
HAL Id: hal-03323472
https://hal.science/hal-03323472

Submitted on 21 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Isometric embeddings in trees and their use in distance
problems

Guillaume Ducoffe

To cite this version:
Guillaume Ducoffe. Isometric embeddings in trees and their use in distance problems. 46th Inter-
national Symposium on Mathematical Foundations of Computer Science (MFCS 2021), Aug 2021,
Tallinn, Estonia. �10.4230/LIPIcs.MFCS.2021.43�. �hal-03323472�

https://hal.science/hal-03323472
https://hal.archives-ouvertes.fr

Isometric embeddings in trees and their use in
distance problems
Guillaume Ducoffe !

National Institute for Research and Development in Informatics, Romania
University of Bucharest, Romania

Abstract
We present powerful techniques for computing the diameter, all the eccentricities, and other related
distance problems on some geometric graph classes, by exploiting their “tree-likeness” properties.
We illustrate the usefulness of our approach as follows:

We propose a subquadratic-time algorithm for computing all eccentricities on partial cubes of
bounded lattice dimension and isometric dimension O(n0.5−ε). This is one of the first positive
results achieved for the diameter problem on a subclass of partial cubes beyond median graphs.
Then, we obtain almost linear-time algorithms for computing all eccentricities in some classes of
face-regular plane graphs, including benzenoid systems, with applications to chemistry. Previously,
only a linear-time algorithm for computing the diameter and the center was known (and an
Õ(n5/3)-time1 algorithm for computing all the eccentricities).
We also present an almost linear-time algorithm for computing the eccentricities in a polygon
graph with an additive one-sided error of at most 2.
Finally, on any cube-free median graph, we can compute its absolute center in almost linear time.
Independently from this work, Bergé and Habib have recently presented a linear-time algorithm
for computing all eccentricities in this graph class (LAGOS’21), which also implies a linear-time
algorithm for the absolute center problem.

Our strategy here consists in exploiting the existence of some embeddings of these graphs in either a
system or a product of trees, or in a single tree but where each vertex of the graph is embedded in a
subset of nodes. While this may look like a natural idea, the way it can be done efficiently, which is
our main technical contribution in the paper, is surprisingly intricate.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Graph algorithms analysis

Keywords and phrases Tree embeddings; Range queries; Centroid decomposition; Heavy-path
decomposition; Diameter, Radius and all Eccentricities computations.

Digital Object Identifier 10.4230/LIPIcs.MFCS.2021.23

Funding This work was supported by project PN-19-37-04-01 “New solutions for complex problems
in current ICT research fields based on modelling and optimization”, funded by the Romanian Core
Program of the Ministry of Research and Innovation (MCI) 2019-2022.

1 Introduction

This paper is about classic location problems on graphs and metric spaces. Although we
focus on unweighted undirected graphs in what follows, it should be clear to the reader
that most of our results could also be applied to discrete metric spaces. For standard graph
terminology, see [12, 33]. The distance in a graph G = (V, E) between two vertices u, v ∈ V

equals the minimum number of edges in a uv-path, and is denoted dG(u, v). For any vertex u

in G, let eG(u) := maxv∈V dG(u, v) be its eccentricity. The diameter and the radius of G are
the maximum and minimum eccentricities of a vertex. We denote the former and the latter

1 The Õ(·) notation suppresses poly-logarithmic factors.

© Guillaume Ducoffe;
licensed under Creative Commons License CC-BY 4.0

46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021).
Editors: Filippo Bonchi and Simon J. Puglisi; Article No. 23; pp. 23:1–23:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:guillaume.ducoffe@ici.ro
https://orcid.org/0000-0003-2127-5989
https://doi.org/10.4230/LIPIcs.MFCS.2021.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Isometric embeddings in trees and their use in distance problems

by diam(G) and rad(G), respectively. The center of G contains all vertices with minimum
eccentricity. We study the problem of computing all eccentricities in Sec. 2. Finally, to any
graph G we can associate a continuous metric space (XG, d): obtained from G by replacing
every edge with a unit-length geodesic. Motivated by the problem of locating the “switching
center” in a communication network, Hakimi’s absolute center problem consists in, being
given G, computing all points of XG that minimize their largest distance to a vertex of
G [59]. We investigate this problem in Sec. 5.

Related work. There is a naive algorithm for computing all the eccentricities, resp. the
absolute center, in an n-vertex m-edge graph in total O(nm) time. Conversely, assuming
the so-called Strong-Exponential-Time Hypothesis (SETH), if an algorithm computes all the
eccentricities in a graph, or even just the diameter, in O(namb) time, then we must have
a + b ≥ 2 [70]. In what follows, by truly subquadratic we mean O(namb) time where a + b < 2.
The problem of finding truly subquadratic algorithms for the diameter problem on some
special graph classes has been addressed in many papers [1, 14, 15, 17, 18, 23, 30, 31, 42,
46, 47, 45, 51, 55, 69]. There are comparatively much fewer results for the absolute center
problem, e.g., see [60, 63, 65] for previous results on trees and cacti.

As it is often the case, such problems become much easier for the graphs with a suitable
“tree-like” representation such as: bounded tree-width graphs [17] and bounded clique-
width graphs [44]. In the context of Metric Graph Theory (hereafter called MGT), one
natural way to define tree-likeness of a graph is by using embeddings in trees. Recall
that, if (X, dX) and (Y, dY) are metric spaces, then an embedding is simply an injective
function φ : X → Y . Its distortion is the least α ≥ 1 s.t., for all x, x′ ∈ X, we have
α−1dX(x, x′) ≤ dY (φ(x), φ(x′)) ≤ αdX(x, x′). The stretch is the least β ≥ 0 s.t., for all
x, x′ ∈ X, we have |dX(x, x′) − dY (φ(x), φ(x′))| ≤ β. An isometric embedding is one s.t.
α = 1, or equivalently β = 0. A quasi isometric embedding is one such that α = O(1), or even
better β = O(1). If we are given an isometric embedding of a graph in a tree (resp., a quasi
isometric embedding), then we can solve exactly (resp., approximately) the diameter problem
in linear time. Unfortunately, the graph classes to which this nice result can be applied are
rather restricted. E.g., the graphs that can be isometrically embedded in a weighted tree are
exactly the block graphs [4, 61]. See also [5, 9] for an efficient recognition of tree metrics.
More generally, all the metric spaces that embed in a tree with constant distortion have a
bounded Gromov hyperbolicity: a polynomial-time computable parameter from geometric
group theory that is inspired by the four-point characterization of tree metrics [58]. While
many real-life networks are known to have bounded hyperbolicity [2], this is not the case for
important classes in MGT such as: median graphs (even of dimension at most two), Helly
graphs (even of strong isometric dimension at most two) and ℓ1-graphs. We refer to [3] for
their respective definitions (median graphs are defined in Sec. 5).

Thus, we need to consider stronger notions of tree embeddings, or embeddings in more
complicated “tree-like” spaces. Recall that the Cartesian product of graphs G1, G2, denoted
by G1□G2, has vertex-set V (G1) × V (G2) and edge-set {(u1, u2)(u1, v2) | u2v2 ∈ E(G2)} ∪
{(u1, u2)(v1, u2) | u1v1 ∈ E(G1)}. In [21], Chepoi studied the benzenoid systems: a subclass
of planar graphs with applications to chemistry, and he proved that they can be isometrically
embedded in linear time in the Cartesian product of three trees. In a subsequent work [23],
Chepoi et al. used this nice property in order to compute the diameter, and even the center,
of these graphs in linear time. However, they also needed certain “total monotonic” property
to hold for the distance-matrix of the graphs considered. To our best knowledge, the problem
of computing all the eccentricities within benzenoid systems in almost linear time has been
open until our work. Furthermore, we point out that the existence of similar embeddings

G. Ducoffe 23:3

as the one in [23], in a product or a system of constantly many trees, has been thoroughly
investigated for many graph classes [8, 6, 7, 25, 20, 35, 36, 37, 38, 39, 40, 41, 48, 68]. While
it is NP-hard in general to decide whether such an embedding exists [8], we note that several
of these above previous works have presented almost linear-time algorithms for this problem
on some special cases.

