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Kinetic derivation of Cahn-Hilliard fluid models

Vincent Giovangigli

CMAP–CNRS, École Polytechnique, Palaiseau, FRANCE

Abstract

A compressible Cahn-Hilliard fluid model is derived from the kinetic theory of
dense gas mixtures. The fluid model involves a van der Waals/Cahn-Hilliard gradi-
ent energy, a generalized Korteweg’s tensor, a generalized Dunn and Serrin heat flux,
and Cahn-Hilliard diffusive fluxes. Starting form the BBGKY hierarchy for gas mix-
tures, a Chapman-Enskog method is used—with a proper scaling of the generalized
Boltzmann equations—as well as higher order Taylor expansions of pair distribu-
tion functions. An Euler/van der Waals model is obtained at zeroth order while the
Cahn-Hilliard fluid model is obtained at first order involving viscous, heat and diffu-
sive fluxes. The Cahn-Hilliard extra terms are associated with intermolecular forces
and pair interaction potentials.

1 Introduction

Cahn-Hilliard models of fluid mixtures describe interphases—interfaces between phases—
as regions with smooth variations of physical properties [1, 2, 3]. Such diffuse interface
models generalize to fluid mixtures previous models developped for single species flu-
ids [2, 3, 4, 5]. Diffuse interface models have been used successfully to describe spinodal
decomposition, droplets dynamics, three phase contact lines, surface diffusion, as well as
transcritical flames [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

For single species fluids, the thermodynamics of diffuse interface models has been built
by van der Waals [4] using a gradient squared term in the free energy and the correspond-
ing capillary tensor has been derived by Korteweg [12]. The proper heat flux has been
obtained by Dunn and Serrin in the framework of rational thermodynamics [13]. These
equations have alternatively been obtained from Hamiltonian considerations by Gavrilyuk
and Shugrin [14] and deduced from the kinetic theory of dense gases by Giovangigli [15].

For fluid mixtures, Cahn and Hilliard [1] first used a mole fraction gradient squared
term in the free energy and later a density gradient in order to develop a thermody-
namic formalism [16]. The Cahn-Hilliard equations have then been obtained in isother-
mal situations without convection phenomena [1], and later coupled with Navier-Stokes
type equations [17, 18]. The general situation of nonisothermal Cahn-Hilliard fluids with
Navier-Stokes type equations has next been investigated using mainly thermodynamical
considerations [2, 19, 20, 21, 22, 23]. In this work, we first rederive the Cahn-Hilliard
fluid equations from rational thermodynamics for completeness and in order to serve as
a comparison with the kinetic theory derivation. The model obtained from rational ther-
modynamics, that will be in agreement with the kinetic derivation, is found to differ from
previous models of the literature [2, 19, 20, 21, 22, 23, 24]. The capillary force terms
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in diffusion fluxes and the capillary-diffusive contributions in the heat flux are found to
differ. We also establish, however, that the resulting model essentially agrees with the
those obtained in [2, 19, 20, 23, 24], while some other models are found to be unphysical.
This establishes incidentally that thermodynamic methods using entropy production rates
are ambiguous for diffuse interface models since there are various terms in the entropy
production rate that involve products of several gradients as for single species fluids [15].

Aside from macroscopic thermodynamical arguments, it is important to investigate
Cahn-Hilliard fluids at the molecular level. Statistical mechanics of equilibrium systems
that are highly inhomogeneous on the scale of length of intermolecular forces has been
used to investigate fluid interfaces [25, 26, 27, 28, 3]. The links between interface structure,
stress tensor, surface tension, pair distribution functions, and intermolecular forces have
been deepened and this has led to expressions for the interfacial energy, the capillary
pressure tensor and the capillary coefficient [25, 26, 27, 28, 3].

Considering nonequilibrium systems, the kinetic theory of gases has been used in var-
ious contexts in order to investigate phase transitions as described in the review paper by
Frezzotti and Barbante [29]. Liquid-vapor phase changes have notably been investigated
by employing linearized Boltzmann equations with condensation-evaporation boundary
conditions [30, 31, 32]. Vlasov-Enskog type equations have also been used to investigate
spatial aspects of phase transition [33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45].
Detailed molecular dynamics of Lennard-Jones fluids have further been performed by
Frezzotti et al. [46] and compared to capillary fluid models with a general very good
agreement. Concerning the derivation from the kinetic theory of diffuse interface mod-
els for single species fluids, a notable achievement was that of Rocard who derived the
capillary force acting locally in a fluid using a Taylor expansion of the pair distribu-
tion function [5, 47]. Rocard recovered the Korteweg tensor and expressed the capillary
coefficient in term of the interaction potential. Piechór also investigated the links be-
tween kinetic nonlocal stresses and Korteweg’s tensor using an Enskog-Vlasov equation
[37]. An elegant minimum BGK-Vlasov model has also been introduced by Takata and
Noguchi [39] with nonideal effect mediated through a nonlocal self-consistent force term
and collisions acting as a thermal bath. A gradient type energy has been obtained in the
continuum limit as well a single-species Cahn-Hilliard type equation an isothermal frame-
work [39] and these results have then been generalized to take into account temperature
variations [45]. Still considering single species fluids, a full derivation of nonisothermal
capillary fluid equations from the kinetic theory of dense gases has been obtained by the
Giovangigli [15]. However, to the best of the author’s knowledge, a complete derivation
of Cahn-Hilliard fluid mixture models from the kinetic theory of dense gas mixtures is
still missing is the object of this work. The resulting model will then be compared with
that obtained from rational thermodynamics.

The kinetic theory of dense gas mixtures is based on generalized Boltzmann equations
for the species one-particle distribution functions [48, 49, 50], generalizing the situation
of single species fluids [51, 52, 53, 54, 55, 56, 57]. Such Boltzmann equations are obtained
from the two first BBGKY hierarchy equations and involve cluster expansions as well as
Bogoliubov’s functional property. A key point in such generalized Boltzmann equations,
allowing the derivation of Cahn-Hilliard fluids, is that the collision terms involve species
one-particle distribution functions evaluated at different spatial positions.

With the aim of deriving fluid macroscopic equations from the kinetic model, we
first introduce a new Enskog scaling for collision operators in the generalized Boltzmann
equations. We next revisit and simplify the derivation of nonideal fluid equations—still
without capillary effects—with viscous, heat and diffusion fluxes as investigated by Cohen
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et al [49]. The new scaling clarifies the analysis of fluid equations and directly yields that
the zeroth order one-particle distributions are Maxwellians. Assuming that repulsive po-
tentials are hard, some collision integrals for dense gas mixtures are also simplified in such
a way that the diffusive fluxes are directly expressed in terms of chemical potential gradi-
ents in agreement with thermodynamics. In comparison, linear system inversion have been
used in previous work in order to transform fluxes expressed in terms of density gradients
into fluxes expressed in terms of chemical potential gradients [49, 50]. The corresponding
matrices, however, may be singular in the situation of thermodynamic instabilities. The
resulting macroscopic equations are found to be that of nonideal Navier-Stokes-Fourier-
Fick fluids with density dependent transport coefficients [48, 49, 50], generalizing the
results obtained for single species fluids [51, 55, 56, 57, 53].

In order to recover diffuse interface models at the Euler level—the zeroth order of
Enskog expansion, we introduce symmetrized zeroth order species pair distribution func-
tions. Higher order Taylor expansions of pair distribution functions are then performed in
the conservation equations. For the sake of simplicity, the kinetic derivation is performed
in the situation where the capillary coefficients are independent of temperature. As a re-
sult, we obtain the Euler/van der Waals equations for fluid mixtures, extending previous
results for single species fluids [15]. The internal energy includes density gradient terms,
the pressure tensor involves a generalized Korteweg type tensor and the heat flux includes
a Dunn and Serrin type contribution. The diffuse interface or capillary coefficients are
also related to intermolecular forces and interaction potentials.

The Cahn-Hilliard fluid model is next obtained at the Navier-Stokes level—the first
order of Enskog expansion—by using higher order expansions of pair distribution func-
tions in the conservation equations and in the linearized Boltzmann equations. The
symmetrized pair distribution functions already used at the Euler level yield all the rel-
evant terms of the Cahn-Hilliard diffusion driving forces and conservation equations at
first order. The alterations arising from the differences between the Bogoliubov and the
symmetrized distribution functions are also investigated and shown to be negligible in
the regime investigated. The resulting Cahn-Hilliard fluid equations then coincide with
the model derived from rational thermodynamics, that is, the energy density, the zeroth
order extra gradient terms in the pressure tensor and the heat flux coincide as well as the
Cahn-Hilliard type fluxes and the capillary-diffusive heat fluxes. The energy conservation
equations and the species diffusion driving forces differ from that of previous work but the
differences with some previous models are found to be unessential. Finally, the Gibbsian
entropy is found to coincide with the zeroth order kinetic entropy only in the absence of
gradient capillary terms.

The equations governing Cahn-Hilliard fluids are investigated in Section 2 using ra-
tional thermodynamics. The kinetic theory of dense gas mixtures and the generalized
Boltzmann equations are described in Section 3. The derivation of nonideal multicompo-
nent fluid equations without capillary effects is presented in Section 4. The zeroth-order
Euler/van der Waals equations are obtained in Section 5 and the first-order Cahn-Hilliard
equations in Section 6. A discussion of the Cahn-Hilliard equations and their derivation
is finally presented in Section 7.

2 Cahn-Hilliard fluids from rational thermodynamics

We first derive in this section the equations governing Cahn-Hilliard fluids from rational
thermodynamics. These equations involve a generalized Cahn-Hilliard/van der Waals’
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energy [4], a Korteweg’s tensor [12], a Dunn and Serrin’s heat flux [13] Cahn-Hilliard
type diffusive fluxes, and a capillary-diffusive heat flux. We also address the ambiguity
of rational themodynamics—the thermodynamics of irreversible processes—for such non-

linear problems, with the apparition of various gradients’ products terms in the rate of
entropy production, leading to artificial alternatives for the expression of transport fluxes.

2.1 A Cahn-Hilliard type free energy

The Cahn-Hilliard free energy per unit volume A is written in the form

A = Au +
∑

i,j∈S

1
2κij∇ρi·∇ρj , (2.1)

where S = {1, . . . , ns} denotes the species indexing set, ns the number of species, Au

the bulk free energy per unit volume, ρi the partial density of the ith species, ∇ the
usual differential operator and κij, i, j ∈ S, the mass based capillary coefficients that are
symmetric κij = κji. The superscript u is used to denote standard or bulk phase ther-
modynamic properties that do not involve gradients, i.e., that are also valid for spatially
uniform fluids. The free energy Au only depends on the partial densities ρ1, . . . , ρn and
the absolute temperature T whereas the gradient squared term

∑
i,j∈S

1
2κij∇ρi·∇ρj in

A represents an excess free energy of the interfacial region. Such gradient energies (2.1)
have notably been considered by Cahn [16], Rowlinson and Widom [3], Falk [19], Alt and
Pawlow [24], Verschueren [20], Liu et al. [23], and Heida et al. [21] and they reduce to
the van der Waals energy for a single species fluid [2, 3, 4, 5]. Energies involving mass or
mole fraction gradients are also easily rewritten in the general form (2.1).

Denoting by S the Gibbsian entropy per unit volume and gi the Gibbs function per
unit mass of the ith species, we have the thermodynamic relation dAu = −SudT +∑

i∈S g
u
i dρi. Differentiating (2.1), it is then obtained that

dA =−
(
Su −

∑

i,j∈S

1
2∂Tκij∇ρi·∇ρj

)
dT

+
∑

k∈S

(
guk +

∑

i,j∈S

1
2∂ρkκij∇ρi·∇ρj

)
dρk +

∑

i∈S

γi·d∇ρi, (2.2)

where d denotes the differentiation operator and where the mass based vectors γi, i ∈ S,
are defined by

γi =
∑

j∈S

κij∇ρj , i ∈ S. (2.3)

Using the thermodynamic relations ∂TA = −S and ∂ρiA = gi, i ∈ S, the identity (2.2)
implies that the Gibbsian entropy S and the species Gibbs functions par unit mass gk are
given by

S = Su −
∑

i,j∈S

1
2∂Tκij∇ρi·∇ρj, gk = guk +

∑

i,j∈S

1
2∂ρkκij∇ρi·∇ρj. (2.4)

The mixture Gibbs function per unit volume G is then found to be

G = Gu +
∑

i,j,k∈S

1
2ρk∂ρkκij∇ρi·∇ρj , (2.5)
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and the pressure p = G − A reads

p = pu +
∑

i,j∈S

1
2

(∑

k∈S

ρk∂ρkκij − κij

)
∇ρi·∇ρj . (2.6)

The equality of the Gibbsian entropy S with the bulk entropy Su when capillarity
coefficients are independent of temperature is in agreement with van der Waals derivation
in the situation of single species fluids [4, 3]. Denoting by E the energy per unit volume
and using the thermodynamic relation E = A + TS, it is further obtained that

E = Eu +
∑

i,j∈S

1
2(κij − T∂Tκij)∇ρi·∇ρj . (2.7)

The generalized volumetric Gibbs relation is finally obtained in the form

TdS = dE −
∑

i∈S

gidρi −
∑

i∈S

γi·d∇ρi, (2.8)

and involves the extra gradient variables ∇ρi, i ∈ S.

2.2 Entropy production and fluid equations

The conservation equations for the partial densities ρi, i ∈ S, are in the form

∂tρi +∇·(ρiv) +∇·Fi = 0, i ∈ S, (2.9)

where v denotes the fluid velocity and Fi the mass flux of the ith species. For the sake of
simplicity, no chemical source terms have been considered in the species equations. The
diffusive fluxes Fi, i ∈ S, satisfy the mass conservation constraints

∑
i∈S Fi = 0 so that

summing the ns species conservation equations (2.9) yields the total mass conservation
equation ∂tρ+∇·(ρv) = 0.

The momentum conservation equation reads

∂t(ρv) +∇·(ρv⊗v) +∇·P = 0, (2.10)

where ⊗ is the tensor product between vectors and P the total pressure tensor, and the
total energy conservation equation is in the form

∂t
(
E + 1

2ρ|v|
2
)
+∇·

(
v(E + 1

2ρ|v|
2)
)
+∇·(Q+P·v) = 0, (2.11)

where Q denotes the total heat flux. Multiplying the momentum conservation equation
(2.10) by the velocity vector v and subtracting the result from the total energy conser-
vation equation (2.11) also yields a conservation equation for the internal energy E as in
standard fluids.

Combining the conservation equations and Gibbs relation (2.8), the following expres-
sion for the rate of entropy production (A.7) may be obtained as detailed in Appendix A

∂tS +∇·(vS)+∇·

(
Q

T
−

∑

i∈S

γi

T
(ρi∇·v +∇·Fi)−

∑

i∈S

(gi
T

− ∇·γi

T

)
Fi

)

=− 1

T

(
P − pI −

∑

i∈S

(∇ρi⊗γi − ρi∇·γiI)
)
:∇v

−
(
Q−

∑

i∈S

γi(ρi∇·v +∇·Fi) +
∑

i∈S

∇·γiFi

)
·∇

(−1

T

)

−
∑

i∈S

Fi·

(
∇
gi
T

− ∇(∇·γi)

T

)
, (2.12)
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where I denotes the unit tensor. Proceeding as in the thermodynamics of irreversible
processes [58] and using the Curie principle, we deduce from the expression of entropy
production (2.12) that the pressure tensor and the total heat flux are in the form

P = pI +
∑

i∈S

∇ρi⊗γi −
∑

i∈S

ρi∇·γiI +Pd, (2.13)

Q =
∑

i∈S

γiρi∇·v +
∑

i∈S

γi∇·Fi −
∑

i∈S

∇·γiFi +Qd, (2.14)

where Pd is the viscous tensor and Qd the dissipative heat flux. The diffusion fluxes
reduce to their dissipative part Fi = Fd, i ∈ S and the vectors γi, i ∈ S, are given by
(2.3). We also deduce that the dissipative fluxes Pd, Fi, i ∈ S, and Qd are in the form

Pd =− v∇·v I − η
(
∇v +∇vt − 2

3∇·v I
)
, (2.15)

Fi =−
∑

j∈S

Lij

(
∇

(gj
T

)
− ∇∇·γi

T

)
− Lie∇

(−1

T

)
, (2.16)

Qd =−
∑

i∈S

Lei

(
∇

(gj
T

)
− ∇∇·γi

T

)
− Lee∇

(−1

T

)
, (2.17)

where v denotes the volume viscosity, η the shear viscosity and Lij , i, j ∈ S ∪ {e}, the
mass and heat transport coefficients. The matrix of mass and heat transport coefficients L
defined by L = (Lij)i,j∈S∪{e} is symmetric positive semi-definite with a nullspace spanned

by the vector (1, . . . , 1, 0)t as for ordinary fluids [58, 59]. The fluxes Fi = Fd
i , i ∈ S, and

Qd are obtained with (2.16) and (2.17) in their thermodynamic form [58, 60, 59] and the
link with the usual form is is discussed in Section 4.4.

In the following, we will denote for convenience by Pko the Korteweg type tensor,
i.e., the zeroth order gradient part of the pressure tensor P, and by Qds the Dunn and
Serrin type heat flux, i.e., the zeroth order gradient part of the total heat flux Q, that
are given by

Pko =
∑

i,j∈S

1
2

(∑

k∈S

ρk∂ρkκij − κij

)
∇ρi·∇ρjI

+
∑

i,j∈S

κij∇ρi⊗∇ρj −
∑

i,j∈S

ρi∇·(κij∇ρj)I, (2.18)

Qds =
∑

i,j∈S

κijρi∇ρj∇·v. (2.19)

We will also denote by Qcd the extra capillary-diffusive first-order term given by

Qcd = −
∑

i∈S

∇·γiFi +
∑

i∈S

γi∇·Fi. (2.20)

These fluxes Pko, Qds, and Qcd will have to be recovered from the kinetic theory as well
as the expression of the dissipative fluxes. Some simplifications may further be obtained
in the situation of free energies expressed in terms of mass or mole fraction gradients as
discussed in Appendix B.

The heat and mass transfer coefficients Lij , i, j ∈ S ∪ {e}, may be rescaled in the
form

Lij =
Lij

Tρiρj
, i, j ∈ S, Lei = Lie =

L̂ie

Tρi
i ∈ S, Lee =

L̂ee

T 2
. (2.21)
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and we define the force terms Xi, X
th
i , and X ch

i as the opposite of the total force, the
thermodynamic force, and the capillary force X ch

i of the ith species per unit volume

Xi = X th
i +X ch

i , X th
i = ρiT∇

(gi
T

)
, X ch

i = −ρi∇∇·γi, i ∈ S. (2.22)

The thermodynamic force per unit mass of the ith species is also given by −T∇(gi/T )
[58] and the capillary force per unit mass by ∇∇·γi. Defining then the species diffusion
velocities Vi, i ∈ S, by [55, 56]

Vi =
Fi

ρi
, , i ∈ S, (2.23)

we may rewrite the mass and heat transport fluxes in the form

Vi =−
∑

j∈S

LijXj − Lie∇ log T, (2.24)

Qd =−
∑

i∈S

LeiXi − Lee∇T. (2.25)

One may also introduce the total diffusion driving forces

di = xi

(
∇

(gi
T

)
−∇∇·γi

)
, i ∈ S, (2.26)

that are such that
Xi = nkBTdi, i ∈ S, (2.27)

and that may also be split between the thermodynamic diffusion driving force d th
i =

xi∇(gi/T ) and the Cahn-Hilliard diffusion driving force d ch
i = xi∇∇·γi. These diffusion

driving forces of the ith species are such that X th = nkBTd
th
i and X ch = nkBTd

ch
i ,

i ∈ S. The diffusion velocities are then easily rewritten in terms of these diffusion
driving forces. The variant expressions (2.24)(2.25) may also be obtained by expressing
the rate of entropy production due to heat and mass transfer in the form

− 1

T

(
Q−

∑

i∈S

γi(ρi∇·v +∇·Fi) +
∑

i∈S

∇·γiFi

)
·∇ log T − 1

T

∑

i∈S

Vi·Xi,

and proceeding as in the thermodynamic of irreversible processes. Finally, in order to
relate the expression of dissipative fluxes (2.16)(2.17) or (2.24)(2.25) to more traditional
expressions, it is necessary to subtract a temperature gradient from the themodynamic
force terms X th

i , i ∈ S. This generally involves pressure based thermodynamic functions
that explode at mechanical unstable states [9] as addressed in Section 4.5.2.

2.3 Ambiguity of rational thermodynamics

An important difficulty associated with rational thermodynamics when applied to phase
field models is the presence in the rate of entropy production of quantities involving prod-

ucts of several gradients. More specifically, in the expression (2.12) of entropy production,
all terms in the form

ρi∇·v γi·∇

(−1

T

)
, i ∈ S, (2.28)

involve both temperature and velocity gradients. Considering these terms as temperature

gradient terms one recovers the Korteweg’s type tensor Pko and Dunn and Serrin’s type
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heat flux Qds. However, using ∇·v = ∇v:I, these gradients’ product terms (2.28) may
also be considered as velocity derivative terms. This then leads to an alternative form of
entropy production as well as to unphysical transport fluxes as already established in the
situation of a single species fluid [15].

Similarly, various terms may be regrouped differently in the expression of the entropy
production rate, as notablyFi·dxb(∇·γi)/T , i ∈ S. More specifically, the variant entropy
production rate (A.6) has been used in the literature [2, 20, 23] as well as the other variant
(A.8) in [19, 24]. The resulting flux expressions only differ in the first order capillary flux
Qcd and in the force terms Xi, i ∈ S, or equivalently the diffusion driving forces di,
i ∈ S, all the other terms being unchanged. Indeed, the first variant (A.6) leads to the
flux

Q′cd =
∑

i∈S

γi∇·Fi, (2.29)

with the terms −∑
i∈S∇·γiFi missing, and to the force terms

X ′
i = ρiT

(
∇
gi
T

−∇
∇·γi

T

)
= ρiT∇

(gi
T

− ∇·γi

T

)
, i ∈ S, (2.30)

with the factor 1/T inside the gradient operator. The other variant (A.8) leads to the
heat flux

Q′′cd = 0, (2.31)

with both terms −∑
i∈S∇·γiFi and

∑
i∈S γi∇·Fi missing, and to the force terms

X ′′
i = ∇

gi
T

−∇∇·
γi

T
,= ∇

(gi
T

−∇·
γi

T

)
, i ∈ S, (2.32)

with the factor 1/T inside the divergence operators. Even though these fluxes differ from
the results obtained from the kinetic theory, we will see in Section 7.1 that these models
essentially agree since temperature variations are modest in interphase fronts.

