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Abstract. It is proved in physics textbooks that angular frequencies can be treated as vectors. However this
is subject to a caveat that in general is not pointed out, and this can lead to confusion. We also point out
that the textbook interpretations of the angular-momentum and spin operators in quantum mechanics are
wrong. E.g. L̂z = ~

ı
(x ∂

∂y
−y ∂

∂x
) is not the general expression of the operator for the z-component Lz of the

angular momentum L, but the expression of the operator L̂ for the angular momentum L when it is aligned
with the z-axis. Hence it corresponds to a full vector quantity L rather than to a scalar component Lz.
The same applies mutatis mutandis for the spin operators. With the correct interpretations the conceptual
difficulties we encounter in making sense of angular momentum in quantum mechanics disappear, such that
it is no longer mysterious. The change of interpretation has no impact on the algebraic results, such that
they remain in agreement with experimental data. It is just a matter of the correct geometrical meaning
of the algebra. All these statements are proved within the framework of the group theory of SU(2) which
is the basic language on which descriptions of rotational motion in quantum mechanics are founded.

PACS. 02.20.-a, 03.65.Ta, 03.65.Ca Group theory, Angular Momentum, Quantum Mechanics

1 Addition of angular-frequency vectors

1.1 Intuitive approach in SO(3)

In many physics textbooks or lecture notes one gives proofs to show that angular-frequency vectors can be added [1,
2]. They may explain that whereas rotations are not vectors because rotations do not commute, infinitesimal rotations
do commute and therefore can be added. But the lack of nuance with which this is formulated render these textbook
presentations very misleading. To explain what this is all about we propose to think about a spinning top whose
rotation axis d1 is defined by the unit vector s1 ‖ d1 and which is precessing around the vertical axis d2 ‖ s2 = ez.

The spinning motion of the top in absence of precession is described by ω1 = ω1s1. The precession is described by
ω2 = ω2ez. Now, textbooks state that the angular frequency Ω of the composed motion is given by:

Ω = ω1 + ω2 = ω2 + ω1. (1)

The textbook results are proved by representing the rotations as displacements on the surface of a sphere of radius
R and then making a drawing of the situation in a point P of this sphere. One can then argue that infinitesimal
displacements R∆ϕ. can be added as vectors in the tangent plane to the sphere in P , and therefore also the angular
frequencies ω = dϕ

dt The problem is that the notation suggests that the top spins at the constant value Ω = ω1 + ω2.
A simple inspection of what happens in the precession of the spinning top shows that this is not true. When one
calculates the vector sums at two different moments in time one obtains two different results. The sum ω1 + ω2 is
turning just like the spinning top is turning. One may then even wonder if one has to do a vector addition again.
Nevertheless, the whole argument may look correct on the drawing showing the situation in P . The top is spinning at
a constant frequency ω1 and ω2 is a constant. The error in the reasoning is that ω1(t) is no longer a constant when
it is turned by ω2. Therefore also ω2 +ω1(t) is not constant. In fact, the tangent plane is turning under the action of
ω2, such that at some ulterior time, the point P where we must sum will have moved to a different point Q. Hence
ω1 = |ω1(t)| is a constant but ω1(t) is not. But we do not notice this when we reason on a drawing which represents
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an instantaneous snap-shot of the motion at the point P . The reasoning on the drawing is instantaneously and locally
correct, but globally wrong in that it overlooks the fact that ω1(t) varies. Eq. 1 is therefore inaccurate because it
neglects pointing out the time dependence. What one has to write to describe the motion correctly is:

Ω(t) = ω2 + ω1(t). (2)

This way the instantaneous character of the addition is then expressed correctly. Textbooks fail to point out this
caveat. It is a kind of a nuisance not to point out the time dependence explicitly in a course. Moreover, if the top were
spinning at the angular frequency ω2 and the precession were taking place at the angular frequency ω1, we would
obtain:

Ω(t) = ω1 + ω2(t). (3)

This would not be the same motion as described in Eq. 2. It follows a different order of the spinning motions. Therefore
ω1 and ω2 also do not really commute. They only commute instantaneously, while globally there is an order in the
rotations, i.e. Eq. 2 corresponds to a product of rotations R2 ◦ R1 while Eq. 3 corresponds to a product of rotations
R1 ◦R2.

