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Abstract. The theory of angular momentum and spin in quantum mechanics seems to defy common-
sense intuition. We render the theory intelligible again by pointing out that this apparent impenetrability
merely stems from an undue parallel interpretation of the algebraic expressions for the angular-momentum
and spin operators in the group representation theory of SO(3) and SU(2). E.g. the correct meaning of

L̂z = ~
ı

(x ∂
∂y

− y ∂
∂x

) is not that it is the operator for the z-component Lz of the angular momentum L,
but rather the expression of the operator for the angular momentum L when it is aligned with the z-axis.
Hence what we are used to note (erroneously) as L̂z is not a scalar but a vector operator. The same applies
mutatis mutandis for the spin operators. In the correct interpretation, the whole algebraic formalism is just
the group representation theory for the rotations of three-dimensional Euclidean geometry. It is thus mere,
elementary high-school mathematics (in a less usual, more technical guise) and as such totally exempt of
any physics, let alone quantum mysteries. The change of interpretation has no impact on the algebraic
results, such that they remain in agreement with experimental data. It is all only a matter of the correct
geometrical meaning of the algebra. All these statements are proved within the framework of the group
representation theory for SO(3) and SU(2) which is the basic tool used to describe rotational motion in
quantum mechanics.

PACS. 02.20.-a, 03.65.Ta, 03.65.Ca Group theory, Angular Momentum, Quantum Mechanics

1 Textbook angular momentum

Quantum mechanics (QM) deduces the expressions for the angular-momentum operators from de Broglie’s ansatz for
a wave function:

ψ(r, t) = e−
ı
~ (Et−p·r). (1)

In fact, by operating L̂ = ~
ı r ∧∇, with components:

L̂z =
~
ı

[
x
∂

∂y
− y ∂

∂x

]
(cycl), (2)

on ψ one obtains indeed L̂ψ = Lψ, where L = r ∧ p. The notation (cycl) indicates cyclic permutation. From this, we
can derive the commutation relations:

[ L̂x, L̂y ] = ı~L̂z (cycl), (3)

as a straightforward calculation shows. This entails stunning, highly counter-intuitive results, which render the subject
of angular momentum in traditional QM completely mysterious and conceptually inscrutable. It tells us e.g. that the
values of Lx and Ly cannot be defined simultaneously because according to Eq. 3 their operators do not commute.
Textbooks also show that:

L̂2ψ = ~2l(l + 1)ψ, (4)
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where l is a quantum number. This is also puzzling because it seems to tell us in a sense that a square (i.e. L2) is
not a square (i.e. ~2l(l + 1)). This is explained in textbooks by introducing the concept of expectation value. The
expectation value for L2 would be ~2l(l+ 1). But all this still remains puzzling because the operators also occur in the
group representation theory of SU(2) or SO(3), which are just Euclidean geometry. How can it possibly be true that
in the group SO(3), whose elements preserve the squares of vectors by definition, a square would not be a square?
And how can it be true that in Euclidean geometry Lx and Ly could not be simultaneously defined?

The solution for these conceptual difficulties is that the heuristics based on Eq. 1 are wrong. Their lack of reliability
was already pointed out by Messiah (see [1], p.70), who illustrated with some examples that the derivations based on
Eq. 1 could lead to ambiguous results. He suggested that we can obtain the correct result by trial and error. But this
is conceptually unsatisfactory. We cannot seriously pretend to build a theory on such methods. Following Messiah,
the conclusion we should have drawn from Eq. 4 is actually that in our method of trial and error we failed because

L̂2 does not yield a square (as in fact, [̂L2 ] 6= [ L̂ ]2).