Finally, the other variant (A.9) leads to the flux

Q′′cd = −
∑

i∈S

giFi −
∑

i∈S

∇·γiFi +
∑

i∈S

γi∇·Fi, (2.33)

that contains the unphysical term −∑
i∈S giFi. Such a term is physically absurd even

in the absence of capillarity since Q−∑
i∈S giFi is involved in the entropy flux and not

with the heat fluxes that involve species enthalpies [58, 67, 68, 69, 59].
Rational thermodynamics, that is usually a faithful tool for linear-like problems, is

here unable to determine unambiguously the proper transport fluxes. For such nonlinear
problems, there is a failure of rational thermodynamics in the sense that simple algebraic
reorderings of the entropy production rate seems to lead to different physical fluxes and
thus to different physics. This is why only finer physical theories, like the kinetic theory
of dense gases, may determine unambiguously the proper fluxes and equations.

2.4 Equilibrium interfaces

The structure of equilibrium phase interfaces may be obtained extremalizing the entropy
S for given amounts of species mass ρk, k ∈ S, and energy E [61, 9]. One may alterna-
tively minimize the free energy A for given amounts of species mass assuming that the
temperature is constant.
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Using the method of Lagrange multipliers, the infinitesimal variation of interfacial
entropy reads

δ

∫ (
S − αeE −

∑

k∈S

αkρk
)
dx = 0, (2.34)

where αk, k ∈ S, and αe are Lagrange multipliers and δ is the variational symbol. Using
Gibbs relation (2.8) and a few integration by parts, it is obtained from (2.34) that

∫ {( 1
T

− αe

)
δE +

∑

k∈S

(gk
T

−∇ · γk

T
− αk

)
δρk

}
dx = 0. (2.35)

Since the variations δE and δρk, k ∈ S, are arbitrary in (2.35), we conclude that

1

T
− αe = 0 (2.36)

gk
T

−∇ · γk

T
− αk = 0, k ∈ S. (2.37)

We have thus recovered that the interface is isothermal, that the generalized chemical
potentials gk −∇ · γk are constants through the interface, and such interfaces may also
be convected at any velocity.

Assuming then that capillarity coefficients κij , i, j ∈ S, are constant for the sake of
simplicity, multiplying (2.37) by ∇ρk , summing over k ∈ S, and keeping in mind that
the interface is isothermal, we obtain that ∇Au −∑

k∈S∇ρk ∇ · γk = T
∑

k∈S∇ρk αk.
Multiplying (2.37) by ρk, summing over k ∈ S, we also deduce that Gu − ∑

k∈S ρk ∇ ·
γk = T

∑
k∈S ρk αk. Taking the gradient of this identity and subtracting the former

relation then yields that ∇pu−∑
k∈S ρk ∇∇ ·γk = 0 that is the mechanical equilibrium

condition. Such a structure of equilibrium fronts shows that, in a phase change interface,
typically a vaporization front, density gradients may be very large, but we may assume
that temperature variations remain modest in a macroscopic regime.

In the situation of single species fluids, we may further investigate the structure of
a one-dimensional vaporization front [4, 3, 6]. Denoting by l and g the indices of the
liquid and its vapor at equilibrium, the equilibrium relations yields Tl = Tg, pl = pg,
and gl = gg. Denoting by z the normal coordinate, the isothermal interface is such that
1
2κ(dρ/dz)

2 = A −Ag − gg(ρ− ρg). The function A −Ag − gg(ρ− ρg) is the difference
between A and its bi-tangent line, since A l = Ag − gg(ρl − ρg) from the equality of
pressures and since ∂ρA = g at constant temperature. Approximating the excess function
A −Ag − gg(ρ− ρg) as A(ρ− ρl)

2(ρ− ρg)
2, where A is a constant, the density is found

in the form ρ(z) = 1
2(ρl + ρg) +

1
2(ρl − ρg) tanh(z/2z) with the characteristic length

z = (κ/2A)1/2/(ρl − ρg).

2.5 Terminology

The traditional terminology used for fluids involving gradient terms in free energies is not
without criticisms. The word capillary is traditionally used to denote the extra gradient
terms in the energy, the pressure tensor, and the heat or mass fluxes. Historically, this
terminology is associated with fluid rising in thin tubes or capillaries. However, there are
not necessary thin tubes in a given fluid and discontinous multiphase models also imply
the rise of liquids in thin tubes provided the three point boundary conditions are applied
at contact lines. In other words, the rise of fluids in thin tubes is also due to Laplace’s

9



law with curvature effects and to the interaction with tube walls [3], instead of being a
property of the bulk fluid.

A much better terminology is that of diffuse interface. The higher order derivative
terms indeed lead to transition zones between phases where thermodynamic and fluid
properties are smooth, thereby the terminology diffuse. Such terms are also mainly
important in thin transition zones between phases and thus the vocable interface is also an
excellent denomination. The gradient energy terms, that are due to potential interaction
between particles, are also present in a supercritical fluid where in principle, strictly
speaking, there are no interfaces, but where one may still find sharp transition zones [9].

Another very good terminology is that of cohesive fluids. All the gradient terms are
indeed due to cohesive forces that are also independent of the state of the fluid. This
terminology is often used with cohesion of a fluid or cohesive forces and could also be used
for such capillary or diffuse interface fluids. The only possible ambiguity is that attractive
terms in van der Waals type equations are also sometimes termed cohesion coefficients.
In this work, we will equivalently use capillary, diffuse interface or cohesive.

3 A dense gas mixture kinetic model

A kinetic theory describing moderately dense gas mixtures is summarized in this section
as well as the corresponding macroscopic fluid equations [49].

3.1 The BBGKY hierarchy

We consider a dense gas mixture and the associated BBGKY hierarchy—also termed the
YBG hierarchy [3]—governing multiple-particle distribution functions [49]. It is assumed,
for the sake of simplicity, that there are no external forces acting on the particles, that the
species are monatomic, and that no chemical reactions are involved between the species.
The two first equations of the BBGKY hierarchy for fluid mixtures are then in the form

∂tfi + ci ·∇rifi =
∑

j∈S

∫
θijfijdxj , (3.1)

∂tfij + ci ·∇rifij + cj ·∇rjfij − θijfij =
∑

k∈S

∫
(θik + θjk)fijkdxk, (3.2)

where ∂t denotes the time derivative operator, fi the one-point distribution of the ith
species, ri the spatial coordinates of a particle of the ith species, ci the velocity of a
particle of the ith species, fij the pair distribution of the (i, j)th pair of species, fijk the
triplet distribution of the (i, j, k)th triplet of species, ∇ri the derivative operator with
respect to the spatial coordinate ri, and ∇ci the derivative operator with respect to the
velocity ci. We also denote for short by xi the pair of vectors xi = (ri, ci) and by dxi

the volume element dridci. The differential operator θij is given by

θij =
1

mi
∇riϕij ·∇ci +

1

mj
∇rjϕij ·∇cj , (3.3)

wheremi denotes the mass of a particle of the ith species and ϕij the interaction potential
between particles of the ith and jth species that only depends on the interparticle distance

10



rij = |rj − ri| and we denote by rij = rj − ri the difference between the particle spatial
positions. Strictly speaking, we should denote differently the spatial positions of two
colliding particles when i = j, but these subtleties will be left implicit for the sake of
notational simplicity [49]. We will also denote sometimes by r a common coordinate for
all distributions fi, i ∈ S. The traditional distribution functions are fi = fi(xi, t) =
fi(ri, ci, t), the particle pair distribution functions are fij = fij(xi,xj , t) and satisfy
the symmetry relations fij(xi,xj, t) = fji(xj,xi, t). The triplet particle distribution
functions fijk similarly depend on (xi,xj,xk) but triple collision effects are not taken
into account in this work. For a single gas, the equations of the BBGKY hierarchy have
been derived independently by Bogoliubov [62], Born and Green [63], Kirkwood [64], and
introduced by Yvon [65], and we refer to the literature [49, 50, 55, 56, 66] for more details.

The aim of this work being the derivation of macroscopic equations governing Cahn-
Hilliard type fluids, we only use in this work a simplified kinetic theory for moderately
dense gas mixtures. In particular internal states, triple collisions or chemical reactions are
not taken into account and we will also simplify some of the collision integrals associated
with dense gases. We refer to the literature for various difficulties associated with dense
gases like bound states, divergences with quadruple collisions in three dimensions, long
time tails for time correlation functions [51, 55, 56, 57, 53] as well as for internal states
and chemical reactions [67, 68, 69].

3.2 Macroscopic equations

The gas number density of the ith species ni is given by

ni(ri, t) =

∫
fi(ri, ci, t)dci, (3.4)

the total number density n by n(r, t) =
∑

i∈S ni(r, t), and the pair number densities nij
read

nij(ri, rj , t) =

∫
f(ri, ci, rj, cj, t)dcidcj . (3.5)

The partial density of the ith species ρi is given by ρi = mini, the total mass density by
ρ(r, t) =

∑
i∈S ρi(r, t) and the gas velocity v is defined by

ρ(r, t)v(r, t) =
∑

i∈S

∫
micifi(r, ci, t)dci, (3.6)

where the distributions are evaluated at a common value r = ri, i ∈ S.
The internal energy per unit volume of the fluid is decomposed into

E = Ek + Ep, (3.7)

where Ek is the kinetic part and originates from the peculiar motion of the particles
whereas Ep is the potential part due to the species pair interaction potential [49, 55, 56].
The kinetic part Ek and the potential part Ep of the internal energy density may be
written

Ek(r, t) =
∑

i∈S

∫
1
2mi|ci − v|2fi(r, ci, t)dci, (3.8)

Ep(r, t) =
∑

i,j∈S

∫
1
2ϕij(rij)nij(r, r+ rij , t)drij , (3.9)
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where the interaction potential ϕij only depends on rij = |rj − ri| and use has been made
of dxj = drjdcj = drijdcj.

The general macroscopic equations in unclosed form may further be obtained by taking
appropriate moments of (3.1) and (3.2) as detailed in Appendix C. The mass conservation
equation is derived by integrating (3.1) with respect to ci and reads

∂tρi +∇·(ρiv) +∇·Fi = 0, (3.10)

where the mass diffusion flux of the ith species Fi is given by

Fi =

∫
mi(ci − v)fidci. (3.11)

The momentum equation, obtained by multiplying (3.1) bymici, integrating with respect
to ci, and summing over i ∈ S, is in the form

∂t(ρv) +∇·(ρv⊗v) +∇·P = 0, (3.12)

and the total pressure tensor P is decomposed into

P = Pk +Pp, (3.13)

where Pk is the traditional kinetic part

Pk(r, t) =
∑

i∈S

∫
mi(ci − v)⊗(ci − v)fi(r, ci, t)dci, (3.14)

whereas Pp is the potential part

Pp(r, t) = −
∑

i,j∈S

1
2

∫
ϕ′
ij(rij)

rij
rij⊗rij nij

(
r− (1− α)rij , r+ αrij , t

)
dαdrij , (3.15)

and the scalar α must be integrated over (0, 1). The potential part of the pressure
tensor Pp(r, t) has been obtained in a form similar to that of single species fluids [56]
that is more convenient than the expression presented by Cohen et al. [49]. The tensor
Pk corresponds to the transfer of momentum due to the flow of particles and Pp to
the transfer of momentum among particles due to intermolecular forces between species
pairs [55, 56].

The conservation equation for internal energy E is next derived in several steps and
may also be combined with the kinetic energy conservation equation in order to derive the
total energy conservation equation. One first multiply (3.1) by 1

2mi|ci−v|2, integrate with
respect to ci, and sum over i ∈ S, in order to obtain a balance equation for the kinetic
part Ek of the internal energy. The balance equation for the potential part of the energy
Ep is then obtained by multiplying the two point distribution function equation (3.2) by
the potential energy 1

2ϕij(rij), integrating with respect to ci, cj, and rij = rj − ri, and
summing over i, j ∈ S. After lengthy calculations, the governing equation for E = Ek+Ep

is found in the form

∂tE +∇·(vE) +∇·Q = −P :∇v, (3.16)

and the total heat flux is decomposed into

Q = Qk +Qp

1 +Qp

2, (3.17)
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where the kinetic part Qk is in the form

Qk(r, t) =
∑

i∈S

1
2

∫
mi|ci − v|2(ci − v)fi(r, ci, t)dci, (3.18)

and the potential parts Qp

1 and Qp

2 are given by

Qp

1(r, t) =
∑

i,j∈S

1
2

∫
ϕij(rij)(ci − v)fij(r, ci, r+ rij, cj , t)dcidrijdcj, (3.19)

Qp

2(r, t) =−
∑

i,j∈S

1
4

∫
ϕ′
ij(rij)

rij
rij rij ·(ci − v + cj − v)

× fij
(
r− (1− α)rij , ci, r+ αrij , cj , t

)
dαdcidrijdcj , (3.20)

and the scalar α must be integrated over (0, 1). The potential parts of the heat flux Qp

2 is
written here as for of single species fluids [56] that is more convenient than the expression
presented by Cohen et al. [49]. The heat flow vector Qk is similar to that of a dilute
gas and represents the transfer of thermal energy due to the flow of particles. The first
potential part Qp

1 represents the flow of potential energy carried by the particles and Qp

2

represents the flux of energy associated with long range forces between species pairs and
thermal agitation. The scalar product of Qp

2 with a normal vector to a surface element
represents the work per unit time done on all species particles on one side, that move
with their peculiar motion, by all species particles on the other side, and both fluxes Qp

1

and Qp

2 only depend on the species peculiar velocities ci − v and cj − v.

3.3 Generalized Boltzmann equations

The kinetic theory of dense gas mixtures involves generalized Boltzmann equations gov-
erning the species one-particle distribution functions fi, i ∈ S. These equations are
obtained by expanding multiple distribution functions with clusters of independant par-
ticles and using Bogoliubov’s method [48, 49, 50] in a similar way as for single species
fluids [51, 55, 56, 57, 53].

Neglecting the contributions arising from triple distributions or more [56, 53], the pair
distribution functions fij are first written in the form fij = Sijfifj where the streaming
operators Sij read

Sij = exp (−tHij) exp (tHi) exp (tHj), (3.21)

with Hi = ci·∇ri denoting the Hamiltonian operator of the ith particle alone and

Hij = ci·∇ri + cj·∇rj − θij,

the Hamiltonian operator of the (i, j)th pair of particles. The streaming operators
exp (tHs) form Abelian one parameter groups of operators and correspond to the stream-
ing of systems of s independant particle under the influence of the Hamiltonian Hs. It
has been assumed that the initial distribution is a product of uncorrelated distributions
fij(xi,xj , 0) = fi(xi, 0)fj(xj , 0). A fundamental assumption in the model is that the
operators Sij(xi,xj , t) have finite limits as t is large with respect to the collision time

τij(ri, ci, rj, cj) = lim
t→∞

Sij(ri, ci, rj, cj , t), (3.22)
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so that the pair distribution functions are finally in the form

fij = τijfifj, i, j ∈ S, (3.23)

and we refer for more details to Bennett and Curtiss [48], Cohen et al. [49] and Braun
et al. [50] as well as to Choh and Uhlenbeck [51], Ferziger and Kaper [56], Dorfman and
van Beijeren [57], and Garćıa-Coĺın et al. [53] for the single species situation.

The generalized Boltzmann equations governing one-particle distribution functions fi,
i ∈ S, are then in the form

∂tfi + ci ·∇rifi = Ji(f), (3.24)

where f = (fi)i∈S and the ith collision operator Ji reads

Ji(f) =
∑

j∈S

∫
θijτijfi(ri, ci, t)fj(rj , cj, t)dxj . (3.25)

A key point in these equations is that the one-particle species distribution functions are
taken at different positions ri and rj in the collision operator (3.25).

The action of the operators τij is notably discussed in [51, 52, 53, 56, 57, 70] and we
let for convenience

r′i = τijri, r′j = τijrj, (3.26)

c′i = τijci, c′j = τijcj , (3.27)

so that from the conservation of energy in a collision we have

1
2mi|ci|2 + 1

2mj|cj|2 + ϕij(rij) =
1
2mi|c′i|2 + 1

2mj|c′j |2. (3.28)

From the relation fij = τijfifj we further obtain the Bogoliubov distribution [62]

fij(ri, ci, rj , cj) = fi(r
′
i, c

′
i) fj(r

′
j , c

′
j), (3.29)

and we define rij = rj − ri and r′ij = r′j − r′i. Note that when rij is large, there is no
interaction between the particles, in such a way that τij reduces to the identity operator
and the pair distribution function fij(xi,xj, t) is then the product of two independant
distributions fi(xi, t)fj(xj , t).

Decomposing fij in the form

fij = fi(ri, c
′
i) fj(ri, c

′
j) +

(
fi(r

′
i, c

′
i) fj(r

′
j, c

′
j)− fi(ri, c

′
i) fj(ri, c

′
j)
)
, (3.30)

we may accordingly split the operator Ji(f) into

Ji(f) = J (0)
i (f) + J (1)

i (f), (3.31)

where

J (0)
i (f) =

∑

j∈S

∫
θijfi(ri, c

′
i, t)fj(ri, c

′
j , t)dxj, (3.32)

J (1)
i (f) =

∑

j∈S

∫
θij

(
fi(r

′
i, c

′
i, t)fj(r

′
i, c

′
j , t)− fi(ri, c

′
i, t)fj(ri, c

′
j , t)

)
dxj . (3.33)

The generalized Boltzmann equations may finally be written in the form

∂tfi + ci ·∇rifi = J (0)
i (f) + J (1)

i (f), (3.34)

and Bogoliubov has established that the operators J 0
i (f) coincide with Boltzmann opera-

tors [62, 56]. One may note that the operator J (0)
i only involves the particular distribution

fi(ri, c
′
i, t)fj(ri, c

′
j , t) and the terms J (1)

i (f) may also be interpreted as the perturbations
arising from the difference of spatial positions.
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3.4 Differential expressions for J
(1)
i

We rewrite in this section the perturbed collision operators J (1)
i , i ∈ S, as sums of

integro-differential operators for future use. To this aim, we first describe the traditional
splitting of r′i and r′j using the invariance of the center of mass during a collision [56, 49].
The center of mass during collisions rmij may be written

rmij = µiri + µjrj ,

where µi and µj denote the mass ratios for the (i, j)th pair

µi =
mi

mi +mj
, µj =

mj

mi +mj
. (3.35)

From the invariance of rmij in a collision, we have τijr
m
ij = rmij and from rij = rj − ri we

also have rmij = ri + µjrij . After some algebra, it is obtained from τijr
m
ij = rmij that

r′i = ri + µjrij − µjr
′
ij (3.36)

r′j = ri + µjrij + µir
′
ij , (3.37)

where r′ij = r′j − r′i. In order to split J (1)
i , i ∈ S, we write that

δri = r′i − ri = r′i − rmij + rmij − ri, (3.38)

δrj = r′j − ri = r′j − rmij + rmij − ri, (3.39)

and use that rmij − ri = µjrij whereas r′i − rmij = −µjr′ij and r′j − rmij = µir
′
ij.

From the expression (3.33) of J (1)
i (f) as well as (3.38) and (3.39), we obtain

J (1)
i (f) = J (1),s

i (f) + J (1),a
i (f), (3.40)

where

J (1),a
i (f) =

∑

j∈S

∫
θij

(
fi(r

′
i, c

′
i, t)fj(r

′
j , c

′
j, t)− fi(r

m
ij , c

′
i, t)fj(r

m
ij , c

′
j, t)

)
dxj, (3.41)

J (1),s
i (f) =

∑

j∈S

∫
θij

(
fi(r

m
ij , c

′
i, t)fj(r

m
ij , c

′
j, t)− fi(ri, c

′
i, t)fj(ri, c

′
j, t)

)
dxj . (3.42)

The operators J (1),a
i measure the collision effects in the centers of mass rmij whereas the

operators J (1),s
i measure the shift between the local coordinates ri and the centers of

mass rmij .
Letting for convenience

f clij (r, ci, cj, t) = fi(r, c
′
i, t)fj(r, c

′
j, t), (3.43)

and using that rmij − ri = µjrij, we obtain after some calculus

J (1),s
i (f) =

∑

j∈S

µj

∫
θij∂rf

cl
ij

(
αri + (1− α)rmij , ci, cj , t

)
·rijdαdxj . (3.44)
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Similarly, since r′i − rmij = −µjr′ij and r′j − rmij = µir
′
ij, we have

J (1),a
i (f) = −

∑

j∈S

µij

∫
θijΞij(α, r

m
ij , r

′
ij, c

′
i, c

′
j, t)·r

′
ijdαdxj , (3.45)

where

Ξij(α, r
m
ij , r

′
ij , c

′
i, c

′
j , t) =

1

mi
∂rfi(r

m
ij − αµjr

′
ij , c

′
i, t)fj(r

m
ij + αµir

′
ij, c

′
j , t)

− fi(r
m
ij − αµjr

′
ij, ci, t)

1

mj
∂rfj(r

m
ij + αµjr

′
ij, c

′
j , t).

The perturbed collision operator J (1)
i (f) may thus be written as the sum of the two

integro–differential operators J (1),a
i and J (1),s

i .
The transformed coordinates r′i and r′j , and the transformed velocities c′i and c′j ,

are often used in kinetic developments concerning dense gases because they cannot be
expressed simply in terms of ri, rj , ci and cj . Only the terms arising from the center of

mass rmij and associated with J (1),s
i appear to be convenient to manipulate. Incidentally,

letting for convenience cij = cj − ci, c
m
ij = µici + µjcj, and µij = mimj/(mi +mj), all

the transformations

(rij , ci, cj) 7→ (rij, c
m
ij , µijcij) 7→ (r′ij , c

m
ij , µijc

′
ij) 7→ (r′ij , c

′
i, c

′
j),

have unity jacobians from the result of Hoffman and Curtiss [71] and from the relations
ci = cmij − µjcij and cj = cmij + µjcij , in such a way that drijdcidcj = dr′ijdc

′
idc

′
j.

