Electronic Supplementary Information (ESI)

Kinematic modelisation and parametric study of mechanosynthesis of

hydroxyfluorapatite

HanenHajji^{a,c*}, MohieddineAbdellaoui^{b,*},Lionel Maurizi^c, SamiaNasr^d, Nadine Millot^{c,*} and Ezzedine Ben Salem^a

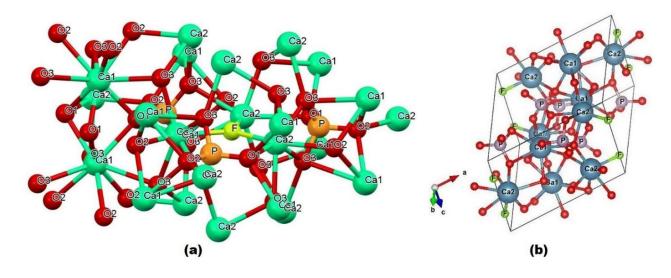
^a I.P.E.I. of Monastir, Unit of Materials and Organic Synthesis, University of Monastir, Tunisia
^bInstitut National de Recherche et d'Analyse Physico-Chimique, Pôle Technologique de Sidi Thabet, Tunisia
^cLaboratoire ICB UMR 6303 CNRS/Université Bourgogne Franche-Comté, Dijon, France
^d King Khalid University, Chemistry Department, College of Arts and Sciences in MahayelAseer, Abha,Saudi Arabia

* Corresponding authors:Dr.H. Hajji <u>hananhajji02@gmail.com</u>, Prof. M. Abdellaoui<u>mohieddine.abdellaoui@gmail.com</u>, Prof. N. Millot <u>nmillot@u-bourgogne.fr</u>

Table of contents

No. Contents

Pg No.


1	Table S1. Injected power values for different disc rotation speed values.	2
2	Table S2 Injected power values as a function of Nb and mp with constant disc rotation speed 450 rpm.	2
3	Fig. S1 Representation of the crystalline structure of hydroxyfluorapatite $Ca_{10}(PO_4)_6(OH)F$ (space group $P6_3 / m$): (a) Mercury graph (b) Vesta graph.	2
4	Fig.S2Variation of the injected shock power (Pinj), shock frequency (Fshoc) and kinetic shock energy (Ecc) as a function of the disc rotation speed ($mp = 1g$, $Nb = 1$ ball).	3
5	Fig. S3Variation of the injected shock power (Pinj) and the total shock frequency (Fchoc) as a function of the number of balls (mp = 1 g, Ω = 450 rpm).	3
6	Fig. S4Injected shock power (Pinj) as a function of powder mass (Nb = 1, Ω = 450 rpm).	4
7	Fig. S5 Variation of the apatite content, the injected shock power (Pinj), the cumulated energy (Ecum) and the specific surface area (A) as a function of the disc rotation speed ($mp = 1.2g$, 6 balls and 24 h).	4
8	Fig. S6 Variation of the apatite content, the injected shock power (Pinj), the cumulated energy (Ecum) and the specific surface area (A) as a function of the initial mass of powder (Ω = 450 rpm, 6 balls and 24 h).	5
8	Fig. S7 Variation of the apatite content, the injected shock power (Pinj), the cumulated energy (Ecum) and the specific surface area (A) as a function of the number of balls (Ω = 450 rpm, mp= 1.2 g and 24 h).	5
9	Fig. S8 Variation of the apatite content, the cumulated energy (Ecum) and the specific surface area (A) as a function of the grinding duration (Ω = 450 rpm, mp= 1.2 g Nb=6; Pinj=8.315 W h/g).	6
11	Table S3. Atomic concentration, determined by XPS and EDS analysis, of the different chemical elements in the HFA sample synthesized with the optimal conditions.	6
12	Fig. S9 TGA and DTG curve of the HFA sample synthesized with the optimal milling conditions (450 rpm, 1.2g, 6 balls and 24h).	7
13	References	8

Disc rotation speed Ω (rpm)	P_{inj} (Nb=1, mp=1g) (w/g)
150	0.0615
250	0.2851
350	0.7824
450	1.6630