2 Group representation theory restores the conceptual clarity

2.1 Context and caveats

We will render the theory of angular momentum in QM intuitive again. In fact, all the conceptual difficulties with
angular momentum in QM are a consequence of an undue parallel interpretation of the algebra of the group theory of
SO(3) and SU(2). These remarks must be seen within the context of a larger framework. In [2] we have reconstructed
QM from scratch. We were able to derive the Dirac equation by only using the representation theories for the rotation
group and the homogeneous Lorentz group. The starting point for this derivation is to express that the electron is
spinning, by making the substitution ϕ = ω0τ in the Rodrigues formula in Eq. 6 below. Here τ is the proper time. The
whole further derivation is carried out with the rigour of a mathematical proof and does not require the introduction
of supplementary stunning assumptions as one might expect based on the fact that QM is full of mysteries which
the theory has to account for. As the Schrödinger and Pauli equations can be derived from the Dirac equation, this
derivation from scratch offers a broad platform from which we can start to study the foundations of QM. We obtain
this way a better understanding of what the calculus of QM physically means.

The parallel interpretation of the algebra in traditional QM is often at variance with the correct geometrical meaning
of it and which is naturally provided by the group theory. It is these over-interpretations which are responsible for many
of the conceptual difficulties we encounter in QM. In our new approach which uses the correct geometrical meaning
of the algebra, a lot of the perplexing puzzles we qualify as quantum mysteries disappear, while the agreement of
the algebra with the experimental results remains rigorously preserved. Our alternative approach cannot be criticized
on the basis of its differences with the traditional approach, because these differences do not occur in the theoretical
predictions of the experimental data. There is a thorough discussion of how our approach preserves the algebra and
only differs from the standard approach in using the correct geometrical meaning of that algebra in [2]. It is in this
context of correcting for the over-interpretations in the traditional theory that the present paper must be situated.

It is with the harvest of these results in store that we feel entitled to ask the reader to be tolerant and prepared to
admit that whenever he/she thinks that the present approach can only be wrong, it could be his/her own viewpoint
that might be wrong because it is based on over-interpretations which are absent from our approach, which has been
outlined in [2]. After getting over his/her initial nervousness the reader will find out that the conclusions we reach are
unassailable.

In fact, they may disturb the reader, because they fly in the face of what he/she has learned such that his/her
first reaction might be one of fierce resistance. In order to avoid misunderstandings and futile polemics, reference [2]
should therefore be consulted before reading the present paper. In the correct interpretation of the operators, the
counter-intuitive textbook results about the spin and angular momentum operators just disappear. Similar situations
are encountered on several other occasions within the broader context of [2].

To the readers who are upset, I suggest to travel mentally backwards in time and try to remember their bewilderment
when they were agonizing over the meaning of these angular-momentum and spin operators in their tender years.
Perhaps the flashbacks will revive some long-forgotten repressed feelings of alienation and frustration. The pain the
reader may have experienced in trying to get his/her head around the subject matter is actually telltale of a cognitive
dissonance provoked by a brainwash. It is from this brainwash and its “die-hard certainties” that we must free ourselves
by deconstructing it [2].

2.2 Infinitesimal generators

Let G be a Lie group. Let us note a representation matrix D(g) of a group element g ∈ G as D(λ), where λ = (λ1, λ2 · · ·
λdim(G)) ∈ Rdim(G) is a set of independent real group parameters which define g. Here dim(G) is the dimension of the
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group, which is of course different from the dimension of the representation, which is the rank of the matrix D(λ).
E.g. in SU(2) the dimension of the representation is 2, while the dimension of the group is 3. These two dimensions
are in general still different from the dimension of the vector space the transformations might be acting on. E.g.
the homogeneous Lorentz group is six-dimensional, it acts on four-dimensional space-time, and the dimension of the
representation SL(2,C) is two. In the group SO(3), the three different types of dimensions all take the same value
three, such that we may think that there is only one concept of dimension. The resulting absence of disambiguation
can stir confusion in one’s first contact with the group theory.