3.5 Kinetic entropy

A kinetic entropy for dense gas mixtures has been introduced by Cohen et al. [49] and
reads

Sk =−
∑

i∈S

kB

∫
fi
(
log(h3

p
fi/m

3
i )− 1

)
dci

− 1
2

∑

i,j∈S

kB

∫ (
fij

(
log(fij/fifj)− 1

)
+ fifj

)
dcidrijdcj , (3.46)

where hp is the Planck constant. In the situation of single species fluids, related entropies
have been introduced in a pioneering work by Stratonovich [72] and investigated by Net-
tleton and Green [73], and an entropy similar to (3.46) has been used by Klimontovich [74]

An important point about such kinetic entropies is that, contrarily to the case of
dilute fluids, there is no known H theorem for spatially nonuniform systems governed by
the generalized Boltzmann equations (3.24). An H-theorem has only been established for
single species fluids in the special situation of spatially homogeneous fluids by Klimon-
tovich [74]. The entropies of systems of particles for the BBGKY hierarchy have also been
investigated by Martynov who established that there are entropy exchanges between the
different levels of approximations [75] and by Singer who also discussed different trunca-
tions of Kirkwood type for the BBGKY hierarchy [76]
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4 Nonideal multicomponent fluids with normal diffusion

We investigate in this section the equation governing nonideal multicomponent fluids with
normal diffusive processes, i.e., without diffuse interface terms. To this aim, we introduce
a proper scaling for the generalized Boltzmann equations (3.34) and use the Chapman-
Enskog method. This new scaling clarifies the apparition of nonzero contributions from
the collision terms Ji in the fluid equations. It also directly yields that equilibrium
distributions are Maxwellian distributions at zeroth order and will allow the derivation
of Cahn-Hilliard fluid equations. This derivation of nonideal fluid governing equations
only uses first order Taylor expansions of pair distribution functions in the fluxes. We
also simplify some of the collision integrals for dense gas mixtures, typically assuming
that repulsive potentials between pair of particles are hard. As a result, the diffusive
fluxes are directly expressed in terms of chemical potential gradients, as expected from
thermodynamics, without any linear system inversion as in previous work [49, 50]. We also
avoid the use of pressure based thermodynamic functions—like the species enthalpies or
entropies—for expressing the diffusion fluxes [49, 50], since such thermodynamic functions
may explode at unstable thermodynamic states [9].

4.1 A new Enskog scaling

The generalized Boltzmann equations (3.34) are written in the form

∂tfi + ci ·∇rifi =
1

ǫ
J (0)
i (f) + J (1)

i (f), (4.1)

where ǫ is the formal parameter associated with Enskog expansion. The distributions fi,
i ∈ S, are correspondingly expanded in the form

fi = f
(0)
i

(
1 + ǫφ

(1)
i +O(ǫ2)

)
, (4.2)

where φ
(1)
i is the perturbed distribution for the ith species in the Navier-Stokes regime.

The traditional scaling of the collision operators Ji used in previous work has been

in the form Ji/ǫ instead of J (0)
i /ǫ. This leads to conceptual difficulties since there are

invariably nonzero gradient terms arising from Ji in the Euler and Navier-Stokes equa-

tions [51, 55, 56, 57, 53]. Since these terms arise from J (1)
i , the new scaling leads to a

clearer derivation. Moreover, with the traditional scaling, it is necessary to assume at
zeroth order that the distributions are Maxwellians [55, 56, 49], whereas it will be simply
derived by using (4.1). Finally, we do not use a distinguished limit where the Enskog pa-
rameter is taken to be equal to a typical rescaled macroscopic gradient [51, 55, 56, 57, 53]
and this will allow the derivation of Cahn-Hilliard type equations where typically first
order derivatives are mixed with third order derivatives.

4.2 The Euler regime

We investigate in this section the zeroth order or Euler regime and the corresponding
kinetic equations are

J (0)
i

(
f (0)

)
= 0, (4.3)
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where f (0) = (f
(0)
i )i∈S. Keeping in mind that J (0)

i coincides with the Boltzmann collision

operator [62, 56], and using Boltzmann H theorem, we obtain that the distributions f
(0)
i

are local Maxwellians

f
(0)
i = ni

( mi

2πkBT

) 3
2
exp

(
−mi|ci − v|2

2kBT

)
, (4.4)

where ni denotes the number density of the ith species, mi the mass of the particles
of the ith species, v the local fluid velocity and T the local fluid temperature. The
temperature T insures that the local value of the internal energy density E is recovered

with f (0) = (f
(0)
i )i∈S, including its potential part [49, 50, 53, 56].

The zeroth order pair distributions f
(0)
ij are then taken in the form [56, 53, 54, 49]

f
(0),cl
ij = f

(0)
i (ri, c

′
i, t)f

(0)
j (ri, c

′
j, t),

with both distributions f
(0)
i and f

(0)
j evaluated at r = ri = rj as suggested by the kernel

of J (0) = (J (0)
i )i∈S [51, 56, 53, 49]. From the conservation of energy (3.28) and the

conservation of momentum mici +mjcj = mic
′
i +mjc

′
j, it is then obtained that

f
(0),cl
ij = f

(0)
i (ri, ci, t)f

(0)
j (ri, cj, t)gij(ri, rij), (4.5)

where gij(ri, rij) denotes the equilibrium correlation function

gij(ri, rij) = exp
(
−ϕij(rij)

kBT (ri)

)
, (4.6)

evaluated at temperature T (ri).
The nonideal multicomponent Euler fluid equations are then obtained at zeroth or-

der [51, 55, 56, 57, 53, 49]. In order to derive these equations, the most convenient
method is to use the Maxwellian distributions (4.4), the pair correlation functions (4.5),
and the macroscopic equations of Section 3.2 with first order Taylor expansions of pair
distribution functions. This method is equivalent to directly take moments of the kinetic
equations and use the differential expressions of the perturbed collision operators in order

to evaluate J (1)
i (f (0)). The multicomponent Euler equations are obtained in the form [49]

∂tρi +∇·(ρiv) = 0, i ∈ S, (4.7)

∂t(ρv) +∇·(ρv⊗v) +∇p = 0, (4.8)

∂tE +∇·
(
vE

)
+ p∇·v = 0, (4.9)

where the internal energy E and the pressure p are detailed in the next section. The
zeroth order pressure tensor thus reduces to P (0) = pI and the zeroth order mass and

heat diffusion fluxes vanish F
(0)
i = 0, i ∈ S, and Q(0) = 0.

4.3 Thermodynamic properties

Using expressions of the one and two point distribution functions (4.4) and (4.5), and the
macroscopic equations of Section (3.2), the pressure is found in the form

p =
∑

i∈S

nikBT −
∑

i∈S

1
6ninj

∫
ϕ′
ij(rij)rijgij(rij)drij . (4.10)
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Integrating by parts the integral in (4.10), it is obtained that

1
6

∫
ϕ′
ij(rij)rijgij(ri, rij)drij =

2π

3

∫
ϕ′
ij(rij)r

3
ijgij(ri, rij)drij

= 2πkBT

∫
fijr

2
ijdrij,=

1
2kBT

∫
fijdrij,

where fij denote the (i, j)th species pair Mayer function

fij(ri, rij) = exp
(
−ϕij(rij)

kBT (ri)

)
− 1. (4.11)

Denoting by βij the (i, j)th species pair second virial coefficients

βij =

∫
fijdrij, (4.12)

the pressure is then in the form [49]

p =
∑

i,j∈S

nikBT −
∑

i∈S

1
2ninjβijkBT. (4.13)

The internal energy is derived with a similar procedure and reads

E = 3
2

∑

i∈S

nikBT + 1
2

∑

i,j∈S

ninj

∫
ϕij(rij)gij(rij)drij , (4.14)

so that [49]

E = 3
2

∑

i∈S

nikBT + 1
2

∑

i,j∈S

ninjβ
′
ij(kBT )

2, (4.15)

where β′ij = dβij/d(kBT ).
The fluid entropy is obtained by evaluating the kinetic entropy (3.46) with Maxwellian

distributions (4.4) and the pair distribution functions (4.5). After some algebra, it is found
that [49]

S(0) = −
∑

i∈S

kBni
(
log(niΛ

3
i )− 5

2

)
+

∑

i,j∈S

1
2kBninj(βij + kBTβ

′
ij), (4.16)

where Λi is the De Broglie thermal wavelength Λi = hp(2πmikBT )
−1/2. This entropy has

been shown to be second order accurate by Cohen et al. [49], that is, one may establish
that formally

∫
Skdci − S(0) = O(ǫ2).

The corresponding species Gibbs functions per molecule are next obtained in the form

gi = kBT log(niΛ
3
i )−

∑

j∈S

kBTnjβij , (4.17)

and play an important role in diffusive processes. Cohen et al. [49] have also established
that the volumetric Gibbs relation dS(0) = dE −∑

k∈S gkdnk holds at second order.
Another interesting property of the species Gibbs functions gi, i ∈ S, is that they

are naturally pressure based, that is, the derivative of g = G/n with respect to the
mole fraction of the ith species xi = ni/n at fixed temperature, pressure, and other
mole fractions coincides with gi [77]. These species Gibbs functions gi, i ∈ S, notably
remain finite at states of mechanical instability when ∂np = 0. On the contrary, various
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traditional pressure-based thermodynamic functions like species enthalpies, entropies, or
specific heats explode at unstable thermodynamic state where ∂np = 0, that is, when∑

i,j∈S ninjβij = n [9]. Such exploding thermodynamic functions have notably been
used by Cohen er al. [49] and Braun et al. [50] in order to express the mass and heat
fluxes, so that such expressions are only valid when thermodynamic stability holds.

4.4 Linearized equations

At first order, taking into account the operator decomposition (3.31), the linearized equa-

tions governing the perturbed distribution functions φ(1) = (φ
(1)
i )i∈S are in the form

Ii(φ(1)) = ψ
(1)
i , i ∈ S, (4.18)

where the ith linearized operator Ii reads

Ii(φ(1)) = − 1

f
(0)
i

∑

j∈S

∫
θijf

(0)
i (ri, c

′
i, t)f

(0)
j (ri, c

′
j, t)

(
φ
(1)
i (ri, c

′
i, t) + φ

(1)
j (ri, c

′
i, t)

)
dxj,

(4.19)

and the right hand sides ψi are

ψ
(1)
i = −

(
∂t log f

(0)
i + ci·∇ri log f

(0)
i

)
+

1

f
(0)
i

J (1)
i (f (0)), i ∈ S. (4.20)

A fundamental property is now that the linearized operators coincide with Boltzmann
linearized collision operators [62, 56].

The right hand sides ψ(1) =
(
ψ
(1)
i

)
i∈S

are evaluated in Appendix D and may be
written as

ψ
(1)
i = −ψη

i :∇v − ψκ
i ∇·v −

∑

j∈S

ψ
Dj

i ·X th
j − ψλ̂

i ·∇

( −1

kBT

)
, (4.21)

where ψη
i are symmetric traceless second order tensors, φκi are scalars, and ψDj , j ∈ S,

ψλ̂
i , are vectors. The quantityX th

i denotes the normal force term of the ith species arising
solely form thermodynamics, i.e., without capillary effects, given by

X th
i = nikBT∇

( gi
kBT

)
= ρiT∇

(gi
T

)
, (4.22)

where gi is the Gibbs function of the ith species per particle and gi = gi/mi the Gibbs
function per unit mass. This force term X th

i is the thermodynamic part of the total
force term Xi obtained in (2.22). This force term X th

i is also directly related to the
thermodynamic diffusion driving force

d th
i = xi∇

( gi
kBT

)
= ximi∇

( gi
kBT

)
, (4.23)

since X th
i = nkBTd

th
i , i ∈ S. As detailed in Appendix D, the functions ψη

i , ψ
κ
i , ψ

Dj

i ,
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j ∈ S, and ψλ̂
i , that depend on ci, are given by

ψη
i =

mi

kBT

(
(ci − v)⊗(ci − v)− 1

3 |ci − v|2I
)(

1−
∑

j∈S

njmjβij
mi +mj

)
+

∑

j∈S

µijnj ā
η
ij , (4.24)

ψκ
i = −

(
3
2 −

mi|ci − v|2
2kBT

)(
2
3

(
1−

∑

j∈S

njmjβij
mi +mj

)
(4.25)

+
1

T∂TE
(∑

l∈S

nl∂nl
E − E − p

))
+

∑

j∈S

µijnj ā
κ
ij , (4.26)

ψ
Dj

i =
1

nikBT
(δij − yi)(ci − v), (4.27)

ψλ̂
i = −(ci − v)

(
3
2kBT − mi|ci − v|2

2

)(
1−

∑

j∈S

njmjβij
mi +mj

)
(4.28)

+ (ci − v)
(
3
2kBT +

∑

j∈S

njmi

mi +mj
β′ij(kBT )

2 − mi

ρ
(E + p)

)
+

∑

j∈S

µijnj ā
λ̂
ij ,

(4.29)

where µij = mimj/(mi +mj) denotes the reduced mass of the (i, j)th pair of particles

and ā
η
ij , āκij and āλ̂ij are collision integrals associated with dense gas mixtures. Some

collision integrals associated with dense gases āDij , i, j ∈ S, have been simplified by
assuming that interaction potentials between pairs of particles are hard (D.10) as detailed
in Appendix D. The first order equations (4.18)–(4.21) are essentially similar to classical
first order relations obtained for dilute gases, except that there are extra gradient terms

arising from the perturbed collision operators J (1)
i and that the force terms X th

i , i ∈ S,
involve chemical potential gradients.

The distributions φ
(1)
i are then uniquely determined by imposing Enskog type con-

straints so that the true value of the local macroscopic variables ni, v and T , or equiv-

alently E , are determined by the distributions f
(0)
i alone [56, 53]. These constraints,

summarized in Appendix E, have been shown to reduce to [53, 78, 49]

∫
f
(0)
i φ

(1)
i dci = 0, (4.30)

∑

i∈S

∫
mi(ci − v)f

(0)
i φ

(1)
i dci = 0, (4.31)

∑

i∈S

∫
1
2mi|ci − v|2f (0)i φ

(1)
i dci = 0. (4.32)

In particular, the potential and gradient parts are eliminated in the constraints [49]. By

linearity and isotropy of the collision operator, we may decompose φ
(1)
i in the form

φi = −φηi :∇v − φκi ∇·v −
∑

j∈S

φ
Dj

i ·X th
j − φλ̂i ·∇

( −1

kBT

)
, (4.33)

where φηi are traceless second order symmetric tensor, φκi are scalars, φDj , j ∈ S, and

φλ̂i , are vectors.
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Each unknown φµ = (φµi )i∈S for µ ∈ {η, κ,Dj , λ̂} then satisfies a system of tenso-
rial integral equations Ii(φµ) = ψµ

i , i ∈ S, and the φµ = (φµi )i∈S have the following
structure [49]

φηi = ϕη
i

(
|ci − v|2

) (
(ci − v)⊗(ci − v)− 1

3 |ci − v|2I
)
,

φκi = ϕκ
i

(
|ci − v|2

)
,

φ
Dj

i = ϕ
Dj

i

(
|ci − v|2

)
(ci − v), j ∈ S,

φλ̂i = ϕλ̂
i

(
|ci − v|2

)
(ci − v),

where ϕη
i , ϕ

κ
i , ϕ

Dj

i and ϕλ̂
i are scalar isotropic functions of the velocities, i.e., that only

depend on |ci − v|2. The tensorial distributions φµ = (φµi )i∈S further satisfy the induced
constraints derived from (4.30)–(4.32) according to their tensorial rank

∫
f
(0)
i φκi dci = 0, i ∈ S,

∑

i∈S

∫
1
2mi|ci − v|2f (0)i φκi dci = 0, (4.34)

∑

i∈S

∫
mi(ci − v)f

(0)
i φ

Dj

i dci = 0, j ∈ S, (4.35)

∑

i∈S

∫
mi(ci − v)f

(0)
i φλ̂i dci = 0. (4.36)

4.5 The Navier-Stokes-Fourier-Fick regime

4.5.1 Dissipative fluxes for all thermodynamic states

The resulting macroscopic equations at first order of the Enskog expansion are of Navier-
Stokes-Fourier-Fick type [49]. The situation of single species fluids, that only involves the
fluid and energy equations, has also been discussed in [51, 55, 56, 57, 53].

By substituting the expansion (4.33) into the expression of diffusion fluxes (3.11),
pressure tensors (3.14)(3.15), and heat fluxes (3.19)(3.20), it is obtained after some algebra
that

P = pI +Pd, Fi = Fd
i , Q = Qd, (4.37)

where

Pd =− v∇·v I − η
(
∇v +∇vt − 2

3∇·v I
)
, (4.38)

Fd
i =−

∑

j∈S

Lij∇

(gj
T

)
− Lie∇

(−1

T

)
, (4.39)

Qd =−
∑

i∈S

Lei∇

(gi
T

)
− Lee∇

(−1

T

)
, (4.40)

where v denotes the volume viscosity, η the shear viscosity, and Lij , i, j ∈ S ∪ {e} the
thermodynamic mass-heat diffusion coefficients, and gi the Gibbs function per unit mass
of the ith species. This thermodynamic form (4.39) and (4.40) for the diffusion and heat
fluxes is then fully compatible with rational thermodynamics [58, 60].
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Focusing in more details on mass fluxes Fi =
∫
mi(ci−v)f

(0)
i φ

(1)
i dci, i ∈ S, using the

expression of the right hand sides (4.27), and using standard kinetic theory techniques,
it is first obtained that

Vi = −
∑

j∈S

1
3kBT [φ

Di , φDj ]X th
j − 1

3 [φ
Di , φλ̂],

−1

kBT
, (4.41)

where for any ξ = (ξi)i∈S and ζ = (ζi)i∈S, with ξi and ζi functions of ci, we have defined
the bracket product by

[ξ, ζ] = 〈〈f (0)ξ,Iζ〉〉 = 〈〈f (0)Iξ, ζ〉〉, (4.42)

with Iζ =
(
Ii(ζ)

)
i∈S

, f (0)ξ,= (f
(0)
i ξi)i∈S, and the scalar product is given by

〈〈ξ, ζ〉〉 =
∑

i∈S

ξi ⊙ ζi dci, (4.43)

where ⊙ is the tensor maximum contraction symbol. The expressions (4.39) and then
directly obtained upon letting

Lij =
1
3ρiρjkBT

2[φDi , φDj ], i, j ∈ S, (4.44)

and
Lie =

1
3ρiT [φ

Di , φλ̂], i ∈ S. (4.45)

The resulting expressions for transport coefficients in dense gases are generally highly
complex and we refer to the literature for more details [49]. The symmetry relations have
notably been investigated by Ernst [79], also with triple collisions.

The coefficients L = (Lij)i,j∈S∪{e} are usually termed phenomenological coefficients in
the thermodynamic literature but are not anymore phenomenological when obtained form
the kinetic theory of dense gases and the link with the traditional transport coefficients
is addressed in the next section.

4.5.2 Dissipative fluxes with thermodynamic stability

We discuss in this section the link between the matrix L and the traditional fluid mixture
transport coefficients. In order to define the standard diffusion coefficients, it is neces-
sary to subtract a temperature gradient from the forces X th

i , i ∈ S, and this procedure

traditionally involves pressure based thermodynamic property. Such transport coefficients
thus requires mechanical stability, that is, the inequalities ∂ρp < 0 or ∂νp > 0 must hold
where ν = 1/ρ is the specific volume.

In the situation of mechanical stability, the map (T, ρ, y1, . . . , yns) 7→ (T, p, y1, . . . , yns)
is locally invertible and one may introduce pressure based thermodynamic properties,
that is, thermodynamic properties as functions of (T, p, y1, . . . , yns). For any thermody-
namic function A(T, ρ, y1, . . . , yns) we may then define the pressure based thermodynamic
property

Ã(T, p, y1, . . . , yns) = A(T, ρ, y1, . . . , yns),

and the pressure-based Gibbs relation is in the form

dg̃ = ν̃dp− s̃dT +
∑

k∈S

g̃kdyk. (4.46)
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Letting then for any thermodynamic property A
Ãk = ∂ykÃ(T, p, y1, . . . , yns),

we recover from (4.46) that the Gibbs functions gk, k ∈ S, are naturally pressure based
g̃k = gk, k ∈ S. From Gibbs relation (4.46), we also obtain after some calculus that

d
( g̃k
T

)
=
ν̃k
T
dp− h̃k

T 2
dT +

∑

l∈S

∂yl g̃k
T

dyl,

where h̃k = ∂ykh(T, p, y1, . . . , yns) is the enthalpy of the kth species and h = e+pν denoting
the mixture enthalpy per unit mass with H = ρh and H = E + p. The classical diffusion
driving forces d cl

i , i ∈ S, are then obtained by subtracting from the thermodynamic
diffusion driving forces d th

i = ximi∇(g/kBT ) (4.23) the proper temperature gradient
terms

d th
i = d cl

i − ximih̃i
kBT 2

∇T, i ∈ S. (4.47)

The resulting diffusion driving forces d cl
i are then linear combinations of mole fractions

and pressure gradients.
In order to relate the heat and mass transport coefficients Lij , i, j ∈ S ∪ {e}, to the

traditional transport coefficients, we denote by L the matrix

L =




L11 · · · L1ns L1e
...

. . .
...

...
Lns1 · · · Lnsns Lnse

Le1 · · · Lens Lee


 . (4.48)

The matrix L is symmetric positive semi-definite and has a one-dimensional nullspace
spanned by (0, 1, . . . , 1

)t
. We introduce then the modified matrix L̂ = AtLA with

L̂ =




L̂11 · · · L̂1ns L̂1e
...

. . .
...

...

L̂ns1 · · · L̂nsns L̂nse

L̂e1 · · · L̂ens L̂ee


 , A =




−h̃1
Ins

...

−h̃ns
0 · · · 0 1


 , (4.49)

where Ins denotes the identity matrix in R
ns . The high pressure multicomponent diffusion

coefficients Dij , i, j ∈ S, thermal diffusion coefficients θi, i ∈ S, and partial thermal

conductivity λ̂ are next defined by [80, 59]

Dij =
nkBL̂ij

ρiρj
, i, j ∈ S, θi =

L̂ie

ρiT
=
L̂ei

ρiT
, i ∈ S, λ̂ =

L̂ee

T 2
. (4.50)

Using the high pressure coefficients (4.50) and the traditional diffusion driving forces
(4.47), the fluxes Fi, i ∈ S, and Q may be rewritten in the more familiar form

Fi = −
∑

j∈S

ρiDijd
cl
j − ρiθi∇ lnT, i ∈ S, (4.51)

Q = −nkBT
∑

j∈S

θjd
cl
j − λ̂∇T +

∑

i∈S

h̃iFi. (4.52)

The high pressure symmetric multicomponent diffusion coefficients Dij , i, j ∈ S, have
notably been considered by Kurochkin et al. [80] and generalize the symmetric coefficients
introduced for dilute gases by Waldmann [81, 82, 55].
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4.6 Van der Waals equation of state

In order to recover the van der Waals equation of state, we may assume that the interac-
tion potentials ϕij are such that

ϕij(rij) =




+∞ if 0 ≤ rij ≤ σij ,

ϕij(rij) <∞ if σij < rij ,
(4.53)

for some positive collision diameter σij depending on the species pair (i, j). One may
also assume that ϕij is attractive ϕij < 0 for 2σij < rij , and increases towards zero as
rij → ∞. One may then recover the van der Waals equation of state by decomposing the
integrals 2π

∫
fijdrij in two zones and proceeding as for single species fluids [83, 84, 85].