The reason for the error in Eq. 1 is that the calculations are made in the instantaneous tangent space to the sphere
or to the rotation group (see below) and that this tangent space does not remain fixed. It wanders with the precession.
But in a co-rotating frame Eq. 1 would look exact.

1.2 Rigorous algebraic treatment in SU(2)

We will now give a much better purely algebraic proof in SU(2). A good introduction to SU(2) is given in [3,4,5]. The
Rodrigues formula (see [3], p.11) for the SU(2) representation matrix R(s, ϕ) of a rotation by an angle ϕ around an
axis d defined by the unit vector s ‖ d is:

R(s, ϕ) = cos(ϕ/2)1− ı sin(ϕ/2) [ s·σ ]. (4)

Here 1 is the 2× 2 unit matrix, and σj are the Pauli matrices:

σx =

[

1
1

]

, σy =

[

−ı
ı

]

, σz =

[

1
−1

]

. (5)

We use j as a general notation for the indices x, y, z. The term s·σ is not a true scalar product but a purely formal
notation for sxσx + syσy + szσz. The matrices σj represent the unit vectors ej and s·σ the vector s. Hence σ is not a
vector but represents the triad of basis vectors ex, ey, ez. As explained in [3] we can transform this Rodrigues formula
into the description of a spinning or rotational motion by putting ϕ = ωt. We consider now the two rotational motions:

∣

∣

∣

∣

∣

∣

R1(t) = cos(ω1t/2)− ı sin(ω1t/2) [ s1·σ ],

R2(t) = cos(ω2t/2)− ı sin(ω2t/2) [ s2·σ ].
(6)

Derivation with respect to t yields:
∣

∣

∣

∣

∣

∣

d
dtR1(t) = −ı(ω1/2) [ s1·σ ]R1(t) = −(ı/2)[ω1·σ ]R1(t),

d
dtR2(t) = −ı(ω2/2) [ s2·σ ]R2(t) = −(ı/2)[ω2·σ ]R2(t).

(7)

Here ωj are constants. Now we consider R(t) = R2(t)R1(t). In this composition of rotations, R1(t) could e.g. describe
the spinning motion of an electron, and R2(t) the precession imposed on this spinning motion by a magnetic field. Or
R1(t) could describe a spinning top and R2(t) its precession.

Let us do the calculation properly within the representation SU(2). When we express the combined motion with
the aid of the representation matrices of SU(2) we obtain:

dR

dt
=

d

dt
[R2(t)R1(t) ] = −(ı/2)[ω2·σ ]R2(t)R1(t) − (ı/2)R2(t)[ω1·σ ]R1(t). (8)

The origin of the troubles evoked in Subsection 1.1 resides in the second term on the right-hand side. In the first term
R2(t) and R1(t) occur nicely in juxtaposition together behind the vector −(ı/2)[ω2·σ ], but in the second term R2(t)
and R1(t) are not in juxtaposition. We see that Eq. 1 is not correct because ω1·σ does not commute with R2(t), such
that ω1·σ cannot be dragged in front of R2(t). In fact, in order to obtain a juxtaposition R2(t)R1(t) = R(t) we must
rewrite Eq. 8 as:
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R2(t)[ω1·σ ]R1(t) = R2(t)[ω1·σ ]R−1
2 (t) · R2(t)R1(t). (9)

Let us put:

R2(t)[ω1·σ ]R−1
2 (t) = [ω1(t)·σ ]. (10)

Here ω1(t) is the constant vector ω1 rotated by R2(t). In fact, as explained in [3] (in Subsection 2.6, starting on p. 15),
in SU(2) a vector v ∈ R3 is represented by [v·σ ], while turning the vector v by a rotation R: v → Rv corresponds
to the transformation: [v·σ ] → R [v·σ ]R−1. This shows that ω1 must be transported from the tangent space at
the point P ↔ R2(t1)R1(t1) to the tangent space at the point Q ↔ R2(t2)R1(t2). The algebra reflects exactly the
geometrical argument we sketched above. We can conclude then that:

dR

dt
(t) = −(ı/2) [ (ω2 + ω1(t))·σ ]R(t). (11)

We obtain this way the rigorous result:

dR

dt
(t) = −(ı/2)[Ω(t)·σ ]R(t), (12)

where Ω(t) is given by Eq. 2. The algebraic proof avoids the pitfall of relying on a drawing on a sheet of paper which
only represents an instantaneous snapshot of the tangent plane at some moment in time t. This tangent plane moves
in time, traversing the sheet of paper at time t, while the sheet of paper with the drawing on a desk remains fixed in
time.