In Lie groups G one uses so-called “infinitesimal generators”. Textbooks [3,4] explain then the following. We
consider a neighbourhood of the identity element 1. In this neighbourhood, all parameters λj are small. We now
consider the group elements, whereby only one parameter λj is allowed to vary and to be different from zero. We let
λj vary between 0 and 1. The matrices M(0, 0, · · · , 0, λj , 0, · · · 0, 0) will then constitute one-parameter sets of group
elements. They will describe a one-dimensional curve on the group manifold. An infinitesimal generator is then defined
as:

◦
Dj = ı

[
∂

∂λj
D(0, 0, · · · , 0, λj , 0, · · · 0, 0)

]
λj=0

. (5)

The infinitesimal generators belong to the tangent space to the group manifold at the identity element. The aim
of defining the infinitesimal generators and the Lie algebra is to construct a basis for the tangent space to the
manifold of the Lie group. The elements of the Lie algebra, the tangent vectors, are thus objects that are completely
different from the elements of the Lie group which are group elements. As they belong to the tangent space rather
than to the group itself, “infinitesimal generators” are not generators of the Lie group. Furthermore, the matrices
M(0, 0, · · · , 0, dλj , 0, · · · 0, 0) − 1 are infinitesimal, but the quantities defined by Eq. 5 are not. The “infinitesimal
generators” are thus also not infinitesimal. These infinitesimal generators could also be calculated at another point of
the Lie group, but choosing the identity element enhances the simplicity of the expressions obtained.

Within a broader context, we must consider Eq. 5 as an example, not a definition. In fact, it is in general not
spelled out in textbooks which propose Eq. 5 that the infinitesimal generators are vectors of the tangent space to
a given point of the Lie group, and that the aim is to obtain a complete set of basis vectors for the tangent space
in that point. The examples do not explain how to define an appropriate choice for the one-parameter families in
order to obtain such a complete basis. One only discovers this difficulty when one gets stuck in trying to work out an
example, e.g. for SU(3), for which textbooks only give the final result, rather than its detailed derivation based on
Eq. 5. We also run into such difficulties when we try to find a complete orthogonal basis of tangent vectors to SU(2)
by starting from the expression R(α, β, γ) for a rotation in terms of its Euler angles (α, β, γ). With a complete basis
we can carry out calculations in the tangent space with the Lie algebra. We can thus make our calculations in the Lie
group (Schrödinger, Dirac) or in the Lie algebra (Heisenberg).

2.3 The Rodrigues formula in SU(2)

The Rodrigues formula (see [2], p.11) for the SU(2) representation matrix R(s, ϕ) of a rotation by an angle ϕ around
an axis d defined by the unit vector s ‖ d is:

R(s, ϕ) = cos(ϕ/2)1− ı sin(ϕ/2) [ s·σ ]. (6)

Here 1 is the 2× 2 unit matrix, and σj are the Pauli matrices:

σx =

[
1

1

]
, σy =

[
−ı

ı

]
, σz =

[
1
−1

]
. (7)

We will use j as a general notation for the indices x, y, z. The term s·σ is not a true scalar product but a purely
formal notation for sxσx + syσy + szσz (see [2,5]). The matrices σj represent the unit vectors ej and s·σ the vector
s. Hence σ = (σx, σy, σz) is not a vector but represents the triad of basis vectors ex, ey, ez. The Pauli matrices σj do
not correspond to components of vectors but to vectors in their own right.

2.4 Infinitesimal generators for SU(2)

We consider the one-parameter family of rotations over an angle ϕ around a fixed axis d ‖ s. This is a one-parameter
family because only ϕ is allowed to vary. By applying the definition given in Eq. 5 we obtain the infinitesimal generator:

◦
Rs = ı

[
∂

∂ϕ
R(s, ϕ)

]
ϕ=0

=
1

2
[ s·σ ], (8)
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For s = ex one obtains thus
◦
Rx = σx/2. In general, for s = ej one obtains

◦
Rj = σj/2.

