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Abstract
The Wiener index of a graph G is the sum of all its distances. Up to renormalization, it is also
the average distance in G. The problem of computing this parameter has different applications
in chemistry and networks. We here study when it can be done in truly subquadratic time (in
the size n + m of the input) on n-vertex m-edge graphs. Our main result is a complete answer to
this question, assuming the Strong Exponential-Time Hypothesis (SETH), for all the hereditary
subclasses of chordal graphs. Interestingly, the exact same result also holds for the diameter problem.
The case of non-hereditary chordal subclasses happens to be more challenging. For the chordal Helly
graphs we propose an intricate Õ(m3/2)-time algorithm for computing the Wiener index, where m

denotes the number of edges. We complete our results with the first known linear-time algorithm for
this problem on the dually chordal graphs. The former algorithm also computes the median set.
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1 Introduction

This paper is about the fine-grained complexity of computing the average distance in a
graph, a fundamental distance problem. For any undefined graph terminology, see [4, 20].
Unless stated otherwise, we only consider graphs that are simple, loopless, unweighted
undirected, and more importantly connected. Let G = (V, E) be such a graph. Throughout
the paper, let n = |V | and m = |E|. The distance between two vertices x, y ∈ V equals
the minimum number of edges on a xy-path in G. We denote it by dG(x, y), or simply
by d(x, y) whenever the graph G is clear from the context. The Wiener index of a graph
G is W (G) =

∑
x,y∈V d(x, y). Let also diam(G) = maxx,y∈V d(x, y) be the diameter of G.

Note that diam(G) and 1
n(n−1) W (G) represent the maximum and average distances in G.

Although we focus in this work on computing W (G), as it turns out, this problem is closely
related to computing diam(G). One of our objectives with this paper is to make clearer the
connection between both problems.

The study of both parameters has applications in the fields of network optimization and
analysis. For instance, delays are amongst the main causes of QoS degradation in a network.
Roughly, if we further assume the network is subject to uniformly distributed demand,
then we can approximate delays in the networks by distances in the underlying graph. In
particular, with this interpretation in mind, the diameter and the (normalized) Wiener index
would correspond to the maximum and average delays in the network, respectively. On a
different note, for the analysis of social networks, and of more general complex networks
with a core-periphery structure, various centrality indices have been introduced in order to
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23:2 On computing the average distances for some chordal-like graphs

measure the importance of a node. One of them, the so-called eccentricity centrality [34],
is tighly related to the diameter: in fact, with respect to this centrality measurement, the
most peripheral vertices are exactly the diametral vertices (whose eccentricity equals the
diameter). In the same way, the Wiener index is related to the closeness centrality [34]. In
chemistry, relations were also shown between some quantities of molecules and the Wiener
index of their chemical graph representation [42].

By a straightforward reduction to All-Pairs Shortest-Paths (APSP), the Wiener index
and the diameter of a graph can both be computed in O(nm) time. Somehow, this is
optimal, even for sparse graphs. Indeed, assuming the Strong Exponential-Time Hypothesis
(SETH) [32], one cannot decide in Õ(n2−ϵ) time, for any ϵ > 0, whether a graph with Õ(n)
edges has diameter either 2 or 3 [39]. The former implies that one cannot compute either the
Wiener index of such graph in Õ(n2−ϵ) time, for any ϵ > 0 [12]. If we allow approximation
algorithms, then the situation is completely different. Indeed, while for any fixed ε we can
compute an (1 + ε)-approximation of the Wiener index in almost linear time [27], a long
line of recent works has ruled out such possibility for the diameter problem, establishing
various trade-off between the allowed running-time and the best possible approximation
factor [1, 5, 6, 18, 36]. In what follows, we only consider exact computations, but on restricted
graph classes rather than on general graphs.

Let us call an algorithm truly subquadratic if it runs in Õ(namb) time, for some non
negative a, b such that a + b < 2. On sparse graphs, such running time becomes Õ(na+b)
which for the Wiener index and the diameter problem is ruled out by SETH. For dense graphs,
the running time becomes Õ(na+2b), that may be worse than the classic O(nm) = O(n3)-time
algorithm for APSP if a + 2b > 3. Therefore, so as to avoid this caveat, we are especially
interested in running times in Õ(nam), for some non negative a < 1. Algorithms with such
running times are known, for the diameter problem, on many graph classes [22, 24]. However,
so far, we lack a good picture about the (non)existence of truly subquadratic-time algorithms
for the Wiener index and the diameter problems within special graph classes. Indeed, the
systematic study of the (non)existence of such algorithms is quite recent, motivated by the
hardness results obtained in [7, 39]. Most prior works were about the (non)existence of
almost linear-time algorithms, a much more restricted case [17]. We here make progress
toward getting such good picture for the subclasses of chordal graphs.

Recall that, in what follows, most of our results apply to the Wiener index. What is
remarkable, we think, is that many recent results for the Wiener index were obtained as
a byproduct of similar results for the diameter [12, 14, 26]. Said otherwise, many SETH-
hardness results for the diameter also apply to the Wiener index and, conversely, many truly
subquadratic-time algorithms for computing the diameter can be modified in order to also
compute the Wiener index (although this is not the case for all of them, e.g., see [2, 24, 28]).
It would be interesting to identify relevant graph classes where the complexity of the Wiener
index and the diameter problem are different. One of our results in the paper, obtained for
the subclass of chordal Helly graphs, may be a first step in this direction.

