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Decomposing Anomalies?

Abstract

This paper introduces the functional principal component analysis approach for decomposing
the panel returns of the anomaly-sorted portfolios. Using the US stock market data covering
July 1963-July 2020, our findings indicate that the Fama-French (F-F) market factor can be
captured by the first empirical functional principal component in the time-series. For the other
F-F anomalies, these being market capitalization (Size), book-to-market ratio (B/M), profitabil-
ity (OP), investment (Inv), and price momentum (Mom), the cross-sectional features remain in
the monotonicity of the second principal component and in the curvature of the third. Further-
more, a time-varying framework shows two neglected reversals of the F-F anomalies Inv and
Size in the 1970s and the 1980s.

Keywords: Asset Pricing, Anomaly Variable, Factor Model, Functional Principal Component
Analysis, Eigenfunction
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1. Introduction

The existing literature documents a wide range of anomalies that are not explained by
the Capital Asset Pricing Model (CAPM). These include the book-to-market equity (Fama
& French, 1993), the price momentum (Jegadeesh & Titman, 1993), the operating profitability
(Fama & French, 2015), and the quality (Asness et al., 2019) amongst others. These anoma-
lies are commonly identified by sorting stocks based on an anomaly variable or using Fama-
Macbeth regression. The shortcomings of the former method are significant, despite the sim-
plicity of the approach. Fama & French (2008) noted that ”sorts are clumsy for examining the
functional form of the relation between average returns and an anomaly variable” (p. 1654).

The objective of this study is to reexamine the anomaly-sorted portfolio returns from the
perspective of functional data. A recently developed functional principal component analysis
(FPCA) approach is applied in this paper. We decompose the anomaly-sorted returns into
orthogonal eigenfunctions based on FPCA. These data-driven functions display the underlying
risks and are related to the asset pricing factors.

Although cross-sectional stock returns are observed discretely, the risk is continuous. It is
logical to investigate these functional patterns in cross-sectional returns using the framework
of the FPCA. Prior researches have provided many factors that affect excess returns (Hou et al.,
2020). More recently, Croce et al. (2019) suggest a new influencing factor, i.e., the leading
premium. In this article, we focus on the five important factors as in Fama & French (2018),
namely, market capitalization (Size), book-to-market ratio (B/M), profitability (OP), investment
(Inv), and price momentum (Mom). We find that the first empirical functional principal compo-
nent (EFPC) captures the variation of the F-F market factor Mkt. Moreover, the monotonicity
and curvature found in the second and the third EFPCs, respectively, could be attributed to the
underlying cross-sectional risks. An additional finding is that the risks on the cross-section are
not always stable. Inv and Size reversed in the 1970s and the 1980s, respectively.

2. Data and methodology

Monthly anomaly-sorted portfolio returns are obtained from Kenneth R. French’s website
1. The sample period is July 1963-July 2020. The starting date corresponds to that in Fama &
French (2015). We consider the following five sorting variables: Size, B/M, OP, Inv, and Mom.

2.1. Smooth the discrete data
Assuming that all the stochastic curves are in the square-integrable Hilbert space L2[0, 1],

the inner product and corresponding norm are defined as 〈x(u), y(u)〉 =
∫ 1

0
x(u)y(u)du and

‖x(u)‖ = (
∫ 1

0
x2(u)du)1/2, respectively. We aim to smooth the cross-sectional constituents of

the discrete observed panel returns {ru,t, 1 ≤ u ≤ N, 1 ≤ t ≤ T } into the continuous functions
{rt(u), 0 ≤ u ≤ 1, 1 ≤ t ≤ T }.

For each time t, 1 ≤ t ≤ T , the functional data rt(u) can be represented by the Karhunen-
Loéve Theorem, see Horváth & Kokoszka (2012),

rt(u) =

∞∑
m=1

ηt,mψm(u) ≈
M∑

m=1

ηt,mψm(u), 1 ≤ t ≤ T (1)

1For more details of the dataset, see Kenneth R. French’s website, http://mba.tuck.dartmouth.edu/
pages/faculty/ken.french/data_library.html
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where ψm(u) are orthonormal functions in L2[0, 1].
The most well-known basis functions ψm(u) are Fourier bases and B-splines bases, which

are mainly used for periodical and non-periodical data, respectively. The number of bases M
is essential and determined by the trade-off between smoothness and noises. In this paper,
we introduce the ridge regression in Ramsay & Silverman (2005) with a penalty PEN4(rt) =∫

[D4rt(u)]2du, where D4 is the forth-order differential operator.
To obtain the fitted curves r̂t(u) for each time t, we solve the optimization problem,

min
N∑

u=1

ru,t −

M∑
m=1

ηt,mψm(u)

2 + λ

∫ [
D4rt(u)

]2
du (2)

where λ measures the rate of exchange between the capacity of fitting data and the smoothness
of r̂t(u). λ is determined by a generalized cross-validation criterion.