Our results. We first prove that, for any fixed k, we can compute all eccentricities in a
graph in quasi linear time if it is isometrically embedded in the Cartesian product of k

trees (Theorem 1). This improves on Chepoi et al. [23] since we needn’t any additional
assumption on the distance-matrix and we solve a more general problem than just computing
the diameter or the center. We apply this very general result to the following geometric
graph classes:

the triangular systems and hexagonal systems (a.k.a., benzenoids), see Sec. 2.2;
and the graphs of bounded lattice dimension, that can be isometrically embedded in the
product of constantly many paths (with an additional technical assumption needed for
computing the embedding), see Sec. 2.1.

Our actual result for Theorem 1 is even more general than what we stated above, since it
can also be applied to other types of tree embeddings. If the embedding is not isometric but
it has O(1) stretch or distortion, then our above approach leads to approximation algorithms
for computing all the eccentricities. In particular,

we prove that for any fixed k, all eccentricities in a k-polygon graph can be approximated
in almost linear time within an additive one-sided error of at most 2, see Sec. 2.3.

In the second part of the paper, we consider a different type of tree embedding: from a
graph G to a single tree T , but where each vertex u of G is mapped to a subset of nodes
U ⊆ V (T). This is similar to the notion of clan embedding, introduced in [52]. It leads us to
solve a more general eccentricity problem on trees, that may be of independent interest for
k-facility location problems [64, 73]. This is our second main technical contribution in the
paper. More precisely, given an n-node tree T , the eccentricity of a node-subset U is defined
as eT (U) = maxv∈V (T) minu∈U dT (v, u).

We prove that after an O(n log n)-time pre-processing, the eccentricity of any node-subset
U can be computed in O(|U | log2 n) query time. See Theorem 9. These running times
are optimal up to polylogarithmic factors.

Let k ∈ N and ε ∈ (0; 1) be arbitrary. We observe that, combined to Theorem 1 in [52], our
result implies a data structure for computing, for any graph G and any vertex-subset U (up
to pre-processing), a 16k-approximation of eG(U) (resp., an Õ

(
log n

ε

)
-approximation) in

expected Õ(|U |n1/k) time (resp., in expected Õ((1 + ε) · |U |) time). See Sec. 5.1.
We give another application of Theorem 9, in the context of distance and routing labelling

schemes. Indeed, a successful approach for computing such schemes with small label sizes
on geometric graph classes is as follows. Roughly, the vertices of a graph get partitioned
recursively into convex subgraphs. At each step, the vertices of such convex subgraphs are
projected to their respective boundary, so as to hit all shortest-paths to vertices in nearby
convex subgraphs of the decomposition. Then, by mimicking the recursive construction of
the labels, if the projections to the boundaries have some nice properties then, it becomes
possible to compute all eccentricities, as well as to solve other related distance problems.
It turns out that such embeddings are often tree-like, in the sense of either Theorem 1 or
Theorem 9. We illustrate this with the case of cube-free median graphs (formally defined in
Sec. 5). The cube-free median graphs properly contain the partial double trees (which can
be isometrically embedded in the Cartesian product of two trees), and if their maximum

MFCS 2021

23:4 Isometric embeddings in trees and their use in distance problems

degree is ∆ then, they can be isometrically embedded in the Cartesian product of ∆O(1)

trees [25]. However, in general they cannot be embedded in the product of constantly many
trees, and so, Theorem 1 cannot be applied. We overcome this issue by relying on a recursive
partition scheme as above, where the boundaries induce isometric trees, see [26]. Doing so,

we present the first almost linear-time algorithm for computing the absolute center of
cube-free median graphs, see Theorem 10. Our approach can also be used in order to
compute all eccentricities in this graph class.

Recently, Bergé and Habib have presented a linear-time algorithm for computing all ec-
centricities within the median graphs of bounded dimension (generalizing cube-free median
graphs) [11]. A reviewer observed that the absolute center of a median graph is always:
either its center if it is an independent set, or the middle points of all edges with their both
ends in the center. As a result, we can also compute the absolute center of cube-free median
graphs in linear time. That being said, we think that our alternative algorithm, although it is
slightly slower, has the potential to be generalized to other graph classes beyond the median
graphs. Indeed, to prove Theorem 10, we use some deep structural properties obtained
recently for cube-free median graphs [26]. We point out that very similar properties have
been obtained in the past for completely unrelated graph classes, such as planar graphs of
non-positive combinatorial curvature [24, 29, 28]. Thus, there is room for generalizing our
approach far beyond the cube-free median graphs.

Since both Theorems 1 and 9 are very general, we expect them to find applications beyond
the classes studied in the paper.

Organization of the paper. In Sec. 2 we state Theorem 1, then we summarize our results
obtained for subclasses of partial cubes, planar graphs and circle graphs. We postpone the
proof of Theorem 1 to Sec. 3, due to its technicality. Our algorithms in Sec. 3 have an
exponential dependency on the number k of trees considered. In Sec. 4, we give simple
conditional lower bounds showing their near optimality. Finally, in Sec. 5, we address the
problem of computing the eccentricity of k-subsets of nodes in a tree, and its application to
the absolute center problem for cube-free median graphs.

Due to lack of space, several proofs are omitted from the following technical sections.

2 Eccentricity computation in some geometric graph classes

This section is devoted to the applications of our Theorem 1, which we formally state
in what follows. We defined the Cartesian product of two graphs in Sec. 1. The strong
product of graphs G1, G2, denoted by G1 ⊠ G2, is a supergraph of the Cartesian product
with additional edge-set {(u1, u2)(v1, v2) | u1v1 ∈ E(G1), u2v2 ∈ E(G2)}. Finally, an
embedding of a graph G = (V, E) in a system of trees T1, T2, . . . , Tk is defined as k projections
φi : V → V (Ti), 1 ≤ i ≤ k. Then, the distortion of this embedding (resp. its stretch)
is defined as the least α s.t., ∀x, y ∈ X, α−1d(x, y) ≤ mini dTi(φi(x), φi(y)) ≤ αd(x, y)
(resp., as the least β s.t. ∀x, y ∈ X, |d(x, y) − mini dTi

(φi(x), φi(y))| ≤ β). We consider
quasi-isometric embeddings of graphs and metric spaces in: Cartesian products of trees,
strong products of trees, and systems of trees.

▶ Theorem 1. Let G = (V, E) be a graph and let T1, T2, . . . , Tk be a collection of k trees,
where N :=

∑k
i=1 |V (Ti)|.

1. If we are given an isometric embedding of G in either the system or the Cartesian product
of these k trees, then we can compute all eccentricities in G in O(2O(k log k)(N + n)1+o(1))

G. Ducoffe 23:5

time2.
2. If we are given an embedding of G with distortion α (resp., with stretch β) in either the

system or the Cartesian product of these k trees, then we can compute an α2-approximation
(resp., an +2β-approximation) of all eccentricities in G in O(2O(k log k)(N + n)1+o(1))
time. It can be improved to an α-approximation (resp., a +β-approximation) if the
embedding only has one-sided distance errors.

3. All the results above also hold if we are given an embedding of G in the strong product of
these k trees, with an improved runtime in O(N + kn).

See Sec. 3 for a sketch of the proof. We left open whether our approach could be
generalized to, say, the direct product or the layered cross product [50] of constantly many
trees. In what follows, we apply Theorem 1 to several geometric graph classes.

2.1 Partial cubes
The lattice dimension of a graph is the smallest k such that it isometrically embeds in the
Cartesian product of k paths. This parameter only exists for partial cubes, a.k.a., isometric
subgraphs of hypercubes (where, by a hypercube, we mean a Cartesian product of edges).
The isometric dimension of a partial cube is the least τ such that it isometrically embeds in
the τ -dimensional hypercube.