Our results. A graph is chordal if it has no induced cycle of length at least four. We
here propose linear-time and truly subquadratic-time algorithms for computing the Wiener
index, on subclasses of chordal graphs and related graph classes. First, in Sec. 2, we consider
dually chordal graphs (a.k.a., the clique-graphs of chordal graphs). The former are not
chordal graphs in general, but they generalize strongly chordal graphs, and so, directed path
graphs and interval graphs [11]. A linear-time algorithm for computing the diameter of
dually chordal graphs was presented in [9] (it was recently extended to the computation of
all eccentricities, see [21]). We propose a simple linear-time algorithm for computing the
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Wiener index in this class of graphs (Theorem 1). Doing so, we obtain the first linear-time
algorithm for computing the Wiener index on strongly chordal graphs, and on even larger
chordal subclasses such as doubly chordal graphs. Then, in Sec. 3, we design a general
divide-and-conquer method on the clique-tree of any chordal graph in order to compute
its Wiener index. We give applications of this method in Sec. 4 and 5. Our main result is
proved in Sec. 4, where under SETH we completely characterize the hereditary subclasses
of chordal graphs for which we can compute the diameter, resp. the Wiener index, in truly
subquadratic time. These subclasses turn out to be the same and they can be characterized
via a VC-dimension argument or, in more graph-theoretic terms, as those subclasses excluding
at least one split graph. See our Theorem 7 for details. Doing so, we get a simple criterion
for the existence of truly subquadratic-time algorithms, both for the Wiener index and the
diameter, on many subclasses of chordal graphs that have been considered in the literature
(Corollary 13). Our characterization for the diameter problem follows from several previous
works, although to our best knowledge it has not been observed before. Our main technical
contribution in Sec. 4 is to prove that the same characterization also holds for the Wiener
index. Finally, in Sec. 5, we end up studying the Wiener index for chordal Helly graphs,
a prominent non-hereditary subclass of chordal graphs. – Recall that a graph is Helly if
any family of pairwise intersecting balls (of arbitrary centers and radii) have a nonempty
common intersection. – We state a few open questions in Sec. 6.

Due to lack of space, some proofs are omitted from the following technical sections.

2 Warm-up: Maximum neighbourhood orderings

Let G = (V, E) be a graph. Recall that for a vertex v, N(v) = {u ∈ V | uv ∈ E} denotes its
open neighbourhood, while we call N [v] = N(v) ∪ {v} its closed neighbourhood. A maximum
neighbour of a vertex v is some u ∈ N [v] (possibly, u = v) such that N [w] ⊆ N [u] for
every w ∈ N [v]. We call a graph G dually chordal if its vertex-set can be totally ordered
as (v1, v2, . . . , vn) so that, for every 1 ≤ i ≤ n, vertex vi has a maximum neighbour in the
induced subgraph G \ {v1, v2, . . . , vi−1} [11]. Such ordering is sometimes called a MNO
(Maximum Neighbourhood Ordering), and it can be computed in linear time [9]. In what
follows, we implicitly use the fact that, if a vertex v has a maximum neighbour u ̸= v, then
G \ v is an isometric (distance-preserving) subgraph of G.

▶ Theorem 1. The Wiener index of a dually chordal graph can be computed in linear time.

Proof. Fix a MNO (v1, v2, . . . , vn) for G. Let G0 = G and, for every 1 ≤ i < n, let
Gi = G \ {v1, v2, . . . , vi}. We observe that, for a vertex in Gi−1 to be its own maximum
neighbour, it must be a universal vertex. Since such a universal vertex can always be chosen
last in a MNO of Gi−1, we assume from now on that every vi, i < n has a maximum
neighbour ui ̸= vi in Gi−1. In what follows, we scan the ordering once in order to define some
variables Si and functions πi := V (Gi) → N. Then, we reverse scan the MNO to compute,
for every i and every u ∈ V (Gi),

Di(u) = Si +
∑

w∈V (Gi)

πi(w) · d(u, w).

Initially, let S0 = 0 and, for every v ∈ V , let π0(v) = 1. Doing so, we ensure that at
the end of the algorithm we have W (G) =

∑
v∈V D0(v). Then, let us assume Si−1 and πi−1

to be known, for some i > 0. Let ui ∈ NGi−1(vi) have maximum degree in the (isometric)
subgraph Gi−1. Note that by maximality of |NGi−1(ui)|, this vertex ui must be a maximum

MFCS 2021



23:4 On computing the average distances for some chordal-like graphs

neighbour of vi in Gi−1. We set Si = Si−1 + πi−1(vi), πi(ui) = πi−1(ui) + πi−1(vi) and
πi(w) = πi−1(w) for every other w ∈ V (Gi) \ {ui}.

We now reverse scan the MNO. Clearly, Dn−1(vn) = Sn−1. Let us assume the values
Di(u) to be known. We set:

Di−1(vi) = Di(ui) + n − 2πi−1(vi) −

 ∑
w∈NGi−1 (vi)\{ui}

πi−1(w)



and we proceed to the following update for every w ∈ NGi−1(vi) \ {ui}: Di−1(w) = Di(w) −
πi−1(vi). Indeed, as it shall become clearer in the remainder of our proof, this update is
because these are the only vertices x ∈ V (Gi) for which we do not have dGi−1(vi, x) =
dGi−1(ui, x) + 1. For every other vertex x ∈ V (Gi−1), Di−1(x) = Di(x).

All the above operations can be performed in total
∑

i O(|NGi−1(vi)|) = O(m + n) time.
Furthermore, if all values Di(x) are correctly computed, then we get D0(x) =

∑
y∈V d(x, y).

In particular, W (G) =
∑

x∈V D0(x). Let us assume in what follows all the values Di(x) to
be correctly computed, for some i > 0. Since ui is a maximum neighbour of vi we have
d(vi, x) = d(ui, x) + 1 for every x /∈ NGi−1 [vi]. In particular:

Di−1(x) = Si−1 +
∑

y∈V (Gi−1)

πi−1(y) · d(y, x)

= Si−1 + πi−1(vi) · d(x, vi) + πi−1(ui) · d(x, ui) +
∑

y∈V (Gi)\{ui}

πi−1(y) · d(y, x)

= Si−1 + πi−1(vi) · (d(x, ui) + 1) + πi−1(ui) · d(x, ui) +
∑

y∈V (Gi)\{ui}

πi(y) · d(y, x)

= Si−1 + πi−1(vi) + (πi−1(vi) + πi−1(ui)) · d(x, ui) +
∑

y∈V (Gi)\{ui}

πi(y) · d(y, x)

= Si +
∑

y∈V (Gi)

πi(y) · d(y, x) = Di(x).