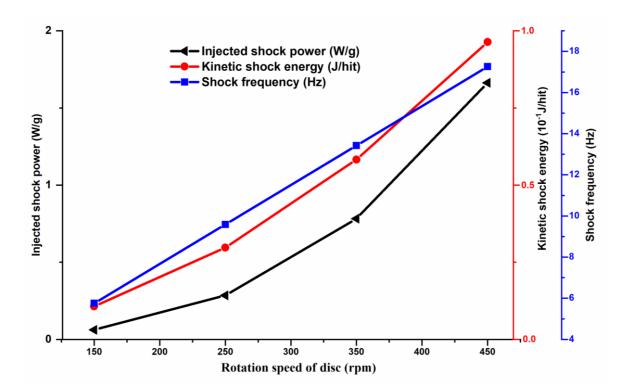
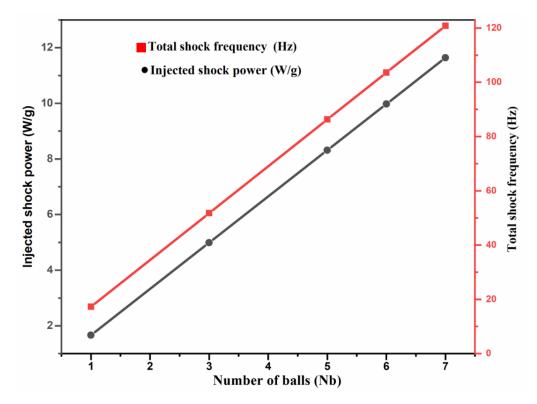
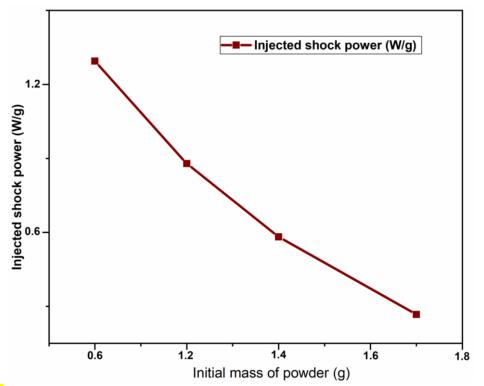
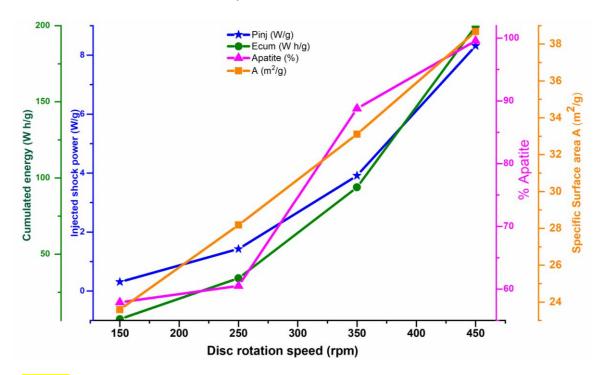

Table S1: Injected power values for different disc rotation speed values

Table S2: Injected power values as a function of Nb and mp with constant disc rotation speed


			450rpm		
mp (g)	P _{inj} (Nb=1) (w/g)	P _{inj} (Nb=3) (w/g)	P _{inj} (Nb=5) (w/g)	$P_{inj}(Nb=6) (w/g)$	P _{inj} (Nb=7) (w/g)
1.0	1.6631	4.989	8.315	9.978	11.641
1.2	1.3858	4.157	6.929	8.3148	9.7006
1.4	1.1878	3.563	5.939	7.1268	8.3146
1.7	0.9782	2.935	4.891	5.8692	6.8474


Fig. S1: Representation of the crystalline structure of hydroxyfluorapatite Ca₁₀(PO₄)₆(OH)F (space group P6₃ / m)[1]: (a) Mercury graph (b) Vesta graph.


Fig.S2: Variation of the injected shock power (Pinj), shock frequency (Fshoc) and kinetic shock energy (Ecc) as a function of the disc rotation speed (mp = 1g, Nb = 1 ball)