▶ Theorem 2. All eccentricities in an n-vertex partial cube with lattice dimension k and
isometric dimension τ can be computed in O((τ2 + 2O(k log k)) · n1+o(1)) time.

This is truly subquadratic provided k = o(log n) and τ = O(n0.5−ε), for some ε > 0.

Proof. Let G = (V, E) be a partial cube. It is well-known that E can be partitioned in
so-called θ-classes, where each class represents a dimension of the smallest hypercube in
which G can be isometrically embedded [34, 75]. Furthermore, given an edge, we can compute
its θ-class in linear time (see Sec. 3 in [49]). Therefore, we can isometrically embed G in a
smallest hypercube in Õ(τn) (here, we implicitly use that G only has Õ(n) edges, see Lemma
2 in [49]). Being given such an embedding, Eppstein’s algorithm computes an embedding of
G in the Cartesian product of a least number of paths in O(τ2n) time [48]. Then, we are
done applying Theorem 1 to the resulting embedding. ◀

2.2 Triangular and hexagonal systems
A triangular system is a subgraph of the regular triangular grid which is induced by the
vertices lying on a simple circuit and inside the region bounded by this circuit. Similarly, a
hexagonal system (a.k.a., benzenoid) is a subgraph of the regular hexagonal grid bounded by
a simple circuit. Improving on two prior works [21, 23], but at the price of a slightly slower
running time, we prove that:

▶ Theorem 3. All eccentricities in an n-vertex triangular system can be computed in Õ(n)
time. All eccentricities in an n-vertex hexagonal system can be computed in Õ(n) time.

Proof. Every hexagonal system can be isometrically embedded in the Cartesian product of
three trees, in linear time [21]. Then, we are done applying Theorem 1. The same holds for
triangular system, but it is a scale embedding: all distances in the tree are multiplied by
two [23]. As it shall become clearer in Sec. 3.2, our framework easily accommodates to this
more general type of embeddings. ◀

2 See [17, Lemma 5] for a more careful analysis of the running time.

MFCS 2021

23:6 Isometric embeddings in trees and their use in distance problems

2.3 Polygon graphs
A circle graph is the intersection graph of chords in a cycle. For every k ≥ 2, a k-polygon
graph is the intersection graph of chords in a convex k-polygon where the ends of each chord
lie on two different sides. Note that the k-polygon graphs form an increasing hierarchy of all
the circle graphs. We obtain:

▶ Theorem 4. All eccentricities in an n-vertex m-edge k-polygon graph can be computed in
O(2O(k)(n + m)1+o(1)) time, within an additive one-sided error of at most two.

Proof. Every k-polygon graph can be embedded in a system of 2 log3/2 k + 7 spanning trees
with stretch two. Furthermore, such a system can be computed in linear time, if the graph is
given together with its intersection model [36]. It was observed in [72] that an intersection
model can be computed in O(4k(n + m)α(n + m)) time, where α(·, ·) denotes the Ackermann
inverse function. We are now done applying Theorem 1 to the system (for k′ = O(log k)). ◀

3 Proof of Theorem 1

We devote this section to the proof of our first main result in the paper (Theorem 1). In
Sec. 3.1, we reduce to a more general query-answering problem on trees. We then solve this
problem in Sec. 3.2.

3.1 Reductions
It turns out that all three types of embeddings that are considered in Theorem 1 can be
reduced to the design of an efficient data structure for some abstract problem over a system
of trees. In what follows, ⊙ denotes a binary associative operation over the nonnegative real
numbers (e.g., the addition, minimum or maximum of two numbers).

▶ Problem 1 (⊙-Eccentricities).
Global Input: A system (Ti)1≤i≤k of trees, and a subset S ⊆

∏k
i=1 V (Ti).

Query Input: v = (v1, v2, . . . , vk) ∈
∏k

i=1 V (Ti)
Query Output: e⊙(v, S) := max{dT1(s1, v1) ⊙ dT2(s2, v2) ⊙ . . . ⊙ dTk

(sk, vk) |
(s1, s2, . . . , sk) ∈ S}.

Due to lack of space, formal reductions are omitted from the paper. Let us only sketch
one of them (we stress that all these reductions are pretty similar to each other). Specifically,
let φ be an isometric embedding of a graph G = (V, E) (or of a discrete metric space) to
the Cartesian product of the trees T1, T2, . . . , Tk. We set S := φ(V), and then, for every
u ∈ V we obtain: e+(φ(u)) = maxv∈V

∑k
i=1 dTi(φi(u), φi(v)) = maxv∈V d□k

i=1Ti
(φ(u), φ(v)),

where □ stands for the Cartesian product and, for every 1 ≤ i ≤ k, φi denotes the projection
of φ to V (Ti). In particular, e+(φ(u)) is equal to the eccentricity of u. Similarly, we can
reduce the eccentricity problem in systems and strong products of trees to min- and max-
Eccentricities, respectively. We also stress that being given a quasi isometric embedding,
our above approach leads to approximation algorithms for computing all the eccentricities.

3.2 A range-query framework
Our main result in this section is as follows:

G. Ducoffe 23:7

▶ Theorem 5. For every (Ti)1≤i≤k and S, let N :=
∑k

i=1 |V (Ti)|. We can solve min-
Eccentricities (resp., +-Eccentricities) with O(2O(k log k)(N +|S|)1+o(1)) pre-processing
time and O(2O(k log k)(N + |S|)o(1)) query time.

We need to introduce two useful tools. First, let V be a set of k-dimensional points,
and let f : V → R. A box is the Cartesian product of k intervals. A range query asks,
given a box R, for a point −→p ∈ V ∩ R s.t. f(−→p) is maximized. Up to some pre-processing
in O(|V | logk−1 |V |) time, such query can be answered in O(logk−1 |V |) time [74]. The
corresponding data structure is called a k-dimensional range tree. Furthermore, note that
for any ε > 0, ∀x > 0, logk x ≤ 2O(k log k)xε [17].

Second, for an n-node tree T = (V, E), a centroid is a node whose removal leaves subtrees
of order at most n/2. A classic theorem from Jordan asserts that such node always exists [62].
Furthermore, we can compute a centroid in O(n) time by dynamic programming (e.g.,
see [56]). A centroid decomposition of T is a rooted tree T ′, constructed as follows. If
|V (T)| ≤ 1, then T ′ = T . Otherwise, let c be a centroid. Let T ′

1, T ′
2, . . . , T ′

p be centroid
decompositions for the subtrees T1, T2, . . . , Tp of T \ {c}. We obtain T ′ from T ′

1, T ′
2, . . . , T ′

p

by adding an edge between c and the respective roots of these rooted subtrees, choosing c as
the new root. Note that we can compute a centroid decomposition in O(n) time [32]. We
rather use the folklore O(n log n)-time algorithm since, for any node v, we also want to store
its path P (v), in T ′, until the root, and the distances dT (v, ci), in T , for any ci ∈ P (v).

Sketch proof of Theorem 5. Due to lack of space, we only give a proof for the case ⊙ =
+. During a pre-processing phase, we compute a centroid decomposition for each tree
Ti, 1 ≤ i ≤ k separately, in total O(N log N) time. Then, we iterate over the elements
s = (s1, s2, . . . , sk) ∈ S. For every 1 ≤ i ≤ k, let P (si) be the path of si to the root into
the centroid decomposition T ′

i computed for Ti. We consider all possible k-sequences c =
(c1, c2, . . . , ck) s.t., ∀1 ≤ i ≤ k, ci ∈ P (si). Since the length of each path P (si) is in O(log N),
there are O(logk N) possibilities. W.l.o.g., all nodes have a unique identifier. Throughout
the remainder of the proof, we identify the nodes with their identifiers, thus treating them
as numbers. For any sequence c, we create an 2k-dimensional point −→p c(s), as follows: for
every 1 ≤ i ≤ k, the (2i − 1)th and 2ith coordinates are equal to ci and the unique neighbour
of ci onto the cisi-path in T ′

i , respectively (if ci = si, then we may set both coordinates
equal to si). The construction of all these O(|S| logk N) points takes time O(k|S| logk N).
We include these points −→p c(s), with an associated value f(−→p c(s)) (to be specified later in
the proof) in some 2k-dimensional range tree. It takes O((|S| logk N) log2k−1 (|S| logk N)) =
O(2O(k log k)(N + |S|)1+o(1)) time.

