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Introduction

The existing literature documents a wide range of anomalies that are not explained by the Capital Asset Pricing Model (CAPM). These include the book-to-market equity [START_REF] Fama | Common risk factors in the returns on stocks and bonds[END_REF], the price momentum [START_REF] Jegadeesh | Returns to buying winners and selling losers: Implications for stock market efficiency[END_REF], the operating profitability [START_REF] Fama | A five-factor asset pricing model[END_REF], and the quality [START_REF] Asness | Quality minus junk[END_REF] amongst others. These anomalies are commonly identified by sorting stocks based on an anomaly variable or using Fama-Macbeth regression. The shortcomings of the former method are significant, despite the simplicity of the approach. [START_REF] Fama | Dissecting anomalies[END_REF] noted that "sorts are clumsy for examining the functional form of the relation between average returns and an anomaly variable " (p. 1654).

The objective of this study is to reexamine the anomaly-sorted portfolio returns from the perspective of functional data. A recently developed functional principal component analysis (FPCA) approach is applied in this paper. We decompose the anomaly-sorted returns into orthogonal eigenfunctions based on FPCA. These data-driven functions display the underlying risks and are related to the asset pricing factors.

Although cross-sectional stock returns are observed discretely, the risk is continuous. It is logical to investigate these functional patterns in cross-sectional returns using the framework of the FPCA. Prior researches have provided many factors that affect excess returns [START_REF] Hou | Replicating anomalies[END_REF]. More recently, [START_REF] Croce | The leading premium[END_REF] suggest a new influencing factor, i.e., the leading premium. In this article, we focus on the five important factors as in [START_REF] Fama | Choosing factors[END_REF], namely, market capitalization (Size), book-to-market ratio (B/M), profitability (OP), investment (Inv), and price momentum (Mom). We find that the first empirical functional principal component (EFPC) captures the variation of the F-F market factor Mkt. Moreover, the monotonicity and curvature found in the second and the third EFPCs, respectively, could be attributed to the underlying cross-sectional risks. An additional finding is that the risks on the cross-section are not always stable. Inv and Size reversed in the 1970s and the 1980s, respectively.

Data and methodology

Monthly anomaly-sorted portfolio returns are obtained from Kenneth R. French's website1 . The sample period is July 1963-July 2020. The starting date corresponds to that in [START_REF] Fama | A five-factor asset pricing model[END_REF]. We consider the following five sorting variables: Size, B/M, OP, Inv, and Mom.

Smooth the discrete data

Assuming that all the stochastic curves are in the square-integrable Hilbert space L 2 [0, 1], the inner product and corresponding norm are defined as x(u), y(u) = 1 0 x(u)y(u)du and x(u) = ( 1 0 x 2 (u)du) 1/2 , respectively. We aim to smooth the cross-sectional constituents of the discrete observed panel returns

{r u,t , 1 ≤ u ≤ N, 1 ≤ t ≤ T } into the continuous functions {r t (u), 0 ≤ u ≤ 1, 1 ≤ t ≤ T }.
For each time t, 1 ≤ t ≤ T , the functional data r t (u) can be represented by the Karhunen-Loéve Theorem, see [START_REF] Horváth | Inference for functional data with applications volume 200[END_REF],

r t (u) = ∞ m=1 η t,m ψ m (u) ≈ M m=1 η t,m ψ m (u), 1 ≤ t ≤ T (1)
where ψ m (u) are orthonormal functions in L 2 [0, 1]. The most well-known basis functions ψ m (u) are Fourier bases and B-splines bases, which are mainly used for periodical and non-periodical data, respectively. The number of bases M is essential and determined by the trade-off between smoothness and noises. In this paper, we introduce the ridge regression in [START_REF] Ramsay | Functional Data Analysis[END_REF] with a penalty PEN 4 (r t ) = [D 4 r t (u)] 2 du, where D 4 is the forth-order differential operator. To obtain the fitted curves rt (u) for each time t, we solve the optimization problem, min

N u=1        r u,t - M m=1 η t,m ψ m (u)        2 + λ D 4 r t (u) 2 du (2)
where λ measures the rate of exchange between the capacity of fitting data and the smoothness of rt (u). λ is determined by a generalized cross-validation criterion.