More specifically, one may write that

∫
fijr

2
ijdrij =

∫ 2σij

0
fijr

2
ijdrij +

∫ ∞

2σij

fijr
2
ijdrij ,

use fij = −1 over (0, 2σij), linearize the Mayer functions fij ≈ −ϕij/kBT for 2σij < rij ,
to get that

2πkBT

∫
fijdrij ≈ −4kBT

4πσ3ij
3

− 2π

∫ ∞

2σij

ϕij(rij)r
2
ijdrij,

and the corresponding pressure law reads

p =
∑

i∈S

nikBT +
∑

i,j∈S

ninjkBT
16πσ3ij

3
+

∑

i,j∈S

ninj2π

∫ ∞

2σij

ϕij(rij)r
2
ijdrij.

Assuming naturally that σij is in the form σij = 1
2(σi + σj), i, j ∈ S, where σi is

a typical collision diameter of the ith species, the sum
∑

i,j∈S ninjσ
3
ij may be rewritten∑

i,j∈S
1
4ninj(σ

3
j + 3σ2jσi) and approximated as

∑
i,j∈S ninjσ

3
j . Assuming then that the

volume occupied by the particules is small

∑

j∈S

nj
4πσ3j
3

<< 1,

we obtain the state law

p =
∑

i∈S

nikBT

1−
∑

j∈S bjnj
−

∑

i,j∈S

ninjaij (4.54)

where

bj = 4
4πσ3j
3

, aij = −2π

∫ ∞

2σij

ϕij(rij)r
2
ijdrij,

and the van der Waals equation of state for mixtures has been recovered from (4.10)
in a similar way as in statistical physics [83, 84, 85]. Moreover, we have also obtained
from (4.10) the traditional mixing rules for the covolume

∑
j∈S bjnj as well as for the

attractive term
∑

i,j∈S ninjaij introduced by Berthelot [86].
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4.7 Orders of magnitude

We estimate in this section the order of magnitude of nonideal terms in thermodynamic
functions. To this aim, we introduce a characteristic temperature T ⋆, a characteristic
interparticle distance r⋆, and a characteristic particle massm⋆. The characteristic number
density is then n⋆ = 1/r⋆3 and the particle thermal velocity c⋆ is such that m⋆c⋆2 = kBT

⋆.
We also denote by τ⋆

k
a characteristic collision time, by l⋆

k
= τ⋆

k
c⋆ the mean free path, by

τ⋆
h
a characteristic hydrodynamic time or fluid time and by l⋆

h
= τ⋆

h
c⋆ the corresponding

fluid length. We also introduce a characteristic collision diameter σ⋆, also typical of the
range of the interaction potentials, and we generally have σ⋆ ≪ r⋆ ≪ l⋆

k
≪ l⋆

h
as well as

σ⋆2l⋆
k
= r⋆3, and the Knudsen number is given by l⋆

k
/l⋆

h
.

From the expression (4.12) of the second virial coefficients βij , i, j ∈ S, we then
obtain that β⋆ = β⋆ij = σ⋆3. We may next estimate that the nonideal terms in the

pressure (4.13) are typically of the order kBT
⋆σ⋆3/r⋆6. The ratio of the nonideal terms∑

i,j∈S
1
2ninjβijkBT to the ideal terms

∑
i∈S nikBT may then be estimated to be of the

order (σ⋆/r⋆)3 [66]. The nonideal term are thus usually modest but increase with the
fluid density and are ultimately of order unity for liquid like states, where the interparticle
distance r⋆ is of the order of the collision diameter σ⋆.

5 Euler/van-der-Waals fluid equations

We derive in this section the van der Waals/Cahn-Hilliard fluid equations at zeroth or-
der of the Chapman-Enskog method. The method combines symmetrized zeroth order
pair distribution functions as well as higher order Taylor expansions of pair distribution
functions.

5.1 The symmetrized pair correlation functions

Previous work concerning single species fluids has shown that higher order expansions of
pair distribution functions are required in order to derive diffuse interface models [15]. It

is thus important to select proper pair distribution functions f
(0)
ij .

The zeroth order pair distribution functions (4.5) of Section 4.2

f
(0),cl
ij = f

(0)
i (ri, c

′
i, t)f

(0)
j (ri, c

′
j, t) = f

(0)
i (ri, ci, t)f

(0)
j (ri, cj , t)gij(ri, rij),

have traditionally been used in the literature for investigating gas mixtures [48, 49, 50]
as well as for investigating single species fluids [51, 55, 56, 57, 53]. When substituted
in the governing equations and when using first order Taylor expansions, the nonideal
fluid equations with normal diffusive processes [49], presented in Section 4, are obtained.

However, this pair distribution function f
(0),cl
ij is not without criticism. A first point

is that f
(0),cl
ij is not symmetric in its arguments as it should be for a pair distribution

function. Moreover, when rij is large, gij(ri, rij) become unity and f
(0),cl
ij reduces to

f
(0)
i (ri, ci, t)f

(0)
j (ri, cj , t) that has no physical meaning.

In this section, instead of using the distributions f
(0),cl
ij , the following symmetrized

pair distribution functions f
(0),sy
ij are used [15]

f
(0),sy
ij = f

(0)
i (ri, ci, t)f

(0)
j (rj, cj , t)gij(ri,j, rij), i, j ∈ S, (5.1)
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where ri,j denotes a symmetric average of ri and rj like the center of mass ri,j = µiri +

µjrj or the midpoint 1
2(ri + rj). We first note that f

(0),sy
ij and f

(0),cl
ij coincide at zeroth

order when ri = rj = ri,j so that f
(0),sy
ij is also in the kernel of the operator J (0)

i

that only consider the values of fij on the linear subspace ri = rj. Moreover, f
(0),sy
ij

is symmetric in its argument and the limit for large rij is the natural uncorrelated pair

distribution function f
(0)
i (ri, ci, t)f

(0)
i (rj , cj, t). Previous work has also shown that zeroth

order diffuse interface fluid models may be recovered from such symmetrized distributions
in the situation of single species fluids [15]. In order to derive the macroscopic equations,

the symmetrized zeroth order pair distribution functions f
(0),sy
ij are thus used with the

general balance equations established in Section 3.2 as well as with higher order Taylor
expansions of pair distribution functions.

Although a nonequilibrium correlation function gij could in principle also be used,
we will nevertheless use a correlation function (4.6) in the simplified form gij(ri, rij)
as if the temperature were locally uniform. There is indeed no clear expression for a
nonequilibrium correlation function at interfaces and many solutions have been proposed
like using various average temperatures, or the center of mass temperature, or else solving
integral equations [3, 87, 88]. In addition, temperature variations during phase change
are modest, keeping in mind that equilibrium fronts are isotherms, at variance with large
density variations. Therefore, using either ri or a symmetric average ri,j would yield the
same results and we will frequently denote by gij(rij) the corresponding function, the
dependence on ri being implicit. Using a locally uniform correlation function gij will
imply that the capillary coefficients are independent of temperature in agreement with
the van der Waals and Rayleigh approximate expressions.

In summary, we have to revisit the Chapman-Enskog method for mixtures of dense
gases using the Enskog scaling (4.1), the zeroth pair distribution function (5.1), as well as
higher order Taylor expansions of pair distribution functions, following the derivation of
single species diffuse interface fluid equations [15]. Since new thermodynamic properties
depending on derivatives will be obtained, we will denote with the superscript u the
nonideal bulk phase thermodynamic properties obtained in Section 4 that do not involve
gradients. As a general result, when pair distribution functions are expanded in the
potential parts of the internal energy or the pressure tensor, nonideal mixture are obtained
at zeroth order whereas diffuse interface terms involving density gradients are recovered
at second order.

5.2 A generalized Korteweg tensor

We consider the tensor Pp arising from interaction potentials (3.15) and look for extra

terms with two spatial derivatives Pex arising from second order expansions of the distri-

bution functions f
(0),sy
ij (ri, ci, rj , cj, t) = f

(0)
i (ri, ci, t)f

(0)
j (rj , cj , t)gij(rij). We use Taylor

expansions of f
(0),sy
ij and only keep the extra terms involving two derivatives.

The relevant integrand factors in (3.15) may first be expanded in the form

nij
(
ri−(1− α)rij , ri + αrij, t

)
≈

(
ni(ri)− (1− α)∇ni(ri)·rij +

1
2 (1− α)2∇2ni(ri):(rij⊗rij)

)

×
(
nj(ri) + α∇nj(ri)·rij +

1
2α

2∇2nj(ri):(rij⊗rij)
)
× gij(rij),

where the dependencies on time t have been left implicit. Extracting the terms with two
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derivatives, the relevant integrands involve the factors

−α(1− α)∇ni(ri)·rij ∇nj(ri)·rij

and
1
2 (1− α)2nj(ri)∇

2ni(ri):(rij⊗rij) +
1
2α

2ni(ri)∇
2nj(ri):(rij⊗rij).

Incidentally, the products ni(ri)nj(ri) are already taken into account in the state law
(4.13) whereas the odd terms yield zero contributions. Odd terms only contribute in first
order linearized equations and thus in the dissipative fluxes [56, 53, 49].

Focusing on the first integrands, we note that

∇ni(ri)·rij ∇nj(ri)·rij = ∇ni(ri)⊗∇nj(ri):(rij⊗rij),

and using
∫ 1
0 α(1−α)dα = 1

6 we obtain a first extra contribution p1 to the pressure tensor
in the form

p1 =
∑

i,j∈S

1
12

∫
ϕ′
ij(rij)

rij
gij(rij) rij⊗rij ∇ni⊗∇nj :(rij⊗rij)drij.

We may now use the identity (F.3) from Appendix F in order to perform the integrations
over rij ∈ R

3, and, using elementary symmetries, we obtain that

p1 =
∑

i,j∈S

κij

6

(
2∇ni⊗∇nj +∇ni·∇njI

)
,

where the diffuse interface or capillarity coefficients κij are defined by

κij =
1

30

∫
ϕ′
ij(rij)gij(rij)r

3
ijdrij =

2π

15

∫
ϕ′
ij(rij)gij(rij)r

5
ijdrij. (5.2)

Focusing next on integrands from the Hessian matrices ∇2ni, using
∫ 1
0 α

2dα =
∫ 1
0 (1−

α)2dα = 1
3 , and using elementary symmetries, we obtain a second extra contribution p2

to the pressure tensor in the form

p2 = −
∑

i,j∈S

ni
6

∫
ϕ′
ij(rij)

rij
gij(rij) rij⊗rij ∇

2nj :(rij⊗rij) drij.

Using again the identity (F.3) in order to perform the integrations over rij ∈ R
3, and

using elementary symmetries, we obtain that

p2 = −
∑

i,j∈S

κij

3

(
2ni∇

2nj + ni∆njI
)
.

Collecting previous results, the extra pressure tensor Pex is found in the form

Pex =
∑

i,j∈S

κij

6

(
2∇ni⊗∇nj +∇ni·∇njI − 4ni∇

2nj − 2ni∆njI
)
.

We may then simplify Pex with an equivalent expression P
ex
, that is, we seek P

ex
such

that
∇·Pex = ∇·P

ex
.
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Expressing the divergence of the Hessian matrices contributions ni∇
2nj with the help of

differential identity (F.7), we indeed obtain the simplified pressure tensor

P
ex

=
∑

i,j∈S

κij

(
∇ni⊗∇nj − 1

2∇ni·∇njI − ni∆njI
)
. (5.3)

Introducing the mass based diffuse interface coefficient κij = κij/mimj and using ρi =
mini we may also rewrite the extra pressure tensor ∇·P

ex
as

P
ex

=
∑

i,j∈S

κij

(
∇ρi⊗∇ρj − 1

2∇ρi·∇ρjI − ρi∆ρjI
)
, (5.4)

that coincides with the generalized Korteweg tensor P
ex

= Pko given in (2.18) and
derived from rational thermodynamics in the simplified situation of constant diffuse in-
terface coefficients κij, i, j ∈ S. This tensor also coincide with the traditional Korteweg
tensor derived for single species fluids [15].

5.3 Diffuse interface coefficients

The diffuse interface or capillary coefficients κij have been found in the form (5.2) where
gij(rij) = exp

(
−ϕij(rij)/kBT (ri)

)
. We may integrate by part the integral in (5.2) to get

that

κij =
1
6kBT

∫
fijr

2
ijdrij =

2π
3 kBT

∫
fijr

4
ijdrij, (5.5)

where fij is the Mayer function (4.11). The first moments of the mayer functions thus
yields the second virial coefficients βij whereas the second moments yields the diffuse
interface coefficients κij, i, j ∈ S, up to the 1

6kBT factor. A notable property of the
diffuse interface coefficients κij given by (5.2) is that they are independent of the number
densities nk, k ∈ S.

We may also simplify (5.5) in order to recover the van der Waals and Rayleigh cap-
illarity coefficient. To this aim, we assume that the interaction potentials are like (4.53).
We may simplify then the integral in (5.5) by neglecting the integrals over (0, σij) and by
linearizing fij in the form fij ≈ −ϕij/kBT for rij > σij, and this yields

κij = −1

6

∫

rij>σij

ϕijr
2
ijdrij , i, j ∈ S, (5.6)

that coincide with the van der Waals and Rayleigh formula for single species fluids [3].
The van der Waals and Rayleigh simplified capillarity coefficients (5.6) are then in-

dependent of number densities and of temperature. In a kinetic framework, the indepen-
dence on temperature notably requires to neglect temperature derivative contributions of
capillarity that would arise through the correlation function gij , and that are typically in

the form
∫
ϕ′
ij(rij)ϕ

k
ij(rij) exp

(
− ϕij

kBT

)
r3ijdrij where k ≥ 1 is an integer. We will assume

in the kinetic derivation of Cahn-Hilliard equations that the diffuse interface coefficients
are independent of temperature for the sake of simplicity.

From the expression (5.5) we further deduce that the diffuse interface coefficients
κij are of the order of κ⋆ = κ

⋆
ij = kBT

⋆ σ⋆5 and thus vary like the fifth power of the

collision diameter σ⋆ wheras the second virial coefficients scale as β⋆ = σ⋆3. We may
next estimate that the diffuse interface terms in the pressure (5.3) are typically of the
order κ

⋆(∇n)⋆2 = kBT
⋆n⋆ (σ

⋆

r⋆ )
3( σ⋆

l⋆
∇n

)2 where l⋆∇n is a characteristic length typical of
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density gradients. The ratio of the diffuse interface terms
∑

i,j∈Sκij∇ni⊗∇nj to the
ideal terms

∑
i∈S nikBT may then estimated to be

(σ⋆
r⋆

)3( σ⋆
l⋆∇n

)2
. (5.7)

The capillary terms are thus generally very small unless the interparticle distance r⋆ is
becoming close to the collision diameter σ⋆, i.e., within a liquid-like fluid, and, simulta-
neously, the density gradients length l⋆∇n is also becoming close to σ⋆, i.e., in a phase
change interface like a vaporization front.

5.4 The energy density

We first investigate the extra terms Eex arising from energy density Ep of potential origin

(3.9) that involve integrals of the pair distribution functions f
(0),sy
ij . Expanding the zeroth

order two point distribution functions f
(0),sy
ij = fi(xi, t)fi(xj, t)gij(rij) around rj = ri +

rij, the relevant extra terms involving two derivatives are in the form

1
2

∫
ϕij(rij)gij(rij)ni(ri)

1
2∇

2nj(ri):(rij⊗rij)drij .

After some algebra, using the van der Waals and Rayleigh expression (5.6) for the capil-
larity coefficient, the resulting extra volumetric energy density Eex reads

Eex = −
∑

i,j∈S

1
2κijni∆nj. (5.8)

With the aim of simplifying (5.8), we may use the identity

−
∑

i,j∈S

1
2κijni∆nj =

∑

i,j∈S

1
2κij∇ni·∇nj −

∑

i,j∈S

1
2∇·

(
κijni∇nj

)
,

in order to recover the energy density

Eex =
∑

i,j∈S

1
2κij∇ni·∇nj, (5.9)

in agreement with (2.7), provided we take into account the residual terms

−
∑

i,j∈S

1
2∇·(κijni∇nj).

By changing the energy density from Eex into Eex we indeed have to add an extra corrector
term to the energy equation in the form

Ξ = −
∑

i,j∈S

1
2

(
∂t∇·(κijni∇nj) +∇·

(
∇·(κijni∇nj)v

))
. (5.10)

We may rewrite this corrector as the divergence of a corrector flux q0 by using the zeroth
order species mass conservation equations ∂tni = −∇·(niv), i ∈ S, and keeping in mind
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that the capillarity coefficients κij are taken to be constant. After some algebra, the
corrector term Ξ is obtained in the form Ξ = ∇·q0 where

q0 =
∑

i,j∈S

κijni∇·v∇nj +
∑

i,j∈S

1
2κijninj∇(∇·v) +

∑

i,j∈S

1
2κijni(∇v)t·∇nj

+
∑

i,j∈S

1
2κij

(
∇ni⊗∇nj + ni∇

2nj −∇ni·∇njI − ni∆njI
)
·v. (5.11)

The change of energy density from Eex = −∑
i,j∈S

1
2κijni∆nj into the gradient ex-

pression Eex =
∑

i,j∈S
1
2κij∇ni·∇nj has been clarified when investigating diffuse inter-

face single species fluids [15]. Aside form this derivation [15], it has been advocated in
previous work that Eex may be transformed into Eex by integrating by parts over ‘a large
volume’ with boundary conditions insuring a null contribution of boundary terms. This
is unsatisfactory since an energy density must be a local quantity, not defined over ‘a large
volume’ or else under the nonlocal influence of a far boundary with unclear definition and
unclear boundary conditions. Following the derivation of single species diffuse interface
fluid models [15], by properly taking into account the correction heat flux q0, we clarify
the local change of Cahn-Hilliard energy density from Eex to Eex for mixtures of fluids.

5.5 A generalized Dunn and Serrin heat flux

In order to evaluate the extra heat flux Qex arising from Taylor expansions of the zeroth

pair distribution functions f
(0),sy
ij in Qp

1 and Qp

2 and using (5.1), we need to evaluate the

gradients of f
(0)
i . After some algebra we note that

∇f
(0)
i

f
(0)
i

=
mi

kBT
(ci − v)·∇v +

∇ni
ni

−
(
3
2 − mi|ci − v|2

2kBT

)
∇T

T
, (5.12)

where all gradients are of course evaluated at ri and similarly that

∇2f
(0)
i

f
(0)
i

=
∇f

(0)
i ⊗∇f

(0)
i(

f
(0)
i

)2 − mi

kBT
∇v·∇v +

mi

kBT
(ci − v)·∇2v

− mi

kBT 2

(
(ci − v)·∇v

)
⊗∇T − mi

kBT 2
∇T⊗

(
(ci − v)·∇v

)
+

∇2ni
ni

− ∇ni⊗∇ni
n2i

−
(
3
2 −

mi|ci − v|2
2kBT

)
∇2T

T
+

(
3
2 −

mi|ci − v|2
kBT

)
∇T⊗∇T

T 2
. (5.13)

With Qp

1 given by (3.19), we first need to select the integrands obtained from a Taylor

expansion of f
(0)
i (ri, ci, t)f

(0)
j (rj, cj , t) that involve the peculiar velocity of the first particle

ci − v as well as two spatial derivatives and that are even in rij. It appears, however,

that there are not such terms in the Taylor expansion of f
(0)
i (ri, ci, t)f

(0)
j (rj, cj , t) so that

there is no extra capillary heat flux arising from Qp

1.
On the other hand, with Qp

2 given by (3.20), from the isotropy of space and velocity
space, we need to select the integrands in the Taylor expansion of

f
(0)
i

(
ri − (1− α)rij, ci, t

)
f
(0)
j

(
ri + αrij, cj , t

)
gij(rij),
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that involve two derivatives, are even with respect to rij, and odd with respect to either
ci − v or cj − v. We first focus of integrands having such properties arising from the

cross products of two first order derivatives of f
(0)
i and f

(0)
j at different points. These

integrands are

−α(1− α)
mi

kBT
(ci − v)·∇v·rij

∇nj·rij
nj

− α(1 − α)
mj

kBT
(cj − v)·∇v·rij

∇ni·rij
ni

,

as well as

α(1 − α)
mi

kBT
(ci − v)·∇v·rij

(
3
2 − mj|cj − v|2

2kBT

)
∇T ·rij
T

+ α(1− α)
mj

kBT
(cj − v)·∇v·rij

(
3
2 −

mi|ci − v|2
2kBT

)
∇T ·rij
T

.

The last integrands yield vanishing contributions far each species pair since

∫ (
3
2 −

mi|ci − v|2
2kBT

)
f
(0)
i dci = 0, i ∈ S.

Using then
∫ 1
0 α(1−α)dα = 1

6 as well as the isotropy of the velocity space and elementary
symmetries, we next obtain from the first integrands a contribution q1 for the heat flux
in the form

q1 =
∑

i,j∈S

1
12

∫
ϕ′
ij(rij)

rij
rij rij ·(ci − v)

mi

kBT
(ci − v)·∇v·rij

∇nj·rij
nj

× f
(0)
i (ri, ci)f

(0)
i (ri, cj)gij(rij)dcidrijdcj.

The integration over cj is trivial and yields factors nj, the integration over ci is performed
using the reduced velocity (ci − v)(mi/2kBT )

1/2 and (F.1) from Appendix F, and this
yields

q1 =
∑

i,j∈S

1
12ni

∫
ϕ′
ij(rij)

rij
rij⊗rij ∇v:(rij⊗rij) gij(rij)drij ∇nj.

Using the differential identity (F.3) we then obtain that q1 is in the form

q1 =
∑

i,j∈S

κij

6
ni

(
∇v + (∇v)t +∇·vI

)
∇nj, (5.14)

with the cohesion coefficients κij, i, j ∈ S, given by (5.2).

We now focus on contributions arising from the second order derivatives ∇2f
(0)
i in the

Taylor expansion of f
(0)
i

(
ri−(1−α)rij , ci, t

)
f
(0)
j

(
ri+αrij, cj , t

)
. The relevant integrands

are those even with respect to rij and odd with respect to either ci − v or cj − v. These
integrands are first

α2 2mi

kBT
(ci − v)·∇v·rij

∇nj·rij
nj

+ (1− α)2
2mj

kBT
(cj − v)·∇v·rij

∇ni·rij
ni

,

+α2 mi

kBT
(ci − v)·∇2v:(rij⊗rij) + (1− α)2

mj

kBT
(cj − v)·∇2v:(rij⊗rij).
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The two first integrands yields a contribution q2 similar to q1 obtained in (5.14) but with
the coefficient −1

3 instead on 1
6 .

q2 = −
∑

i,j∈S

κij

3
ni

(
∇v + (∇v)t +∇·vI

)
∇nj. (5.15)

Using the isotropy of space and elementary symmetries, the integrands associated with
∇2v further yield the contributions

q3 = −
∑

i,j∈S

1
12

∫
ϕ′
ij(rij)

rij
rij rij ·(ci − v)

mi

kBT
(ci − v)·∇2v:(rij⊗rij)

× f
(0)
i (ri, ci)f

(0)
i (ri, cj)gij(rij)dcidrijdcj.