Then, in order to answer a query, let v = (v1, v2, . . . , vk) be the input. As before, for
every 1 ≤ i ≤ k, let P (vi) be the path of vi to the root into T ′

i . We iterate over all the
k-sequences c = (c1, c2, . . . , ck) s.t., ∀1 ≤ i ≤ k, ci ∈ P (vi). Let Sc ⊆ S contain every
(s1, s2, . . . , sk) s.t. ∀1 ≤ i ≤ k, ci is the least common ancestor of vi and si in T ′

i . The
subsets Sc partition S, and so, e+(v, S) = maxc e+(v, Sc). We are left explaining how to
compute e+(v, Sc) for any fixed c. For that, we observe that ci is the least common ancestor
of vi and si in T ′

i if and only if ci ∈ P (si) ∩ P (vi), and either ci ∈ {vi, si} or the two
neighbours of ci onto the civi-path and cisi-path in T ′

i are different. In the latter case, let
us denote by ui the neighbour of ci onto the civi-path in T ′

i . We can check these above
conditions, for every 1 ≤ i ≤ k, with the following constraints, over the 2k-dimensional points
−→p = (p1, p2, . . . , p2k) constructed during the pre-processing phase: ∀1 ≤ i ≤ k, p2i−1 = ci

and if ci ̸= vi, p2i ̸= ui. Since p2i ̸= ui is equivalent to p2i ∈ (−∞, ui) ∪ (ui, +∞),
each inequality can be replaced by two range constraints over the same coordinate. In

MFCS 2021

23:8 Isometric embeddings in trees and their use in distance problems

particular, since there are ≤ k such inequalities, we can transform these above constraints
into O(2k) range queries. Therefore, we can output a point −→p c(s), for some s ∈ Sc,
maximizing f(−→p c(s)), in O(2k log2k−1 (|S| logk N)) = O(2O(k log k)(N + |S|)o(1)) time. Let
f(−→p c(s)) =

∑k
i=1 dTi(si, ci). Since we have s ∈ Sc, dTi(si, vi) = dTi(si, ci) + dTi(ci, vi) [54].

As a result: e+(v, Sc) = f(−→p c(s)) +
∑k

i=1 dTi
(ci, vi). There are O(logk N) possible c, and

so, the final query time is in O(2O(k log k)(N + |S|)o(1)).
For the case when ⊙ = min, we need points with O(k) more coordinates in order to

correctly identify some index i s.t. dTi(vi, si) = min1≤j≤k dTj (vj , sj). This is a similar trick
as the one used in [1, 17, 19]. ◀

In contrast to Theorem 5, the distance between two vertices in the strong product of k

trees equals the maximum distance between their k respective projections. Hence, we can
process each tree of the system separately, and we obtain:

▶ Lemma 6. For every (Ti)1≤i≤k and S, let N :=
∑k

i=1 |V (Ti)|. We can solve max-
Eccentricities with O(N + k|S|) pre-processing time and O(k) query time.

Proof. For every 1 ≤ i ≤ k, let φi : S → V (Ti) be the projection of S to Ti. We stress
that the projections φi(S), 1 ≤ i ≤ k, can be computed in total O(k|S|) time. Then, we
iteratively remove from Ti the leaves that are not in φi(S). Let T ′

1, T ′
2, . . . , T ′

k be the k

subtrees resulting from this above pre-processing. Note that, for every 1 ≤ i ≤ k, Ti \ T ′
i

is a forest whose each subtree can be rooted at some node adjacent to a leaf of T ′
i , and so,

adjacent to a node of φi(S). For every node vi ∈ V (Ti) \ V (T ′
i), let ϕ(vi) be the unique

leaf of T ′
i s.t. the subtree of Ti \ T ′

i that contains vi also contains a neighbour of ϕ(vi). We
compute, and store, the distance dTi(vi, ϕ(vi)). Since, for doing so, we only need to perform
breadth-first searches on disjoint subtrees, the total running time of this step is in O(N).
Finally, we compute, for 1 ≤ i ≤ k, all eccentricities in T ′

i . Again, this can be done in total
O(N) time (e.g., see [22, 43]). This concludes the pre-processing phase.

In order to answer a query, let us consider some input v = (v1, v2, . . . , vk). Our key
insight here is that we have:

emax(v, S) = max{ max
1≤i≤k

dTi(vi, si) | (s1, s2, . . . , sk) ∈ S} = max
1≤i≤k

max{dTi(vi, si) | si ∈ φi(S)}.

Therefore, in order to compute emax(v, S) in O(k) time, it suffices to compute max{dTi
(vi, si) |

si ∈ φi(S)} in O(1) time for every 1 ≤ i ≤ k. If vi ∈ V (T ′
i) then, since φi(S) ⊆ V (T ′

i) and
furthermore all the leaves of T ′

i are in φi(S), we get max{dTi
(vi, si) | si ∈ φi(S)} = eT ′

i
(vi).

Otherwise, max{dTi(vi, si) | si ∈ φi(S)} = dTi(vi, ϕ(vi)) + eT ′
i
(ϕ(vi)). ◀

Theorem 1 now follows from our reductions in Sec. 3.1 combined with Theorem 5 and
Lemma 6.

4 Hardness results

We complete the positive results of Theorem 1 with two conditional lower bounds. Both
theorems follow from a “SETH-hardness” result in order to compute the diameter of split
graphs with a logarithmic3 clique-number [13], and from the observation that every split
graph with a maximal clique K embeds in any system of |K| shortest-path trees rooted at
the vertices of K.

3 The logarithmic upper bound is not explicitly stated in [13], but it easily follows from the sparsification
lemma applied to k-SAT.

G. Ducoffe 23:9

▶ Theorem 7. For any ε > 0, there exists a c(ε) s.t., under SETH, we cannot compute the
diameter of n-vertex graphs in O(n2−ε) time, even if we are given as input an isometric
embedding of the graph in a system of at most c(ε) log n spanning trees. In particular, under
SETH, there is no data structure for min-Eccentricities with O(2o(k)(N + |S|)1−o(1))
pre-processing time and O(2o(k)(N + |S|)o(1)) query time, where N :=

∑k
i=1 |V (Ti)|.

We believe our Theorem 7 to be important since the embeddings of graphs in systems of
tree spanners are well-studied in the literature [35, 36, 37, 38, 39, 40, 41].

▶ Theorem 8. For any ε > 0, there exists a c(ε) s.t., under SETH, we cannot compute the
diameter of n-point metric spaces in O(n2−ε) time, even if we are given as input an isometric
embedding of the space in a Cartesian product of at most c(ε) log n tree factors. In particular,
under SETH, there is no data structure for +-Eccentricities with O(2o(k)(N + |S|)1−o(1))
pre-processing time and O(2o(k)(N + |S|)o(1)) query time, where N :=

∑k
i=1 |V (Ti)|.