Important conclusion: The result
◦
Rx = σx/2 is not an operator for the x-component of a general rotation, but

the infinitesimal generator for a rotation when its rotation axis is the x-axis, because we have derived all this by
considering the one-parameter family of rotations around the x-axis (or in general the axis d ‖ s). The same is true

mutatis mutandis for
◦
Ry = σy/2 and

◦
Rz = σz/2. Furthermore:

◦
Rx

◦
Ry −

◦
Ry

◦
Rx =

1

4
(σxσy − σyσx) =

ı

2
σz

= ı
◦
Rz (cycl). (9)

Any set of operators that satisfies these commutation relations can be used to represent the Lie algebra. Examples

are the the spin operators and the angular-momentum operators. In fact, by defining Ŝj = ~
◦
Rj = ~

2σj . we can

transform 1
4 (σxσy − σyσx) = ı

2σz into the commutation relations for the spin operators [ Ŝx, Ŝy ] = ı~
2 Ŝz. By putting

L̂j = ~
◦
Rj we can transform

◦
Rx

◦
Ry−

◦
Ry

◦
Rx = ı

◦
Rz, into the commutation relations for the angular-momentum operators

[ L̂x, L̂y ] = ı~L̂z. Both commutation relations are thus realizations of the commutation relation [
◦
Rx,

◦
Ry ] = ı

◦
Rz. In

other words L̂j and Ŝx are just two valid disguises we can choose for the infinitesimal generators of the rotation group.
We can do our Lie algebra with both choices. The quantities ~ and ~/2 are ad hoc add-ons dictated by the physics [2].

2.5 Infinitesimal generators for SO(3)

One can actually show directly that Eq. 2 is an infinitesimal generator for the rotation group in the following way
given in [6]. We consider a function ψ : (x, y, z) ∈ R3 → ψ(x, y, z) ∈ K, where K can be R or C. We suppose that
under a rotation R we transform ψ(x, y, z) to ψ′(x′, y′, z′) and r = (x, y, z) to r′ = (x′, y′, z′). We have then:

ψ′(r′) = ψ(R−1(r′)). (10)

From now on we will write r′ = (x′, y′, z′) as r = (x, y, z) For an infinitesimal rotation R(dϕ) over an angle dϕ around
the z-axis we have:

[R(dϕ) ]−1(x, y, z) = (x+ y dϕ, y − x dϕ, z), (11)

which just follows from the Taylor series expansion to the first order of the rotation matrix R(dϕ):[
cos(dϕ) − sin(dϕ)
sin(dϕ) cos(dϕ)

] [
x
y

]
=

[
1 −dϕ
dϕ 1

] [
x
y

]
, (12)

where of course [R(dϕ) ]−1 = R(−dϕ). Therefore to first order in dϕ:

ψ′(x, y, z) = ψ(x+ y dϕ, y − x dϕ, z)

= ψ(x, y, z)− ıdϕ · 1

ı

[
x
∂

∂y
− y ∂

∂x

]
ψ(x, y, z). (13)

Now ψ′ = R(dϕ)ψ and ψ = R(0)ψ, where R(0) = 1 is the identity element, such that:

ı[R(dϕ)−R(0) ]ψ = dϕ · 1

ı

[
x
∂

∂y
− y ∂

∂x

]
R(0)ψ, (14)

which is true for all functions ψ. Here ψ can e.g. be a harmonic polynomial. Hence in terms of operators acting on
those functions ψ we have: [

∂R

∂ϕ

]
ϕ=0

=
1

ı

[
x
∂

∂y
− y ∂

∂x

]
, (15)

such that (up to the factor ~) the operator L̂z is the infinitesimal generator associated with the one-parameter family
of rotations R around the z-axis. It corresponds therefore to the angular-momentum vector rather than to one of
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its scalar components. This conclusion is inevitable and nevertheless its lackluster consequence, viz. that traditional
QM uses a wrong interpretation of L̂z, has tantalizingly been overlooked. Rather than the textbook “derivations”
based on the de Broglie ansatz, it is this calculation that is correct, because the geometrical meaning of the algebraic
formalism is firmly established prior to any use of these mathematics in physics. It proves that L̂j are infinitesimal
generators, which we can call angular momentum operators after incorporating ~. An alternative proof is given by
the verification that the expressions for L̂j given in Eq. 2 satisfy the commutation relations for the rotation group.