Imagine that we mount a bicycle wheel with its axis within a frame that can be suspended to the ceiling. The
wheel is then hanging completely vertically within the frame wherein we can make the wheel spin in the vertical plane
around its horizontal axis. What happens now when we apply a torque to the frame to make the whole assembly
spin also around the vertical axis? Well, you will see Eq. 2 at work, because the wheel will exhibit a tilt angle as a
consequence of |Ω(t)| = |ω2 + ω1(t)|, which is a constant. But the wheel will also exhibit precession, such that we
end up with Eq. 2. For a spinning top, the torque is applied by the gravitational pull of the gravitational field of the
Earth.

2 Angular momentum in quantum mechanics

2.1 What the textbooks are telling us

With the definition L = r ∧ p we can in quantum mechanics (QM) deduce the expression for the angular-momentum
operators from the expression of the de Broglie wave:

ψ(r, t) = e−
ı
~
(Et−p·r). (13)

We obtain:

L̂ =
~

ı
r ∧ ∇, L̂z =

~

ı

[

x
∂

∂y
− y

∂

∂x

]

(cycl), (14)

because this leads indeed to L̂ψ = Lψ. A somewhat tedious but straightforward calculation shows then that:

[ L̂x, L̂y ] = ı~L̂z (cycl). (15)

This entails stunning, highly counter-intuitive results, which render the subject of angular momentum in traditional QM
completely mysterious and conceptually impenetrable. It tells us e.g. that Lx and Ly cannot be defined simultaneously
because according to Eq. 15 their operators do not commute. We also learn that:

L̂2ψ = ~2l(l + 1)ψ, (16)

where l is a quantum number. This is also puzzling because it tells us in a sense that a square (i.e. L2) is not a square
(i.e. ~2l(l+1)). This is explained away in textbooks by introducing the concept of expectation value. The expectation
value for L2 would be ~2l(l + 1). But all this still remains puzzling because the operators also occur in the group
theory of SU(2) or SO(3). How can it possibly be true that in the group SO(3), whose elements preserve the squares
of vectors by definition, a square would not be a square? The answer is that the heuristics based on Eq. 13 are wrong.
This lack of reliability was already pointed out by Messiah [6], who illustrated with some examples that the derivations
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based on Eq. 13 could lead to ambiguous results. He suggested that we can obtain the correct result by trial and error.
But this is conceptually unsatisfactory. A good rule should always work. Else we cannot seriously pretend to build a
theory on such methods. And if the heuristics fail, we must not only be able to explain why it fails. We must also be
able to explain why it does not fail in the other situations where it works.

In fact, the conclusion we should have drawn from Eq. 16 is that our method of trial and error tells us that the

heuristics are failing because L̂2 does not yield the desired value L2. The only operator that we can accept as a correct
operator for L2 should be one that yields L2ψ in operating on ψ. The way out of this paradox is of course that

[̂L2 ] 6= [ L̂ ]2.

2.2 Restoring conceptual clarity

We will now render the theory of angular momentum in QM intelligible again. We will show that the interpretation

of L̂z as the operator for the z-component of the angular momentum is wrong. With the correct interpretation of the
operators, all the mysterious counter-intuitive results from the textbooks will disappear.

In [3] we have reconstructed QM from scratch. The aim was to get a better understanding of what the calculus of
QM physically means. We were able to derive the Dirac equation just from the group theory for the rotation group
and the Lorentz group. The starting point is to express that the electron is spinning exactly by the substitution ϕ = ωt
in the Rodrigues formula we described above. In a sense the formalism of QM is therefore just classical (relativistic)
mechanics expressed in the language of group theory. The reader may think that this just cannot be true, but we
invite him to read the rigorous proofs in [3].

The conclusions we will reach in the following may equally disturb the reader, because they fly in the face of what
we all have learned. Of course we will run here into Brandolini’s law and meet a lot of resistance. It is such a watershed
that the general attitude will be that the conclusions we reach can only be wrong. But unfortunately, there is truly
no escape from the conclusions, exactly due what we proved in [3]. To readers who are upset, I can only suggest to
try to remember their bewilderment about these angular-momentum operators when they had to learn the stuff as
a student. It is of course a hefty blow to our egos to have to admit that for a whole century every single physics
student has been brainwashed and force-fed with nonsense. After getting over the trauma of not having noticed this
and after it all will have sunk in, the reader will notice that in the new approach a lot of the quantum mysteries do
indeed disappear, while the agreement of the algebra with the experimental results is rigorously preserved. There is a
thorough discussion of how our approach preserves the algebra and only points out the correct geometrical meaning
of that algebra in [3].