In the same way (using d(ui, ui) = 0),

Di−1(ui) = Si−1 + πi−1(vi) +
∑

y∈V (Gi−1)\{vi}

πi−1(y) · d(y, ui)

= Si +
∑

y∈V (Gi)

πi(y) · d(y, ui)

= Di(ui).

However, for every w ∈ NGi−1(vi) \ {ui}, πi−1(vi) · d(vi, w) = πi−1(vi) is counted twice in
Di(w): once in Si, and once in πi(ui) · d(ui, w) = πi(ui) = πi−1(ui) + πi−1(vi). In particular,
we obtain Di−1(w) = Di(w) − πi−1(vi).

We are left proving that Di−1(vi) is correctly computed. By induction, ∀j,
∑

x πj(x) = n.
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Then, we have:

Di−1(vi) = Si−1 +
∑

y

πi−1(y) · d(y, vi) = Si +
(∑

y

πi−1(y) · d(y, vi)
)

− πi−1(vi)

= Si +

 ∑
w∈NGi−1 (vi)\{ui}

πi−1(w) +
∑

y /∈NGi−1 (vi)\{ui}

πi−1(y) · (d(y, ui) + 1)

− πi−1(vi)

= Si +

 ∑
y /∈NGi−1 (vi)\{ui}

πi−1(y) · d(y, ui)

+

∑
y ̸=vi

πi−1(y)

− πi−1(vi)

= Si +

 ∑
y /∈NGi−1 (vi)\{ui}

πi(y) · d(y, ui)

+ n − 2πi−1(vi)

= Si +
(∑

y

πi(y) · d(y, ui)
)

−

 ∑
w∈NGi−1 (vi)\{ui}

πi−1(w)

+ n − 2πi−1(vi)

= Di(ui) −

 ∑
w∈NGi−1 (vi)\{ui}

πi−1(w)

+ n − 2πi−1(vi).

◀

A vertex v is a median if it minimizes
∑

u∈V d(u, v). The median set of a graph G

contains all its medians. With the same proof as for Theorem 1, we obtain:

▶ Corollary 2. The median set of a dually chordal graph can be computed in linear time.

Finally, a graph G is doubly chordal if it is both chordal and dually chordal [37]. Note
that doubly chordal graphs properly contain the strongly chordal graphs, and so, the directed
path graphs and the interval graphs.

▶ Corollary 3. The Wiener index and the median set of a doubly chordal graph (and so, of
a strongly chordal graph, resp. directed path graph, resp. interval graph) can be computed in
linear time.

We refer to [19] for a previous linear-time algorithm for the interval graphs. In contrast
to our own algorithm, the former is taking an interval representation of the graph as input.

3 A framework for chordal graphs

We introduce a general method for computing the Wiener index of chordal graphs. We recall
that a graph is called a split graph if its vertex-set can be bi-partitioned into a clique and a
stable set [29]. In the Split-Weighted-Wiener problem, we are given as input a tuple
(P(V ), E′, α, β) where, for some split graph H = (V, E):

P(V ) = (K, S1, S2, . . . , Sc) is a partition of the vertex-set V , where K is a clique and
S :=

⋃c
i=1 Si is a stable set.

E′ = {uv | u ∈ K, v ∈ S} ⊆ E.
α, β : V → N≥1 are weight functions.

We call H the underlying input split graph.
The output is equal to

∑
i ̸=j

∑
x∈Si,y∈Sj [β(y)α(x) + β(x)β(y)d(x, y) + β(x)α(y)].

MFCS 2021



23:6 On computing the average distances for some chordal-like graphs

▶ Theorem 4. There is an Õ(m + n)-time reduction from computing the Wiener in-
dex on a chordal graph G to the Split-Weighted-Wiener problem on some instances
(P(Vk), E′

k, αk, βk). Furthermore, each underlying split Hk is obtained from some induced
subgraph of G by removing the edges with their both ends in the same group Si

k of the partition.

We need to introduce a few additional notions and related intermediate results.
First, recall that a clique-tree of a graph G is a tree T of which the nodes are the

maximal cliques of G, and such that for every vertex v the set of all the maximal cliques that
contain v induces a connected subtree. It is known that G is chordal if and only if it has a
clique-tree [13, 30, 41] and, furthermore, a clique-tree can be computed in linear time [40]. –
See also [3, 10] and the references therein –. We may see a clique-tree T as a node-weighted
tree where, for any maximal clique C, w(C) = |C|. Then, let w(T ) :=

∑
C w(C). For a

chordal graph, w(T ) = O(n + m) [3].
For a set S and a vertex x, let us define Pr(x, S) = {y ∈ S | d(x, y) = d(x, S)}. Let also

I(x, y) = {z ∈ V | d(x, y) = d(x, z) + d(z, y)} for every vertices x and y. The following two
results will be useful in our proofs:

▶ Lemma 5 ([15]). In a chordal graph G, if C is a clique and x /∈ C, then there exists a
vertex g(x) ∈

⋂
{I(x, y) | y ∈ Pr(x, C)} that is adjacent to all vertices from Pr(x, C). This

vertex g(x) is sometimes called a gate of x.

▶ Lemma 6 ([22]). If T is a clique-tree of a chordal graph G then, for every (not necessarily
maximal) clique C of G, for every v /∈ C we can compute dG(v, C) and a corresponding gate
v∗ in total O(w(T )) time, where w(T ) denotes the sum of cardinalities of all the maximal
cliques of G.

Finally, for an n-node tree T = (V, E), a centroid is a node whose removal leaves subtrees
of order at most n/2. A classic theorem from Jordan asserts that such node always exists [33].
Furthermore, we can compute a centroid in O(n) time by dynamic programming (e.g.,
see [31]).