2.2. Functional principal component analysis
We assume that {rt(u), 0 ≤ u ≤ 1} is a stationary sequence in L2[0, 1] satisfying the moment

condition E ‖rt(u)‖4 < ∞. The covariance function of rt(u) is defined as c(u, v) = E[rt(u) −
µ(u)][rt(v) − µ(v)] where µ(u) is the functional mean of stationary {rt(u)}. c(u, v) is symmetric
and non-negative definite. rt(u) can be decomposed into,

rt(u) =

∞∑
m=1

ξt,mφm(u), 0 ≤ u ≤ 1, 1 ≤ t ≤ T (3)

where ξt,m = 〈rt(u), φm(u)〉 =
∫ ∞

0
rt(u)φm(u)du.

In practice, the sample estimator of covariance function c(u, v) is given by ĉT (u, v) =
1
T

∑T
t=1[rt(u) − µT (u)][rt(v) − µT (v)] where µT (·) = 1

T

∑T
t=1 rt(·). The unknown eigenvalues and

eigenfunctions of c(u, v) can be estimated by λ̂1 ≥ λ̂2 ≥ · · · ≥ 0 and φ̂1(u), φ̂2(u), . . . satisfying,

λ̂mφ̂m(u) =

∫ 1

0
ĉT (u, v)φ̂m(v)dv, m = 1, 2, . . . (4)

The popular way to decompose the functional observations rt(u) is to project curves into a
finite-dimensional space spanned by φ̂1(u), φ̂2(u), . . . , φ̂M(u) and obtain,

r̂t(u) ≈
M∑

m=1

ξ̂t,mφ̂m(u), 0 ≤ u ≤ 1, 1 ≤ t ≤ T (5)

Now the dynamics of functional observations are represented by finite empirical eigen-
functions φ̂m(u) and harmonic loadings ξ̂t,m, which form the M empirical functional principal
components (EFPCs).

3. Empirical results

We examine the value-weighted portfolio returns sorted by the F-F six-factor anomalies
{ru,t, 1 ≤ u ≤ N, 1 ≤ t ≤ T }, where u is the sorting group and t is a time index. In the first
step, the stocks are divided into ten groups (N = 10) and the smoothing process is conducted
as follows. At each time t, we set fourteen B-splines bases to functionalize the non-periodical
ru,t. The smoothing procedure generates T = 685 functional curves r̂t(u) covering 1963-2020.

The next step is to decompose these 685 monthly functional return curves {r̂t(u), 1 ≤ t ≤ T }
with FPCA. {ξ̂t,mφ̂m(u)} are EFPCs extracted from functions r̂t(u). Table 1 demonstrates that the
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top three components explain more than 90% of the variation of the portfolio returns for all the
anomalies. However, the rest of the EFPCs contribute slightly to the return variation, thus we
treat them as noises. In the analysis below, we focus on the EFPCi, i = 1, 2, 3.

Table 1: The percentage of the variation explained by the first eight EFPCs

1 2 3 4 5 6 7 8 Total

Size 94.34% 3.71% 0.69% 0.34% 0.23% 0.20% 0.19% 0.14% 99.84%
B/M 87.96% 4.77% 2.21% 1.35% 1.06% 0.82% 0.72% 0.58% 99.48%
OP 89.73% 3.17% 2.02% 1.22% 1.06% 0.89% 0.74% 0.58% 99.43%
Inv 88.42% 4.27% 2.14% 1.34% 1.00% 0.93% 0.75% 0.65% 99.50%

Mom 82.87% 10.27% 2.57% 1.06% 0.72% 0.70% 0.67% 0.48% 99.33%

Note: The variance contribution of empirical eigenfunctions φ̂m is captured by λ̂m in Equation 4.