Functional principal component analysis

We assume that {r t (u), 0

≤ u ≤ 1} is a stationary sequence in L 2 [0, 1] satisfying the moment condition E r t (u) 4 < ∞. The covariance function of r t (u) is defined as c(u, v) = E[r t (u) - µ(u)][r t (v) -µ(v)]
where µ(u) is the functional mean of stationary {r t (u)}. c(u, v) is symmetric and non-negative definite. r t (u) can be decomposed into,

r t (u) = ∞ m=1 ξ t,m φ m (u), 0 ≤ u ≤ 1, 1 ≤ t ≤ T (3) 
where

ξ t,m = r t (u), φ m (u) = ∞ 0 r t (u)φ m (u)du. In practice, the sample estimator of covariance function c(u, v) is given by ĉT (u, v) = 1 T T t=1 [r t (u) -µ T (u)][r t (v) -µ T (v)] where µ T (•) = 1 T T t=1 r t (•).
The unknown eigenvalues and eigenfunctions of c(u, v) can be estimated by λ1 ≥ λ2 ≥ • • • ≥ 0 and φ1 (u), φ2 (u), . . . satisfying,

λm φm (u) = 1 0 ĉT (u, v) φm (v)dv, m = 1, 2, . . . (4) 
The popular way to decompose the functional observations r t (u) is to project curves into a finite-dimensional space spanned by φ1 (u), φ2 (u), . . . , φM (u) and obtain,

rt (u) ≈ M m=1 ξt,m φm (u), 0 ≤ u ≤ 1, 1 ≤ t ≤ T (5)
Now the dynamics of functional observations are represented by finite empirical eigenfunctions φm (u) and harmonic loadings ξt,m , which form the M empirical functional principal components (EFPCs).

Empirical results

We examine the value-weighted portfolio returns sorted by the F-F six-factor anomalies {r u,t , 1 ≤ u ≤ N, 1 ≤ t ≤ T }, where u is the sorting group and t is a time index. In the first step, the stocks are divided into ten groups (N = 10) and the smoothing process is conducted as follows. At each time t, we set fourteen B-splines bases to functionalize the non-periodical r u,t . The smoothing procedure generates T = 685 functional curves rt (u) covering 1963-2020.

The next step is to decompose these 685 monthly functional return curves {r t (u), 1 ≤ t ≤ T } with FPCA. { ξt,m φm (u)} are EFPCs extracted from functions rt (u). Table 1 demonstrates that the top three components explain more than 90% of the variation of the portfolio returns for all the anomalies. However, the rest of the EFPCs contribute slightly to the return variation, thus we treat them as noises. In the analysis below, we focus on the EFPC i , i = 1, 2, 3. For comparison, the first three empirical eigenfunctions of the return curves for anomalysorted portfolios are plotted in Figure 1. The first eigenfunction φ1 (u) slopes slightly for all the anomalies. That is to say, φ1 (u) shows little relation to the sorting criterion. In addition, the monotonicity and curvature in the second and the third EFPCs, respectively, imply a linear and a quadratic relationship with sorting percentage u. 

Market factor along the time-series

The first empirical eigenfunction φ1 (u) exhibits remarkable features on the cross-section. We analyze the expectation of the EFPC 1 with respect to u to show how it works.

E u [ ξt,1 φ1 (u)] = ξt,1 E u [ φ1 (u)] (6) 
The expectation above represents the time-series features of the EFPC 1 . The theory is described below. FPCA decomposes the sequence of return curves into orthogonal components. Moreover, the first eigenfunction is weakly affected by the process of cross-sectional sorting. This leads naturally to the time-series analysis. Although the anomalies differ from each other, the expectation of EFPC 1 with respect to u is consistent with the F-F market factor Mkt, see Figure 2. To build upon this, we then regress the expectation of the EFPC 1 on the market factor Mkt, From the results in Table 2, a clear linear relationship is demonstrated between the expectation ξt,1 E u [ φ1 (u)] and the market factor Mkt. The empirical principal component ξt,1 φ1 (u) could be regarded as an expansion of Mkt. Regardless of which anomaly is chosen to construct the sorted portfolios, most of the variation in the EFPC 1 along the time-series can be explained by Mkt. Consequently, the EFPC 1 captures the dynamics of the market factor Mkt.