Proof of Theorem 4. Up to additional O(n + m)-time pre-processing, we may assume each
input graph G to be given under the form of a clique tree T . Our reduction is recursive.
Consider first the following two base cases:

Case |V (T )| = 1. Then, G is a clique, and we have W (G) = n(n − 1).
Case |V (T )| = 2. Then, G is the union of two intersecting cliques X and X ′. In particular,
diam(G) = 2, and so (see [12]), we have W (G) = 2n(n − 1) − 2m. Note that n =
|X| + |X ′| − |X ∩ X ′| and 2m = |X| · (|X| − 1) + |X ′| · (|X ′| − 1) − |X ∩ X ′| · (|X ∩ X ′| − 1)
(computable by scanning once the maximal cliques of G).

From now on, |V (T )| ≥ 3. We compute X a centroid of T . Let T1, T2, . . . , Tc be the subtrees
of T \ {X}. For each i, let Gi be induced by the vertices contained in at least one node of Ti.
By the properties of a clique-tree, each Gi is an isometric subgraph of G.
(1) Computation of the W (Gi)’s. We apply our reduction to G1, G2, . . . , Gc (encoded by
their respective clique-trees T1, T2, . . . , Tc). Doing so (throughout one-to-many reductions
to the Split-Weighted-Wiener problem), we computed their respective Wiener indices
W (G1), W (G2), . . . , W (Gc).
(2) Computation of a first (non definitive) instance (P, E′, α, β). We apply Lemma 6
in order to compute, for every v /∈ X, d(v, X) and a gate g(v), whose existence is ensured by
Lemma 5. For every i, let Ui = {g(vi) | vi ∈ V (Gi) \ X}. We set, for every ui ∈ Ui:

α(ui) =
∑

{d(vi, X) − 1 | g(vi) = ui}, and β(ui) = #{vi ∈ V (Gi) \ X | g(vi) = ui}.
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We consider the following instance (P, E′, α, β) where we have:
P = (X, U1, U2, . . . , Uc);
E′ = E ∩ (X × V \ X) (edges between X and the neighbours of X);
and α, β as they were previously defined in the proof.

We claim that by solving the Split-Weighted-Wiener problem on this above instance,
one computes the sum of all distances d(vi, vj) for vi ∈ V (Gi) \ X, vj ∈ V (Gj) \ X and
i ̸= j. Indeed, let vi ∈ V (Gi) \ X and vj ∈ V (Gj) \ X, for some i ̸= j. Every vivj-path
crosses X. Furthermore, since X is a clique, there is a shortest vivj-path such that the vertex
of X closest to vi (resp., to vj) is in Pr(vi, X) (resp., in Pr(vj , X)). As a result, we have
d(vi, vj) = d(vi, g(vi)) + d(g(vi), g(vj)) + d(g(vj), vj). For vi fixed, we get:∑

vj∈V (Gj)\X

d(vi, vj) =
∑

vj∈V (Gj)\X

(d(vi, g(vi)) + d(g(vi), g(vj)) + d(g(vj), vj))

=
∑

uj∈Uj

∑
vj |g(vj)=uj

(d(vi, g(vi)) + d(g(vi), uj) + d(uj , vj))

=
∑

uj∈Uj

(β(uj) · (d(vi, g(vi)) + d(g(vi), uj)) + α(uj)) .

If we sum the above over all the vi’s, we obtain:∑
vi∈V (Gi)\X

∑
vj∈V (Gj)\X

d(vi, vj) =
∑

vi∈V (Gi)\X

∑
uj∈Uj

(β(uj) · (d(vi, g(vi)) + d(g(vi), uj)) + α(uj))

=
∑

ui∈Ui

∑
uj∈Uj

(β(uj) · (α(ui) + β(ui)d(ui, uj)) + β(ui)α(uj))

=
∑

ui∈Ui

∑
uj∈Uj

(β(uj)α(ui) + β(uj)β(ui)d(ui, uj) + β(ui)α(uj)) .

(3) Computation of a reduced instance. The problem with the above instance (P, E′, α, β)
is that, in order to fit with our claimed running time for the reduction, we further need to
have |E′| = O(w(T )), that may not be the case in general. Thus, we need to reduce the
instance. For that, let U :=

⋃
i Ui. For every u ∈ U , there is a maximal clique that contains

{u} ∪ (N(u) ∩ X). Thus, in order to relate u with its neighbours in X, it suffices to compute
amongst all maximal cliques containing u one Xu maximizing |Xu ∩ X|. We can do so, in
O(w(T )) time, as follows:

We scan all the maximal cliques X ′ ̸= X in order to compute |X ′ ∩ X|.
We order the maximal cliques X ′ ̸= X by non increasing value of |X ′ ∩ X|. It can be
done by using, e.g., counting sort.
We scan all the ordered maximal cliques X ′. Initially, all the vertices are left unmarked.
When scanning a maximal clique X ′, we set Xu = X ′ for every u ∈ X ′ ∩ U unmarked.
Then, we mark all vertices in X ′.

Let u, u′ ∈ U be such that Xu = Xu′ . Since u and u′ are adjacent, there is an i such
that u, u′ ∈ Ui. Since furthermore, N(u) ∩ X = N(u′) ∩ X (these vertices are twins in
the underlying split graph H), we may remove u′ from U and update α(u), β(u) as follows:
α(u) := α(u) + α(u′), β(u) = β(u) + β(u′). Doing so until it can no more be done, we
end up with a smaller set U∗ such that no two vertices u ∈ U∗ are associated to the same
maximal clique Xu. For every i, let us replace Ui in the above instance for Split-Weighted-
Wiener by the subset Si = Ui ∩ U∗. Then, for E∗ = {uv | u ∈ U∗, v ∈ X} we obtain
|E∗| <

∑
u∈U∗ |Xu| = O(w(T )), as desired.
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From now on, we assume to be given W0 :=
∑

i ̸=j

∑
vi∈V (Gi)\X,vj∈V (Gj)\X d(vi, vj) (i.e.,

by the above reduction to one instance of Split-Weighted-Wiener).
(4) Computation of the sum of distances between X and V \ X. Next, we compute
WX :=

∑
x∈X,v /∈X d(x, v). For that, recall that we computed the set U =

⋃
i Ui of all the

gates, and the weight functions α, β. Furthermore, for each x ∈ X and index i we have:∑
vi∈V (Gi)\X

d(x, vi) =
∑

vi∈V (Gi)\X

(d(x, g(vi)) + d(g(vi), vi)) =
∑

ui∈Ui

(β(ui)d(x, ui) + α(ui)) .

