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Abstract 

Neurodegenerative diseases lead to a progressive demise of neuronal functions that ultimately 

results in neuronal death. Besides a large variety of molecular pathways that have been linked 

to the degeneration of neurons, dysfunctions of the microtubule cytoskeleton are common 

features of many human neurodegenerative disorders. Yet, it is unclear whether microtubule 

dysfunctions are causative, or mere bystanders in the disease progression. A so-far little 

explored regulatory mechanism of the microtubule cytoskeleton, the posttranslational 

modifications of tubulin, emerge as candidate mechanisms involved in neuronal dysfunction, 

and thus, degeneration. Here we review the role of tubulin polyglutamylation, a prominent 

modification of neuronal microtubules. We discuss the current understanding of how 

polyglutamylation controls microtubule functions in healthy neurons, and how deregulation of 

this modification leads to neurodegeneration in mice and humans. 
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Introduction 

Microtubules are key structural components of the neuronal cytoskeleton. They are involved 

in the establishment and maintenance of neuronal polarity, axon growth and branching, and 

serve as tracks for trafficking of cargoes in neurons [23, 52, 54]. A growing body of evidence 

points toward dysfunctions of the microtubule cytoskeleton in the pathogenesis of several 

neurodegenerative diseases [21, 79, 98]. Numerous genes mutated in the most common age-

related neurodegenerative disorders (Parkinson’s, Huntington’s and Alzheimer’s diseases) are 

related either to microtubule stability (tau protein [37]), microtubule severing (spastin [101]), 

or microtubule-based transport (huntingtin, kinesin, dynein [79]). However, the role of 

microtubules themselves in the pathogenesis of neurodegenerative disorders has only recently 

begun to emerge.  

Microtubules are subject to a wide range of posttranslational modifications [72]. The tubulin 

code concept (Fig. 1A) [47, 97] proposes that these modifications can functionally specialise 

individual microtubules, thus locally and temporally adapting them to their wide variety of 

functions within living cells. Perturbations of tubulin modifications are expected to cause 

microtubule dysfunctions, which in neurons could eventually lead to neurodegeneration. Here 

we review recent findings that demonstrate the role of polyglutamylation, a key modification 

of neuronal microtubules, in neurodegeneration. We critically evaluate how cellular and 

molecular mechanisms that are implicated in neurodegeneration could be induced by 

perturbed polyglutamylation.  

What is tubulin polyglutamylation? 

Polyglutamylation is a posttranslational modification that adds secondary peptide chains of 

glutamates to its target proteins (Fig. 1A). Polyglutamylation has been first identified on brain 

tubulin [1, 25, 99], where it is highly enriched compared to most other tissues [128]. The first 

enzyme catalysing this novel modification was purified as a multi-protein complex from 
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mouse brains [48, 93]. Among the proteins of this complex was tubulin tyrosine ligase-like 1 

(TTLL1), the catalytic subunit. This discovery bolstered the identification of additional TTLL 

enzymes, most of them catalysing polyglutamylation [45, 48, 124]. Strikingly, each TTLL 

enzyme generates a characteristic polyglutamylation pattern on tubulin (Fig. 1B) [124]. This 

specificity is determined by structural features within the active sites of those enzymes [73, 

84]. Some glutamylases, such as TTLL4 and TTLL5, also modify other, non-tubulin 

substrates [92, 113, 123]. However, given that the main neuronal glutamylases TTLL1 [48] 

and TTLL7 [45] are tubulin-specific [71, 124], the glutamylation of non-tubulin substrates 

might play only minor roles in differentiated neurons.  

Polyglutamylation is a reversible modification [2]. Enzymes responsible for deglutamylation 

belong to the family of cytosolic carboxypeptidases (CCP) [56, 96, 117]. Similar to 

glutamylases, deglutamylases have distinct enzymatic activities [6, 96, 129], thus allowing 

them to control the generation of specific polyglutamylation patterns on microtubules 

(Fig. 1B). CCPs also remove glutamates exposed on the carboxy-terminus of several proteins 

[108, 115] including detyrosinated a-tubulin, thus generating another posttranslational 

modification of tubulin, ∆2-tubulin [89, 96]. 