2.3 “Infinitesimal generators”

Let G be a Lie group. Let us note a representation matrix [D(g) ](λ) of a group element g ∈ G as M(λ), where
λ = (λ1, λ2 · · · λdim(G)) ∈ Rdim(G) is a set of independent real group parameters. Here dim(G) is the dimension of
the group, which is of course different from the dimension of the representation, which is the rank of the matrix M.
E.g. in SU(2) the dimension of the representation is 2, while the dimension of the group is 3. These two dimensions
are in general still different from the dimension of the vector space the transformations might be acting on. E.g.
the homogeneous Lorentz group is six-dimensional, it acts on four-dimensional space-time, and the dimension of the
representation SL(2,C) is two. In the group SO(3), the three different types of dimensions all take the same value
three, such that we may think that there is only one concept of dimension. The resulting absence of disambiguation
can stir confusion in one’s first contact with the group theory.

In Lie groups G one uses so-called “infinitesimal generators”. Textbooks [5,7] explain then the following. We
consider a neighbourhood of the identity element 1. In this neighbourhood, all parameters λj are small. We now
consider the group elements, whereby only one parameter λj is allowed to vary and to be different from zero. We let
λj vary between 0 and 1. The matrices M(0, 0, · · · , 0, λj, 0, · · · 0, 0) will then be one-parameter sets of group elements.
They will describe a one-dimensional curve on the group manifold. An infinitesimal generator is then:

ı

[

∂

∂λj
M(0, 0, · · · , 0, λj , 0, · · · 0, 0)

]

λj=0

. (17)

The infinitesimal generators belong to the tangent space of the group manifold at the identity element. The aim of
defining the infinitesimal generators and the Lie algebra is to construct a basis for the tangent space to the manifold of
the Lie group. The elements of the Lie algebra, the tangent vectors, are thus objects that are completely different from
the elements of the Lie group which are group elements. As they belong to the tangent space rather than to the group
itself, “infinitesimal generators” are not generators. Furthermore, the matrices M(0, 0, · · · , 0, dλj, 0, · · · 0, 0) − 1 are
infinitesimal, but the quantities defined by Eq. 17 are not. The “infinitesimal generators” are thus also not infinitesimal.
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Within a broader context, we must consider Eq. 17 as an example, not a definition. In fact, it is in general not
spelled out in textbooks which propose Eq. 17 that the infinitesimal generators are basis vectors for the tangent space
to a given point of the Lie group, and that the aim is to obtain a complete basis for the tangent space in that point.
The examples do not explain how we can obtain such a complete basis. One only discovers this when one tries to work
out an example, e.g. for SU(3). After obtaining a complete basis for the tangent space we can carry out calculations
in the tangent space with the Lie algebra. We can thus make our calculations in the Lie group (Schrödinger, Dirac)
or in the Lie algebra (Heisenberg).

2.4 Debunking the urban legend about angular momentum operators in QM

We start again from the Rodrigues formula given in Eq. 4. Partial differentiation of Eq. 4 yields:

∂

∂ϕ
R = − ı

2
[ s·σ ]R. (18)

This also proves that:

R(s, ϕ) = e−
ı
2
ϕ[ s·σ ]R(s, 0) = e−

ı
2
ϕ[ s·σ ], (19)

as R(s, 0) = 1. Now fixing s and varying ϕ defines a one-parameter family, such that we can calculate the infinitesimal
generator for rotations around the axis defined by s by applying the definition given in Eq. 17:

◦

Rs = ı

[

∂

∂ϕ
R(s, ϕ)

]

ϕ=0

=
1

2
[ s·σ ], (20)

as limϕ→0 R(s, ϕ) = 1. For s = ex one obtains thus
◦

Rx = σx/2. This is not the infinitesimal generator for the x-
component of a general rotation, but the infinitesimal generator for a rotation when its rotation axis is the x-axis,
because we have derived all this by considering the one-parameter family of rotations around the x-axis (or in general

the axis d ‖ s). The same is true mutatis mutandis for
◦

Ry = σy/2 and
◦

Rz = σz/2. Furthermore:

◦

Rx

◦

Ry −
◦

Ry

◦

Rx =
1

4
(σxσy − σyσx) =

ı

2
σz = ı

◦

Rz (cycl). (21)

Any set of operators that satisfies these commutation relations can be used to represent the Lie algebra. Examples

are the the spin operators and the angular-momentum operators. In fact, by defining Ŝj = ~
◦

Rj = ~

2σj . we can

transform 1
4 (σxσy − σyσx) =

ı
2σz into the commutation relations for the spin operators [ Ŝx, Ŝy ] =

ı~
2 Ŝz. By putting

L̂j = ~
◦

Rj we can transform
◦

Rx

◦

Ry −
◦

Ry

◦

Rx = ı
◦

Rz, into the commutation relations for the angular-momentum

operators [ L̂x, L̂y ] = ı~L̂z.

Both commutation relations are thus realizations of the commutation relation [
◦

Rx,
◦

Ry ] = ı
◦

Rz. In other words L̂j

and Ŝx are just two isomorphic choices we can make for the infinitesimal generators of the rotation group. We can do
our Lie algebra with both choices. The quantities ~ and ~/2 are ad hoc add-ons. One can actually show directly that
Eq. 14 is an infinitesimal generator for the rotation group in the following way given in [8]. We consider a function
ψ : (x, y, z) ∈ R3 → ψ(x, y, z) ∈ K, where K can be R or C. We suppose that under a rotation R we transform
ψ(x, y, z) to ψ′(x′, y′, z′) and r = (x, y, z) to r′ = (x′, y′, z′). We have then:

ψ′(r′) = ψ(R−1(r′)). (22)

From now on we will write r′ = (x′, y′, z′) as r = (x, y, z) For an infinitesimal rotation R over an angle dϕ around the
z-axis we have:

R−1(x, y, z) = (x+ y dϕ, y − x dϕ, z), (23)

and therefore to first order in dϕ:

ψ′(x, y, z) = ψ(x+ y dϕ, y − x dϕ, z) = ψ(x, y, z)− ı dϕ · 1

ı

[

x
∂

∂y
− y

∂

∂x

]

, (24)

which clearly shows that the operator L̂z is an infinitesimal generator associated with the one-parameter family of
rotations R−1 around the z-axis. Rather than the textbook “derivations” based on the de Broglie ansatz, it is this
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calculation that proves that L̂j are infinitesimal generators, which we can call angular momentum operators after

incorporating ~. An alternative proof is given by the verification that the expressions for L̂j given in Eq. 14 satisfy

the commutation relations for the rotation group. The parameters (x, y, z) in the expressions for L̂j do not need to be
position coordinates, because the algebra that intervenes in checking Eq. 15 for the operators defined by Eq. 14 can
be carried out abstractly without specifying what (x, y, z) mean (see also Subsection 2.5).

As the infinitesimal generators
◦

Rj form a basis for tangent space, both Ŝj and L̂j form a basis for tangent space.

Whatever the meaning one gives to (x, y, z) the fact that L̂j satisfy the commutation relations is sufficient. The
commutation relations for the angular-momentum operators are just defined by the group theory, nothing else. This
also shows then that these operators are not the operators for the components of the angular momentum, but operators
for the angular momentum when it is aligned with a given axis. The algebra of the angular-momentum operators is
therefore not mysterious. It is just the algebra of rotations in Euclidean geometry. All quantum mysteries surrounding
angular momentum in QM are only due to wrong interpretations of this algebra. It illustrates our thesis upheld in [3]
that group theory is the key to making sense of QM.

If the interpretation of L̂j truly would be that it is the operator for the component Lj of the angular momentum,
that would be in flagrant contradiction with the group theory, which is just based on Euclidean geometry. In Euclidean
geometry, nothing impedes Lx and Ly to exist simultaneously. This shows that the QM interpretation is wrong. The

correct interpretation for L̂z = ~

ı

[

x ∂
∂y − y ∂

∂x

]

in Eq. 14 is the one that follows from the group theory: It is the operator

for the angular momentum when it is aligned with the z-axis, with the interpretations for L̂x and L̂y following by
cyclic permutation.