Note that, for every u ∈ U , d(u, x) ∈ {1, 2}. Hence, we get:

∑
v /∈X

d(x, v) = 2 ·

(∑
u∈U

β(u)
)

−

 ∑
u∈N(x)∩U

β(u)

+
(∑

u∈U

α(u)
)

.

The two sums
∑

u∈U β(u) and
∑

u∈U α(u) can be pre-computed in O(|U |) = O(w(T )) time.
Therefore, in order to compute WX , we are left computing

∑
u∈N(x)∩U β(u) for every x ∈ X.

For each x ∈ X, let γ(x) = 0 (at the end of the procedure, we shall have γ(x) =∑
u∈N(x)∩U β(u).

We root T arbitrarily and we start a BFS from the root.
When we reach some maximal clique X ′ during the search, we further assume to have
access to its intersection Y = X ′ ∩ p(X ′) with its parent node (Y = ∅ if X ′ is the root).
For every x ∈ (X ∩ X ′) \ Y , we increment γ(x) by

∑
u∈U∩X′ β(u). However, in order to

avoid overcounting, for every x ∈ X ∩ Y , we increment γ(x) by
∑

u∈(U∩X′)\Y β(u).
After processing each X ′, we scan all the maximal cliques X ′′ that are children nodes of
X ′ in order to compute X ′ ∩ X ′′.

Since each maximal clique is scanned O(1) times, the total running time is in O(w(T )).
(5) A formula for computing W (G). At this point of the reduction, we are almost done
for computing W (G). However, if we sum all the partial estimates computed so far, there
are a few distances overcounted. Specifically, let Yi = X ∩ V (Gi). We have:

W (G) = W0 +
(

c∑
i=1

W (Gi)
)

+ |X| · (|X| − 1) + 2WX

−
c∑

i=1

|Yi| · (|Yi| − 1) + 2 ·
∑

yi∈Yi

∑
vi∈V (Gi)\X

d(vi, yi)


Each set Yi above can be computed as the intersection between X and the unique maximal
clique Xi ∈ V (Ti) ∩ NT (X). Furthermore, for yi ∈ Yi fixed, we have:

∑
vi∈V (Gi)\X

d(vi, yi) = 2 ·

( ∑
ui∈Ui

β(ui)
)

−

 ∑
ui∈N(yi)∩Ui

β(ui)

+
( ∑

ui∈Ui

α(ui)
)

.

Hence, we are left computing γi(yi) =
∑

ui∈Ui∩N(yi) β(ui) for every yi ∈ Yi. This can be
done in O(w(Ti)) time, by using the same procedure as for computing the values γ(x), but
restricted to the clique-subtree Ti. Since all the Ti’s are disjoint, the total running time is
still in O(w(T )).

Complexity. Since we use in our reduction a centroid decomposition of the clique-tree
T , there are O(log |V (T )|) = O(log n) recursive stages. At each recursive stage, we proceed
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on disjoint clique-subtrees T ′. Therefore, each recursive stage takes O(w(T )) time (excluding
the calls to an oracle solving Split-Weighted-Wiener). The total running time of the
reduction, excluding the calls of the oracle, is in O(w(T ) log n) = O(m log n). ◀

We shall use the heavy machinery presented above in the next two sections.

4 Application: Hereditary subclasses of chordal graphs

Recall that a class of graphs is called hereditary if it is stable by induced subgraph. The
complexity of the diameter problem has been studied for many hereditary subclasses of
chordal graphs [9, 17, 25, 22, 23, 38]. For the special case of the interval graphs, a linear-time
algorithm for computing the Wiener index is also known [19] (which we extended to the
strongly chordal graphs in Sec. 2). However, even for the hereditary subclass of split graphs,
under SETH there is no truly subquadratic algorithm for computing the diameter nor the
Wiener index. In this section, we exactly characterize the hereditary subclasses of chordal
graphs for which such algorithms exist (conditioned on SETH).

Recall that a hypergraph is a pair H = (X, R) such that each element of R (called a
hyperedge) is a subset of X (the elements of X are called vertices, by analogy to graphs). A
vertex-subset Y ⊆ X is shattered by H if, for any possible subset Z ⊆ Y , there exists an
e ∈ R such that e ∩ Y = Z. The VC-dimension of H is the largest cardinality of a shattered
subset. For a graph, its VC-dimension is the VC-dimension of its neighbourhood hypergraph
N (G) = (V, {N [v] | v ∈ V }). Finally, a class of graphs has bounded VC-dimension if there
exists a constant d such that every graph in the class has VC-dimension at most d.

▶ Theorem 7. Under SETH, for any hereditary subclass C of chordal graphs, the following
statements are equivalent:
1. There is a truly subquadratic algorithm for computing the Wiener index within C.
2. There is a truly subquadratic algorithm for computing the diameter within C.
3. There is a truly subquadratic algorithm for deciding if a graph in C has diameter ≤ 2.
4. C does not contain all the split graphs.
5. C has bounded VC-dimension.

The above theorem follows from previous works in the literature, and a new result on our
own in Sec. 4.1. Specifically, we will use the following lemmas in our proof:

▶ Lemma 8 ([7]). For any ε > 0, there exists a c(ε) s.t., under SETH, we cannot compute
the diameter in O(n2−ε) time on the split graphs of order n and clique-number at most
c(ε) log n.

▶ Lemma 9 ([22]). If C is a subclass of chordal graphs of bounded VC-dimension, then there
exists a randomized truly subquadratic-time algorithm for computing the diameter of the
graphs in C.