Perturbation of tubulin polyglutamylation causes neurodegeneration in mouse models 

The first mouse model of neurodegeneration to be linked to polyglutamylation was the 

Purkinje-cell degeneration (pcd) mouse. This mouse was identified in the 1970ies, and since 

then studied as a model of neurodegeneration with a characteristic spontaneous degeneration 

of Purkinje cells in the cerebellum at about 1 month of age [82]. Apart from the degeneration 

of Purkinje cells, pcd mice also display retina degeneration [10, 63], degeneration of the 

mitral cells in the olfactory bulb [38], degeneration of thalamic neurons [85, 86] and male 

sterility [41]. Early electron microscopy studies showed abnormal inclusions and organelle 

accumulation within the dendrites of degenerating Purkinje cells [61], which were postulated 
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to play a role in the degenerative process. Later reports found defects in myelination [16], 

excessive DNA damage [4, 5, 121], increased apoptosis [33, 34], endoplasmic reticulum (ER) 

stress [58], autophagy [7] and defects in synaptic connectivity [11, 61]. Excessive DNA 

damage and apoptosis were both excluded as potential causes of neurodegeneration in pcd 

mice, as neither the inactivation of DNA repair, nor the disruption of apoptotic pathways 

prevented Purkinje cell degeneration [126]. 

The mutation causing the phenotypes of pcd mice was later mapped to the Nna1 gene, coding 

for a protein containing a zinc carboxypeptidase domain [29]. Rescue experiments showed 

that only an enzymatically active Nna1 could prevent neurodegeneration in pcd mice, thus 

demonstrating that the carboxypeptidase activity of this protein is essential for its 

neuroprotective function. However, the substrates modified by Nna1 were not known at the 

time [127]. The discovery that Nna1 is a member of a larger family of cytosolic 

carboxypeptidases (CCPs) [51, 95], which are involved in tubulin deglutamylation [8, 56, 96, 

117] (Fig. 1B) strongly suggested that perturbed tubulin polyglutamylation could be the cause 

of the observed neurodegeneration in pcd mice.  

As predicted, pcd mice showed excessive accumulation of tubulin polyglutamylation in the 

cerebellum and the olfactory bulb [96], two brain regions in which massive 

neurodegeneration had been described [38, 82]. Assuming that excessive polyglutamylation is 

the primary cause of the observed degeneration implied that reducing polyglutamylation of 

tubulin, i.e. microtubules, in the affected neurons might prevent, or at least delay their 

degeneration. This could indeed be demonstrated by targeting the main neuronal 

polyglutamylase, TTLL1 [48]. Initial experiments using electroporation of interfering RNAs 

into cerebella of pcd mice avoided the degeneration of some Purkinje cells [96]. In a more 

thorough genetic experiment, Ttll1 was knocked out selectively in Purkinje cells of pcd/Ttll1-

flox mice using Purkinje-cell specific expression of cre recombinase (L7-cre [94]). In these 
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mice Purkinje cells did not degenerate, and even survived throughout the entire life of these 

mice [71]. This demonstrated that (i) accumulation of polyglutamylation on microtubules, 

generated by the tubulin-specific glutamylase Ttll1 is the cause of the degeneration observed 

in pcd mice, and that (ii) this process is cell-autonomous, as it could be rescued by lowering 

tubulin polyglutamylation levels only in the Purkinje cells of the pcd mice. These conclusions 

are further bolstered by earlier experiments, in which cerebellar tissue from wild-type mice 

was grafted into cerebella of pcd mice. Not only did the tissue grafts survive in the pcd brains; 

wild-type Purkinje cells also replaced the degenerated neurons and formed functional synaptic 

connections with the host brain [32, 112].  

But why was the degeneration in pcd mice limited to only some regions of the brain? One 

possible explanation was that other deglutamylases from the CCP family prevent 

hyperglutamylation in brain regions that remain unaffected, such as the cerebral cortex and 

the hippocampus. Indeed, when Ccp6, a deglutamylase strongly expressed in brain except for 

the cerebellum and the olfactory bulb [96], was depleted in pcd mice, a strong accumulation 

of hyperglutamylation in previously unaffected brain regions was observed. Consequently, 

cortical pyramidal neurons were found to degenerate in the Ccp1/Ccp6 double-knockout mice 

[71].  