ξt,1 E u [ φ1 (u)] = β 0 + β 1 Mkt t + t (7) 

Pricing factors on the cross-section

Since the EFPC 1 dominates the time-series features, it is necessary to explain the crosssectional relationships from ξt,2 φ2 (u) and ξt,3 φ3 (u). We first focus on the EFPC 2 . In the previous analysis, empirical eigenfunction φ2 (u) displays the monotonicity for all the anomalies in Figure 1. The positive or negative linearity of ξt,2 φ2 (u) with u decisively relies on the sign of ξt,2 for each t. In a more feasible way, the long-run effects of the EFPC 2 can be represented by the expectation of ξt,2 φ2 (u) with respect to t,

E t [ ξt,2 φ2 (u)] = E t [ ξt,2 ] φ2 (u) (8)
The long-run effects depend on the eigenfunction φ2 (u) and the expectation of corresponding harmonic loadings E t [ ξt,2 ]. The results for all the anomaly-sorted portfolios are plotted in Figure 3. All empirical results show monotonicity to varying degrees. For instance, the long-run effect of the EFPC 2 for Inv is slightly decreasing on the percentage u, which implies the crosssectional pattern that stocks with a conservative investment strategy obtain higher expected returns than aggressive ones. The remaining four functions are increasing on u. All but S ize are in accordance with [START_REF] Fama | Choosing factors[END_REF].

By equally sampling from the curves with 100 points, we regress E t [ ξt,2 ] φ2 (u) on u (standardized on [0, 1]),

E t [ ξt,2 ] φ2 (u) = α + βu + u (9) 
The results in Table 3 confirm the linear relationship between E t [ ξt,2 ] φ2 (u) and u. φ2 (u) is the only eigenfunction containing a linear relationship and the EFPC 2 accounts for the highest proportion of the variation of returns, except for the market EFPC 1 . Consequently, if there exists any cross-sectional linear relationship, ξt,2 φ2 (u) captures it. The long-run effects of the EFPC 3 show quadratic patterns, see Figure 4. To test this, we regress E t [ ξt,3 ] φ3 (u) on u and u 2 ,

E t [ ξt,3 ] φ3 (u) = α 0 + α 1 u + α 2 u 2 + u (10)
The curvature of the expectation E t [ ξt,3 ] φ3 (u) implies the different attitudes of the market towards the extremes and middles. [START_REF] Barber | All that glitters: The effect of attention and news on the buying behavior of individual and institutional investors[END_REF] propose the attention-grabbing trading hypothesis. The consideration set of investors only contains the attention-grabbing stocks, i.e., stocks meeting extreme criteria. It is likely that the curvature of the EFPC 3 reflects the limited concentration of investors in markets. [ ξt,2 ]. The expectation of ξt,2 is estimated by the sample mean which is related to the partial sum of ξt,2 . Figure 5 plots the partial sum for all the anomalies. For the majority of the sample period, E t [ ξt,2 ] of anomalies B/M, OP, and Mom remains positive and thus the long-run effects of these anomalies are stable over time. We here illustrate two special cases, Size and Inv. In subsection 3.2, the long-run effect of EFPC 2 for Size are upward-sloping. That is to say stocks with a large market cap have higher expected returns. It is clear that this conclusion is in contrast with the pricing factor Size in [START_REF] Fama | Common risk factors in the returns on stocks and bonds[END_REF]. The reasons are as follows. Partial sum of ξt,2 for Size is negative for the most period of time before the 1980s and reverses after that, see Figure 5. Combined with the upsloping eigenfunction φ2 (u) in Figure 1, the long-run effect E t [ ξt,2 ] φ2 (u) of Size slopes downwards alongside the percentage of portfolios u in the first period and upwards in the second.

As proposed by [START_REF] Fama | A five-factor asset pricing model[END_REF], the Inv factor shows the relative profitability of firms with a conservative investment strategy. Using the framework of this time-series analysis, the neglected reversal in the 1970s is highly apparent.

Conclusion

This paper introduces the functional principal component analysis approach for decomposing the panel returns for portfolios sorted by Size, B/M, OP, Inv, and Mom. For all anomalies, the first EFPC captures more than 80% of the total variations and captures the market factor Mkt. The second and the third EFPCs display monotonicity and curvature on the cross-section, respectively. We consider these to be the cross-sectional underlying risks. Moreover, two remarkable reversals in the monotonicity of Inv and Size occurred in the 1970s and the 1980s.