The next result of Bousquet et al. [8] shows that for any hereditary chordal subclass,
either Lemma 8 or Lemma 9 can be applied.

▶ Lemma 10 ([8]). Let C be a hereditary class. If C has infinite VC-dimension, then C must
contain either all the bipartite graphs, or all the co-bipartite graphs, or all the split graphs.

We also prove a quantitative version of Lemma 10, for chordal graphs. Note that the
worst-case running time of the algorithms presented in Lemma 9 and in Sec. 4.1 depends on
the largest VC-dimension of a graph in the class C.

MFCS 2021
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▶ Lemma 11. If H is a split graph, then every H-free chordal graph has VC-dimension at
most |V (H)| − 1.

In Sec. 4.1, we prove that:

▶ Theorem 12. If C is a subclass of chordal graphs of bounded VC-dimension, then there
exists a deterministic truly subquadratic-time algorithm for computing the Wiener index of
the graphs in C.

We are finally ready to prove our main result:

Proof of Theorem 7. Let G ∈ C be arbitrary. It is known [12] that W (G) ≤ 2n(n − 1) − 2m

if and only if diam(G) ≤ 2. Therefore, (1) =⇒ (3). We also have (2) =⇒ (3). Since the
diameter of a split graph is at most three, we get by Lemma 8 that (3) =⇒ (4). Furthermore,
since not all bipartite graphs and co-bipartite graphs are chordal, by Lemma 10 we get
that (4) =⇒ (5). Finally, by Lemma 9 we have (5) =⇒ (2), and by Theorem 12 we have
(5) =⇒ (1). ◀

▶ Corollary 13. The following subclasses of chordal graphs admit truly subquadratic algorithms
for the Wiener index and the diameter problem: chordal bull-free graphs, chordal claw-free
graphs, block graphs, interval graphs [38], strongly chordal graphs [9], directed path graphs [17],
undirected path graphs [22], chordal dominating pair graphs [25], hereditary Helly graphs [22],
k-separator chordal graphs [35], chordal graphs of bounded interval number, chordal graphs
of bounded asteroidal number [25].

To our best knowledge, our results are new for chordal bull-free graphs, chordal claw-free
graphs, k-separator chordal graphs and chordal graphs of bounded interval number, both
for the Wiener index and the diameter problem (references to prior works are given in the
statement of Corollary 13). For the Wiener index only, our results are also new for the
subclasses of strongly chordal graphs (see also Sec. 2 for a faster algorithm), directed path
graphs, undirected path graphs, chordal dominating pair graphs, hereditary Helly graphs
and chordal graphs of bounded asteroidal number. This above listing is far from exhaustive.

4.1 Sketch Proof of Theorem 12
In what follows, let G = (V, E) ∈ C. By Theorem 4, computing the Wiener index of G can
be reduced in Õ(m + n) time to solving the Split-Weighted-Wiener problem on some
instances (P(Vk), E′

k, αk, βk). Let d be the maximum VC-dimension of a graph in C. We
prove below that each instance (P(Vk), E′

k, αk, βk) can be solved in Õ(|E′
k| · |Vk|1−εd) time,

where εd is a constant that only depends on d. Note that
∑

k |E′
k| = Õ(m + n) since it is the

total running time of our reduction. Furthermore, since by Theorem 4 each Vk is a subset of
V , maxk |Vk| = O(n). Hence, our result below implies an Õ(

∑
k |E′

k| · |Vk|1−εd) = Õ(mn1−εd)
running time in order to compute W (G).

For the remainder of the proof, let (P(Vk), E′
k, αk, βk) be fixed. Recall (see Sec. 3)

P(Vk) = (Kk, S1
k, S2

k, . . . , Sck

k ) with Kk a clique of G. Let Sk =
⋃

j Sj
k = Vk \ Kk. By

Theorem 4, E′
k = E(G) ∩ (Kk × Sk) (i.e., there is no edge added or removed between Kk

and Sk compared to G). We start with a simple observation:

▶ Lemma 14. Let G = (V, E) have VC-dimension at most d, and let X, Y ⊆ V . The
hypergraph H = (X, {NG[y] ∩ X | y ∈ Y }) also has VC-dimension at most d.

Proof. Any subset shattered by H is shattered by the neighbourhood hypergraph of G. ◀
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We apply Lemma 14 to X = Sk and Y = Kk. Let Hk be the corresponding hypergraph.

A spanning path of a hypergraph H is a total order of its vertex-set. The stabbing number
of such spanning path is the least t such that every hyperedge of H is the union of at most t

intervals onto the path. The following result is based on a prior work of Chazelle and Welzl
about range queries [16]:

▶ Lemma 15 ([24]). For every d > 0, there exists a constant εd ∈ (0; 1) such that in
Õ(m+n2−εd) deterministic time, for every n-vertex hypergraph H = (X, R) of VC-dimension
at most d and size m =

∑
e∈R |e|, we can compute a spanning path of stabbing number

Õ(n1−εd). Moreover, εd = 1
2d+1[c(d+1)−1]+1 for some constant c > 2.

Apply Lemma 15 to Hk. Doing so, for every u ∈ Kk, NH(u) ∩ Sk is the union of
Õ(|Sk|1−εd) intervals of the resulting spanning path of Hk. Then, for every s ∈ Sk, define
N2

k (s) to be the set of all vertices in Sk at distance two from s in the underlying split graph
(Kk ∪ Sk, E′

k ∪ (Kk × Kk)). We have that N2
k (s) is the union of Õ(|NG(s) ∩ Kk| · |Sk|1−εd)

intervals of the spanning path computed for Hk.

One more ingredient is needed in our proof. Consider a set Q of 2-dimensional points.
Each point (x, y) ∈ Q is assigned some weight f(x, y). A box is the Cartesian product of two
intervals (we also allow intervals that are infinite, semi-finite, or reduced to a singleton). Note
that each box defines a rectangle in the plane (possibly, a line or a point if some intervals
are reduced to a singleton). A (counting) range query asks, for a given box, the sum of the
weights of all points in Q that are contained into this rectangle.