These mouse models established that increased tubulin polyglutamylation affects the survival 

of a large spectrum of neurons in the nervous system. It also revealed that different types of 

neurons are not equally sensitive to hyperglutamylation. In the cerebellum, for instance, 

Purkinje neurons die relatively synchronously within four weeks [82], while granule cells 

degenerate only partially and over a much longer time interval [118]. Mitral cells in the 

olfactory bulb, while morphologically similar to Purkinje cells, start to degenerate only after 

two months [38]. Finally, pyramidal neurons in the cerebral cortex are only reduced by about 

20% after five months despite massive accumulation of hyperglutamylation in brains of 
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pcd/Ccp6 (Ccp1/Ccp6) double knockout mice [71]. The reasons for the different time courses 

of degeneration of different neuronal populations could either be related to differences in their 

overall susceptibility to physiological perturbations [31, 102], or to different levels and 

activities of polyglutamylating enzymes [65]. Moreover, given that CCP1 has other, non-

tubulin substrates [108, 115], it cannot be excluded that deglutamylation of these proteins 

contributes to the degeneration of neurons in pcd mice.  

The role of microtubule polyglutamylation in neuronal function 

The discovery that accumulation of polyglutamylation on microtubules is sufficient to induce 

neurodegeneration univocally demonstrated the importance of this tubulin modification for 

neuronal function and homeostasis. Determining which microtubule functions are controlled 

by polyglutamylation is therefore of key importance to understand the molecular mechanisms 

of this novel type of neurodegeneration. 

Microtubules and their many partners 

Polyglutamylation takes place at the carboxy-terminal tails of tubulins that decorate the outer 

surface of microtubules (Fig. 1A), and is thus expected to control interactions of microtubule-

associated proteins (MAPs) with microtubules (Fig. 2A). MAPs are a large, heterogenous 

family of proteins that interact with microtubules to control their dynamics, structure and 

function. The so-called ‘structural MAPs’ are thought to stabilise microtubules [12]. In 

neurons, predominant MAPs of this group are tau, a key player in Alzheimer’s disease [36], 

as well as MAP1A, MAP1B and MAP2. Another group of microtubule-interacting proteins 

are the microtubule-severing enzymes spastin, katanin and fidgetin, which regulate 

microtubule mass and dynamics in cells [77]. In neurons, these enzymes play important roles 

in axon outgrowth and plasticity [18, 28, 100]. Mutations in spastin are linked to the most 

frequent form of a neurodegenerative disorder, hereditary spastic paraplegia [27, 30, 42].  
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Microtubules are the ‘tracks’ for molecular motors such as kinesins and dynein. In neurons, 

these motor proteins play a pivotal role in transporting a wide range of cargoes to distinct 

subcellular locations, thus assuring neuronal function and survival [40, 70]. Given the 

complex architecture of many neurons, it is not surprising that defects in neuronal transport 

are common features of human neurodegenerative diseases [17, 22, 55, 79, 110, 122]. In fact, 

transport defects, and therefore microtubule dysfunctions, might act upstream of other 

pathogenic events in neurodegenerative diseases [9, 111]. 

Polyglutamylation as regulator of microtubule interactors (Fig. 2A) 

A large variety of microtubule-interacting proteins play key roles in neurons, and many of 

them have also been linked to neurodegenerative disorders. Even more strikingly, most of 

these proteins have also been linked to microtubule polyglutamylation. Early studies have 

suggested that binding affinity of several major neuronal MAPs, such as tau, MAP1B and 

MAP2 to tubulin is regulated by polyglutamylation [14, 15]. These results were obtained 

under non-native conditions and still await validation in native states. More thorough 

molecular insights have been gained on the regulation of the microtubule-severing enzyme 

spastin by polyglutamylation. Initial experiments in cells, and reconstitution of microtubule 

severing in cell-free conditions showed that in particular long polyglutamate chains on tubulin 

strongly induce severing by spastin [59]. More detailed analyses further revealed that 

polyglutamylation controls the severing activity of spastin in a non-linear, biphasic way: 

while the initial addition of the modification activated severing, further accumulation of 

polyglutamylation inhibited spastin activity [120]. In vivo observations suggested that katanin 

can also be activated by polyglutamylation of microtubules [106].  