We must therefore conclude that the derivation of the operators L̂j from Eq. 13 accidentally yields correct expres-
sions, but with a wrong interpretation for them. We may note that the phase of ψ in Eq. 13 can be obtained from
the time part τ = γ(t − v · r/c2) of the Lorentz transformation by multiplying it by m0c

2/~ (see [3], p.36). Here τ
is the proper time and m0 the rest mass. Like a Bloch wave in solid-state physics, ψ(r, t) is just a one-dimensional
representation of the abelian group SO(1,1) of one-dimensional Lorentz transformations whose boost parameters are

v′ ‖ v. If we had taken v ‖ ex, we would just have written ψ(x, y, z, t) = e−
ı
~
(Et−pxx). How would one derive L̂j from

this expression? The abelian group SO(1,1) does not contain SO(3), which is a non-abelian. How could it be possible
that some commutation relations for SO(3) are derived from a development that belongs strictly to the context of
SO(1,1)? Surely enough, the non-abelian group SO(1,3) contains SO(3) but its representations are not one-dimensional
and the algebra v = vxex + vyey + vzez used in Eq. 13 does not apply to the composition of boosts in SO(1,3). The

fact that we obtain correct expressions for L̂j must therefore be considered as a fluke. Correct proofs that L̂j are
good angular momentum operators for SO(3) have been given above. The operators are defined in the Lie algebra.
The elements of the Lie group can be parameterized by elements of R3 or R4, like (γ, γv/c) ∝ (E, cp) for the Lorentz
boosts.

The fundamental reason for this horrible catastrophe is that the whole formalism of QM has been obtained by
guessing and then validating the guesses by comparing the results of the algebra with experimental data. The algebra
itself is used as a blackbox. The calculations are carried out without any insight about the corresponding geometry.
The data validate the algebra, but not its geometrical interpretation. Consequently the algebra can be right, while its
interpretation is wrong. In the present case it is even not possible to check the algebra because one cannot make linear
sums of L̂x, L̂y, L̂z. Considering L̂x, L̂y, L̂z simultaneously is declared taboo in traditional QM because the operators

do not commute, while in our approach the operators L̂j are just different forms which the operator L̂ takes on various
disjoint definition domains. For each direction in space defined by an axis d, there is a different form of the operator
L̂ with a different definition domain, which is the one-parameter family of rotations around d. Our derivation of QM
from scratch in [3] is not based on guesses. It is a mathematically rigorous derivation. In our reconstruction of QM
many quantum mysteries just disappear. The quantum mysteries are due to wrong interpretations of the algebra. An
interpretation of the algebra is not due because the meaning of the algebra is already provided by the group theory
itself. This cannot be paralleled by an alternative truth based on guesstimates proposed by physicists.

Of course, for Ŝzψ we can only find ± ı~
2 ψ because Ŝz applies by definition only to rotations about the z-axis.

Here ψ = (1 + σz)χ, whereby the spinor χ is the first column of cos(ϕ/2)1 − ı sin(ϕ/2)σz as explained in Remark
28 on p. 33 of [3]. Therefore there is no mysterious two-valuedness of the spin described by the spin formalism, and
it does not explain the result of the Stern-Gerlach experiment, because this experiment measures precession-up and
precession-down states instead of spin-up and spin-down states, as explained in [9].

Similarly, it is not true that the components Lx and Ly of the angular momentum cannot be defined simultane-
ously due to the fact that their operators do not commute. All the commutation relation tells us is that when the
angular momentum is aligned with the x-axis, it cannot simultaneously be aligned with the y-axis! When the angular
momentum L is aligned with the x-axis, we must use the operator L̂x and we have L = (L, 0, 0). The use of the

operator L̂x is strictly reserved for this situation L = (L, 0, 0). We have then Lx = L and [̂L2 ] = L̂2
x. Contrary to
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what standard QM claims, the components Lx = L, Ly = 0 and Lz = 0 are defined simultaneously. Similarly, the use

of the operator L̂y is strictly reserved for the situation L = (0, L, 0). Just as the correct spin operator for a spin ~

2 s

would be sxŜx+ syŜy + szŜz = ~

2 [ s·σ ], the correct operator for the angular momentum would be ℓxL̂x+ ℓyL̂y+ ℓzL̂z,

where the unit vector ℓ = (ℓx, ℓy, ℓz) ‖ L. These expressions sxŜx + syŜy + szŜz and ℓxL̂x + ℓyL̂y + ℓzL̂z just serve

to express s and ℓ in the bases of their Lie algebras. This is in conformity with the fact that both the sets Ŝj and L̂j

form a basis. When the spin is parallel to s only sxŜx+ syŜy + szŜz is a meaningful operator. An isolated component,

e.g. szŜz has then no meaning, because the eigenfunction ψ of sxŜx + syŜy + szŜz is not an eigenfunction of Ŝz. The

definition domains of sxŜx + syŜy + szŜz and Ŝz are disjoint. Every direction of space has its own operator. Just as

σ = (σx, σy, σy) is not one vector operator but a basis of three vector operators, L̂ = (L̂x, L̂y, L̂z) is not one vector
operator but a basis of three vector operators.