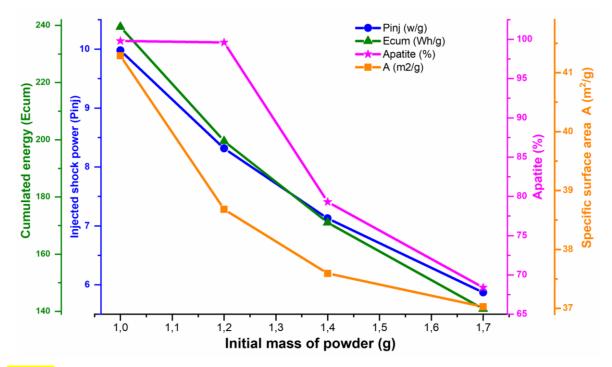
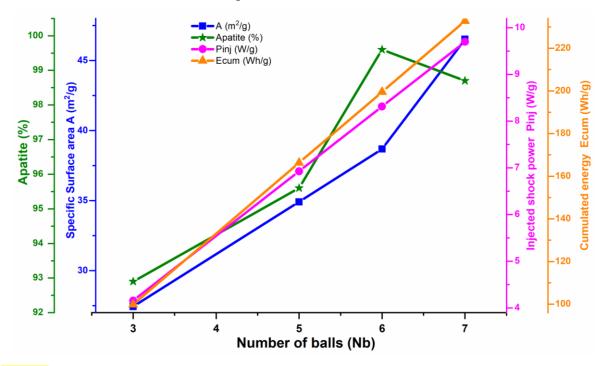
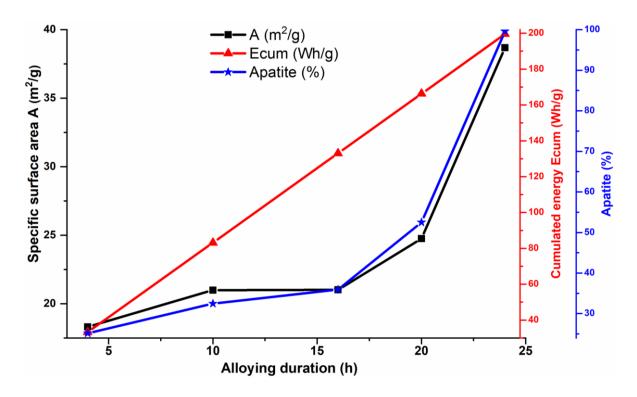

Fig. S3: Variation of the injected shock power (P_{inj}) and the total shock frequency (F_{choc}) as a function of the number of balls (mp = 1 g, Ω = 450 rpm)

Fig.S4: Injected shock power (P_{inj}) as a function of powder mass (Nb = 1, Ω = 450 rpm)

Fig. S5: Variation of the apatite content, the injected shock power (Pinj), the cumulated energy (Ecum) and the specific surface area (A) as a function of the disc rotation speed (mp = 1.2g, 6 balls and 24 h).

Fig. S6: Variation of the apatite content, the injected shock power (P_{inj}), the cumulated energy (E_{cum}) and the specific surface area (A) as a function of the initial mass of powder (Ω = 450 rpm, 6 balls and 24 h).

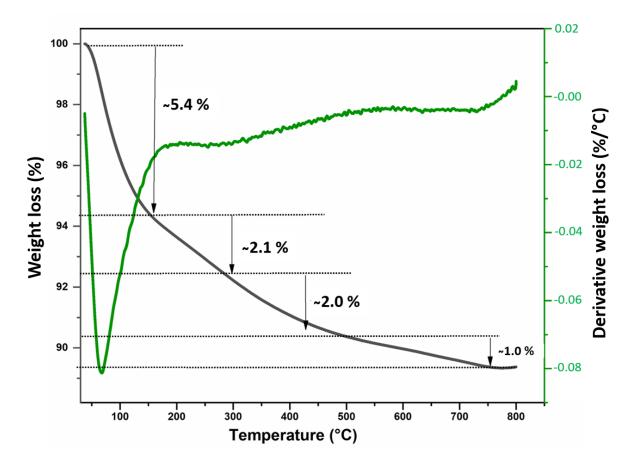

Fig. S7: Variation of the apatite content, the injected shock power (P_{inj}), the cumulated energy (E_{cum}) and the specific surface area (A) as a function of the number of balls (Ω = 450 rpm, mp= 1.2 g and 24 h).

Fig. S8: Variation of the apatite content, the cumulated energy (E_{cum}) and the specific surface area (A) as a function of the grinding duration (Ω = 450 rpm, mp= 1.2 g, Nb=6, P_{inj} =8.315 Wh/g).

Table S3: Atomic concentration, determined by XPS and EDS analysis, of the different chemical elements in the HFA sample synthesized with the optimal conditions.

Chemical element	C1s	O1s	F1s	P2p	Ca2p	Fe2p	Ca/P
Atomic concentration (at. %) (XPS)	3.6	61.1	2.7	13.2	19.2	0.2	1.457
Atomic concentration (at. %) (EDS)	-	61.7	3.8	14.1	20.5	-	1.454

Fig. S9: Thermogravimetric analysis curves of the HFA sample synthesized with the optimal milling conditions (450 rpm, 1.2g, 6 balls and 24h).

References

[1] Y. Gao, N. Karpukhina, et R. V. Law, Phase segregation in hydroxyfluorapatite solid solution at high temperatures studied by combined XRD/solid state NMR, RSC Adv. 6 (105) (2016) 103782- 103790. https://doi.org/10.1039/C6RA17161C.