▶ Lemma 16 ([43]). Let Q be a set of 2-dimensional points. After a pre-processing in
O(|Q| log |Q|) time, one can answer any range query in O(log |Q|) time.

Let σk : Sk → {1, 2, . . . , |Sk|} be the mapping of Sk to the nodes of the spanning path. For
each 1 ≤ i ≤ ck and si ∈ Si

k, we create a point (σk(si), i) with weight f(σk(si), i) = βk(si).
Let Qk be the resulting 2-dimensional point-set. We apply Lemma 16 in order to compute,
for each i and si ∈ Si

k, the weighted sum Φ(si) =
∑

{βk(s′) | s′ ∈ N2
k (si) \ Sk

i }; indeed, for
any fixed si, this operation can be reduced to Õ(|NG(si) ∩ Kk| · |Sk|1−εd) range queries, by
using the interval representation of N2

k (si).

Finally, for every j, define αj =
∑

s′∈Sj
k

αk(s′) and βj =
∑

s′∈Sj
k

βk(s′). Let also
α∗ =

∑ck

j=1 αj and β∗ =
∑ck

j=1 βj . All the values αj , βj , 1 ≤ j ≤ ck and α∗, β∗ can be
pre-computed in total O(|Sk|) time. Since in the underlying split graph Hk, the distance
d(s, s′) between two different vertices s, s′ ∈ Sk in the stable set is either two or three, we
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may rewrite the output of Split-Weighted-Wiener as follows:∑
i̸=j

∑
s∈Si

k
,s′∈Sj

k

[βk(s′)αk(s) + βk(s)βk(s′)d(s, s′) + βk(s)αk(s′)] =

∑
i

∑
s∈Si

k

(β∗ − βi) · αk(s) + βk(s) ·

∑
s′ /∈Si

k

βk(s′)d(s, s′)

+ βk(s) · (α∗ − αi)


=
[∑

i

(β∗ − βi)αi

]
+

∑
i

∑
s∈Si

k

βk(s) ·

∑
s′ /∈Si

k

βk(s′)d(s, s′)

+
[∑

i

βi(α∗ − αi)
]

=
[∑

i

(β∗ − βi)αi

]
+

∑
i

∑
s∈Si

k

βk(s) ·
(
3(β∗ − βi) − Φ(s)

)+
[∑

i

βi(α∗ − αi)
]

=
[∑

i

(β∗ − βi)(αi + 3βi)
]

−

[∑
s∈Sk

βk(s)Φ(s)
]

+
[∑

i

βi(α∗ − αi)
]

.

Now, given the pre-computed values αi, βi, α∗, β∗ and Φ(s), we can compute the desired
output in additional O(|Sk|) time. ◀

5 Application: Chordal Helly graphs

We end up our study investigating the complexity of the Wiener index on non-hereditary
subclasses of chordal graphs. The chordal Helly graphs are a prominent such subclass. Indeed,
they are a strict generalization of doubly chordal graphs, and so, of strongly chordal graphs,
interval graphs, etc. Recently, a linear-time algorithm for computing the diameter of this
subclass of graphs was proposed [22].

▶ Theorem 17. There is an Õ(m3/2)-time algorithm for computing the Wiener index of
chordal Helly graphs.

Proof. Let G = (V, E) be a chordal Helly graph. We apply Theorem 4 in order to reduce
the computation of W (G) to solving the Split-Weighted-Wiener problem on some
instances (P(Vk), E′

k, αk, βk). Write P(Vk) = (Kk, S1
k, S2

k, . . . , Sck

k ). We also know from
Theorem 4 that Kk is a clique of G. In what follows, we present an algorithm for solving
the instance (P(Vk), E′

k, αk, βk) in O(|Kk| · |E′
k|) time. Doing so, we can compute W (G) in∑

k O(|Kk| · |E′
k|) time. Since we further have

∑
k |E′

k| = Õ(n + m) (time of the reduction of
Theorem 4) and maxk |Kk| = O(m1/2) because each subset Kk is a clique, we get a running
time in Õ(m3/2).

Throughout the remainder of the proof, let (P(Vk), E′
k, αk, βk) be fixed. Let also Sk =⋃ck

i=1 Si
k = Vk \ Kk. We write s ∼ s′ if there exists an i such that s, s′ ∈ Si

k. Then, our goal
is to compute the following value:

Ψk :=
∑

{βk(s)βk(s′) | s ̸∼ s′ and d(s, s′) = 2}.

Indeed, let us define αi =
∑

s∈Si
k

αk(s) and βi =
∑

s∈Si
k

βk(s) for every i. Similarly, let α∗ =∑
i αi and β∗ =

∑
i βi. All these values can be pre-computed in total O(|Sk|) = O(|E′

k|) time.
Then, the desired output

∑
i ̸=j

∑
s∈Si

k
,s′∈Sj

k
[βk(s′)αk(s) + βk(s)βk(s′)d(s, s′) + βk(s)αk(s′)]
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can be rewritten as:

∑
i

(β∗ − βi)αi +

∑
i ̸=j

∑
s∈Si

k
,s′∈Sj

k

βk(s)βk(s′)d(s, s′)

+
∑

i

βi(α∗ − αi).

Since in the underlying split graph, the distance between two distinct vertice in the stable
set Sk is either two or three, we get:

∑
i ̸=j

∑
s∈Si

k
,s′∈Sj

k

βk(s)βk(s′)d(s, s′) = 3
(∑

i

βi(β∗ − βi)
)

− Ψk.