Previous studies have shown that, regardless of which anomaly is chosen to construct the portfolios, the market EFPC dominates the variation of returns. This is the reason why so many asset pricing models contain the market factor Mkt due to its important role [START_REF] Sharpe | Capital asset prices: A theory of market equilibrium under conditions of risk[END_REF][START_REF] Fama | Common risk factors in the returns on stocks and bonds[END_REF][START_REF] Fama | A five-factor asset pricing model[END_REF][START_REF] Fama | Choosing factors[END_REF][START_REF] Carhart | On persistence in mutual fund performance[END_REF]. Furthermore, FPCA provides us with insight into the time-series structure of cross-sectional anomalies.
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 4 Figure 4: The expectation of the EFPC 3 with respect to t
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 5 Figure 5: Partial sum of ξt,2

Table 1 :

 1 The percentage of the variation explained by the first eight EFPCs The variance contribution of empirical eigenfunctions φm is captured by λm in Equation4.

	1	2	3	4	5	6	7	8	Total
	Size 94.34%	3.71%	0.69%	0.34%	0.23%	0.20%	0.19%	0.14%	99.84%
	B/M 87.96%	4.77%	2.21%	1.35%	1.06%	0.82%	0.72%	0.58%	99.48%
	OP 89.73%	3.17%	2.02%	1.22%	1.06%	0.89%	0.74%	0.58%	99.43%
	Inv 88.42%	4.27%	2.14%	1.34%	1.00%	0.93%	0.75%	0.65%	99.50%
	Mom 82.87%	10.27%	2.57%	1.06%	0.72%	0.70%	0.67%	0.48%	99.33%
	Note:								

Table 2 :

 2 Relationship between the expectation ξt,1 E u [ φ1 (u)] and Mkt

		Size	B/M	OP	Inv	Mom
	β0	0.0044 (6.0489)	0.0048 (10.7466)	0.0036 (16.7758)	0.0046 (24.5872)	0.0031 (6.8023)
	β1	1.1135 (68.0977)	0.9626 (96.5198)	0.9973 (205.9733)	0.9755 (234.0488)	1.0101 (99.2331)
	adj. R 2	0.8714	0.9316	0.9841	0.9877	0.9350

Note: Bracketed values are t-statistics. All the coefficients are significant at the 1% threshold level.

Table 3 :

 3 Relationship between the expectation E t [ ξt,2 ] φ2 (u) and u Bracketed values are t-statistics. All the coefficients are significant at the 1% threshold level.

		Size	B/M	OP	Inv	Mom
	α	-0.0014 (-56.302)	-0.0004 (-87.989)	-0.0023 (-31.6143)	0.0017 (18.2335)	-0.0049 (-74.1476)
	β	0.0029 (69.7142)	0.0007 (99.3374)	0.0047 (37.9013)	-0.0032 (-20.1909)	0.0106 (93.2222)
	adj. R 2	0.9800	0.9901	0.9355	0.8042	0.9887

Note:

Table 4 :

 4 Relationship between the expectation E t [ ξt,3 ] φ3 (u) and u, u 2 Bracketed values are t-statistics. All the coefficients are significant with level of 0.01.3.3. Two special cases: Size and InvRecall that the cross-sectional long-run effects E t [ ξt,2 ] φ2 (u) are determined by the sign of E t

		Size	B/M	OP	Inv	Mom
	α0	0.0001 (20.2455)	0.0002 (30.5843)	0.0001 (7.8666)	-0.00003 (-17.2844)	-0.0015 (-15.3746)
	α1	-0.0007 (-27.6413)	-0.0011 (-42.1656)	-0.0007 (-12.1131)	0.0001 (18.9258)	0.0099 (22.1703)
	α2	0.0007 (29.5452)	0.0011 (44.3128)	0.0007 (13.4072)	-0.0001 (-17.4401)	-0.0102 (-23.6036)
	adj. R 2	0.8994	0.9521	0.6567	0.7881	0.8503

Note:

For more details of the dataset, see Kenneth R. French's website, http://mba.tuck.dartmouth.edu/ pages/faculty/ken.french/data_library.html
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