The integration over cj yield the factors nj, the integration over ci is obtained with (F.1)
from Appendix F so that

q3 = −
∑

i,j∈S

1
12ninj

∫
ϕ′
ij(rij)

rij
rijrij ·∇

2v:(rij⊗rij)gij(rij)drij .

We may then use the identity (F.6) with ∇2v
...(rij⊗rij⊗rij) = rij ·∇

2v:(rij⊗rij) to de-
duce that

q3 = −
∑

i,j∈S

1
6ninjκij

(
∆v + 2∇(∇·v)

)
. (5.16)

Finally, there are also integrands associated with temperature gradients in the form

−2mi

kBT
(ci − v)·∇v·rij

(
3
2 −

mi|ci − v|2
2kBT

)
∇T ·rij
T

− 2mi

kBT
(ci − v)·∇v·rij

∇T ·rij
T

,

with a similar expression in terms of (cj − v) but all these terms yield vanishing contri-
butions since ∫

|ci − v|2
(
5
2 −

mi|ci − v|2
2kBT

)
f
(0)
i dci = 0.

Collecting previous results, we have obtained an extra total energy flux Qex +Pex·v

in the form
Qex +Pex·v = q0 + q1 + q2 + q3 +Pex·v,

where q0 arise form the change of energy density. The extra total energy fluxQex+Pex·v

thus first reads

Qex+Pex·v =
∑

i,j∈S

κijni∇·v∇nj +
∑

i,j∈S

1
2κijninj∇(∇·v) +

∑

i,j∈S

1
2κijni(∇v)t·∇nj

+
∑

i,j∈S

1
2κij

(
∇ni⊗∇nj + ni∇

2nj −∇ni·∇njI − ni∆nj

)
·v

−
∑

i,j∈S

κij

6
ni

(
∇v + (∇v)t +∇·vI

)
∇nj −

∑

i,j∈S

κij

6
ninj

(
∆v + 2∇(∇·v)

)

+
∑

i,j∈S

κij

6

(
2∇ni⊗∇nj +∇ni·∇njI − 4ni∇

2nj − 2ni∆njI
)
·v.
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In order to simplify this expression we seek an equivalent expression Q
ex

of Qex, that is,
we seek a flux Q

ex
such that

∇·
(
Qex +Pex·v

)
= ∇·

(
Q

ex
+P

ex
·v
)
,

allowing the simultaneous use of the simplified heat flux Q
ex

and of the simplified pres-
sure tensor P

ex
. In order to simplify the divergence of Qex + Pex·v, the first terms

κijni∇·v∇nj are left unchanged since they corresponds to a generalized Dunn and Ser-
rin heat flux, all terms proportional to v are regrouped, and the differential identity (F.8)
is used to transform the divergence of all the terms −1

6κijni∇·v∇nj in the third line
that originates from q1 + q2. After some lengthy algebra this yields the expression

∇·(Qex +Pex·v) =
∑

i,j∈S

∇·

(
κijni∇·v∇nj − 1

3κijni∇v·∇nj

+ 1
3κijni(∇v)t·∇nj − 1

6κijninj∆v + 1
6κijninj∇(∇·v)

+ κij

(
∇ni⊗∇nj − 1

2∇ni·∇njI − ni∆njI
)
·v
)
.

Using then the differential identity (F.9), the divergence of the second to fifth terms (four
terms) on the right hand side vanishes for each species pair (i, j), and we obtain

∇·(Qex +Pex·v) =
∑

i,j∈S

∇·

(
κijni∇·v∇nj + κij

(
∇ni⊗∇nj

− 1
2∇ni·njI − ni∆njI

)
·v
)
,

so that the equivalent heat flux Q
ex

is given by

Q
ex

=
∑

i,j∈S

κijni∇·v∇nj. (5.17)

Using the mass based capillarity coefficients κij = κij/mimj, we obtain that the extra
flux Q

ex
coincides with the generalized Dunn and Serrin heat flux Q

ex
= Qds as derived

from rational thermodynamics. A key point in the simplification of the zeroth order
capillary heat flux was notably the use of the modified density energy Eex in order to
compensate complex corrections arising from Qp

2 by similar terms arising from q0.
In summary, the generalized Korteweg tensor (2.18) has been recovered as well as the

generalized Dunn and Serrin heat flux (2.19) at zeroth order. We have also established
that the energy density is in the form E = Eu +

∑
i,j∈S

1
2κij∇ni·∇nj and the pressure

p = pu −
∑

i,j∈S
1
2κij∇ni·∇nj. The full capillary equations have thus been recovered at

zeroth order and we now have to investigate the first order regime, that is, we have to
recover force terms Xi that include the Cahn-Hilliard extra forces X ch

i , for i ∈ S, as
well as the extra capillary-diffusive heat flux Qcd.

6 Cahn-Hilliard fluid equations

We derive in this section the Cahn-Hilliard fluid equations at first order of the Chapman-
Enskog method. To this aim, we investigate higher order derivative terms in the linearized
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equations and in governing equations at first order of the Enskog expansion. This is done
by using the out of equilibrium symmetrized pair distribution functions f syij as well as
higher order Taylor expansions. The resulting equations then coincide with the model
derived from rational thermodynamics. We also address the use of the pair distribution
functions fBo

ij suggested by Bogoliubov theory and establish that the daviations arising

from the differences fBo
ij − f syij may be seen as a perturbations in some regime.

6.1 Cahn-Hilliard diffusion driving forces

The rescaled generalized Boltzmann equations (4.1) and the use of higher order Taylor
expansions of pair distribution functions have led to the Euler/van der Waals equations
at zeroth order. At first order of Enskog expansion (4.2), we next need to evaluate the

linearized equations governing the perturbed distribution functions φ(1) = (φ
(1)
i )i∈S. The

linearized equations have been obtained in the form (4.18) with the linearized operator
(4.19) and right hand sides (4.20)(4.21). The right hand sides (4.21) have only been
evaluated using first order Taylor expansions of pair distribution functions in Section 4
or Appendix D. We must therefore reevaluate these right hand sides using higher order
Taylor expansions of zeroth order pair distribution functions. We again denote with the
superscript u the bulk phase thermodynamic properties obtained in Section 4 that do not
involve gradients. The higher order derivative terms are again evaluated by using the

symmetrized zeroth order pair distribution functions f
(0),sy
ij , i, j ∈ S.

From the general expression of the right hand sides (4.20), we need to evaluate the

extra terms arising from the material derivatives ∂t log f
(0)
i +v·∇ log f

(0)
i as well as those

arising from the potential parts J (1)
i (f (0))/f

(0)
i . From Euler equations, derived by using

the pair distribution functions f
(0),sy
ij , there are new terms are arising in the material

derivatives ∂t log f
(0)+v·∇ log f (0). More specifically, using (5.4), (5.8), (5.17), we obtain

after some calculus the multicomponent Euler equations with diffuse interface terms in
the form

∂tni + v·ni = −ni∇·v, i ∈ S, (6.1)

∂tv + v·v = −∇pu

ρ
+

∑

i,j∈S

κijni
ρ

∇∆nj, (6.2)

∂tT + v·T =
1

∂T Eu

(∑

l∈S

nl∂nl
Eu − Eu − pu

)
∇·v, (6.3)

where the energy Eu and pressure pu have been obtained in Section 4, instead of the
standard Euler equations (D.2)–(D.4). In particular, there is a cancellation of diffusive
interface terms in the energy equation at zeroth order ∂tEu+∇·

(
vEu

)
+pu∇·v = 0 as well

as in the corresponding temperature equation (6.3). There is, however, a diffuse interface
term in the momentum conservation equation (6.2) involving the capillary forces.

In order to evaluate the material derivative of log f
(0)
i , we may use the expression of

Maxwellian distributions as well as (6.1)–(6.3) and is is obtained that

−
(
∂t log f

(0)
i + v·∇ log f

(0)
i

)
= Ψk,1

i +Ψk,3
i , (6.4)

where Ψk,1
i has already been evaluated in Section 4 and Appendix D and where Ψk,3

i is
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obtained from (6.1)–(6.3) in the form

Ψk,3
i = −mi(ci − v)

ρkBT
·
∑

k,l∈S

κklnk∇∆nl, (6.5)

with the third order derivative terms solely arising from the force term in (6.2).
We next need to investigate the higher order terms arising from the potential parts

J (1)
i (f (0))/f

(0)
i of the right hand sides ψ

(1)
i , i ∈ S. Using the general definition of the

perturbed operator (3.33), we may write

1

f
(0)
i

J (1)
i (f (0)) = Ψp,1

i +Ψp,3
i , (6.6)

where the first order terms Ψp,1
i have already been investigated in Section 4 and Ap-

pendix D whereas the contributions Ψp,3
i arise form third order terms in Taylor expansion

of pair distribution functions. All quadratic terms are indeed even in rij or and r′ij yield

zero contributions in the expansion of J (1)
i (f (0)).

In order to evaluate the third order derivative contributions Ψp,3
i arising from the

perturbed source term J (1)
i (f (0)), for consistency with the Euler equations, and for the

sake of simplicity, we again use the symmetrized pair distribution functions f
(0),sy
ij . In

other words, keeping in mind the identity (4.5), the corrector terms f
(0),Bo
ij − f (0),clij in the

decompositions (3.30), used in J (1)
i (f (0)) are replaced by f

(0),sy
ij − f

(0),cl
ij , where f

(0),Bo
ij =

f
(0)
i (x′

i, t)f
(0)
j (x′

j , t) and f
(0),sy
ij = gij(rij)f

(0)
i (xi, t)f

(0)
j (xj , t). The deviations arising from

the differences between the Bogoliubov zeroth order distribution functions f
(0),Bo
ij and the

symmetrized zeroth order distribution functions f
(0),sy
ij will be shown to be negligible in

some regime in Section 6.3. Using the symmetrized pair distribution functions f
(0),sy
ij , the

third order corrections in J (1)
i (f (0)) are then obtained in the form

Ψp,3
i =

∑

j∈S

1

6f
(0)
i

∫
θij∂

3
(ri,rj)

f
(0),sy
ij

...(0, rij)
⊗3dxj , (6.7)

so that

Ψp,3
i =

∑

j∈S

1
6

∫
ϕ′
ij(rij)

rij
·
(ci − v)

kBT
f
(0)
i f

(0)
j gij∂

3
rjn

(0)
j

...r⊗3
ij dxj ,

where f
(0)
i , f

(0)
j , and gij are evaluated at ri. After some algebra, using the identity (F.5)

of Appendix F, as well as the definition (5.2), it is obtained that

Ψp,3
i =

∑

j∈S

κij

kBT
(ci − v)·∇∆nj. (6.8)

Combining the results without capillarity derived in Appendix D as well as the extra

contributions in Ψk,3
i and that of Ψp,3

i , we finally obtain new right hand sides ψ
(1)
i with

the same structure as (4.21) with unchanged functions ψη
i , ψ

κ
i , ψ

Dj , j ∈ S, and ψλ̂
i , but

with the force terms

Xi = nikBT
(
∇
( gi
kBT

)
−

∑

j∈S

κij

kBT
∇∆nj

)
. (6.9)
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These force terms include both the thermodynamics X th
i and Cahn-Hilliard X ch

i con-
tributions, generalizing (4.23). These force terms Xi also coincide with those obtained
from rational thermodynamics in (2.16) and (2.17). The corresponding perturbed distri-

bution functions φ(1) = (φ
(1)
i )i∈S also satisfy Enskog type constraints that are found to

be similar to that of normal diffusion processes as detailed in Appendix E. Therefore, we
still have the expansions (4.21) and (4.33) with the new forces (6.9) but with unchanged

functions φηi , φ
κ
i , φ

Dj , j ∈ S, and φλ̂i . We have thus recovered the Cahn-Hilliard force
terms X ch

i and diffusive fluxes and we must now investigate diffuse interface terms in
first order conservation equations.

6.2 Conservation equations at first order

The conservation equations at first order are obtained by adding all first order contribu-
tions to the already derived conservation equations at the Euler level.

In order to investigate the extra capillary terms arising at first order of the Enskog
expansion we use the symmetrized pair nonequilibrium distribution functions in the form

f syij = fi(ri, ci, t)fj(rj , cj, t)gij(ri,j, rij), i, j ∈ S, (6.10)

where gij is the correlation function (4.6) evaluated at a symmetric average ri,j of ri

and rj. This distribution first coincide with the zeroth order distribution f
(0),sy
ij when

evaluated for Maxwellian distribution, it is also symmetric in its arguments and the
limit for large rij is the natural uncorrelated nonequilibrium pair distribution function
fi(ri, ci, t)fi(rj, cj , t). The Euler equations for capillary fluids have also been evaluated

by using f
(0),sy
ij . The correlation functions gij(ri,j, rij) are also simplified in the form

gij(ri, rij) as in the zeroth order derivation, and will be denoted by gij(rij). In order
to derive the macroscopic equations at first order, the symmetrized pair distribution

functions f syij are then used with fi = f
(0)
i + f

(0)
i φ

(1)
i , i ∈ S, with the general balance

equations established in Section 3.2, using again higher order Taylor expansions. Denoting
Bogoliubov pair distribution functions (3.29) by fBo

ij = fi(r
′
i, c

′
i)fj(r

′
j, c

′
j), the deviations

arising from the difference fBo
ij − f syij are addressed in the next section. In addition, we

only need to consider the higher order terms in the Taylor expansions in order to evaluate
the capillary contributions to the transport fluxes since the lower order terms have already
been taken into account.

We first consider the tensor Pp and look for new extra terms with two spatial deriva-

tives arising from the first order Enskog contributions. The new terms—at first order of
Enskog expansion—are in the form

−
∑

i,j∈S

1
2

∫
ϕ′
ij(rij)

rij
gij(rij) rij⊗rijf

(0)
i (rαi )f

(0)
j (rαj )

(
φ
(1)
i (rαi ) + φ

(1)
j (rαj )

)
dαdcidrijdcj,

where we have denoted rαi = ri − (1− α)rij and rαj = ri +αrij and have left implicit the
dependence on the velocities ci and cj . These extra terms vanish since the average value

with respect to ci of φ
(1)
i at rαi vanishes as well as the average value with respect to cj

of φ
(1)
j at rαj . As a consequence, there are no new contributions to the pressure tensor at

first order, and in particular no extra capillary terms.
We now investigate the new contributions to the heat fluxes Qp

1 and Qp

2 at first
order of Enskog expansion as well as those arising from the internal energy. Indeed,
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even though there is no first order corrector to the internal energy E , by definition of the
Enskog’s constraints, there is nevertheless a first order corrector when transforming Eex =
−∑

i,j∈S
1
2κijni∆nj into Eex =

∑
i,j∈S

1
2κij∇ni·∇nj. At first order of Enskog expansion,

we indeed have to use the first order governing equation ∂tni = −∇·(niv)−∇·Fi, i ∈ S,

instead of ∂tni = −∇·(niv), i ∈ S, where Fi =
∫
(ci − v)f

(0)
i φ(1)dci is the diffusive flux

or particles with Fi = miFi. The corrector Ξ, given in the general form by (5.10), yields
new terms solely arising from the time derivatives. Since the time derivatives in Ξ arise
through the divergence of −1

2κij(∂tni + v·∇ni)∇nj and −1
2κijni∇(∂tnj + v·∇nj), and

keeping in mind that the capillarity coefficients κij are taken to be constant, we obtain
after some algebra that the corrector Ξ is in the form Ξ = ∇·(q0 + q′

0) with a new
first-order corrective flux q′

0 given by

q
′
0 =

∑

i,j∈S

1
2κij∇·Fi ∇nj +

∑

i,j∈S

1
2κijni∇(∇·Fi). (6.11)

Concentrating then on the flux Qp

1, we have to investigate extra terms with second
order derivatives arising from

∑

i,j∈S

1
2

∫
ϕij(ci − v)gijf

(0)
i (ri)f

(0)
j (rj)

(
φ
(1)
i (ri) + φ

(1)
j (rj)

)
dαdcidrijdcj. (6.12)

Using the zero average constraint for φ
(1)
j at rj, using the definition of Fi as well as that

of κij, this contribution may be rewritten in the form

∑

i,j∈S

1
2

∫
ϕijgijnj(rj)Fi(ri)drij.

Using a Taylor expansion of nj(rj), the diffuse interface extra second order derivatives
terms are finally obtained in the form

q
′
1 = −

∑

i,j∈S

1
2κij∆njFi, (6.13)

whereas the zeroth order terms in (6.12) are taken into account in the standard dissipative
heat flux.

Concentrating then on the flux Qp

2, we must extract second derivative terms from the
contributions

−
∑

i,j∈S

1
4

∫
ϕ′
ij(rij)

rij
gij(rij) rij rij ·(ci − v + cj − v)

f
(0)
i (rαi )f

(0)
j (rαj )

(
φ
(1)
i (rαi ) + φ

(1)
j (rαj )

)
dαdcidrijdcj .

Using the definition of diffusive fluxes, these terms may be rewritten

−
∑

i,j∈S

1
4

∫
ϕ′
ij(rij)

rij
gij(rij) rij rij ·

(
nj(r

α
j )Fi(r

α
i ) + ni(r

α
i )Fj(r

α
j )
)
dαdrij . (6.14)

We next use Taylor expansions for both number densities and diffusion fluxes and extract
all the diffuse interface terms with two spatial derivatives. Considering first the integrands
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associated with the second order derivatives of number densities in (6.14), we obtain a
corrector term in the form

q
′
2 = −

∑

i,j∈S

1
4

∫
ϕ′
ij(rij)

rij
gij(rij) rij rij·

1
2

(
∇2nj :(δr

α
j )

⊗2Fi +∇2ni:(δr
α
i )

⊗2Fj

)
dαdrij ,

We may then integrate with respect to α by using
∫
(δrαj )

⊗2dα = 1
3 rij⊗rij as well as∫

(δrαi )
⊗2dα = 1

3 rij⊗rij and this yields

q
′
2 = −

∑

i,j∈S

1
12

∫
ϕ′
ij(rij)

rij
gij(rij) rij rij·

1
2

(
∇2nj :(rij)

⊗2Fi +∇2ni:(rij)
⊗2Fj

)
drij.

Symmetrizing the sum and using the differential identity (F.3) we then obtain that q′
2 is

in the form
q
′
2 = −

∑

i,j∈S

κij

6

(
2∇2ni +∆niI

)
Fi, (6.15)

with the cohesion coefficients κij, i, j ∈ S, given by (5.2). Considering then the integrands
arising from products of first order derivatives of number densities and diffusive fluxes in
(6.14) we obtain an extra corrector term in the form

q
′
3 = −

∑

i,j∈S

1
4

∫
ϕ′
ij(rij)

rij
gij(rij) rij rij ·

(
∇nj·δr

α
j ∇Fi·δr

α
i +∇ni·δr

α
i ∇Fj·δr

α
j

)
dαdrij .

We may integrate with respect to α by using
∫
(δrαi )⊗(δrαj )dα = −1

6 rij⊗rij as well as∫
(δrαj )⊗(δrαi )dα = −1

6 rij⊗rij and this yields

q
′
3 =

∑

i,j∈S

1
12

∫
ϕ′
ij(rij)

rij
gij(rij) rij rij ·∇Fi·rij ∇nj·rijdrij.

We may next use again the differential identity (F.3) and after some algebra, it is obtained
that

q
′
3 =

∑

i,j∈S

1
6κij

(
∇Fi + (∇Fi)

t +∇·FiI
)
∇nj. (6.16)

Considering finally the integrands involving second derivatives of diffusive fluxes in (6.14)
we obtain an extra corrector term in the form

q
′
4 = −

∑

i,j∈S

1
4

∫
ϕ′
ij(rij)

rij
gij(rij) rij rij·

1
2

(
nj∇

2Fi:(δr
α
i )

⊗2 + ni∇
2Fj :(δr

α
j )

⊗2
)
dαdrij .

We may then integrate with respect to α by using
∫
(δrαj )

⊗2dα = 1
3 rij⊗rij as well as∫

(δrαi )
⊗2dα = 1

3 rij⊗rij and this yields

q
′
4 = −

∑

i,j∈S

1
12

∫
ϕ′
ij(rij)

rij
gij(rij) rij rij·

1
2

(
nj∇

2Fi:(δr
α
i )

⊗2 + ni∇
2Fj :(δr

α
j )

⊗2
)
drij .

Using then the identity (F.6) it is obtained after some algebra that

q
′
4 = −

∑

i,j∈S

1
6κij

(
∆Fi + 2∇(∇·Fi)

)
nj . (6.17)
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The new capillary heat flux at first order Q′ex may now be evaluated from

Q′ex = q
′
0 + q

′
1 + q

′
2 + q

′
3 + q

′
4,

with the terms evaluated with (6.11), (6.13), (6.15), (6.16), and (6.17). The extra heat
flux Q′ex is thus given by

Q′ex =
∑

i,j∈S

1
2κij∇·Fi ∇nj +

∑

i,j∈S

1
2κijni∇(∇·Fi)−

∑

i,j∈S

1
2κij∆njFi

−
∑

i,j∈S

1
6κij

(
2∇2ni +∆niI

)
Fi +

∑

i,j∈S

1
6κij

(
∇Fi + (∇Fi)

t +∇·FiI
)
∇nj

−
∑

i,j∈S

1
6κij

(
∆Fi + 2∇(∇·Fi)

)
nj.

In order to simplify this expression we seek an equivalent expression Q
′ex

of Q′ex, that
is, we seek a flux Q

′ex
such that

∇·Q′ex = ∇·Q
′ex
.

To this aim, we use the identity (F.8) in order to eliminate the contributions involving
∇2njFi and we regroup similar terms and this yields

∇·Q′ex =∇·

(
−

∑

i,j∈S

κij∆njFi +
∑

i,j∈S

κij∇·Fi∇nj −
∑

i,j∈S

1
6κij∇·Fi ∇nj

+
∑

i,j∈S

1
6κij(∇Fi)

t∇nj +
∑

i,j∈S

1
6κijni∇(∇·Fi)−

∑

i,j∈S

κij

6
nj∆Fi

)
.

Using then the differential identity (F.10), for each species pair (i, j), the divergence of
the second to fifth terms in the right hand side vanish, and we obtain that

∇·Q′ex = ∇·

(
−

∑

i,j∈S

κij∆njFi +
∑

i,j∈S

κij∇·Fi∇nj

)
,

and finally that

Q
′ex

= −
∑

i,j∈S

κij∆njFi +
∑

i,j∈S

κij∇·Fi∇nj. (6.18)

Using then the mass based diffuse interface coefficient κij = κij/mimj with the relations

ρi = mini and Fi = miFi, we may rewrite the extra first order heat flux Q
′ex

in the
form −∑

i∈S ∇·γiFi +
∑

i∈S γi∇·Fi so that Q
′ex

coincides with Qcd. A key point in
the simplification of the capillary-diffusive flux was the use of the modified energy density
(5.9) instead of (5.8), as already observed at zeroth order.