Proof. Recall that for any ε > 0, there exists a c(ε) s.t., under SETH, we cannot compute
the diameter in O(n2−ε) time on the split graphs of order n and clique-number at most
c(ε) log n [13]. Let G = (K ∪ I, E) be a split graph, where K and I are a clique and a
stable set, respectively. If it is not given, such a bipartition of V (G) can be computed in
linear time [57]. For every u ∈ K, we construct a tree T ′

u, and an embedding φu of G into
the latter, as follows. We start from a single-node tree, to which we map vertex u. Then,
for every v ∈ NG(u), we add a leaf into the tree, adjacent to the image of u, to which we
map the vertex v. We add another node u∗ in T ′

u, that is also adjacent to the image of u

(note that u∗ is not the image of a vertex of G). Finally, for every vertex v ∈ V (G) \ NG[u],
we add a leaf node, to which we map vertex v, that we connect to u∗ by a path of length
two. Let φ : V (G) → V (□u∈KT ′

u) be s.t., for every v ∈ V (G), φ(v) = (φu(v))u∈K . The
metric space considered is (φ(V (G)), d), where d is the sub-metric induced by d□u∈K T ′

u

(distances in the Cartesian product). Indeed, let v, v′ ∈ V (G). For every u ∈ K, by
construction we have diam(T ′

u) = 4, and so, dT ′
u
(φu(v), φu(v′)) ≤ 4. Specifically, if u ∈ {v, v′}

then dT ′
u
(φu(v), φu(v′)) ≤ 3; if v, v′ ∈ NG(u) then dT ′

u
(φu(v), φu(v′)) = 2; otherwise,

dT ′
u
(φu(v), φu(v′)) = 4. Altogether combined, if dG(v, v′) = 3 (in particular, v, v′ ∈ I) then

we get d(φ(v), φ(v′)) = 4|K|, otherwise we get d(φ(v), φ(v′)) ≤ 3+4(|K|−1) = 4|K|−1. ◀

5 One-to-many tree embeddings

We end up discussing a different type of tree-like embedding than in Sec. 2. First we present
an algorithm for computing all eccentricities being given such an embedding (Sec. 5.1). We
then propose, in Sec 5.2, an application of our result to the absolute center problem in a
subclass of median graphs.

5.1 Computation of subset-eccentricities
We now address the problem of computing the eccentricity of subsets of nodes, in one tree:

▶ Theorem 9. Let T be any n-node tree, and let α : V (T) → R. After a pre-processing in
O(n log n) time, for any subset U of nodes and function β : U → R, we can compute the
value eT,α(U, β) = maxv∈V (T) minu∈U (α(v) + dT (v, u) + β(u)) in O(|U | log2 n) time.

In particular, after an O(n log n)-time pre-processing we can compute eT (U) in O(|U | log2 n)
time by setting α(v) = 0 for every node v ∈ V (T) and β(u) = 0 for every node u ∈ U .
The proof of Theorem 9 is technical, and we omit it due to lack of space. It is based on

MFCS 2021

23:10 Isometric embeddings in trees and their use in distance problems

a completely different processing method of the tree than in Sec. 3.2: using heavy-path
decomposition [71] and the local computation of so-called Cartesian trees for maximum range
queries [53].

Here is a possible application of our Theorem 9 for general graphs. By a clan embedding of a
graph G = (V, E) in a tree T , we mean a one-to-many embedding S : V → 2V (T) such that,
to each vertex v ∈ V , we also associate a leader χ(v) ∈ Sv in its corresponding node-subset
of T . This embedding must further satisfy dT (Su, Sv) ≥ dG(u, v) for every u, v ∈ V . The
distortion of a clan embedding can be defined as t := maxu̸=v dT (χ(u), Sv)/dG(u, v).

For each node x of T , we set α(x) to 0 if x = χ(u) for some vertex u ∈ V ; otherwise, we
set α(x) to some large enough negative value. Then, for any subset U ⊆ V , we can apply
Theorem 9 to

⋃
u∈U Su in order to compute a t-approximation of eG(U). We refer to [52] for

various trade-offs between the size of the subsets Su and the resulting distortion t.

5.2 Application to a distance-labelling scheme
We devote our last section to cube-free median graphs. Recall that a graph G = (V, E) is
called median if, for any triple x, y, z ∈ V , there exists a unique vertex c that is simultaneously
on some shortest xy-, yz- and zx-paths. This class is ubiquitous in Theoretical Computer
Science. Indeed, the median graphs are exactly the 1-skeletons of CAT(0) cube complexes [58],
the domains of event structures [67] and the solution sets of 2-SAT formulas [66], among
many characterizations. The dimension of a median graph G is the largest d ≥ 1 such that
G contains a d-cube (hypercube of dimension d) as an induced subgraph. In particular,
the median graphs of dimension 1 are exactly the trees. The median graphs of dimension
at most 2, a.k.a., cube-free median graphs, have already received some attention in the
literature [7, 16, 25, 26, 27].

In what follows, we abusively call eccentricity of a point x ∈ XG, denoted by eG(x), its
maximum distance to a vertex of G.

▶ Theorem 10. There is an Õ(n)-time algorithm for computing the absolute center of
n-vertex cube-free median graphs. More generally, the algorithm encodes in O(n) space the
eccentricity of all the points of XG.

The remainder of this section is devoted to the proof of Theorem 10. Given any point
x ∈ XG, if W ⊆ V then, let eG(x, W) = maxw∈W d(x, w). We observe that:

▶ Lemma 11. For a bipartite graph G = (V, E) and an edge uv ∈ E, let Wu,v = {w ∈
V | d(u, w) < d(v, w)}. If x is a point of the edge uv such that d(u, x) = t, then, we have
e(x) = max{t + e(u, Wu,v), 1 − t + e(v, Wv,u)}.

Proof. We have V = Wu,v ∪ Wv,u because G is bipartite. Let w ∈ Wu,v. Every xw-path
going by vertex v would have length 1 − t + d(v, w) = 2 − t + d(u, w) > t + d(u, w), and
therefore, it cannot be a shortest xw-path. In the same way, let w ∈ Wv,u. Every xw-path
going by vertex u would have length t + d(u, w) = 1 + t + d(v, w) > 1 − t + d(v, w), and
therefore, it cannot be a shortest xw-path either. ◀

As a result of Lemma 11, we are left computing the values e(u, Wu,v) and e(v, Wv,u) for
every edge uv. Since the cube-free median graphs are sparse [26], there are only O(n) values
to be stored. Furthermore, for median graphs, the subsets Wu,v are called half-spaces and
they induce convex subgraphs. Thus, in a way, we could reduce the absolute center problem
to the computation of all eccentricities in various convex subgraphs of the input. However,
the number of subgraphs to be considered is in general super-constant, even for the cube-free

G. Ducoffe 23:11

median graphs. Since by Lemma 11, a point in the absolute center must be either a vertex
or at the middle of an edge, we could also reduce the absolute center problem to computing
all eccentricities in the subdivision of G. Unfortunately, median graphs are not closed by
taking subdivisions. We take an alternative approach in what follows.

For that, we first recall some notions and results from [26]. These results are specific to
cube-free median graphs but, as we pointed it out in Sec. 1, similar structural decomposition
theorems were proved in [24, 29, 28] for completely unrelated geometric graph classes.

In what follows, let G = (V, E) be a cube-free median graph. A centroid is any vertex
minimizing the sum of its distances to all other vertices. Recently, it was shown that a
centroid in a median graph can be computed in linear time [10]. So, let c ∈ V be a centroid.

A subgraph H of G is gated if, for every v ∈ V \ V (H), there exists a v∗ ∈ V (H) s.t.,
∀u ∈ V (H), dG(u, v) = dG(u, v∗) + dG(v∗, v). We define the fibers F (x) = {x} ∪ {v ∈
V (G \ H) | x is the gate of v in H}. The fibers F (x), x ∈ V (H) partition the vertex-set of
G, and each induces a gated subgraph [26].

For any z ∈ V , the star St(z) of z is the subgraph of G induced by all edges and squares
of G incident to z. Any such star St(z) is gated and, if furthermore z = c, every fiber
F (x), x ∈ St(c) contains at most |V |/2 vertices [26].

A fiber F (x) of the star St(c) is a panel if x ∈ NG(c), and a cone otherwise. We say that
two fibers F (x), F (y) are neighboring if there exists an edge with an end in F (x) and the
other end in F (y). If two fibers are neighboring then one must be a panel and the other must
be a cone; furthermore, a cone has two neighboring panels [26]. Two fibers are 2-neighboring
if they are cones adjacent to the same panel. Finally, two fibers that are neither neighboring
nor 2-neighboring are called separated.