For comparison, the first three empirical eigenfunctions of the return curves for anomaly-
sorted portfolios are plotted in Figure 1. The first eigenfunction φ̂1(u) slopes slightly for all the
anomalies. That is to say, φ̂1(u) shows little relation to the sorting criterion. In addition, the
monotonicity and curvature in the second and the third EFPCs, respectively, imply a linear and
a quadratic relationship with sorting percentage u.
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Figure 1: The first three empirical eigenfunctions for all the sorted portfolios

3.1. Market factor along the time-series
The first empirical eigenfunction φ̂1(u) exhibits remarkable features on the cross-section.

We analyze the expectation of the EFPC1 with respect to u to show how it works.

Eu[ξ̂t,1φ̂1(u)] = ξ̂t,1Eu[φ̂1(u)] (6)
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The expectation above represents the time-series features of the EFPC1. The theory is
described below. FPCA decomposes the sequence of return curves into orthogonal components.
Moreover, the first eigenfunction is weakly affected by the process of cross-sectional sorting.
This leads naturally to the time-series analysis. Although the anomalies differ from each other,
the expectation of EFPC1 with respect to u is consistent with the F-F market factor Mkt, see
Figure 2.
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Figure 2: The expectation of the first empirical functional principal component with respect to u

To build upon this, we then regress the expectation of the EFPC1 on the market factor Mkt,

ξ̂t,1Eu[φ̂1(u)] = β0 + β1Mktt + εt (7)

Table 2: Relationship between the expectation ξ̂t,1Eu[φ̂1(u)] and Mkt

Size B/M OP Inv Mom

β̂0
0.0044 0.0048 0.0036 0.0046 0.0031

(6.0489) (10.7466) (16.7758) (24.5872) (6.8023)

β̂1
1.1135 0.9626 0.9973 0.9755 1.0101

(68.0977) (96.5198) (205.9733) (234.0488) (99.2331)
adj. R2 0.8714 0.9316 0.9841 0.9877 0.9350

Note: Bracketed values are t-statistics. All the coefficients are significant at the 1% threshold level.

From the results in Table 2, a clear linear relationship is demonstrated between the expecta-
tion ξ̂t,1Eu[φ̂1(u)] and the market factor Mkt. The empirical principal component ξ̂t,1φ̂1(u) could
be regarded as an expansion of Mkt. Regardless of which anomaly is chosen to construct the
sorted portfolios, most of the variation in the EFPC1 along the time-series can be explained by
Mkt. Consequently, the EFPC1 captures the dynamics of the market factor Mkt.
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3.2. Pricing factors on the cross-section
Since the EFPC1 dominates the time-series features, it is necessary to explain the cross-

sectional relationships from ξ̂t,2φ̂2(u) and ξ̂t,3φ̂3(u). We first focus on the EFPC2. In the previ-
ous analysis, empirical eigenfunction φ̂2(u) displays the monotonicity for all the anomalies in
Figure 1. The positive or negative linearity of ξ̂t,2φ̂2(u) with u decisively relies on the sign of
ξ̂t,2 for each t. In a more feasible way, the long-run effects of the EFPC2 can be represented by
the expectation of ξ̂t,2φ̂2(u) with respect to t,

Et[ξ̂t,2φ̂2(u)] = Et[ξ̂t,2]φ̂2(u) (8)

The long-run effects depend on the eigenfunction φ̂2(u) and the expectation of correspond-
ing harmonic loadings Et[ξ̂t,2]. The results for all the anomaly-sorted portfolios are plotted in
Figure 3.
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Figure 3: The expectation of the EFPC2 with respect to t

All empirical results show monotonicity to varying degrees. For instance, the long-run
effect of the EFPC2 for Inv is slightly decreasing on the percentage u, which implies the cross-
sectional pattern that stocks with a conservative investment strategy obtain higher expected
returns than aggressive ones. The remaining four functions are increasing on u. All but S ize
are in accordance with Fama & French (2018).