In summary, the generalized Korteweg tensor (2.18), the generalized Dunn and Serrin
heat flux (2.19), the cohesive-dissipative heat flux (2.20), the energy density (2.7), the
pressure (2.6), the Cahn-Hilliard diffusive fluxes, as well as nonideal fluid thermodynamics
have been recovered from the kinetic theory.
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6.3 Agreement with Bogoliubov distributions

The higher order diffuse interface contributions in the conservation equations and the
linearized equations have been derived by using the naturally symmetrized zeroth order
pair distribution functions f syij , i, j ∈ S. More specifically, the Euler/van der Waals equa-
tions including the generalized Korteweg tensor (2.18), the generalized Dunn and Serrin
heat flux (2.19), and the energy density (2.7) have been derived by using the zeroth order

f
(0),sy
ij pair distribution functions. Similarly, the Cahn-Hilliard diffusive fluxes and the
capillary-diffusive heat flux (2.20) have been obtained by using the symmetrized pair dis-
tribution functions f syij . The symmetrized distributions are natural and Bogoliubov pair
distribution functions are unfortunately not practical as typically shown by the explicit

use of streaming operators in the dense gas mixture collision inegrals ā
η
ij , ā

κ
ij , ā

λ̂
ij of the

linearized right hand sides (4.24)–(4.28). Nevertheless, the Bogoliubov pair distribution
functions have been used in order to evaluated the normal diffusive fluxes following Cohen
er al. [49]. As a consequence, in order to establish that the model derived with the sym-
metrized distributions is in agreement with Bogoliubov distributions, we have to establish
that the the deviations in diffuse interface terms arising from the difference of distribu-
tions may be neglected in some regime. Since Bogoliubov pair distribution functions are
not practical, their moments cannot unfortunately be evaluated, and it is inevitable to
introduce some approximations.

We investigate the deviations in diffuse interfaces terms arising from the differences
fBo
ij − f syij in a regime where the dominant terms arise from the density derivatives and
we make use of hard potential approximations. That is, we establish that the deviations
arising from fBo

ij − f syij may be neglected in a regime where temperature gradients and
relative Mach numbers inside interphase fronts are small. To this aim, we introduce
a characteristic length of temperature gradients l⋆∇T , a characteristic length of velocity
gradients l⋆∇v, a typical macroscopic velocity variation inside interphase fronts δv⋆, and
the corresponding relative Mach number ma⋆ = δv⋆/

√
kBT ⋆/m⋆. The Bogoliubov correc-

tions are then estimated in a regime where density gradients dominate the dynamics of
interphase fronts, that is, in the regime where

(σ⋆
r⋆

)3( σ⋆
l⋆∇n

)( σ⋆

l⋆∇T

)
,≪ 1, (6.19)

and (σ⋆
r⋆

)3( σ⋆
l⋆∇n

)( σ⋆
l⋆∇v

)( δv⋆√
kBT ⋆/m⋆

)
≪ 1. (6.20)

The first condition (6.19) insure that all terms in the form κijni∇nj·∇T are negligible
with respect to the density gradient terms κij∇ni·∇nj within interphase fronts, and a
similar condition holds for the gradient of these quantities. Similarly, the second condition
(6.20) insure that all terms in the form κijni∇nj·∇v/

√
kBT/m are negligible with respect

to the density gradient terms κij∇ni·∇nj within interphase fronts, and the same rule
applies to gradients of these quantities.

We may next introduce the decomposition

f
(0)
i = ni f̃

(0)
i , f̃

(0)
i =

( mi

2πkBT

) 3
2
exp

(
−mi|ci − v|2

2kBT

)
, (6.21)

such that
∇f

(0)
i = ∇ni f̃

(0)
i + ni∇f̃

(0)
i ,
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and
∇2f

(0)
i = ∇2ni f̃

(0)
i +∇ni⊗∇f̃

(0)
i +∇f̃

(0)
i ⊗∇ni + ni∇

2f̃
(0)
i .

From the expression

∇ log f̃
(0)
i =

mi

kBT
(ci − v)·∇v −

(
3
2 −

mi|ci − v|2
2kBT

)
∇T

T
,

we then note that the ratio of the terms in ∇ log f̃
(0)
i with respect to ∇ log ni is of the

order of l∇n

l∇v
ma⋆ or l∇n

l∇T
is such a way that ∇ log ni is the main contribution in ∇ log f

(0)
i

inside interphase fronts where σ⋆ ≈ l⋆∇n, σ
⋆ ≪ l⋆∇T and σ⋆ × δv⋆ ≪ l⋆∇v × (kBT

⋆/m⋆)1/2.
The conditions (6.19) and (6.20) thus insure that the main contributions in the gradients

∇f
(0)
i in interphase fronts are those associated with ∇ni.
The number densities ni, i ∈ S, and the fluid velocity v are unchanged by correction

terms concerning pair distribution functions but there is first a difference of internal
energies in the form

δBoE =
∑

i,j∈S

∫
1
2ϕij

(
f
(0),Bo
ij − f

(0),sy
ij

)
dcidrijdcj , (6.22)

where we have denotde by f
(0),Bo
ij the zeroth order Bogoliubov distribution functions

f
(0),Bo
ij = f

(0)
i (r′i, c

′
i)f

(0)
j (r′j , c

′
j). (6.23)

With second order expansions of the pair distribution functions, the difference in internal
energy reads

δBoE =
∑

i,j∈S

1
4

∫
ϕij

(
∂2(ri,rj)f

(0),Bo
ij :(δri, δrj)

⊗2 − ∂2rjf
(0),sy
ij :r⊗2

ij

)
dcidrijdcj,

where for any vector z ∈ R
3 we denote for short by z⊗2 the tensor product z⊗z. The

leading terms in δBoE are thus

∑

i,j∈S

1
4

∫
ϕijgij f̃

(0)
i f̃

(0)
j

(
nj ∂

2
rini:(δri)

⊗2 + 2∂rini·δri ∂rjnj·δrj

+ ni ∂
2
rjnj :(δrj)

⊗2 − ni∂
2
rjnj :r

⊗2
ij

)
dcidrijdcj, (6.24)

and all these terms vanish from the integral relations (D.11) for hard potentials that are
simply obtained by letting δri = 0 δrj = rij inside the integrals. The remaining correction
terms are then given by

∑

i,j∈S

1
4

∫
ϕijgijninj

(
∂2(ri,rj)f̃

(0),Bo
ij :(δri, δrj)

⊗2 − ∂2rj f̃
(0),sy
ij :r⊗2

ij

)
dcidrijdcj

+
∑

i,j∈S

1
2

∫
ϕijgij

(
(nj∂rini·δri + ni∂rjnj·δrj)∂(ri,rj)f̃

(0),Bo
ij ·(δri, δrj)

− ∂rjnj·rij ∂rj f̃
(0),sy
ij ·rij

)
dcidrijdcj ,
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where f̃
(0),Bo
ij = f̃

(0)
i (r′i, c

′
i)f̃

(0)
j (r′j, c

′
j) and f̃

(0),sy
ij = gij f̃

(0)
i (ri, ci)f̃

(0)
j (rj , cj). These cor-

rections are thus negligible keeping in mind that κ
⋆ = kBT

⋆ σ⋆5 as established in Sec-
tion 5.3, and the ratio δBoE/E is majorized by (σ

⋆

r⋆ )
3 σ⋆

l⋆
∇n

σ⋆

l⋆
∇T

≪ 1 or (σ
⋆

r⋆ )
3 σ⋆

l⋆
∇n

σ⋆

l⋆
∇v

ma⋆ ≪ 1

in such a way that from (6.19) and (6.20) the correction term δBoE may be neglected.
The corrections for the pressure tensor δBoP = δBoPp are next in the form

δBoP = −
∑

i,j∈S

1
2

∫
ϕ′
ij(rij)

rij
rij⊗rij

(
f
(0),Bo
ij − f

(0),sy
ij

)(
rαi , r

α
j

)
dαdcidrijdcj ,

where we have denoted for convenience rαi = ri − (1− α)rij and rαj = ri + αrij and have

left implicit the dependence of f
(0),Bo
ij − f

(0),sy
ij on the velocities ci and cj We may thus

write that

δBoP =−
∑

i,j∈S

∫
1
4

ϕ′
ij(rij)

rij
rij⊗rij

(
∂2(ri,rj)f

(0),Bo
ij :(δrαi , δr

α
j )

⊗2

− ∂2ri,rjf
(0),sy
ij :(−rij + αrij, αrij)

⊗2
)
dαdcidrijdcj,

where δrαi = r′αi − ri = r′i − (1 − α)r′ij − ri and δrαi = r′αj − ri = r′i + αr′ij − ri =
rj − (1− α)r′ij − ri. Using the identity

∫ 1

0
(a+ αb)(c + αd) dα = (a+ 1

2b)(c+
1
2d) +

1
12bd,

and integrating with respect to α, it is obtained that

δBoP =−
∑

i,j∈S

∫
1
4

ϕ′
ij(rij)

rij
rij⊗rij

(
∂2(ri,rj)f

(0),Bo
ij :(δri − 1

2r
′
ij, δri +

1
2r

′
ij)

⊗2

− ∂2(ri,rj)f
(0),sy
ij :(−1

2rij ,
1
2rij)

⊗2

+ 1
12∂

2
(ri,rj)

f
(0),Bo
ij :(12r

′
ij ,

1
2r

′
ij)

⊗2

− 1
12∂

2
(ri,rj)

f
(0),sy
ij :(12rij,

1
2rij)

⊗2
)
dαdcidrijdcj .

The dominant correction terms in δBoP may then be split into δBoP1 and δBoP2

with

δBoP1 = −
∑

i,j∈S

∫
1
4

ϕ′
ij(rij)

rij
rij⊗rijgijf

(0)
i f

(0)
j

(∂2rini
ni

:
(
(δri − 1

2r
′
ij)

⊗2 − (−1
2rij)

⊗2
)

2
∂rini
ni

·(δri − 1
2r

′
ij)

∂rjnj

nj
·(δri +

1
2r

′
ij)− 2

∂rini
ni

·(−1
2rij)

∂rjnj

nj
·(+1

2rij)

+
∂2rjnj

nj
:
(
(δri +

1
2r

′
ij)

⊗2 − (12rij)⊗2
))

dcidrijdcj,
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and

δBoP2 = −
∑

i,j∈S

∫
1
48

ϕ′
ij(rij)

rij
rij⊗rijgijf

(0)
i f

(0)
j

(∂2rini
ni

:
(
(12r

′
ij)

⊗2 − (12rij)
⊗2

)

2
∂rini
ni

·(12r
′
ij)

∂rjnj

nj
·(12r

′
ij)− 2

∂rini
ni

·(12rij)
∂rjnj

nj
·(12rij)

+
∂2rjnj

nj
:
(
(δri +

1
2r

′
ij)

⊗2 −
∂2rjnj

nj
:(12rij)

⊗2
))

dcidrijdcj,

and both contributions vanish from the integral relations (D.11). The remaining cor-

rections are then necessarily involve derivatives of f̃
(0)
i or f̃

(0)
j and are thus negligible

assuming (6.19) and (6.20).
The estimates for the deviations of the heat fluxes δBoQp

1 and δBoQp

2 arising from

f
(0),Bo
ij −f (0),syij are discussed in Appendix G. These estimates are obtained in a similar way
as for the energy and the pressure tensor. The result is that the corrections arising from

f
(0),Bo
ij −f (0),syij may also be neglected under the regime (6.19) and (6.20) and also assuming
that the interaction potentials are hard is such a way that (D.10) and (D.11) hold. The
first order corrections in the conservation equations, that are of multiplied by the knudsen
number, are also negligible. The Bogoliubov corrections in the conservation equations are

thus negligible in the regime under consideration and it is thus legitimate to use f
(0),sy
ij

instead of f
(0),sy
ij in the derivation of the conservation equations. In order to complete

the analysis, we now have to investigate the deviations arising from f
(0),Bo
ij −f (0),syij in the

linearized equations
The differences in the right hand sides of the linearized equations δBoψi, arise from

the material derivatives ∂tf
(0)
i +v·∂rif

(0)
i and the perturbed source terms J

(1)
i . From the

estimates of pressure tensor, energy and heat fluxes, the differences in ∂tf
(0)
i + v·∂rif

(0)
i

due to f
(0),Bo
ij − f

(0),sy
ij in ψi are negligible and we must solely examine the differences

arising from the perturbed operators J
(1)
i . We have introduced in (6.6) the decomposition

1

f
(0)
i

J (1)
i (f (0)) = Ψp,1

i +Ψp,3
i and the first order terms

Ψp,1
i =

∑

j∈S

1

f
(0)
i

∫
θij∂(ri,rj)f

(0),Bo
ij ·(δri, δrj)dxj , (6.25)

have already been taken into account in the linearized equations so that δBoΨp,1
i = 0. We

have next to investigate the differences in the third order terms

δBoΨp,3
i =

∑

j∈S

1

6f
(0)
i

∫
θij

(
∂3(ri,rj)f

(0),Bo
ij

...(δri, δrj)
⊗3 − ∂3(ri,rj)f

(0),sy
ij

...(0, rij)
⊗3

)
dxj,

(6.26)
where ∂(ri,rj) denotes the differential operator with respect to the pair coordinates (ri, rj),
where δri = r′i − ri = µjrij − µjr

′
ij and δrj = r′j − ri = µjrij + µir

′
ij , and with the

differentials ∂3(ri,rj)f
(0)
ij evaluated at (ri, ri). All terms that are quadratic in the increments

δri and δrj indeed yield zero contributions in the expansion of J (1)
i (f (0)), being even

with respect to rij and rij and keeping in mind that θij is even with respect to rij .
The higher order density derivatives contributions then vanish with the hard potentials
approximation (D.10) and (D.11) as in the analysis of the pressure tensor. The remaining
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terms then involve derivatives of the rescaled Maxwellians that are negligible in the regime
under consideration (6.19)(6.20).

In summary, we have established that the equations derived with the symmetrized dis-
tribution functions also agree with Bogoliubov distribution functions in a regime where
density gradients dominate the dynamics of interphase fronts and when interaction po-
tentials are hard.

7 Comparison and discussion

We discuss in the section the model derives from the kinetic theory, the models derived
from thermodynamics in the literature as well as the domain of validity of the resulting
equations.

7.1 Derivation from thermodynamics

The derivation from rational mechanics presented in Section 2 differ from that [2, 19, 20,
21, 22, 23]. The kinetic theory indeed yields an heat flux in the form

Q =
∑

i∈S

γiρi∇·v −
∑

i∈S

∇·γiFi +
∑

i∈S

γi∇·Fi +Qd, (7.1)

and the forces terms

Xi = nikBT
(
∇

gi
kBT

−
∑

j∈S

∇∇·(κij∇nj)

kBT

)
. (7.2)

These results obtained from the kinetic theory of dense gas coincide with the results
obtained form rational thermodynamics when using the expression (A.7) of the entropy
production rate.

On the other hand, by using the expession (A.6) for the entropy production rate, the
following heat flux and diffusion driving forces

Q′ =
∑

i∈S

γiρi∇·v +
∑

i∈S

γi∇·Fi +Qd, (7.3)

X ′
i = nikBT∇

( gi
kBT

−
∑

j∈S

∇·(κij∇nj)

kBT

)
. (7.4)

These equations have notably been derived by Anderson et al. [2], Verschueren [20] and
Liu et al. [23]. Similarly, by using the expession (A.8) for the entropy production rate,
the following heat flux and diffusion driving forces are obtained

Q′′ =
∑

i∈S

γiρi∇·v +Qd, (7.5)

X ′′
i = nikBT∇

( gi
kBT

−
∑

j∈S

∇·
(κij∇nj

kBT

))
. (7.6)

These expressions have notably been obtained by Falk [19], and by Alt and Pawlow [24]
without convection phenomena. Both these formulations (7.3)–(7.4) and (7.5)–(7.6) from
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the literature have missing terms in the first order heat flux and their species diffusion
driving forces differ form the kinetic theory result.

We may first note, however, that the models (7.3)–(7.4) and (7.5)–(7.6) exactly agree
with (7.1)–(7.2) when all capillary coefficients are equal κij = κ since then all difference
terms automatically vanish from mass conservation constraints. Indeed, in this situation,
the vectors γi are then given by γi = κ∇ρ, i ∈ S, are all equal so that

∑
i∈S γi ∇·Fi =

κ∇ρ∇·
(∑

i∈SFi

)
= 0 from the mass conservation constraint,

∑
i∈S Fi = 0 and similarly∑

i∈S∇·γiFi = ∇κ∇ρ
∑

i∈S Fi = 0. This was the model used in particular by Gaillard
et al. [9] in order to simulate hydrogen-air transcritical flames. In this situation the
capillary terms in the Cahn-Hilliard diffusive fluxes also vanish [9]. The resulting model
may be seen as a generalization to mixtures of the van der Walls model with a simplified
κ|∇ρ|2 gradient energy in the free energy [9].

More generally, we note that these models essentially agree in the regimes under
consideration. Indeed, the differences between the forces terms may be writtenX ′

i−Xi =
ni∇·γi∇T/T and X ′′

i − X ′
i = −niT∇

(
γi·∇T/T 2). All these differences thus involve

temperature gradients and the relative errors scale as (σ
⋆

r⋆ )
3 σ⋆

l⋆
∇n

σ⋆

l⋆
∇T

≪ 1 where σ⋆ denotes

a typical collision diameter, r⋆ the average interparticle distance, l⋆∇n a characteristic
length of density gradients, and l⋆∇T a characteristic length of velocity or temperature
gradients, and may thus be neglected since temperature gradients remain modest in
interphase fronts. For similar reasons, the first order contributions in the heat fluxes
may be estimated to be negligible in the regime under consideration. The heat flux
and species diffusion driving forces (7.5) and (7.6) may also be seen as obtained when
neglecting nonlocalities in the fluxes. With these approximations, the three models (7.3)–
(7.4), (7.5)–(7.6), and (7.1)–(7.2) are essentially similar.

Finally, various authors have further extracted the natural 1/T factor in the thermo-
dynamic fluxes. The resulting expression of the entropy production rate (A.9) then leads
to the heat flux

Q =
∑

i∈S

γiρi∇·v +
∑

i∈S

γi∇·Fi −
∑

i∈S

(gi −∇·γi)Fi +Qd, (7.7)

with an unphysical component
∑

i∈S giFi, and such fluxes have been considered in par-
ticular by Heida et al. [21] and Guo at al. [22]. Letting notably the capillary coefficient
to zero, and considering a standard dilute gas mixture, the unphysical heat flux is in the
form −∑

i∈S giFi+Qd, in contradiction with all books on gas mixtures [55, 56, 67, 68, 69]
where there enthalpies are obtained instead of Gibbs functions.

7.2 Entropic considerations

The macroscopic entropy Sk,(0) obtained from the kinetic model when using higher order

Taylor expansion of pair distribution functions may be shown to be in the form

Sk,(0) = Su +
∑

i,j∈S

κij

2T
ρi∆ρj, (7.8)

where Su = S(0) is the nonideal entropy obtained in from the kinetic theory (4.16) in the

absence of diffuse interface effects. In the situation of constant capillary coefficients, this
entropy Su = S(0) has also been shown to be the Gibbsian entropy of the diffuse interface
model. We may also transform this entropy (7.8) into

S̃k,(0) = Su −
∑

i,j∈S

κij

2T
∇ρi·∇ρj, (7.9)
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by modifying the entropy flux.
We thus conclude that the macroscopic entropies Sk,(0) or S̃k,(0) obtained from the

kinetic theory by using higher order Taylor expansion of pair distribution functions dif-
fer from the Gibbsian entropy Su naturally arising from the structure of the governing
equations. This Gibbsian entropy Su may be seen as a thermodynamic mathematical

construction derived from the structure of the system of partial differentail equations.
This difference between S̃k,(0) and Su == S(0) may also be interpreted as an indication
that there is no H theorem in general for the generalized Boltzmann equations derived
from the BBGKY hierarchy.

A similar situation is that of second order entropies in the Enskog expansions, i.e.,
entropies oftained in Burnett regimes, discussed notably by de Groot and Mazur [58] and
Giovangigli [89, 90]. These entropies also differ from the Gibbsian entropies associated
with the fluid equations [58].

7.3 Nonideal fluid thermodynamics and transport

The derivation of the van der Waals equation of state from the kinetic theory of gas
mixtures has used the assumption that the volume ratio is small

∑
j∈S njbj ≪ 1. This

property then implies that (1 −
∑

j∈S njbj)
−1 ≈ 1 +

∑
j∈S njbj as in the traditional

derivation from from equilibrium statistical mechanics for a single gas [83, 84, 85]. The
domain of validity of van der Waals equation of state, however, is much larger than that
of the hypotheses made in the derivation and notably includes liquids where the volume
ratio

∑
j∈S njbj is of order unity. Another derivation of the van der Waals equation of

state is also possible by directly including factors in the form (1 −∑
j∈S njbj)

−1 in the
correlation function gij as first suggested by Sobrino for single species fluids [33] and
used in various work [39, 41]. This would have the advantage of directly giving factors
(1−∑

j∈S njbj)
−1 in the repulsive part but would also yield such factors in the attractive

part of the equation of state and in all capillary terms without further simplifications. This
is why we have used the equilibrium correlation function given by statistical mechanics
(4.6) and to follow the traditional derivation of van der Waals equation of state from
statistical mechanics [83, 84, 85].

The traditional multicomponent diffusion driving forces d cl
i are defined by subtract-

ing temperature gradients from thermodynamic diffusion driving forces d th
i naturally

related to chemical potential gradients (4.47). The traditional multicomponent diffusion
coefficients are then obtained as detailed in Section 4.5.2. However, these traditional ex-
pressions may only be used when mechanical stability holds and only the thermodynalmic
formulation is generally valid. The pressure based species enthalpies and specific volume
even explode at mechanical instability limits as detiled in Gaillard et al. [9].

7.4 Cahn-Hilliard fluids

We have presented in previous sections the first molecular derivation of Cahn-Hilliard
fluids models in the framework of the kinetic theory of dense gas mixtures. This resulting
model notably includes generalized van der Waals/Cahn-Hilliard gradient energy, Ko-
rteweg tensor, Dunn and Serrin type heat flux, as well as Cahn-Hilliard multicomponent
diffusive type fluxes and first order capillary contribution in the heat flux. The capillarity
coefficients have also been related to intermolecular forces and the van der Waals equation
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of state has also been derived. We now address the validity domain of the derivation from
the kinetic theory.