The subset of vertices in F (x) with a neighbour in F (y) is denoted by ∂yF (x) (with the
understanding that ∂yF (x) = ∅ when F (x), F (y) are not neighboring). The total boundary
of F (x) is defined as ∂∗F (x) = ∪y∂yF (x).

For a set of vertices A, an imprint of a vertex u is a vertex a ∈ A such that there is no
vertex of A (but a itself) on any shortest au-path. A subgraph H of G is quasigated if every
vertex of V (G \ H) has at most two imprints. It is known that for each fiber F (x) of a star
St(z), the total boundary ∂∗F (x) is an isometric quasigated tree [26].

▶ Lemma 12 ([26]). Let G = (V, E) be a cube-free median graph, let c ∈ V be a centroid, and
let F (x), F (y) be two fibers of the star St(c). The following hold for every u ∈ F (x), v ∈ F (y).

If F (x) and F (y) are separated, then dG(u, v) = dG(u, c) + dG(c, v);
If F (x) and F (y) are neighboring, F (x) is a panel and F (y) is a cone, then let u1, u2 be
the two (possibly equal) imprints of u on the total boundary ∂∗F (x), and let v∗ be the
gate of v in F (x). We have dG(u, v) = min{dG(u, u1)+dG(u1, v∗)+dG(v∗, v), dG(u, u2)+
dG(u2, v∗) + dG(v∗, v)};
If F (x) and F (y) are 2-neighboring, then let F (w) be the panel neighboring F (x) and
F (y). Let u∗ and v∗ be the gates of u and v in F (w). Then dG(u, v) = dG(u, u∗) +
dG(u∗, v∗) + dG(v∗, v).

Sketch proof of Theorem 10. We compute for each edge uv ∈ E two values, denoted by
fG(u, v) and fG(v, u), so that: fG(u, v) ≤ eG(u, Wu,v), fG(v, u) ≤ eG(v, Wv,u) and, for each
point x of the edge such that d(u, x) = t, eG(x) = max{t + fG(u, v), 1 − t + fG(v, u)}. If
E = {uv} then, we set fG(u, v) = fG(v, u) = 0. Otherwise, we compute a centroid c and we
use an algorithmic procedure from [26] in order to compute in O(n) time the vertex-set and
the edge-set of all fibers F (x), x ∈ St(c). We enumerate all the fibers F (x), x ∈ St(c), and
we compute D(x) = maxv∈F (x) dG(v, c). It can be done in total O(n) time by performing a

MFCS 2021

23:12 Isometric embeddings in trees and their use in distance problems

BFS rooted at c. Also, for each x ∈ St(c), let Gx be induced by F (x). Since, F (x) is gated,
and so convex, Gx is a cube-free median graph. In particular, we can apply our algorithm
recursively on it in order to compute the values fGx

(·, ·) associated to its edges. Then, we
apply the following steps (some of which not being detailed due to lack of space):

Step 1. We consider all edges with their both ends in St(c) and we compute the
corresponding values fG(·, ·). Roughly, it can be done in total O(n log n) time if we order the
vertices of St(c) by non-decreasing D(·) value, and if we keep track for each x ∈ St(c) of its
neighbours in the star. To illustrate this, consider for example some edge xc. Then, Wx,c =⋃

{F (y) | y ∈ N [x] ∩ (St(c) \ {c})}, and so it becomes possible to compute fG(x, c), fG(c, x)
from the D(·) values. In the same way for an edge xy, where x ∈ N(c), y ∈ St(c) \ N [c], we
have Wy,x = F (y) ∪ F (x′) where F (x), F (x′) are the two panels neighboring F (y), and so,
we can proceed as in the previous case for computing fG(x, y), fG(y, x). Thus from now on,
we only consider edges with at least one end not in St(c).

Step 2. We consider each remaining edge uv sequentially, where d(u, c) < d(v, c). Let
x, y ∈ St(c) satisfy u ∈ F (x), v ∈ F (y). Let A be the union of all the fibers F (z) s.t. F (z) is
separated from both F (x) and F (y). By Lemma 12, we have A ⊆ Wu,v. We want to compute
maxw∈A dG(u, w). There are three cases: x = y and F (x) is a panel; x = y and F (x) is a
cone; x ≠ y. Due to lack of space, we only detail the first case (the other two cases can be
handled with similar techniques). Specifically, let z ≠ x be such that F (z) is a panel and
D(z) is maximized. It can be computed in constant-time assuming the panels were ordered
during a pre-processing phase. Recall that two panels are always separated. Therefore, the
maximum distance between u and a vertex of A in a panel is equal to d(u, c) + D(z). The
case of separated cones is more complicated, and it requires some pre-processing. Specifically,
we assign to all the fibers F (z) pairwise different positive numbers, that we abusively identify
with the vertices z of the star St(c). Then, we enumerate the cones F (z′), z′ ∈ St(c) \ NG[c].
Let F (z1), F (z2) be the two panels neighboring F (z′). We create a point −→p (z′) = (z1, z2),
to which we associate the value f(−→p (z′)) = D(z′). To complete the pre-processing, we put
these points and their associated values in a 2-dimensional range tree, that takes O(n log n)
time. Now, to compute the maximum value between u and a vertex of A in a cone, it suffices
to compute a point −→p (z′) = (p1, p2) such that:{

p1 ̸= x, p2 ̸= x

f(−→p (z′)) is maximized for these above properties.

Indeed, this maximum distance is exactly dG(u, c)+D(z′) = dG(u, c)+f(−→p (z′)). Furthermore,
since each inequality gives rise to two disjoint intervals to which the corresponding coordinate
must belong, a point −→p (z′) as above can be computed using four range queries. It takes
O(log n) time. As a result, the total running time of this step is in O(n log n).

Step 3. We consider each edge uv with at least one end not in St(c) and such that
u ∈ F (x) for some panel F (x). In what follows, for any z, z′ ∈ St(c), we write z ∼ z′ if
F (z), F (z′) are neighboring. Let B =

⋃
{F (y) | x ∼ y and v /∈ F (y)}. Intuitively, what we

try to do at this step is to compute e(u, Wu,v ∩ B) and e(v, Wv,u ∩ B). There are two cases:
either v /∈ F (x) or v ∈ F (x). In both cases, we reduce our computations to some suitable
eccentricity problem on the tree T = ∂∗F (x). Next, we detail the case v ∈ F (x), which is
the one to which we need to apply Theorem 9 (the case v /∈ F (x) is solved by using a rather
standard dynamic programming approach on the tree T). For each node z ∈ V (T), let α(z)
be the maximum distance between z and any vertex w in a neighboring cone F (y) of which
z is the gate in F (x) (with the understanding that, if no vertex has z as its gate, then α(z)

G. Ducoffe 23:13

is a sufficiently large negative value, say α(z) = −|V (T)|). All these nodes weights can be
pre-computed in O(

∑
y|x∼y |F (y)|) time. Furthermore, note that a cone is neighboring two

panels [26]. As a result, if we consider each panel F (x) sequentially then, we scan each cone
only twice, and the total running-time of this pre-computation phase is in O(n).

We compute eG(u, B), eG(v, B) and eG({u, v}, B) =def maxw∈B dG(w, {u, v}). For that,
let u1, u2 ∈ V (T) be the two (possibly equal) imprints of u, and similarly let v1, v2 ∈ V (T)
be the imprints of v. Set β(u1) = dG(u, u1), β(u2) = dG(u, u2) and in the same way β(v1) =
dG(v, v1), β(v2) = dG(v, v2). Since T is isometric, then it follows from the distance formulae
in Lemma 12 that the values to be computed are exactly eT,α({u1, u2}, β), eT,α({v1, v2}, β)
and eT,α({u1, v1, u2, v2}, β). By Theorem 9, the latter can be computed in O(log2 n) time,
up to some initial pre-processing of T in O(|V (T)| log |V (T)|) = O(|F (x)| log |F (x)|) time.
Overall, the running-time of this step is in O(n log2 n).