The molecular motors kinesin and dynein were long expected to be regulated by 

polyglutamylation. Early studies already suggested that kinesin motor proteins bind stronger 

to polyglutamylated tubulin [62]. First functional evidence obtained by direct measurements 
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of motor protein movement on native microtubules showed that polyglutamylation can 

regulate the motility of several motor proteins. Strikingly, different patterns of 

polyglutamylation had distinct effects on velocity and processivity of the motors, and not all 

motor proteins were affected in the same way [64, 109].  

Polyglutamylation regulates cargo traffic in neurons (Fig. 2B) 

Motor proteins in differentiated neurons are heavily implicated in intracellular cargo 

transport, which needs to cover long distances [19, 70]. It was therefore intuitive to 

hypothesise that polyglutamylation of microtubules could act as a regulator of neuronal 

traffic. Early indications for a role of polyglutamylation in intracellular transport came from 

observations in mice lacking the polyglutamylase subunit 1 (PGs1) of the TTLL1 complex, 

which show reduced polyglutamylation in the brain. In neurons of these mice, the kinesin 

motor KIF1A was unable to move into neurites, while two other kinesins, KIF3A and KIF5, 

were not affected. Given that the KIF1A motor is particularly involved in carrying synaptic 

cargoes [67], this study suggested that polyglutamylation could regulate the delivery of 

synaptic vesicles, and might therefore also affect synaptic transmission [44]. Indeed, first 

insight into how synaptic activity could control postsynaptic cargo transport by modulating 

polyglutamylation was provided by another study. Activating hippocampal neurons by either 

stimulating AMPA (a-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate)-type glutamate 

receptors, or by inhibiting glycine-responsive receptors resulted in strongly increased levels of 

tubulin polyglutamylation, and a concomitant accumulation of vesicles containing the 

synapse-scaffolding protein gephyrin [119] in the cell bodies. Strikingly, the vesicle transport 

was restored when TTLL1 was downregulated, strongly suggesting that polyglutamylation 

directly controls the trafficking of these vesicles [69]. This was recently confirmed in a mouse 

model where lack of spastin leads to microtubule hyperglutamylation and reduced delivery of 

AMPA receptors to synapses [68]. 
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In primary hippocampal neurons cultured from hyperglutamylation mouse models, 

mitochondria, lysosomes, LAMP1 endosomes and BDNF (brain-derived neurotrophic factor) 

vesicles consistently showed reduced motility, though mitochondria and BDNF vesicles 

appeared to be most affected [13, 71]. Strikingly, the impact of polyglutamylation on the 

transport of these cargoes appeared to be cell-type specific: while in hippocampal neurons 

both, mitochondria and lysosomes were affected by hyperglutamylation [13], mitochondria, 

but not lysosomes showed reduced transport in cerebellar granule neurons [35]. The reasons 

for these differences are not yet understood, but it is clear that cell-type specific microtubule 

properties, as well as the differential expression of enzymes involved in polyglutamylation 

could be involved [65]. 

By which mechanism does polyglutamylation induce neurodegeneration? (Fig. 2C) 

To determine the molecular causes of hyperglutamylation-induced neurodegeneration, 

different mechanisms were tested. Given that increased polyglutamylation is known to induce 

microtubule severing [59, 120], the role of spastin was tested by generating a 

pcd(Ccp1)/spastin double-knockout mouse. If the increased polyglutamylation in pcd mice 

would have contributed to the early degeneration of Purkinje cells via the stimulation of 

spastin-mediated severing, then deletion of spastin should rescue this phenotype. This, 

however, was not the case [71]. Instead, the observation of organelle accumulation in axons 

of mice with hyperglutamylation-induced neurodegeneration pointed towards defects in 

axonal transport. Indeed, perturbed cargo traffic was identified in neurons from these mice 

[13, 35, 71], but so far, no direct evidence for a causative role of transport defects could be 

provided. 

Another important player in neurodegeneration are MAPs, in particular tau protein. Exposing 

cultured neurons to toxic beta-amyloid oligomers caused an upregulation of 

polyglutamylation on dendritic microtubules, which was accompanied by missorting of tau 
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protein from its typical axonal into more dendritic localisations. This was accompanied by 

microtubule loss [130], a common end point in neurodegenerative diseases [49]. 

Polyglutamylation was suggested to directly cause these two phenotypes given its known role 

in regulating tau-tubulin interactions [15] and spastin-mediated microtubule severing [59, 

120]. 

