊥ was calculated as:

σ ⊥ = ε T ε n c v ( 50 
)
with n cv being the number of samples in the cross-validation experiments, n c v = 1001. The values of σ ⊥ for the cross-validation experiments are reported in Fig. 3. The order of magnitude σ ⊥ for each experiment is near σ W in Eq. ( 46) (only one experiment has σ ⊥ > σ W ), thus identification results are validated.

Based on the experimental and cross-validating results, we can ultimately conclude that (i) the use of the free-motion internal-dynamics identification model is effective in determining the EE base inertial parameters, and (ii) measuring the EE free coordinates and modelling its free motion, instead of measuring the full EE pose, does not negatively affect identification results, and thus it is a strong advantage of the proposed method.

Conclusions

This paper proposed a novel methodology for the identification of the inertial parameters of a UACDPR EE. This method, based on the use of internal-dynamics equations and freemotion excitations, and thereby called Free-Motion Internal-Dynamics Identification Model (FIDIM), was experimentally applied to a 4-cable UACDPR. Experimental results and cross validations showed a remarkable accuracy of the proposed technique. This method has the merit of avoiding the use of force/torque measurements, which are required by state-of-theart methods and usually negatively impact the identification procedure because of sensor noise. In addition, it was shown that any free-motion trajectory is optimal with respect to the identification problem, thus there is no need to pre-compute it during experiment design. Lastly, it was shown that experimentation can be further simplified, by only measuring a subset of the EE coordinates, the free ones, and modelling the EE free motion. These features both reduce identification equipment cost and simplify the identification procedure, while preserving the accuracy of results.

In the future, we will consider different optimal excitation strategies that can be fully automatic and do not require manual intervention: manual excitation of free-motion trajectories, which is a limitation of the experimental validation of the proposed method, may not be easily applied on real-world robots. Moreover, the external measuring device will be substituted with a pose estimation strategy that employs low-cost proprioceptive sensors.
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Table 1 :

 1 Actuators' properties

Table 2 :

 2 Optimized cable lengths (in [m])

	k	1	2	3	4	5	6	7	8	9	10	11	12
	l 1	1.66 1.32 1.30 1.52 1.11 1.38 1.19 1.16 1.46 1.43 1.35 1.52
	l 2	1.86 1.58 1.26 1.26 1.68 1.39 1.15 1.17 1.16 1.37 1.45 1.12
	l 3	1.68 1.99 1.57 1.27 2.19 1.36 1.65 1.63 1.24 1.27 1.42 1.17
	l 4	1.41 1.76 1.56 1.50 1.72 1.32 1.65 1.59 1.50 1.30 1.28 1.54

Table 3 :

 3 Optimized free coordinate displacements ∆ζ f 0 (0) (in [mm])

	k	1	2	3	4	5	6	7	8	9	10	11	12
	x	5.01 4.34 39.3 76.0 4.22 25.3 1.97 24.9 43.8 47.0 2.37 96.9
	y	2.21 7.11 17.6 14.4 7.95 16.6 10.9 9.70 17.4 1.51 11.7 99.7

[START_REF] Oriolo | Control of mechanical systems with second-order nonholonomic constraints: underactuated manipulators[END_REF] 

was solved considering nominal dynamic parameters estimated by CAD:

These assumptions are reasonable if the robot is small-to medium-size, and employs polymer-fibre cables, such as the prototype used for the experiments reported in Section 5.

This implies ϕ j = 0, for every j .

Note that the minimum value of the condition number is 1[START_REF] Golub | Matrix computations[END_REF] 

Average computation time for each optimization performed by the multistart algorithm is 36s, on a personal computer with an Intel I7 8th generation processor, and 16 Gb of RAM.

As an alternative to optical measurements, if the robot design allows it, EE free coordinates may be estimated by means of cable angle measurements and direct kinematics, as proposed in[START_REF] Merlet | Direct kinematics of cdpr with extra cable orientation sensors: The 2 and 3 cables case with perfect measurement and ideal or elastic cables[END_REF], and applied in[START_REF] Gobbi | A method for measuring the inertia properties of rigid bodies[END_REF], or by means of Inertial Measurement Units[START_REF] Tempel | Estimating inertial parameters of suspended cabledriven parallel robots -use case on CoGiRo[END_REF].

The recording of the optical marker position starts a while after the operator hands are moved away from the platform, when the end-effector oscillates with small amplitude about its equilibrium configuration, so that cable tensions also oscillates about their positive equilibrium value.

Please note that essential parameters are the first 7 elements of both χ f ul l and χ f r ee