Let eG(u, B) = p1, eG(v, B) = p2 and eG({u, v}, B) = p. W.l.o.g., p1 ≤ p2. It implies
p2 = p + 1. Then, eG(u, B ∩ Wu,v) = p. In the same way, if p1 = p + 1 then we also have
eG(v, B ∩ Wv,u) = p. From now on, we assume p1 < p + 1. In particular, p1 = p. But then,
eG(v, B ∩Wv,u) ≤ p−1, and therefore we needn’t compute this value (i.e., because we always
have t + p ≥ 1 − t + eG(v, B ∩ Wv,u) for any t ∈ (0; 1)).

Step 4. Finally, consider each edge uv with at least one end not in St(c) and such that
v ∈ F (y) for some cone F (y). Let C =

⋃
{F (y′) | F (y) and F (y′) are either neighboring or

2-neighbouring, and u /∈ F (y′)}. We would like to compute eG(u, Wu,v ∩C) and eG(v, Wv,u ∩
C). There are two cases: either u ∈ F (y) or u /∈ F (y). Consider the case u ∈ F (y) (the other
case can be dealt with similarly). We consider each x s.t. F (x) is a panel neighboring F (y)
sequentially (there are only two such x). Let Cx contain F (x) and all cones of C that are
neighboring F (x). We now consider T = ∂∗F (x) which we assume to be pre-processed as
during the previous Step 3. Let u∗, v∗ ∈ V (T) be the respective gates of u, v. Indeed, by
Lemma 12 there is always a shortest-path between u (resp., v) and any vertex of Cx that
goes by u∗ (resp., by v∗). This part is solved through a delicate case analysis which depends
on: some values fGx(·, ·) (obtained by applying our algorithm recursively to Gx) and some
eccentricity functions computed for T during Step 3.

Overall, each fiber contains at most n/2 vertices, and so there are O(log n) recursive
stages. Since a stage runs in O(n log2 n) time (the bottleneck being Step 3), the total running
time for computing all the values fG(·, ·) is in O(n log3 n). ◀

Open problem. To which other graph classes can our framework in this section be applied?
A good candidate could be the planar graphs of non positive combinatorial curvature [24],
and especially the trigraphs [29]. To our best knowledge, it is open whether the eccentricities
in a trigraph can be computed in almost linear time (there exists a linear-time algorithm for
computing the diameter and the center [53]).

References
1 A. Abboud, V. Vassilevska Williams, and J. Wang. Approximation and fixed parameter

subquadratic algorithms for radius and diameter in sparse graphs. In Proceedings of the twenty-
seventh annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 377–391. SIAM,
2016.

2 Muad Abu-Ata and Feodor F. Dragan. Metric tree-like structures in real-world networks: an
empirical study. Networks, 67(1):49–68, 2016. doi:10.1002/net.21631.

3 H. Bandelt and V. Chepoi. Metric graph theory and geometry: a survey. Contemporary
Mathematics, 453:49–86, 2008.

MFCS 2021

https://doi.org/10.1002/net.21631

23:14 Isometric embeddings in trees and their use in distance problems

4 H. Bandelt and H. Mulder. Distance-hereditary graphs. Journal of Combinatorial Theory,
Series B, 41(2):182–208, 1986.

5 H.-J. Bandelt. Recognition of tree metrics. SIAM Journal on Discrete Mathematics, 3(1):1–6,
1990.

6 H.-J. Bandelt, V. Chepoi, and D. Eppstein. Combinatorics and geometry of finite and infinite
squaregraphs. SIAM Journal on Discrete Mathematics, 24(4):1399–1440, 2010.

7 H.-J. Bandelt, V. Chepoi, and D. Eppstein. Ramified rectilinear polygons: coordinatization
by dendrons. Discrete & Computational Geometry, 54(4):771–797, 2015.

8 H.-J. Bandelt and M. van De Vel. Embedding topological median algebras in products of
dendrons. Proceedings of the London Mathematical Society, 3(3):439–453, 1989.

9 V. Batagelj, T. Pisanski, and J. Simoes-Pereira. An algorithm for tree-realizability of distance
matrices. International Journal of Computer Mathematics, 34(3-4):171–176, 1990.

10 L. Bénéteau, J. Chalopin, V. Chepoi, and Y. Vaxès. Medians in median graphs and their cube
complexes in linear time. In 47th International Colloquium on Automata, Languages, and
Programming (ICALP 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

11 P. Bergé and M. Habib. Diameter in linear time for constant-dimension median graphs. In XI
Latin and American Algorithms, Graphs and Optimization Symposium (LAGOS 2021), 2021.
To appear.

12 J. A. Bondy and U. S. R. Murty. Graph theory. 2008.
13 M. Borassi, P. Crescenzi, and M. Habib. Into the square: On the complexity of some quadratic-

time solvable problems. Electronic Notes in Theoretical Computer Science, 322:51–67, 2016.
14 M. Borassi, P. Crescenzi, and L. Trevisan. An axiomatic and an average-case analysis of

algorithms and heuristics for metric properties of graphs. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 920–939. SIAM, 2017.

15 A. Brandstädt, V. Chepoi, and F. Dragan. The algorithmic use of hypertree structure and
maximum neighbourhood orderings. Discrete Applied Mathematics, 82(1-3):43–77, 1998.

16 B. Bresar, S. Klavzar, and R. Skrekovski. On cube-free median graphs. Discrete Mathematics,
307(3):345 – 351, 2007.

17 K. Bringmann, T. Husfeldt, and M. Magnusson. Multivariate Analysis of Orthogonal Range
Searching and Graph Distances. Algorithmica, pages 1–24, 2020.

18 S. Cabello. Subquadratic algorithms for the diameter and the sum of pairwise distances in
planar graphs. ACM Transactions on Algorithms (TALG), 15(2):1–38, 2018.

19 S. Cabello and C. Knauer. Algorithms for graphs of bounded treewidth via orthogonal range
searching. Computational Geometry, 42(9):815–824, 2009.

20 C. Cheng. A poset-based approach to embedding median graphs in hypercubes and lattices.
Order, 29(1):147–163, 2012.

21 V. Chepoi. On distances in benzenoid systems. Journal of chemical information and computer
sciences, 36(6):1169–1172, 1996.

22 V. Chepoi, F. Dragan, M. Habib, Y. Vaxès, and H. Alrasheed. Fast approximation of
eccentricities and distances in hyperbolic graphs. Journal of Graph Algorithms and Applications,
23(2):393–433, 2019.

23 V. Chepoi, F. Dragan, and Y. Vaxès. Center and diameter problems in plane triangulations
and quadrangulations. In Symposium on Discrete Algorithms (SODA’02), pages 346–355,
2002.

24 V Chepoi, F Dragan, and Y Vaxes. Distance and routing problems in plane graphs of
non-positive curvature. J. Algorithms, 61:1–30, 2006.

25 V. Chepoi and M. Hagen. On embeddings of CAT(0) cube complexes into products of trees
via colouring their hyperplanes. Journal of Combinatorial Theory, Series B, 103(4):428–467,
2013.

26 V. Chepoi, A. Labourel, and S. Ratel. Distance and routing labeling schemes for cube-free
median graphs. Algorithmica, pages 1–45, 2020.

G. Ducoffe 23:15

27 V. Chepoi and D. Maftuleac. Shortest path problem in rectangular complexes of global
nonpositive curvature. Computational Geometry, 46(1):51 – 64, 2013.

28 Victor Chepoi, Arnaud Labourel, and Sébastien Ratel. Distance labeling schemes for K_4-free
bridged graphs. In International Colloquium on Structural Information and Communication
Complexity, pages 310–327. Springer, 2020.

29 Victor Chepoi, Y Vaxes, and FR Dragan. Distance-based location update and routing in irreg-
ular cellular networks. In Sixth International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing and First ACIS International
Workshop on Self-Assembling Wireless Network, pages 380–387. IEEE, 2005.

30 D. Coudert, G. Ducoffe, and A. Popa. Fully polynomial FPT algorithms for some classes of
bounded clique-width graphs. ACM Transactions on Algorithms (TALG), 15(3):1–57, 2019.