Whether the proposed mechanisms work alone or in synergy, and to which extent they differ 

between different neurodegenerative disorders still remains an open question. Many 

microtubule-based mechanisms are interconnected, and polyglutamylation might affect 

several of them. Some MAPs have been shown to directly influence microtubule-based traffic 

[43, 80, 107, 114], and MAPs themselves compete on the microtubule lattice, which might 

allow a coordinated traffic control in cells [81]. Loss of the microtubule-severing enzyme 

spastin has recently been demonstrated to increase microtubule polyglutamylation in neurons, 

which in turn led to a reduced efficiency of neuronal transport [68]. Finally, MAPs have been 

suggested to shield microtubules from severing enzymes [91], thus controlling microtubule 

dynamics in cells. To which extent polyglutamylation can control these processes needs to be 

determined.  

Given that combinations of polyglutamylases and deglutamylases allow for the generation of 

many different modification patterns on cellular microtubules, it is possible that 

polyglutamylation plays the role of central controller that coordinates the behaviour of 

multiple microtubule interactors in a targeted manner. This would provide a paradigm by 

which this modification could control microtubule dynamics, stability, and microtubule-based 

transport in neurons. It also implies that perturbations of this process do not affect a single, 

but rather several interconnected microtubule-based processes, which could synergistically 

contribute to the degeneration of neurons. 
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Tubulin polyglutamylation and its links to human neurodegeneration 

The first human neurodegenerative disorder that has been directly linked to deregulated 

tubulin polyglutamylation was an infantile-onset, progressive neurodegeneration of the central 

and peripheral nervous systems caused by mutations in CCP1. Most obvious pathological 

representations of this disease are cerebellar atrophy and lower motor neuron degeneration 

[53, 104, 105]. As in the pcd mouse model, the CCP1 mutations found in these patients 

consistently led to enzymatically inactive variants of CCP1. Many of the pathological 

hallmarks described in those patients are recapitulated in the pcd mice, which makes these 

mice an excellent model to study the human disease. It also allows the cautious conclusion 

that, similar to what has been shown in pcd mice, the degeneration in CCP1 patients might be 

prevented by interfering with the polyglutamylating enzyme TTLL1 [71, 104]. Most 

importantly, the high similarity between the pathologies in mice and men also point to the 

possibility that new insights obtained from other mouse models with perturbed 

polyglutamylation are relevant in humans. For instance, mice lacking Ccp1 and Ccp6 have 

been used to demonstrate that perturbed polyglutamylation in the cerebral cortex leads to the 

degeneration of pyramidal neurons [71]. Pyramidal neurons are often affected in human late-

onset neurodegenerative disorders, such as Alzheimer’s disease [74], which opens the 

exciting perspective that perturbation of polyglutamylation could be involved in the pathology 

of these disorders.  

Mechanisms that lead to deregulation of polyglutamylation in neurodegenerative diseases 

could be diverse. Mutations in other genes involved in polyglutamylation often lead to less 

obvious defects in mice, but might cause yet unexplored subtle defects in human neurons, 

especially given the longer life span of humans as compared to mice. It is also possible that 

polyglutamylation is deregulated by changing expression patterns of polyglutamylation-
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related enzymes, or their posttranslational regulation, fields that have so far been little 

explored.  

Several examples for dysregulation of enzymes catalysing polyglutamylation have already 

been found in genome-wide analyses of patients with neurodegeneration. A clinical study of 

2,237 individuals revealed a strong association of single nucleotide polymorphisms (SNPs) in 

the AGBL1 gene, coding for the deglutamylase CCP4, with learning disorders [78]. Recent 

studies using single-nucleus RNA sequencing and transcriptomics on samples from 

Alzheimer’s disease patients showed differential expression of TTLL7, one of the two major 

brain glutamylase, in oligodendrocytes [39, 76]. Whole-exome sequencing [125] and 

proteomic studies [103] identified AGBL3 (encoding the deglutamylase CCP3) as one of the 

genes linked to early-onset Alzheimer’s disease. The AGBL2 gene, encoding the CCP2 

deglutamylase, was shown to be present at a locus associated with susceptibility to 

Alzheimer’s disease [60]. Both, CCP2 and CCP3 are deglutamylases expressed in the brain, 

but at relatively low levels. Knocking out both enzymes in mice did not lead to any obvious 

neurological phenotypes [117]. However, this does not exclude that these enzymes have 

specific functions in neurons that, when perturbed, could lead to late-onset defects followed 

by degeneration in humans. Given the rapid increase in the landscape of studies reporting 

mutations in polyglutamylation enzymes, it is conceivable that alterations of this 

modifications directly or in combination with additional risk factors could be linked to other 

late-onset human neurodegenerative diseases [57]. 