The parameters (x, y, z) in the expressions for L̂j do not need to be position coordinates, because the algebra that
intervenes in checking Eq. 3 for the operators defined by Eq. 2 can be carried out abstractly without specifying what
(x, y, z) mean (see Eq. 16).

3 Discussion

As the infinitesimal generators
◦
Rj form a basis for tangent space, both Ŝj and L̂j form a basis for tangent space.

Whatever the meaning one gives to (x, y, z) the fact that L̂j satisfy the commutation relations is sufficient. The
commutation relations for the angular-momentum operators are just defined by the group theory, nothing else.

We have thus shown that the quantum operators are not the operators for the components of the angular momentum
or spin, but the operators for the angular momentum or spin when it is aligned with a given axis. The algebra of
the angular-momentum and spin operators is therefore not mysterious. It is just the algebra of rotations in Euclidean
geometry. All quantum mysteries surrounding angular momentum and spin in QM are only due to wrong interpretations
of this algebra. This illustrates our thesis upheld in [2] that group theory is the key to making sense of QM.

If the interpretation of L̂j truly would be that it is the operator for the component Lj of the angular momentum,
that would be in flagrant contradiction with the group theory, which is just based on Euclidean geometry. Scalar
quantities can only commute. In Euclidean geometry, nothing impedes Lx and Ly to exist simultaneously. This shows

that the traditional QM interpretation must be abandoned. The correct interpretation for L̂z = ~
ı

[
x ∂
∂y − y

∂
∂x

]
in

Eq. 2 is the one that follows from the group theory: It is the operator for the angular momentum when it is aligned
with the z-axis, with the interpretations for L̂x and L̂y following by cyclic permutation.

We must therefore conclude that the derivation of the operators L̂j from Eq. 1 accidentally yields correct ex-
pressions, but with a wrong interpretation for them. We may note that the phase of ψ in Eq. 1 can be obtained
from the time part τ = γ(t − v · r/c2) of the Lorentz transformation by multiplying it by m0c

2/~ (see [2], p.36).
The Dirac equation is derived by putting ϕ = ω0τ in the Rodriguez formula, leading to a spinor that contains the
factor e−ıω0τ/2. The de Broglie wave is obtained from this by putting m0c

2 = ~ω0/2. Here τ is the proper time, ω0

the angular frequency of the spinning motion and m0 the rest mass. Like a Bloch wave e−ık·r in solid-state physics,
ψ(r, t) = e−ı(ω/c,k)∗(ct,r) is just a one-dimensional representation expressing translational invariance along one dimen-
sion. Here ∗ is the scalar product in space-time. We are expressing here not translation symmetry in space, but in time
because we are describing the electron’s spinning motion in proper time. This wave function is defined for just one
value of v. If we had taken v ‖ ex, we would just have written ψ(x, y, z, t) = e−

ı
~ (Et−pxx). One cannot derive L̂j from

this expression. The abelian group SO(1,1) does not contain SO(3), which is non-abelian. It is not possible that some
commutation relations for SO(3) could be derived from a development that belongs strictly to a context of SO(1,1)
embedded in SO(1,3). Surely enough, the non-abelian group SO(1,3) contains SO(3) but its representations are not
one-dimensional and the algebra v = vxex + vyey + vzez used in Eq. 1 does not apply to the composition of boosts

in SO(1,3). The fact that we obtain correct expressions for L̂j must therefore be considered as a fluke. It is based on

calculations on the phase of ψ without knowing what it means. Correct proofs that L̂j are good angular momentum
operators for SO(3) have been given above. The operators are defined in the Lie algebra. The one-parameter families
can be parameterized by elements of R3 or R4, like (γ, γv/c) ∝ (E, cp) = m0c