31 P. Damaschke. Computing giant graph diameters. In International Workshop on Combinatorial
Algorithms (IWOCA), pages 373–384. Springer, 2016.

32 D. Della Giustina, Ni. Prezza, and R. Venturini. A new linear-time algorithm for centroid
decomposition. In String Processing and Information Retrieval, pages 274–282. Springer
International Publishing, 2019.

33 R. Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer,
2012.

34 D Ž Djoković. Distance-preserving subgraphs of hypercubes. Journal of Combinatorial Theory,
Series B, 14(3):263–267, 1973.

35 F. Dragan and M. Abu-Ata. Collective additive tree spanners of bounded tree-breadth graphs
with generalizations and consequences. Theoretical Computer Science, 547:1–17, 2014.

36 F. Dragan, D. Corneil, E. Köhler, and Y. Xiang. Collective additive tree spanners for circle
graphs and polygonal graphs. Discrete Applied Mathematics, 160(12):1717–1729, 2012.

37 F. Dragan, Y. Xiang, and C. Yan. Collective Tree Spanners for Unit Disk Graphs with
Applications. Electronic Notes in Discrete Mathematics, 32:117–124, 2009.

38 F. Dragan and C. Yan. Collective tree spanners in graphs with bounded parameters. Algorith-
mica, 57(1):22–43, 2010.

39 F. Dragan, C. Yan, and D. Corneil. Collective Tree Spanners and Routing in AT-free Related
Graphs. Journal of Graph Algorithms and Applications, 10(2):97–122, 2006.

40 F. Dragan, C. Yan, and I. Lomonosov. Collective tree spanners of graphs. SIAM Journal on
Discrete Mathematics, 20(1):240–260, 2006.

41 F. Dragan, C. Yan, and Y. Xiang. Collective additive tree spanners of homogeneously orderable
graphs. In Latin American Symposium on Theoretical Informatics, pages 555–567. Springer,
2008.

42 G. Ducoffe. A New Application of Orthogonal Range Searching for Computing Giant Graph
Diameters. In Symposium on Simplicity in Algorithms (SOSA), 2019.

43 G. Ducoffe. Easy computation of eccentricity approximating trees. Discrete Applied Mathem-
atics, 260:267–271, 2019.

44 G. Ducoffe. Optimal diameter computation within bounded clique-width graphs. Technical
Report 2011.08448, arXiv, 2020.

45 G. Ducoffe and F.F. Dragan. A story of diameter, radius and (almost) helly property. Networks.
To appear.

46 G. Ducoffe, M. Habib, and L. Viennot. Fast diameter computation within split graphs. In
International Conference on Combinatorial Optimization and Applications, pages 155–167.
Springer, 2019.

47 G. Ducoffe, M. Habib, and L. Viennot. Diameter computation on H-minor free graphs
and graphs of bounded (distance) VC-dimension. In Proceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1905–1922. SIAM, 2020.

48 D. Eppstein. The lattice dimension of a graph. European Journal of Combinatorics, 26(5):585–
592, 2005.

MFCS 2021

23:16 Isometric embeddings in trees and their use in distance problems

49 D. Eppstein. Recognizing Partial Cubes in Quadratic Time. Journal of Graph Algorithms and
Applications, 5(2):269–293, 2011.

50 S. Even and A. Litman. Layered cross product—A technique to construct interconnection
networks. In Proceedings of the fourth annual ACM symposium on Parallel algorithms and
architectures, pages 60–69, 1992.

51 A. Farley and A. Proskurowski. Computation of the center and diameter of outerplanar graphs.
Discrete Applied Mathematics, 2(3):185–191, 1980.

52 A. Filtser and H. Le. Clan embeddings into trees, and low treewidth graphs. In 53rd Annual
ACM Symposium on Theory of Computing (STOC 2021). ACM, 2021. To appear.

53 H. Gabow, J. Bentley, and R. Tarjan. Scaling and related techniques for geometry problems. In
Proceedings of the sixteenth annual ACM symposium on Theory of computing, pages 135–143,
1984.

54 C. Gavoille, D. Peleg, S. Pérennes, and R. Raz. Distance labeling in graphs. Journal of
Algorithms, 53(1):85–112, 2004.

55 P. Gawrychowski, H. Kaplan, S. Mozes, M. Sharir, and O. Weimann. Voronoi diagrams on
planar graphs, and computing the diameter in deterministic Õ(n5/3) time. In Symposium on
Discrete Algorithms (SODA), pages 495–514. SIAM, 2018.

56 A. Goldman. Optimal center location in simple networks. Transportation science, 5(2):212–221,
1971.

57 M. Golumbic. Algorithmic graph theory and perfect graphs, volume 57. Elsevier, 2004.
58 Mikhaïl Gromov. Hyperbolic groups. In Essays in group theory, pages 75–263. Springer, 1987.

doi:10.1007/978-1-4613-9586-7_3.
59 S.L. Hakimi. Optimum locations of switching centers and the absolute centers and medians of

a graph. Operations research, 12(3):450–459, 1964.
60 G.Y. Handler. Minimax location of a facility in an undirected tree graph. Transportation

Science, 7(3):287–293, 1973.
61 E. Howorka. On metric properties of certain clique graphs. Journal of Combinatorial Theory,

Series B, 27(1):67–74, 1979.
62 C. Jordan. Sur les assemblages de lignes. J. Reine Angew. Math, 70(185):81, 1869.
63 O. Kariv and S.L. Hakimi. An algorithmic approach to network location problems. I: The

p-centers. SIAM Journal on Applied Mathematics, 37(3):513–538, 1979.
64 S. Khuller and Y. Sussmann. The capacitated k-center problem. SIAM Journal on Discrete

Mathematics, 13(3):403–418, 2000.
65 Y.-F. Lan, Y.-L. Wang, and H. Suzuki. A linear-time algorithm for solving the center problem

on weighted cactus graphs. Information Processing Letters, 71(5-6):205–212, 1999.
66 H. M. Mulder and A. Schrijver. Median graphs and Helly hypergraphs. Discrete Mathematics,

25(1):41–50, 1979.
67 M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures and domains, part I.

Theoretical Computer Science, 13(1):85–108, 1981.
68 R. Nowakowski and I. Rival. The smallest graph variety containing all paths. Discrete

Mathematics, 43(2-3):223–234, 1983.
69 S. Olariu. A simple linear-time algorithm for computing the center of an interval graph.

International Journal of Computer Mathematics, 34(3-4):121–128, 1990.
70 L. Roditty and V. Vassilevska Williams. Fast approximation algorithms for the diameter and

radius of sparse graphs. In Proceedings of the forty-fifth annual ACM symposium on Theory
of computing (STOC), pages 515–524, 2013.

71 D. Sleator and R. Tarjan. A data structure for dynamic trees. Journal of Computer and
System Sciences, 26(3):362 – 391, 1983.

72 L. Stewart and R. Valenzano. On polygon numbers of circle graphs and distance hereditary
graphs. Discrete Applied Mathematics, 248:3–17, 2018.

73 S. Ting. A linear-time algorithm for maxisum facility location on tree networks. Transportation
Science, 18(1):76–84, 1984.

https://doi.org/10.1007/978-1-4613-9586-7_3

G. Ducoffe 23:17

74 D. Willard. New data structures for orthogonal range queries. SIAM Journal on Computing,
14(1):232–253, 1985.

75 P.M. Winkler. Isometric embedding in products of complete graphs. Discrete Applied
Mathematics, 7(2):221–225, 1984.

MFCS 2021

	1 Introduction
	2 Eccentricity computation in some geometric graph classes
	2.1 Partial cubes
	2.2 Triangular and hexagonal systems
	2.3 Polygon graphs

	3 Proof of Theorem 1
	3.1 Reductions
	3.2 A range-query framework

	4 Hardness results
	5 One-to-many tree embeddings
	5.1 Computation of subset-eccentricities
	5.2 Application to a distance-labelling scheme