By equally sampling from the curves with 100 points, we regress Et[ξ̂t,2]φ̂2(u) on u (stan-
dardized on [0, 1]),

Et[ξ̂t,2]φ̂2(u) = α + βu + εu (9)

The results in Table 3 confirm the linear relationship between Et[ξ̂t,2]φ̂2(u) and u. φ̂2(u) is
the only eigenfunction containing a linear relationship and the EFPC2 accounts for the highest
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Table 3: Relationship between the expectation Et[ξ̂t,2]φ̂2(u) and u

Size B/M OP Inv Mom

α̂
-0.0014 -0.0004 -0.0023 0.0017 -0.0049

(-56.302) (-87.989) (-31.6143) (18.2335) (-74.1476)

β̂
0.0029 0.0007 0.0047 -0.0032 0.0106

(69.7142) (99.3374) (37.9013) (-20.1909) (93.2222)
adj. R2 0.9800 0.9901 0.9355 0.8042 0.9887

Note: Bracketed values are t-statistics. All the coefficients are significant at the 1% threshold level.

proportion of the variation of returns, except for the market EFPC1. Consequently, if there
exists any cross-sectional linear relationship, ξ̂t,2φ̂2(u) captures it.
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Figure 4: The expectation of the EFPC3 with respect to t

The long-run effects of the EFPC3 show quadratic patterns, see Figure 4. To test this, we
regress Et[ξ̂t,3]φ̂3(u) on u and u2,

Et[ξ̂t,3]φ̂3(u) = α0 + α1u + α2u2 + εu (10)

The curvature of the expectation Et[ξ̂t,3]φ̂3(u) implies the different attitudes of the market
towards the extremes and middles. Barber & Odean (2008) propose the attention-grabbing
trading hypothesis. The consideration set of investors only contains the attention-grabbing
stocks, i.e., stocks meeting extreme criteria. It is likely that the curvature of the EFPC3 reflects
the limited concentration of investors in markets.
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Table 4: Relationship between the expectation Et[ξ̂t,3]φ̂3(u) and u, u2

Size B/M OP Inv Mom

α̂0
0.0001 0.0002 0.0001 -0.00003 -0.0015

(20.2455) (30.5843) (7.8666) (-17.2844) (-15.3746)

α̂1
-0.0007 -0.0011 -0.0007 0.0001 0.0099

(-27.6413) (-42.1656) (-12.1131) (18.9258) (22.1703)

α̂2
0.0007 0.0011 0.0007 -0.0001 -0.0102

(29.5452) (44.3128) (13.4072) (-17.4401) (-23.6036)
adj. R2 0.8994 0.9521 0.6567 0.7881 0.8503

Note: Bracketed values are t-statistics. All the coefficients are significant with level of 0.01.

3.3. Two special cases: Size and Inv
Recall that the cross-sectional long-run effects Et[ξ̂t,2]φ̂2(u) are determined by the sign of

Et[ξ̂t,2]. The expectation of ξ̂t,2 is estimated by the sample mean which is related to the partial
sum of ξ̂t,2. Figure 5 plots the partial sum for all the anomalies. For the majority of the sample
period, Et[ξ̂t,2] of anomalies B/M, OP, and Mom remains positive and thus the long-run effects
of these anomalies are stable over time.
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Figure 5: Partial sum of ξ̂t,2

We here illustrate two special cases, Size and Inv. In subsection 3.2, the long-run effect of
EFPC2 for Size are upward-sloping. That is to say stocks with a large market cap have higher
expected returns. It is clear that this conclusion is in contrast with the pricing factor Size in
Fama & French (1993). The reasons are as follows. Partial sum of ξ̂t,2 for Size is negative
for the most period of time before the 1980s and reverses after that, see Figure 5. Combined
with the upsloping eigenfunction φ̂2(u) in Figure 1, the long-run effect Et[ξ̂t,2]φ̂2(u) of Size
slopes downwards alongside the percentage of portfolios u in the first period and upwards in
the second.

As proposed by Fama & French (2015), the Inv factor shows the relative profitability of
firms with a conservative investment strategy. Using the framework of this time-series analysis,
the neglected reversal in the 1970s is highly apparent.
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4. Conclusion

This paper introduces the functional principal component analysis approach for decompos-
ing the panel returns for portfolios sorted by Size, B/M, OP, Inv, and Mom. For all anomalies,
the first EFPC captures more than 80% of the total variations and captures the market factor
Mkt. The second and the third EFPCs display monotonicity and curvature on the cross-section,
respectively. We consider these to be the cross-sectional underlying risks. Moreover, two re-
markable reversals in the monotonicity of Inv and Size occurred in the 1970s and the 1980s.

Previous studies have shown that, regardless of which anomaly is chosen to construct the
portfolios, the market EFPC dominates the variation of returns. This is the reason why so
many asset pricing models contain the market factor Mkt due to its important role (Sharpe,
1964; Fama & French, 1993, 2015, 2018; Carhart, 1997). Furthermore, FPCA provides us with
insight into the time-series structure of cross-sectional anomalies.
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