2(γ, γv/c) for the Lorentz boosts.
The culprit for this embarrassing situation is the sobering fact that the whole formalism of QM has not been

derived but obtained by educated guessing and then validating the guesses by comparing the results of the algebra
with experimental data. The algebra itself is used as a blackbox. The calculations are carried without bothering about
the insight that could be gained from figuring out what the geometry is that corresponds to the algebra. The data
validate the algebra, but not its interpretation. Consequently the algebra can be right, while its interpretation is
flawed. In the present case it is even not possible to check certain details of the algebra because one cannot consider
simultaneously several operators L̂j . Considering L̂x, L̂y, L̂z simultaneously is taboo in traditional QM because the

operators do not commute, while in our approach the operators L̂j are just different forms which the operator L̂ takes
on various disjoint definition domains. For each direction in space defined by an axis d, there is a different form of the
operator L̂ with a different definition domain, which is the one-parameter family of rotations around d.

Our derivation of QM from scratch in [2] is not based on guesses. It is a mathematically rigorous derivation. In
our reconstruction of QM many quantum mysteries just disappear. These are the features that have kept us on the



6 G. Coddens: Exact meaning of angular-momentum and spin operators

right track. The quantum mysteries are due to overhauling the natural geometrical meaning of the algebra of the
group theory with guesstimate, parallel interpretations, based on “physical intuition”. Such interpretations are not
due because the meaning of the algebra is already provided by the group theory itself.

It is not true that the components Lx and Ly of the angular momentum cannot be defined simultaneously due to the
fact that their operators do not commute. All the commutation relation tells us is that when the angular momentum
is aligned with the x-axis, it cannot simultaneously be aligned with the y-axis! When the angular momentum L is
aligned with the x-axis, we must use the operator L̂x and we have L = (L, 0, 0). The use of the operator L̂x is the only

one valid for this situation L = (L, 0, 0). We have then Lx = L and [̂L2 ] = L̂2
x. Contrary to what standard QM claims,

the components Lx = L, Ly = 0 and Lz = 0 are then defined simultaneously. The same applies, mutatis mutandis, for
the cases L = Lej .

Just as the correct spin operator for a spin ~
2 s would be sxŜx + syŜy + szŜz = ~

2 [ s·σ ], the correct operator for

the angular momentum would be `xL̂x + `yL̂y + `zL̂z, where the unit vector ` = (`x, `y, `z) ‖ L. These expressions

sxŜx + syŜy + szŜz and `xL̂x + `yL̂y + `zL̂z just serve to decompose s and ` in the bases of their Lie algebras.

This is in conformity with the fact that both the sets Ŝj and L̂j form a basis. When the spin is parallel to s only

sxŜx + syŜy + szŜz is a meaningful operator. An isolated component, e.g. szŜz has then no meaning, because the

eigenfunction ψ of sxŜx + syŜy + szŜz is not an eigenfunction of Ŝz. The definition domains of sxŜx + syŜy + szŜz
and Ŝz are disjoint. Every direction of space has its own operator. Just as σ = (σx, σy, σy) is not a single vector

operator but a basis of three vector operators, L̂ = (L̂x, L̂y, L̂z) is not a single vector operator but a basis of three
vector operators.

All this shows that guessing operators from their action on e−
ı
~ (Et−p·r) is not a valid procedure, because it leads

to the erroneous conclusions that L̂j would be the operator for the j-component of the angular momentum L and that

L̂2ψ = ~2l(l + 1)ψ would define the operator for the square L2 of the angular momentum. We should never loose of
sight that SO(3) and SU(2) are mere Euclidean geometry. When one sticks to the correct geometrical interpretation
of the algebra of the rotation group the classical intuition is restored. The caveats one must observe in using the
operators in the treatment of a physical problem are illustrated in [7].