The algorithm. Let us define the adjacency lists Nk(u) = {s ∈ Sk | us ∈ E′
k}, for every

u ∈ Kk. In the same way, let us define the adjacency lists Nk(s) = {u ∈ Kk | us ∈ E′
k},

for every s ∈ Sk. We set initially Ψk := 0. Then, let Kk = (u1, u2, . . . , u|Kk|) be totally
ordered. We consider each ui ∈ Kk sequentially, and in order from i = 1 to i = |Kk|. At
step i, let us define for every u′ ∈ Kk the subset Nk,i(u′) := Nk(u′) \

(⋃
j<i Nk(uj)

)
. For

each s ∈ Sk \
(⋃

j<i Nk(uj)
)

, let t be such that s ∈ St
k. We select a vertex u′ ∈ Nk(s) such

that |(Nk,i(u′) ∩ Nk,i(ui)) \ St
k| is maximized. Then, we increment Ψk by:{

βk(s) ·
∑

{βk(s′) | s′ ∈ (Nk,i(ui) ∩ Nk,i(u′)) \ St
k} if s ∈ Nk,i(ui)

2βk(s) ·
∑

{βk(s′) | s′ ∈ (Nk,i(ui) ∩ Nk,i(u′)) \ St
k} if s /∈ Nk,i(ui).

Correctness. We first need to observe that Nk,1(u1) (= Nk(u1)), Nk,2(u2), . . . , Nk,i(ui), . . .

is a partition of Sk. Therefore in order to prove correctness of the algorithm, it suffices to
prove that at each step i, we increment Ψk by twice the sum of all βk(x)βk(y) with x ∈
Nk,i(ui), y ∈ Sk\

(⋃
j<i Nk(uj)

)
, x ̸∼ y and d(x, y) = 2. For that, let s ∈ Sk\

(⋃
j<i Nk(uj)

)
be arbitrary and such that s ∈ St

k for some t. We prove next that for the vertex u′ selected
for s, all the vertices in Nk,i(ui) \ St

k and at distance two from s are also in Nk,i(u′). In
particular, all the desired pairs (x, y) are enumerated: twice if x, y ∈ Nk,i(ui), and only once
otherwise, thus proving correctness of our above formula for incrementing Ψk.

By maximality of u′, it is sufficient to prove the existence of a vertex u∗ ∈ Nk(s) such
that all the vertices of Nk,i(ui) \ St

k that are at distance two from s are also contained into
Nk,i(u∗). We do so by reasoning on the whole graph G. Specifically, let F = {NG[x] | x =
s or ( x ∈ Nk,i(ui) \ St

k and d(s, x) = 2 )}. The balls in F pairwise intersect. Therefore, by
the Helly property, all balls in F contain some common vertex z. We claim that z ∈ Kk.
Note that it will prove the existence of the desired vertex u∗ because in such a case we can
always choose u∗ = z. It follows from the proof of Theorem 4 that St

k and Sk \ St
k are in

separate connected components of G \ Kk, thus immediately proving the claim.
Implementation and Complexity. As a starter, we observe that all the lists Nk(u), for
u ∈ Kk (resp., all the lists Nk(s), for s ∈ Sk) can be constructed in O(|E′

k|) time. Throughout
the algorithm, we maintain an |Sk|-size array A, whose entries are indexed by Sk and are
initialized to 0 (at the end of the algorithm, we have for all s ∈ Nk,i(ui) that A[s]= i).
We also store two auxiliary matrices of dimensions |Kk| × (ck + 1), denoted by Int and
Sum, whose entries are indexed by Kk × {0, 1, 2, . . . , ck} and of which we ensure that all
entries equal 0 at the beginning of any step i. Finally, we find more convenient for certain
operations to maintain a stack Stack and a boolean |Kk|-size array InStack whose entries
are indexed by Kk; before each step, we ensure that the stack is emptied and that all entries
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in InStack are set to False. Note that all the above data structures can be constructed in
O(|Sk| + |Kk| · ck) = O(|Kk| · |Sk|) = O(|Kk| · |E′

k|) time.
We proceed as follows during any step i. First, we scan Nk(ui) and, for every s ∈ Nk(ui)

such that A[s]= 0, we set A[s]= i. Furthermore, if we set A[s]= i, then we add every u′ ∈ Nk(s)
in Stack (we use the auxiliary array InStack in order to avoid adding twice a vertex). Then,
we consider each vertex in Stack sequentially, until we emptied the stack. For every vertex
u′ considered, we scan the list Nk(u′). If s ∈ Nk(u′) is such that A[s]= i (equivalently, if
s ∈ Nk,i(ui)) then, we increment Int[u′][0] by one (intersection size with Nk,i(ui)). Similarly,
we increment Sum[u′][0] by βk(s). For the unique t such that s ∈ St

k, we also increment
Int[u′][t] by one and Sum[u′][t] by βk(s), respectively. Finally, we apply our above formula in
order to increment Ψk:
1. For every s ∈ Nk(ui), if A[s]= i, then let t be the unique index such that s ∈ St

k. We
increment Ψk by βk(s) × (Sum[ui][0] − Sum[ui][t]).

2. For every s ∈ Sk such that A[s]= 0, let also t be the unique index such that s ∈ St
k. We

scan the list Nk(s) in order to find some u′ maximizing Int[u′][0] − Int[u′][t]. Then, we
increment Ψk by 2βk(s) × (Sum[u′][0] − Sum[u′][t]).

The whole step only takes O(|E′
k|) time because each adjacency list is scanned O(1) times. ◀

Although it is a truly subquadratic algorithm (in the size n + m of the input), our
algorithm does not perform better than the classic O(nm)-time algorithm for general graphs
if m = Θ(n2). This is in sharp contrast with our results in Sec. 4, for hereditary chordal
subclasses, where all our algorithms run in Õ(nam) time, for some a < 1. It would be very
interesting to improve the running time of Theorem 17, and to bring it much closer to the
linear-time complexity of the diameter problem on this subclass of graphs.

6 Open problems

We left open whether there are there relevant graph classes where the complexity of the
Wiener index and the diameter are different. In particular, are both problems subquadratic
equivalent? Another interesting question is whether we could compute the Wiener index
of Helly graphs in truly subquadratic time. In this paper, we only managed to find such
algorithm for the subclasses of dually chordal graphs and chordal Helly graphs.
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