The capillary fluid equations have been derived within the kinetic theory of moderately
dense gas mixtures essentially assuming that σ⋆ ≪ r⋆ ≪ l⋆

k
≪ l⋆

h
, where σ⋆ is a typical

collision diameter or equivalently a typical range of the interaction potentials ϕij , r
⋆

a characteristic interparticle distance, l⋆
k
the mean free path, and l⋆

h
a hydrodynamic

length. We have also assumed that the interaction potentials are hard in order to simplify
some of the collision integrals associated with dense gases. We have also assumed that
the temperature gradients remain of macroscopic scale as well as and that the velocity
gradients multiplied by the relative Mach number are small in interphase fronts when
estimating the deviations arising from Bogoliubov distributions. However, these capillary
equation also apply to liquids where σ⋆ = r⋆ = l⋆

k
and are exactly the equations derived

from thermodynamics. Therefore, as for the van der Waals equation of state, the domain
of validity of the resulting equations is much larger than that of the kinetic theory of
moderately dense gases since it also applies to liquids.

We have also used a new Enskog type scaling of the generalized Boltzmann equations.
This scaling clarifies the derivation of the macroscopic equations and directly yields the
equilibrium Maxwellian distributions. This scaling also yields the Euler capillary fluid
equations at zeroth order whereas in previous work for single species fluids the diffuse
interface terms were only obtained at first order [15]. In other words, the diffuse inter-
face tems in Euler equations, as well as the nonideal thermodynic functions, are direct

consequences of the perturbed source terms J (1)
i , i ∈ S. The importance of diffuse inter-

face Euler fluid equations in conjunction with Hilbert’s sixth problem has notably been
emphasized by Gorban and Karlin [91, 92] and Slemrod [93].

The derivation from the kinetic theory has been performed by simplifying the capil-
larity coefficients κij so that it is independant of T and from the number densities ni,
i ∈ S. The temperature dependence of the capillary coefficients could next be inves-
tigated by using a nonequilibrium correlation function gij . However, there is no clear
expression for a nonequilibrium correlation function at interfaces so that it should be
chosen carefully [3, 87, 88].

Finally, a key argument in the derivation is the use of a generalized Boltzmann equa-
tion with distribution functions are evaluated at different spatial positions.

8 Conclusion

We have derived the Cahn Hilliard fluid equations from the kinetic theory of dense gas
mixtures. Investigating more refined models like polyatomic gases, reactive mixtures or
the situation of temperature dependent diffuse interface coefficients would be of high
scientific interest. Boundary conditions at solid walls and three phase lines could also
be investigated by kinetic methods. Numerical simulations would also be an outstanding
tool for comparing kinetic models and their corresponding macroscopic diffuse interface
equations.
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A Entropy production in fluid models

We derive in this section the rate of entropy production (2.12) from Gibbs relation (2.8)
and the fluid governing equations (2.9)–(2.11). The species conservation equations are
first written in the form

∂tρi + v·∇ρi = −ρi∇·v −∇·Fi, i ∈ S, (A.1)

and we have the differential identity

(∂t + v·∇)∇ρi = ∇(∂tρi + v·∇ρi)− (∇v)t∇ρi, i ∈ S. (A.2)

Multiplying the momentum conservation equation (2.10) by the velocity vector v and
subtracting the result from the total energy conservation equation (2.11) also yields the
balance equation for internal energy E that may be written

∂tE + v·∇E = −E∇·v −∇·Q−P :∇v. (A.3)

Using Gibbs relation (2.8) we further obtain that

T (∂tS + v·∇S) = ∂tE + v·∇E −
∑

i∈S

gi(∂tρi + v·∇ρi)−
∑

i∈S

γi·(∂t + v·∇)∇ρi,

and combining this with relations (A.1)–(A.3) yields

∂tS + v·∇S =− 1

T

(
E∇·v +∇·Q+P :∇v

)

+
∑

i∈S

gi
T

(
ρi∇·v +∇·Fi

)

+
∑

i∈S

γi

T
·
(
∇(ρi∇·v +∇·Fi) + (∇v)t∇ρi

)
. (A.4)

The aim is now to decompose the right hand side of (A.4) into an entropy flux and a
nonnegative production term. A key argument is that derivatives may take arbitrary
values so that only products of derivatives of the same order may have a sign. We may
also regroup all terms proportional to ∇·v by using (G − E)/T = p/T − S.

Since the divergence of the total heat flux ∇·Q involves second order derivatives of
temperature, it must be integrated by part. Similarly, the terms ∇(∇·Fi) involves fifth
order derivatives with Cahn-Hilliard type fluxes—third order with standard diffusion—
and must also be integrated by parts. The terms γi·(∇v)t∇ρi may further be regrouped
with the velocity gradient terms and these operations yield

∂tS +∇·(vS)+∇·

(
Q

T
−

∑

i∈S

γi

T
(ρi∇·v +∇·Fi)

)

= − 1

T

(
P − pI −

∑

i∈S

∇ρi⊗γi

)
:∇v −Q·

∇T

T 2

+
∑

i∈S

(gi
T

−∇·
γi

T

)
∇·Fi −

∑

i∈S

∇·
γi

T
ρi∇·v. (A.5)

The derivatives ∇·(γi/T ) appearing in the two last sums on the right hand side are then
developed and the resulting terms split between temperature and velocity gradients, as
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for a single species fluid [15]. The diffusive fluxes arealso integrated by parts and these
operations yield

∂tS +∇·(vS)+∇·

(
Q

T
−

∑

i∈S

γi

T
(ρi∇·v +∇·Fi)−

∑

i∈S

(gi
T

− ∇·γi

T

)
Fi

)

=− 1

T

(
P − pI −

∑

i∈S

(∇ρi⊗γi − ρi∇·γiI)
)
:∇v

−
(
Q−

∑

i∈S

γi(ρi∇·v +∇·Fi)
)
·∇

(−1

T

)

−
∑

i∈S

∇
(gi
T

− ∇·γi

T

)
·Fi. (A.6)

We may finally develop the terms ∇∇·γi

T in the diffusion driving forces to finally obtain
that

∂tS +∇·(vS)+∇·

(
Q

T
−

∑

i∈S

γi

T
(ρi∇·v +∇·Fi)−

∑

i∈S

(gi
T

− ∇·γi

T

)
Fi

)

=− 1

T

(
P − pI −

∑

i∈S

(∇ρi⊗γi − ρi∇·γiI)
)
:∇v

−
(
Q−

∑

i∈S

γi(ρi∇·v +∇·Fi) +
∑

i∈S

∇·γiFi

)
·∇

(−1

T

)

−
∑

i∈S

(
∇
gi
T

− ∇(∇·γi)

T

)
·Fi. (A.7)

This is the balance of entropy used in Section 2.2 involving notably the diffusion driving
forces ∇(gi/T )−∇(∇·γi/)T ), a Korteweg type tensor and a Dunn and Serrin type heat
flux.

Another variant is then to integrate by part the diffusion terms in (A.5) to get that

∂tS +∇·(vS)+∇·

(
Q

T
−

∑

i∈S

γi

T
(ρi∇·v +∇·Fi)−

∑

i∈S

(gi
T

−∇·
γi

T

)
Fi

)

=− 1

T

(
P − pI −

∑

i∈S

(∇ρi⊗γi − ρi∇·γiI)
)
:∇v

−
(
Q−

∑

i∈S

ρiγi∇·v
)
·∇

(−1

T

)
−

∑

i∈S

∇
(gi
T

−∇·
γi

T

)
·Fi. (A.8)

Finally, a fourth variant is obtained from by developing the derivatives ∇(gi/T ) in the
diffusion driving forces of (A.7) and the result reads

∂tS +∇·(vS)+∇·

(
Q

T
−

∑

i∈S

γi

T
(ρi∇·v +∇·Fi)−

∑

i∈S

(gi
T

− ∇·γi

T

)
Fi

)

=− 1

T

(
P − pI −

∑

i∈S

(∇ρi⊗γi − ρi∇·γiI)
)
:∇v

−
(
Q−

∑

i∈S

γi(ρi∇·v +∇·Fi)−
∑

i∈S

(gi −∇·γi)Fi

)
·∇

(−1

T

)

−
∑

i∈S

1

T

(
∇gi −∇(∇·γi)

)
·Fi. (A.9)
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The four expressions (A.6) (A.7), (A.8) and (A.9) are discussed in Section 7.1 and also
reveals the ambiguity of rational thermodynamics.

B Cahn-Hilliard models with mass fraction gradients

The general form for free energies A in Cahn-Hilliard models has been written in Sec-
tion 2.1 using partial density gradients (2.1). Such energies have notably been used by
Cahn [16], Rowlinson and Widom [3], Verschueren [20], Liu et al. [23], and Heida et al.[21]
and reduce to the traditional van der Waals energy for a single species fluid.

However, historically, gradient energies in terms of mole fraction gradients have first
been considered by Cahn and Hilliard. We thus briefly address this type of situation in this
section, easily derived from the general situation of density gradients. More specifically,
we consider energies written in terms of mass fraction gradients as Anderson et al. [2], that
are more convenient than mole fractions for multicomponent mixtures and mass based
diffusion fluxes. Note still mole and mass also coincide for isomass mixtures. We have to
establish in particular that there are not anymore second derivatives in the generalized
Korteweg Pressure tensor as traditionally established with such energies [2].

We consider thus an energy written in the form

A = Au +
∑

i,j∈S

1
2χij∇yi·∇yj , (B.1)

where yi = ρi/ρ denotes the mass fraction of the ith species and ρ =
∑

i∈S ρi the mixture
mass density. Noting then that

∇yi =
1

ρ

(
∇ρi − yi∇ρ

)
=

1

ρ

∑

k∈S

(
δik − yi

)
∇ρk,

we may rewrite the energy (B.1) in the general form (2.1) provided the mass-based cap-
illary coefficients κij are in the special form

κkl =
∑

i,j∈S

χij
1

ρ2
(
δik − yi

)(
δjl − yj

)
, k, l ∈ S. (B.2)

We may now evaluate the Korteweg tensor Pko by first noting that

−
∑

k,l∈S

ρk∇·
(
κkl∇ρl

)
= −

∑

i,j,k,l∈S

ρk∇·
(
χij

1

ρ2
(
δik − yi

)(
δjl − yj

)
∇ρl

)

= −
∑

i,j,k∈S

ρk∇·
(
χij

1

ρ

(
δik − yi

)
∇yj

)

=
∑

i,j∈S

χij∇yi·∇yj ,

where use has been made of
∑

k∈S ρk(δik − yi) = 0 after expanding the divergence term.
On the other hand, a direct calculations yields

1
2

∑

k,l∈S

(∑

m∈S

ρm∂ρmκkl − κkl

)
∇ρk·∇ρl =

1
2

∑

i,j∈S

(∑

m∈S

ρm∂ρmχij − 3χij

)
∇yi·∇yj ,
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in such a way that

Pko = 1
2

∑

i,j∈S

(∑

k∈S

ρk∂ρkχij − χij

)
∇yi·∇yjI +

∑

i,j∈S

χij∇yi⊗∇yj . (B.3)

In particular, there are not anymore second derivatives in the pressure tensor Pko as
traditionally obtained [2] when using mass or mole fractions gradients in the free energy
as in (B.1).

Finally, a direct calculation yields that the generalized Dunn and Serrin heat flux
vanishes Qds = 0 and we also have

Qcd = −
∑

i,j∈S

∇·

(1
ρ
χij∇yj

)
Fi +

∑

i,j∈S

1

ρ
χij∇yj ∇·Fi. (B.4)

C Macroscopic equations from the kinetic theory

C.1 Derivation from the hierarchy

Multiplying by mi the Boltzmann equation of the ith species (3.1), integrating with
respect to ci, and decomposing ci = v + ci − v yields

∂tρi +∇·(ρiv) +∇·Fi = 0, (C.1)

where the diffusive mass flux of the ith species Fi is defined by

Fi(r, t) =

∫
mi(ci − v)fi(r, ci, t)dci. (C.2)

Multiplying by mici the Boltzmann equation (3.1), integrating with respect to ci,
summing over the species i ∈ S, and using the definition of v then yields

∂t(ρv) +∇·(ρv⊗v) +∇·Pk +Rv = 0,

where Pk is the traditional kinetic part of the pressure tensor

Pk(r, t) =
∑

i∈S

∫
mi(ci − v)⊗(ci − v)fi(r, ci, t)dci, (C.3)

and the term Rv reads

Rv(r, t) = −
∑

i,j∈S

∫
mi(ci − v)θijfij(r, ci, r+ rij , cj, t)dcidrijdcj,

where rij = rj − ri. Using the expression of θij, integrating by parts with respect to ci
and cj , using the definition of nij and ∂riϕij = −ϕ′

ij(rij)rij/rij , it is obtained that

Rv(r, t) = −
∑

i,j∈S

∫
ϕ′
ij(rij)

rij
rij nij(r, r+ rij , t)drij.

We may now use that nij(r, r+rij, t) = nji(r+rij , r, t), letting rji = −rij, and exchanging
i and j in the resulting sum, we get

Rv(r, t) =
∑

i,j∈S

∫
ϕ′
ij(rij)

rij
rij nij(r− rij, r, t)drij,
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and thus

Rv(r, t) = −
∑

i,j∈S

1
2

∫
ϕ′
ij(rij)

rij
rij

(
nij(r, r+ rij , t)− nij(r− rij , r, t)

)
drij ,

Letting then n̄ij(r, rij, α) = nij
(
r− (1− α)rij , r+ αrij , t) we have

n̄ij(1) − n̄ij(0) = nij(r, r+ rij , t)− nij(r− rij , r, t) =

∫ 1

0
∂αn̄ij(α)dα.

Since ∂αn̄ij(α) = ∂rn̄ij·rij we finally obtain that

Rv(r, t) = ∇·Pp(r, t),

where

Pp(r, t) = −
∑

i,j∈S

1
2

∫
ϕ′
ij(rij)

rij
rij⊗rij nij

(
r− (1− α)rij , r+ αrij, t

)
dαdrij, (C.4)

and the scalar α must be integrated over (0, 1). The tensor Pk corresponds to the transfer
of momentum due to the flow of particles and Pp to the transfer of momentum between
the species particles due to intermolecular forces [55, 56].

The kinetic part of the internal energy conservation equation is first obtained by
multiplying Boltzmann equation (3.1) by 1

2mi|ci−v|2, integrating with respect to ci, and
summing over the species i ∈ S. Using the definitions of Ek and Pk yields after some
algebra

∂tEk +∇·(vEk) +∇·Qk +RE
1 = −Pk:∇v, (C.5)

where

Qk(ri, t) =
∑

i∈S

∫
1
2mi|ci − v|2(ci − v)fi(r, ci, t)dci, (C.6)

RE
1 = −

∑

i,j∈S

∫
1
2mi|ci − v|2θijfij(r, ci, r+ rij, cj , , t)dcidrijdcj .

Using the definition of θij, ∂riϕij = −ϕ′
ij(rij)rij/rij , integrating by parts with respect to

ci and cj , we next obtain that

RE
1 = −

∑

i,j∈S

∫
(ci − v)·rij

ϕ′
ij(rij)

rij
fij(r, ci, r+ rij, cj, , t)dcidrijdcj.

The governing equation for the potential part Ep of the internal energy may then
conveniently be obtained from the second equation of the BBGKY hierarchy. Multiplying
the two point distribution function equations (3.2) by the potential energy 1

2ϕij(rij)
integrating with respect to ci, cj, and rij = rj−ri, and summing with respect to i, j ∈ S,
the resulting equation is in the form

∂tEp +∇·(vEp) +∇·Qp

1 +RE
2 = 0, (C.7)

where

Qp

1(r, t) =
∑

i,j∈S

∫
1
2ϕij(rij)(ci − v)fij(r, ci, rj , cj, t)dcidrjdcj ,
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RE
2 = −

∑

i,j∈S

1
2

∫
(cj − ci)·rij

ϕ′
ij(rij)

rij
fij(r, ci, r+ rij , cj, , t)dcidrijdcj .

Adding both equations (C.5) and (C.7) for the conservation of Ek and Ep then yields

∂tE +∇·(Ev) +∇·
(
Qk +Qp

1

)
+RE

3 = −Pk:∇v,

where RE
3 = RE

1 +RE
2 reads

RE
3 = −

∑

i,j∈S

1
2

∫
(ci − v + cj − v)·rij

ϕ′
ij(rij)

rij
fij(r, ci, r+ rij , cj, , t)dcidrijdcj .

In order to transform RE
3 we may proceed as for the momentum equation. More specifi-

cally, using
fij(r, ci, r+ rij , cj, t) = fji(r+ rij, cj , r, ci, t),

letting rji = −rij, and exchanging i and j in the sum, we obtain that

RE
3 =

∑

i,j∈S

1
2

∫
(ci − v + cj − v)·rij

ϕ′
ij(rij)

rij
fij(r− rij, ci, r, cj , t)dcidrijdcj,

so that

RE
3 = −

∑

i,j∈S

1
4

∫
(ci − v + cj − v)·rij

ϕ′
ij(rij)

rij
[fij]dcidrijdcj,

with
[fij] = fij(r, ci, r+ rij , cj, t)− fij(r− rij, ci, r, cj , t).

Letting then
f̄ij(α) = fij

(
r− (1− α), ci, r+ αrij, cj , t),

we have

[fij] = f̄ij(1)− f̄ij(0) =

∫ 1

0
∂αf̄ij(α)dα,

and since
∂α[fij](α) = ∂rfij

(
r− (1− α), ci, r+ αrij , cj, t)·rij ,

we obtain

RE
3 = −

∑

i,j∈S

1
4

∫
(ci − v + cj − v)·rij

ϕ′
ij(rij)

rij

× ∂rfij
(
r− (1− α), ci, r+ αrij , cj, t)·rijdαdcidrijdcj,

and the scalar α must be integrated over (0, 1). Finally, letting ∂r in front of the integrals
and using ∂r(ci − v + cj − v) = −2∇v we obtain that

RE
3 = Pp:∇v +∇·Qp

2,

where

Qp

2(r, t) = −
∑

i,j∈S

1
4

∫
ϕ′
ij(rij)

rij
rij rij ·(ci − v + cj − v)

× fij
(
r− (1− α)rij , ci, r+ αrij , cj, t

)
dαdcidrijdcj ,

and the energy equation is established.
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C.2 Derivation from generalized Boltzmann equations

The above derivation of the macroscopic equations has used the two first equations of
the hierarchy. An equivalent derivationmay be obtained by directly using the generalized
Boltzmann equations (3.24). We denote by ψ̂l, 1 ≤ l ≤ ns + 3 the ns + 3 first collision
invariants given by ψ̂l = (δil)i∈S, ψ̂

ns+ν =
(
mi(ciν − vν)

)
i∈S

for 1 ≤ ν ≤ 3, and by E ′ the
differential of the energy E with respect to f = (fi)i∈S, that is, E ′ is such that for any
increment distribution δf = (δfi)i∈S we have

δE = 〈〈E ′, δf〉〉 =
∑

i∈S

∫
1
2mi|ci − v|2δfi dci +

∑

i,j∈S

1
2

∫
ϕijτij(fiδfj + fjδfi)dcidrijdcj,

where 〈〈 〉〉 is the scalar product (4.42). The governing equations are then obtained by
taking the scalar product of the generalized equations (∂tfi+ci·∂ri −Ji)i∈S by the invari-

ants ψ̂l, 1 ≤ l ≤ ns + 3 and E ′. The derivation of the mass and momentum conservation
from (3.24) is then unchanged but the derivation of the energy conservation equation is
slightly modified.

The energy conservation equation first reads

∑

i∈S

1
2mi|ci − v|2(∂tfi + ci·∂rifi − Ji)dci

+
∑

i,j∈S

1
2

∫
ϕijτij

(
fi(∂tfj + cj·∂rjfj − Jj)

fj(∂tfi + ci·∂rifi − Ji)
)
dcidrijdcj = 0. (C.8)

The kinetic terms in this relation are easily transformed into

∂Ek +∇·(vEk +Qk) +Pk:∇v +RE
1 , (C.9)

using standard kinetic theory manipulations. Considering next the potential part of the
relation (C.8), we first note that

Ξij =

∫
ϕijτij

(
fiJj + fjJi)

)
dcidrijdcj = 0.

Indeed, we may write

Ξij = −
∫
ϕijτij

(
fi(∂tfj + cj ·∂rjfj) + fj(∂tfi + ci·∂rjfi)

)
dcidrijdcj

= −
∫
ϕijτij

(
∂t(fifj) + ci·∂ri(fifj) + cj ·∂rj (fifj)

)
dcidrijdcj .

We may then use the identity
τij ∂t = ∂t τij, (C.10)

since τij is independent of time from (3.22) as well as the commutation relation

τij (ci·∂ri + cj·∂rj ) = (ci·∂ri + cj·∂rj − θij) τij, (C.11)

established by Green [94] using the definition (3.22). These relations now yields

Ξij = −
∫
ϕij

(
∂t + ci·∂ri + cj ·∂rj − θij

)
τijfifjdcidrijdcj = (∂t + Hij)fij = 0
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since by definition of τijfifj = exp (−tHij)fi(0)fj(0) we have
(
∂t+ci·∂ri+cj·∂rj−θij

)
fij =

0. The potential remainder of the energy equation (C.8) then reads after some algebra

∑

i,j∈S

1
2

∫
ϕijτij

(
fi(∂tfj + cj·∂rjfj) + fj(∂tfi + ci·∂rifi)

)
dcidrijdcj

=
∑

i,j∈S

1
2

∫
ϕij

(
∂t + ci·∂ri + cj·∂rj − θij

)
τijfifjdcidrijdcj

= ∂tEp +∇·(vEp +Qp

2) +Pp:∇v −RE
1 , (C.12)

and the equation for the conservation of energy is then a consequence of (C.8) with (C.9)
and (C.12).

D Linearized kinetic equations with first order derivatives

We evaluate in this section the linearized equations for nonideal fluid with normal diffusive
processes, that is, we evaluate the right hand sides by solely using first order Taylor
expansions of pair distribution functions. The thermodynamic properties are those from
Section 4 without diffuse interface terms.

The right hand sides (4.20) are in the form

ψi = −
(
∂t log f

(0)
i + ci·∇ri log f

(0)
i

)
+

1

f
(0)
i

J (1)
i (f (0)), i ∈ S, (D.1)

and the differential expression ∂t log f
(0)
i + ci·∇ri log f

(0)
i may be split as ∂t log f

(0)
i +

v·∇ri log f
(0)
i + (ci − v)·∇ri log f

(0)
i . The material derivatives ∂t log f

(0)
i + v·∇ri log f

(0)
i

are evaluated by using the expression of Maxwellian distributions and Euler equations

∂tni + v·∇ni = −ni∇·v, (D.2)

∂tv + v·∇v = −∇p/ρ, (D.3)

∂tT + v·∇T =
1

∂T E
(∑

l∈S

nl∂nl
E − E − p

)
∇·v. (D.4)

The resulting differential expressions are in the form

−
(
∂t log f

(0)
i + v·∇ri log f

(0)
i

)
= ∇·v +

mi

ρkBT
(ci − v)·∇p

+
(
3
2 − mi|ci − v|2

2kBT

) 1

T∂TE
(∑

l∈S

nl∂nl
E − E − p

)
∇·v,

(D.5)

and

−(ci − v)·∇ri log f
(0)
i = − (ci − v)·

∇ni
ni

− mi

kBT
(ci − v)⊗(ci − v):∇v

+
(
3
2 −

mi|ci − v|2
2kBT

)
(ci − v)·

∇T

T
. (D.6)
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The terms arising from the collision operators J (1)
i (f (0)) are then evaluated from

the differential expressions (3.44) and (3.45) of Section 3.4. Indeed, we deduce from
Section 3.4 and at first order in the gradients, that

∇f
(0),cl
ij

(
αri + (1− α)rmij , ci, cj, t

)
= ∇f

(0),cl
ij

(
ri, ci, cj , t

)
.