4 Other possible meanings we can attribute to the parameters (x, y, z)

We have shown (see [2], p. 21), that in SU(2):

ξ =

[
ξ0
ξ1

]
=

 ±
√

x−ıy
2

±
√
−x−ıy

2

 , (16)

represents a spinor corresponding to a rotation R. Here (x, y, z) = e′x + ıe′y ∈ C3, where (e′x, e
′
y, e
′
z) is the canonical

triad of basis vectors (ex, ey, ez) of R3 after rotation by R. Here (x, y, z) ∈ I ⊂ C3 is a so-called isotropic vector,
which belongs to the isotropic cone I = {(x, y, z) ∈ C3 ‖ x2 + y2 + z2 = 0}. The idea behind introducing isotropic
vectors is that from e′x + ıe′y we can calculate the whole triad e′j of rotated basis vectors, and that this triad defines
the rotation unambiguously. The coordinates (x, y, z) of the isotropic vector are thus true group parameters, which
is not the case for the parameters (x, y, z) and (px, py, pz) in Eq. 1. They function as coordinates for rotations.The
identity in Eq. 16 and its derivation lead to the notion that a spinor is a “square root of an isotropic vector”, but
we have shown (see [2], p.7) that the spinors used in QM just represent group elements (i.e. rotations and Lorentz

transformations). Let us leave out the ± signs from the algebra and calculate L̂zξ:

L̂zξ =
~
ı

[
x
∂

∂y
− y ∂

∂x

]
√

x−ıy
2√

−x−ıy
2

 =
~
2ı


−ıx−y
2
√

x−ıy
2

−ıx+y
2
√

−x−ıy
2

 =
~
2ı


−ı(x−ıy)/2√

x−ıy
2

ı(−x−ıy)/2√
−x−ıy

2


= −~

2

 1

−1

 ξ = −~
2
σzξ = −Ŝzξ. (17)

Here the rotation coordinates (x, y, z) of the isotropic vector have nothing to do with the position coordinates in Eq.
1, but we can imagine to generalize the definition domain of the algebra by analytic continuation from the isotropic
cone I to C3 and then to restrict it to R3. This will not change the algebraic calculations.
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This is important for the harmonic polynomials which are components of tensor products ξ ⊗ ξ ⊗ · · · ⊗ ξ of the
spinor ξ (see [8], p.53 and [9], p. 68), and in which (x, y, z) are subsequently used as position coordinates in QM (see
[9], p. 85). If one were to stick to the original definition of (x, y, z) ∈ I this would be just incomprehensible (see [9], p.
5). The quantum numbers ` and m are actually degrees within the polynomials in terms of ξ0 and ξ1 (see [9], Section
3.10.5, p. 75).

What saves us is that any meaning we give to the parameters (x, y, z) can be used in the algebra, because it is
formally just a calculus of differentiations carried out on polynomials. The meaning of the variables (x, y, z) does not

intervene in the calculations, e.g. those that lead from Eq. 2 to Eq. 3. Note that we obtain −Ŝz rather than Ŝz. It is
easy to see where this minus sign comes from. In fact ϕ = ω0τ ends via E = ~ω/2 up in Et, while to obtain L̂j we
have used −p · r. We may further note that the spinor:

χ =

[
e−ıϕ/2

0

]
, (18)

in SU(2) corresponds to a counterclockwise rotation around the z-axis in SU(2), while the normal convention in SO(3)
uses the positive sign for counterclockwise rotation. This way, everything is consistent, because the two differences in
sign coincide in the formalism.

It goes without saying that these results are absolutely fundamental. They are not flattering for our egos, but they
have to be disclosed because science is about the truth, nothing but the truth. Nevertheless, this paper was desk-
rejected by Matteo Paris acting as an editor for Elsevier, with the usual completely gratuitous and unsubstantiated
depreciative statements of such a non-committing generality that they can serve as a pretext for rejecting every single
paper. He carefully made sure not to address the slightest factual content of the paper. The honors list of people who
have also censored this article further comprises Gui-Lu Long and Vira Pobyhz.
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