All this shows that guessing operators from their action on e−
ı
~
(Et−p·r) is flawed, because it leads to the wrong

conclusions that L̂j would be the general expression for the j-component of the angular momentum L and that

L̂2ψ = ~2l(l + 1)ψ would define the operator for the square L2 of the angular momentum. We should never loose of
sight that SO(3) and SU(2) are mere Euclidean geometry. When one sticks to the correct geometrical interpretation
of the algebra of the rotation group the classical intuition is restored.

2.5 Other possible meanings we can attribute to the parameters (x, y, z)

We have shown (see [3], p. 21), that in SU(2):

ξ =

[

ξ0
ξ1

]

=









±
√

x−ıy
2

±
√

−x−ıy
2









, (25)

represents a spinor corresponding to a rotation R. Here (x, y, z) = e′x + ıe′y ∈ C3, where (e′x, e
′

y, e
′

z) is the canonical

triad of basis vectors (ex, ey, ez) of R3 after rotation by R. Here (x, y, z) ∈ I ⊂ C3 is a so-called isotropic vector,
which belongs to the isotropic cone I . The idea behind introducing isotropic vectors is that from e′x + ıe′y we can
calculate the whole triad of rotated basis vectors of e′j , and that this triad defines the rotation unambiguously. The
coordinates (x, y, z) of the isotropic vector are thus true group parameters, which is not the case for the parameters
(x, y, z) and (px, py, pz) in Eq. 13. The identity in Eq. 25 and its derivation lead to the notion that a spinor is a “square
root of an isotropic vector”, but we have shown (see [3], p.7) that the spinors used in QM just represent group elements

(i.e. rotations and Lorentz transformations). Let us calculate L̂zξ:

L̂zξ =
~

ı

[

x
∂

∂y
− y

∂

∂x

]









√

x−ıy
2

√

−x−ıy
2









=
~

2ı







−ıx−y

2
√

x−ıy

2

−ıx+y

2
√

−x−ıy

2






=

~

2ı









−ı(x−ıy)/2√
x−ıy

2

ı(−x−ıy)/2√
−x−ıy

2









= −~

2





1

−1



 ξ = −~

2
σzξ = −Ŝzξ. (26)

Here the coordinates (x, y, z) of the isotropic vector have nothing to do with the position coordinates in Eq. 13, but
we can imagine to generalize the definition domain of the algebra by analytic continuation from the isotropic cone I

to C3 and then to restrict it to R3. This will not change the algebraic calculations. This is important for the harmonic
polynomials which are tensor products ξ ⊗ ξ ⊗ · · · ξ of the spinor ξ (see [10], p.53 and [11], p. 68), and where (x, y, z)
are subsequently used as position coordinates in QM (see [11], p. 85). If one were to stick to the original definition
of (x, y, z) ∈ I this would be just incomprehensible (see [11], p. 5). What saves us is that any meaning we give to
the parameters (x, y, z) can be used in the algebra. The meaning does not intervene in the calculations. Note that we

obtain −Ŝz rather than Ŝz. It is easy to see where this minus sign comes from. In fact ϕ = ωτ ends via E = ~ω/2

up in Et, while to obtain L̂j we have used −p · r. The difference in sign is therefore not an issue. In fact, if we had

started from ψ = e−
ı
~
(Et+p·r) to define L̂z, we would have found L̂zξ = Ŝzξ. Also changing the choice of the isotropic

vector by the substitution y| − y in ξ would lead to L̂zξ = Ŝzξ, as is easily checked. As another coincidence we can

note that after introducing ψ = (1+ σz)χ, Eq. 18 leads to Ŝzψ = −~

ı
∂
∂ϕψ, which is again up to a sign analogous to

the definition for L̂z = ~

ı
∂
∂φψ, although φ 6= ϕ is now the azimuthal angle of a set of spherical coordinates (θ, φ).
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