Conclusion and perspective 

The microtubule cytoskeleton plays undisputedly an important role in many 

neurodegenerative diseases. However, which molecular processes are perturbed by 

microtubule dysfunction has remained an open question, in particular in late-onset, 

progressive neurodegenerative disorders such as Alzheimer’s or Parkinson’s diseases. The 
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recent discovery that the deregulation of a posttranslational modification of tubulin – 

polyglutamylation – directly causes the degeneration of neurons opens a novel perspective in 

the research of causes of neurodegeneration. Modulations of the microtubules themselves 

have timidly emerged as possible causes of neuronal dysfunctions: A growing number of 

tubulin mutations lead to neurodevelopmental disorders, and occasionally are also linked to 

neurodegeneration [20, 116]. Deregulation of other tubulin modifications, such as 

detyrosination and acetylation, were linked to neurodevelopmental processes [26, 50, 66, 75], 

synaptic function [87, 90], and disease [24, 46, 88, 131]. This multitude of processes have in 

common that they potentially modulate microtubule properties and functions, thus impacting, 

in many cases subtly, the physiological functions of the microtubule cytoskeleton [47]. 

Polyglutamylation stands out as it has so far not been linked to neurodevelopment, but 

specifically to degeneration. This converges with the observation that polyglutamylation 

accumulates in differentiated neurons [2, 3], and most enzymes catalysing polyglutamylation 

are prominently expressed in the adult brain [13]. Hence, polyglutamylation emerges as a 

promising mechanism and a potential druggable target in several neurodegenerative diseases. 
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Figures 

 

Figure 1: Tubulin polyglutamylation is part of the tubulin code that generates 

microtubule diversity 

A) Mechanisms to generate molecular heterogeneity of microtubules: microtubules are 

dynamically assembled from different a- and b-tubulins. Tubulins are also subject to a variety 

of posttranslational modifications. In the nervous system, the key modifications are 

acetylation, polyglutamylation and detyrosination. B) Polyglutamylation is catalysed by a 

variety of enzymes from the tubulin-tyrosine-ligase-like (TTLL) family. These enzymes have 

distinct specificities that allow them to generate specific modification patterns, which in turn 

could regulate specific functions of the microtubule cytoskeleton (Fig. 2). Polyglutamylation 

is removed by enzymes of the cytosolic carboxypeptidase (CCP) family. The key enzymes 

expressed in neurons and brain [45, 48] are shown in bold. 
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Figure 2: Regulation of the microtubule cytoskeleton by polyglutamylation, and 

perturbations potentially liked to neurodegeneration 

Tubulin polyglutamylation (red tails on the microtubules) controls different functions of 

microtubules that are critical for the maintenance of cytoskeletal functions in neuron. A) On 

the molecular level, microtubule polyglutamylation regulates the binding and behaviour of 

microtubule-associated proteins (MAPs), the activity of microtubule-severing enzymes and 

the motility of some molecular motors and transport complexes. B) In healthy neurons, 

polyglutamylases (TTLLs) and deglutamylases (CCPs) control the levels of tubulin 

polyglutamylation on axonal and dendritic microtubules. The interplay between these 

enzymes acts like a rheostat to adapt microtubule properties and functions to specific 

physiological requirements. C) Deregulation or mutation of enzymes involved in 

polyglutamylation (shown here: loss of CCP deglutamylases, leading to hyperglutamylation 

and neurodegeneration [71, 96, 104]) perturbs this balance, which ultimately leads to 

microtubule dysfunctions in axons and dendrites. So far, defects in cargo transport have been 

demonstrated [13, 35, 71], however, perturbed binding of MAPs, and altered microtubule 

dynamics have also been detected and might contribute to the degeneration [68, 83, 130].   
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