Therefore J (1),s
i (f (0)) reads

J (1),s
i (f (0)) =

∑

j∈S

∇·

∫
θijf

(0)
i (ri, ci, t)f

(0)
j (ri, cj, t)gij(ri, ri)rijdxj ,

and after some calculus

J (1),s
i (f (0)) = ∇·

(∑

j∈S

mjnj
mi +mj

βijf
(0)
i (ci − v)

)
. (D.7)

Similarly, we have from Section 3.4 and at first order in the gradients, that

J (1),a
i (f (0)) = −

∑

j∈S

µij

∫
θij

( 1

mi
∂rf

(0)
i (ri, c

′
i, t)f

(0)
j (ri, c

′
j, t)

−f (0)i (ri, c
′
i, t)

1

mj
∂rf

(0)
j (ri, c

′
j , t).

)
·r′ijdxj . (D.8)

After some calculus we may write

1

f
(0)
i

J (1),a
i (f (0)) =−

∑

j∈S

µijnj

(
ā
η
ij :∇v + āκij∇·v + āλ̂ij ·∇T

+ āDij ·
(∇ni
mini

− ∇nj
mjnj

))
, (D.9)

where the collision integrals for dense gases āηij , ā
κ
ij , ā

λ̂
ij , and āDij are defined by

f̃
(0)
i ā

η
ij =

1

2kBT

∫
θijτij f̃

(0)
i f̃

(0)
j

(
rij⊗(ci − cj) + (ci − cj)⊗rij − 2

3(ci − cj)·rijI
)
dxj ,

f̃
(0)
i āκij =

1

3kBT

∫
θijτij f̃

(0)
i f̃

(0)
j rij·(ci − cj)dxj ,

f̃
(0)
i āDij =

1

kBT 2

∫
θijτij f̃

(0)
i f̃

(0)
j rijdxj,

f̃
(0)
i āλ̂ij =

∫
θijτij f̃

(0)
i f̃

(0)
j rij

(3
2

kBT

mj
− 1

2
|cj − v|2 − 3

2

kBT

mi
+

1

2
|ci − v|2

)
dxj.

The expressions (D.5) and (D.6) as well as (D.9) are essentially similar to those presented
by Cohen et al. [49].

We now further assume that the repulsive potentials between particles are hard and
use the corresponding value for the integrals āDij . The integrals ā

D
ij may indeed be written

āDij =
1

f̃
(0)
i

∫
θijgij f̃

(0)
i f̃

(0)
j r′ijdxj ,
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and assuming that the interaction potentials ϕij are hard, we may use the rigid sphere
relation r′ij = rij discussed in particular by Hoffman and Curtiss [71]. A straightforward
calculation then yields

āDij = βij(ci − v). (D.10)

More generally, for functions A(rij, r
′
ij), depending on rij and r′ij , we will occasionally

use the hard potential relation

∫
θijgij f̃

(0)
i f̃

(0)
j A(rij, r

′
ij)drij =

∫
θijgij f̃

(0)
i f̃

(0)
j A(rij, rij)drij . (D.11)

With the hard potential relation (D.10), there is then a simplification for density

gradient and pressure terms in ψ
(1)
i that are obtained in the form

−(ci − v)·
(
∇ni
ni

−
∑

j∈S

βij∇nj −
mi

ρkBT
∇p

)
.

We may then use that

∇

( gi
kBT

)
=

∇ni
ni

−
∑

j∈S

βij∇nj − (32 +
∑

j∈S

njβ
′
ijkBT )∇T,

and ∑

k∈S

nkkBT∇
( gk
kBT

)
= ∇p− (E + p)

∇T

T
,

in order to rewrite ψ
(1)
i as well as the natural thermodynamic force terms for dissipative

fluids without capillary effects

X th
i = nikBT ∇

( gi
kBT

)
= ρikBT ∇

( gi
kBT

)
. (D.12)

With the thermodynamic properties obtained in Section 4.3, these force terms are given
by

∇

( gi
kBT

)
=

∇ni
ni

−
∑

j∈S

βij∇nj −
(
3
2 +

∑

j∈S

njβ
′
ijkBT

)
∇T

kBT
, (D.13)

so that

X th
i = kBT∇ni −

∑

j∈S

βijni∇njkBT −
(
3
2ni +

∑

j∈S

ninjβ
′
ijkBT

)
∇T. (D.14)

By combining the relations (D.5), (D.6), (D.9), with the approximations (D.10) and with
(D.14) is is obtained after lengthy algebra that

ψ
(1)
i = −ψη

i :∇v − ψκ
i ∇·v −

∑

j∈S

ψ
Dj

i ·X th
j − ψλ̂

i ·∇

( −1

kBT

)
,

which is relation (4.21), together with the expressions of ψη
i , ψ

κ
i , ψ

Dj , j ∈ S, and ψλ̂
i ,

given in Section 4.4.
We denote by ψ̂l, 1 ≤ l ≤ ns+4 the ns+4 collisional invariants given by ψ̂l = (δil)i∈S,

ψ̂ns+ν =
(
mi(ciν − vν)

)
i∈S

for 1 ≤ ν ≤ 3, and ψ̂ns+4 = (12mi|ci − v|2)i∈S, and by 〈〈〉〉 the
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scalar product (4.42). The tensorial right hand sides ψη
i , ψ

κ
i , ψ

Dj , j ∈ S, and ψλ̂
i , given

in Section 4.4, then satisfy the orthogonality relations

〈〈ψµ, ψ̂l〉〉 = 0, (D.15)

for µ ∈ η, κ,Dj , λ̂ and 1 ≤ l ≤ ns + 4. These relations are easily established excepted for
the energy for which it is necessary to use the approximation [49]

nkBT+
3
2nkB

∂TE
(∑

l∈S

nl∂nl
E − E − p

)
=

∑

i,j∈S

ninj

(
1
2βijkBT + 7

6β
′
ij(kBT )

2 + 1
3β

′′
ij(kBT )

3
)
,

as well as the identity [49]

∑

i,j∈S

µijninj

∫
1
2mi|ci − v|2f̃ (0)i āκijdci = −

∑

i,j∈S

ninj
(
7
6ninjβ

′
ij(kBT )

2 + 1
3ninjβ

′′
ij(kBT )

3
)
,

notably established in Chaos and Colin [95].

E Constraints for perturbed distribution functions

The perturbed distribution functions φ
(1)
i , i ∈ S, are uniquely determined by imposing

Enskog type constraints. These constraints insure that the true value of the local macro-

scopic variables ni, v and T , or equivalently E , are determined by f
(0)
i alone [56, 53, 49].

The constraints associated with mass and momentum are identical to that for dilute
gases

∫
f
(0)
i φ

(1)
i dci = 0 for i ∈ S, and

∑
i∈S

∫
mi(ci − v)f

(0)
i φ

(1)
i dci = 0 and corresponds

to (4.30) and (4.31).
The constraint associated with internal energy is more complex since it involves pair

distribution functions. The Enskog contraint for energy is generally in the form

∑

i∈S

∫
1
2mi|ci − v|2f (0)i φ

(1)
i dci +

∑

i,j∈S

∫
1
2ϕij(fij − f

(0)
ij )drijdcidcj = 0, (E.1)

where the fij denote the nonequilibrium pair distribution functions, f
(0)
ij the zeroth order

pair distribution functions, and where the fij are evaluated with fi = f
(0)
i +f

(0)
i φ

(1)
i . The

kinetic part of the constraint (E.1) is thus traditional whereas the potential part depends
on the nonequilibrium pair distribution functions fij, the zeroth order pair distribution

functions f
(0)
ij , as well as on the order of Taylor expansions.

Considering first the kinetic theory of nonideal fluids with normal diffusive processes
presented in Section 4, the constraint is first in the form

∑

i,j∈S

∫
1
2ϕij(f

Bo
ij − f

(0),cl
ij )drijdcidcj = 0,

with fij = fBo
ij = τijfi(ri)fj(rj), f

(0)
ij = f

(0),cl
ij = gijf

(0)
i (ri)f

(0)
j (ri) and fi = f

(0)
i +f

(0)
i φ

(1)
i ,

i, j ∈ S. For such a kinetic theory of nonideal fluids, we may use first order Taylor
expansions and neglect any gradient terms arising from first order terms [56, 53, 49].
This yields

fBo
ij − f

(0),cl
ij = gijf

(0)
i f

(0)
j (φ

(1)
i + φ

(1)
j ) + gijf

(0)
i f

(0)
j (∇ log f

(0)
i ·δri +∇ log f

(0)
j ·δrj),
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where δri = r′i− ri and δrj = r′j − ri. The Maxwellian gradient contributions then vanish
in (E.1) since they are odd with respect to rij or r

′
ij and the remaining terms, are localized

at ri so that the constraint reads
∑

i∈S

∫
1
2mi|ci − v|2f (0)i φ

(1)
i dci +

∑

i,j∈S

∫
1
2ϕijτijf

(0)
i f

(0)
j (φ

(1)
i + φ

(1)
j )drijdcidcj = 0.

This constraint is further simplified by using the structure of the perturbed distribution
functions for fluid mixtures [49, 50] as for single species fluids [53, 56]. The only dif-
ficult terms are those associated with the potential part of the volume viscosity terms∑

i,j∈S

∫
ϕijgijf

(0)
i f

(0)
j (φ

′(1)
i + φ

′(1)
j )dcidrijdcj for which expansions with respect to den-

sity are generally used and the resulting constraint is obtained in the form (4.32) and is
of the classical form [49, 50, 53, 56].

Considering next the kinetic theory using second order expansions of pair distribution
functions that leads to capillary effects, the energy constraint is in the form

∑

i,j∈S

∫
1
2ϕij(f

Bo
ij − f

(0),sy
ij )drijdcidcj = 0,

with fij = fBo
ij = τijfi(ri)fj(rj), f

(0)
ij = f

(0),sy
ij = gijfi(ri)fj(rj) and fi = f

(0)
i + f

(0)
i φ

(1)
i ,

i, j ∈ S. For the kinetic theory of nonideal fluids including diffuse interface effects, we
have to use second order Taylor expansions and write

fBo
ij − f

(0),cl
ij = f

(0)
i (r′i)f

(0)
j (r′j)

(
1 + φ

(1)
i (r′i)

)(
1 + φ

(1)
j (r′j)

)
− gijf

(0)
i (ri)f

(0)
j (rj),

where the dependence on particle velocities has been left implicit. Considering first the

terms arising solely from the Maxwellian distributions f
(0)
i (r′i)f

(0)
j (r′j)−gijf

(0)
i (ri)f

(0)
j (rj),

and using a a second order Taylor expansion, the zeroth order terms are zero, the first
order terms yield zero contributions to the energy constraint since they are odd with
respect to rij or r′ij and we are left with the second order terms in the form

∂2(ri,rj)f
(0),Bo
ij :(δri, δrj)

⊗2 − ∂2rjf
(0),sy
ij :r⊗2

ij .

The leading terms that only involve density gradients then vanish using the hard poten-
tial relations. The remaining part are then negligible in the regime under consideration

when
(
σ⋆

r⋆

)3(
σ⋆

l⋆
∇n

)(
σ⋆

l⋆
∇T

)
,≪ 1 and

(
σ⋆

r⋆

)3(
σ⋆

l⋆
∇n

)(
σ⋆

l⋆
∇v

)
ma⋆ ≪ 1, using notably the decom-

positions (6.21) as well as the approximate collision integrals for dense gases (D.10).

Considering then the terms involving the first order perturbations φ
(1)
i , i ∈ S, using

second order Taylor expansions, and discarding quadratic terms in first order perturba-

tions. The zeroth order terms are then zero from the zero average constraints of the φ
(1)
i ,

the first order terms yields zero contributions since they are odd with respect to rij or
r′ij and we are left with second order terms in the form

gijf
(0)
i f

(0)
j ∂riφ

(1)
i ·δri ∂rj log f

(0)
j ·δrj

and
gijf

(0)
i f

(0)
j ∂2riφ

(1)
i :δr⊗2

i ,

and similar terms obtained by permuting i and j. For the first type terms, we may

replace ∂ri log
(0)
i ·δrj by ∇ log nj and use the zero average constraint of φ

(1)
i and the same

zero average argument also applies for the second type terms so that finally the energy
constraint is again reduced to the classical constraint (4.32) as for fluid with standard
diffusive processes.
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F Tensorial integral and differential identities

We summarize in this Appendix various tensorial integral relations used in the derivation
of the capillary fluid equations. We denote by z ∈ R

3 an integration variable that may
either represents the rescaled particle velocity (ci − v)(mi/2kBT )

1/2 of the ith species or
else the relative position rij = rj − ri.

Letting z = |z| for z ∈ R
3 then for any isotropic function γ(z) of z, we have

∫
z2i γ(z)dz = 1

3

∫
z2γ(z)dz, 1 ≤ i ≤ 3,

and this implies ∫
z(z·a) γ(z)dz = 1

3

∫
z2γ(z)dz a, (F.1)

for any vector a independent of z. Similarly, we have [56]
∫

z⊗z γ(z)dz = 1
3

∫
z2γ(z)dz I, (F.2)

where I is the identity tensor in R
3 and z⊗z the tensor product of z with itself having

components zizj for 1 ≤ i, j ≤ 3.
In the same vein, for any isotropic function γ(z) of z we have [56]

∫
z4i γ(z)dz = 1

5

∫
z4γ(z)dz, 1 ≤ i ≤ 3,

as well as ∫
z2i z

2
j γ(z)dz = 1

15

∫
z4γ(z)dz, 1 ≤ i, j ≤ 3, i 6= j.

As a consequence, for any second rank tensor w independent of z we have
∫
γ(z)z⊗z (z⊗z:w)dz = 1

15

∫
z4γ(z)dz

(
w + w

t + w:I I
)
, (F.3)

where w:v is the full contraction between the two tensors w and v, so that w:I is the
trace of the tensor w, and w

t denotes the transpose of w. The tensor z⊗z is also denoted
for short by z⊗2 and the tensor z⊗z⊗z by z⊗3.

More generally, for any pair of second rank tensors w and v independent of z, assuming
that w is symmetric, and for any isotropic function γ(z) we have

∫ (
γ(z) w:z⊗2

v:z⊗2
)
dz = 1

15

∫
z4γ(z)dz

(
w:v + w:vt + tr(w)tr(v)I

)
, (F.4)

where tr(w) denote the trace of a tensor w.
Moreover, for any third rank tensor Aijk independent of z and for any isotropic

function γ(z) we have
∫ (
γ(z) z A

...z⊗3
)
dz = 1

15

∫
z4γ(z)dz

(∑

l

Aill +
∑

l

Alil +
∑

l

Alli

)
, (F.5)

where A
...z⊗3 is the total contraction of A with the tensor product z⊗3 = z⊗z⊗z given

by A
...z⊗3 =

∑
ijk Aijkzizjzk. As a typical application, for any third order gradient tensor

like ∇2v independent of z and for any isotropic function γ(z) we have
∫
γ(z)z

(
∇2v

...(z⊗z⊗z)
)
dz = 1

15

∫
z4γ(z)dz

(
∆v + 2∇(∇·v)

)
, (F.6)
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where∇2v
...z⊗z⊗z is the total contraction of ∇2v with the tensor product z⊗z⊗z given

by ∇2v ...z⊗z⊗z =
∑

ijk ∂rj∂rkvizizjzk.

We now investigate various differential relations used in the derivation of the capillary
fluid equations. The following relation is established for scalar functions ni(r) and nj(r),
i, j ∈ S, of r ∈ R

3 after integrations by parts

∇·
(
ni∇

2nj
)
= ∇·

(
ni∆njI +∇ni·njI −∇ni⊗∇nj

)
, (F.7)

where ∇ni is the gradient of ni, ∆ni = ∇·∇ni the Laplacian, and ∇2ni the Hessian
matrix with components ∂rk∂rln for 1 ≤ k, l ≤ 3.

In addition, for any scalar functions ni(r) and nj(r), i, j ∈ S, and any vector function
v(r) of r ∈ R

3 one may establish after a few integration by parts that

∇·
(
ni∇·v∇nj

)
= ∇·

(
ni∇v·∇nj +

(
∇ni·∇njI + ni∆njI −∇nj⊗∇ni − ni∇

2nj
)
·v
)
.

(F.8)
where ∇v is the gradient matrix and ∇·v the divergence of v. Similarly, one may
establish the following identity

∇·
(
ninj∇(∇·v)

)
= ∇·

(
ni∇v·∇nj+nj∇v·∇ni−ni∇vt·∇nj−nj∇vt·∇ni+ninj∆v

)
,

(F.9)
where ∇vt denotes the transpose of the gradient matrix. Letting nj = 1 in the last
relation and denoting by Fi a vector function of r ∈ R

3, we finally obtain that

∇·
(
ni∇(∇·Fi)

)
= ∇·

(
∇Fi·∇ni −∇Ft

i·∇ni + ni∆Fi

)
. (F.10)

G Other Bogoliubov deviations terms

We complete in this Appendix the estimates of the deviations arising from the differences
fBo
ij − f syij by investigating the heat fluxes Qp

1 and Qp

2. Proceeding as for the energy E ,
the difference δBoQp

1 in the first potential part of the heat flux Qp

1 is obtained in the form

δBoQp

1 =
∑

i,j∈S

∫
1
4ϕij(ci − v)

(
∂2(ri,rj)f

(0),Bo
ij :(δri, δrj)

⊗2 − ∂2rjf
(0),sy
ij :r⊗2

ij

)
dcidrijdcj ,

and all the main contributions associated with second order density derivatives vanish
since they are odd with respect to the velocities ci−v and the remaining terms may then
be estimated to be negligible as for δBoE in the regime under consideration (6.19)(6.20).

Proceeding as for the the pressure tensor P , the Bogoliubov correction δBoQp

2 in the
first potential part of the heat flux Qp

2 is obtained in the form

δBoQp

2 = −
∑

i,j∈S

1
8

∫
ϕ′
ij(rij)

rij
rij rij ·(ci − v + cj − v)

×
(
f
(0),Bo
ij − f

(0),sy
ij

)(
rαi , r

α
j

)
dαdcidrijdcj ,

where we have denoted for convenience rαi = ri − (1− α)rij and rαj = ri + αrij and have

left implicit the dependence of f
(0),Bo
ij − f

(0),sy
ij on the velocities ci and cj We may thus
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write that

δBoQp

2 =−
∑

i,j∈S

∫
1
8

ϕ′
ij(rij)

rij
rij ·(ci − v + cj − v)

(
∂2(ri,rj)f

(0),Bo
ij :(δrαi , δr

α
j )

⊗2

− ∂2(ri,rj)f
(0),sy
ij :(−rij + αrij , αrij)

⊗2
)
dαdcidrijdcj,

where δrαi = r′αi − ri = r′i − (1 − α)r′ij − ri and δrαi = r′αj − ri = r′i + αr′ij − ri =
rj − (1 − α)r′ij − ri. We may now proceed as for the pressure tensor using the identity∫ 1
0 (a+ αb)(c + αd) dα = (a+ 1

2b)(c+
1
2d) +

1
12bd in order to integrate with respect to α,

and it is obtained that

δBoQp

2 = −
∑

i,j∈S

1
8

∫
ϕ′
ij(rij)

rij
rij ·(ci − v + cj − v)

(
∂2(ri,rj)f

(0),Bo
ij :(δri − 1

2r
′
ij, δri +

1
2r

′
ij)

⊗2 − ∂2(ri,rj)f
(0),sy
ij :(−1

2rij,
1
2rij)

⊗2

+ 1
12∂

2
(ri,rj)

f
(0),Bo
ij :(12r

′
ij,

1
2r

′
ij)

⊗2 − 1
12∂

2
(ri,rj)

f
(0),sy
ij :(12rij ,

1
2rij)

⊗2
)
dαdcidrijdcj.

The dominant terms with respect to the density gradients then vanish being odd with
respect to velocities ci − v and cj − v and the remaining part involving the gradients of

f̃
(0)
i are evaluated as for the pressure tensor and are thus negligible in the regime under
consideration (6.19)(6.20).

A less precise qualitative argument is that f
(0),Bo
ij may be decomposed as

f
(0),Bo
ij = f

(0)
i (r′i, c

′
i)f

(0)
j (r′j, c

′
j) = ni(r

′
i)nj(r

′
j)f̃

(0)
i (r′i, c

′
i)f̃

(0)
j (r′j , c

′
j),

and in the regime under consideration we may write T (ri) = T (r′i) = T (rj) = T (r′j) = T
as well as v(ri) = v + δvi, v(r

′
i) = v + δv′

i, v(rj) = v + δvj, v(r
′
j) = v + δv′

j where

all relative Mach numbers as δvi

√
mi/2kBT (r) are negligible. The modified Maxellian

distributions

f̃
(0)
i (r, ci) =

( mi

2πkBT (r)

) 3
2
exp

(
−mi|ci − v(r)|2

2kBT (r)

)
, i ∈ S,

may thus be rewritten

f̃
(0)
i (r, ci) =

( mi

2πkBT

) 3
2
exp

(
−mi|ci − v|2

2kBT

)
,

and thus

f̃
(0)
i (r′i, c

′
i)f̃

(0)
i (r′j , c

′
j) =

(√mimj

2πkBT

)3
exp

(
−
mi|c′i − v|2 +mj |c′j − v|2

2kBT

)
.

We may then use the conservation of energy (3.28) as well as the conservation of momen-
tum mici +mjcj = mic

′
i +mjc

′
j in order to obtain that

f̃
(0)
i (r′i, c

′
i)f̃

(0)
i (r′j, c

′
j) = gij

(√mimj

2πkBT

)3
exp

(
−mi|ci − v|2 +mj |cj − v|2

2kBT

)
.

Using next the hard potential approximation ni(r
′
i)nj(r

′
j) = ni(ri)nj(rj) we finally obtain

that f
(0),Bo
ij = gijf

(0)
i (ri, ci)f

(0)
j (rj, cj) = f

(0),sy
ij in the regime under consideration.
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