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The Problem:

France depends to 80% on nuclear Energy. Total volume of nuclear wastes: 1 540 000 m3 in 2016 (Andra),

including 3650 m3 of Long-lived high-level waste (LLHL).

Previsions (after dismantling power plants): 4 400 000 – 5 050 000 m3

10 000 – 32 000 m3 LLHL. 

For comparison: Internal volume of Notre Dame de Paris 100 000 m3.

For now: All wastes reside temporarily in surface storage facilities of Andra.

One solution:

Long term storage (>100 k years) in deep underground repositories

2 possible geological formations:

impermeable evaporites or sedimentary rocks

Salt rock formation: USA, Germany

Clayey rock formation: France, Belgium, Switzerland

1. Introduction / Context
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To remain impermeable the rocks must be able to:

1) accommodate deformation mostly by ductile flow; 2) self heal microfractures
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1. Introduction / Context

200 mm

Anisotropic Crystal Plasticity:

grain to grain incompatibilities

triggering Grain Sliding and 

microdamage…

Rock Salt

Cubic crystal structure (FCC)

A few % porosity

Brine Solution - precipitation                      self healing.

SEM-in situ uniaxial  compression



To remain impermeable the rocks must be able to

1) accommodate deformation mostly by ductile flow; 2) self heal microfractures
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Na-smectite (Wyoming)

Environmental SEM, dessication

swelling & gelling

1. Introduction / Context

19,9 % RH
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Nuclear waste repositories in Cox argillites

Short/mean term stability:

Desaturation/saturation of rocks in EDZ 

Mechanical & transport properties.

-Development of phenomenological 

Thermo-Hydro-Mechanical models.

Long term stability:

Development of predictive Thermo-Hydro-

Mechanical models based on physically 

sound micro-mechanisms.

Need for local scale experimental input

1. Introduction / Context

~ -500m

Callovo - Oxfordian Argillite

ANDRA Laboratory, Bure, France
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Cox Argilites: Multiple scales of heterogeneity

« Microscopic » tests
Identification of micro-mechanisms:

deformation, micro-fracking, swelling / shrinking

OM: Valès et all 2008, 2010 

E-SEM: Wang et al., 2012-2014, 

µCT (lab & synchrotron)

1. Introduction / Context
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clay matrix (I/S) 25-55 wt% 

(swelling)

+ Calcite (23-42 wt%)

+ Quartz (20-31 wt%)

+ minor Pyrite…

Cox Argilite: composite heterogeneous structure at microscale1. Introduction / Context

Noticeable natural variability

Structural Anisotropy:

sedimentary bedding

Secondary electrons (topography)  

Back-scattered electrons (Z and density)  
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2. Aims & experimental approach

Aims: investigate the anisotropy of crack propagation under uniaxial loading

with respect to the bedding 

Plane Broad Ion beam polished (cryogeny) 10
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Romani et al. 2015 

Follow nucleation and stable crack propagation by Digital Image Correlation (DIC)

Double Cleavage Drilled Compression (DCDC)



Plaster 

(isotropic)

Compression of rectangular column with a central through-thickness hole

2. Aims & experimental approach

Experimental approach:
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Pallares et al. 2009



Cox argillite sample

F = 8 mm,  L = 16 mm

F = hole 1 mm

Uniaxial rig

1 mm

Test geometry: 3 orientations

Test duration:  1h30 mn

(sample ~ as received)

Region of Interest (ROI):

3,46 mm x 2,53 mm

Optical microscope (X10)

4 x 8MPixel images

Pixel size: 0,55 µm

Correlation window: 25 pixels 

Local Strain Gage: 13,75 µm

DIC software: CMV

3. 2D experimental approach

2D investigation by Optical Microscopy and 2D DIC

14



microscope & stages automated control (SYLVIA, H. Gharbi, 2015)

Axe Z : Repetability +/- 0.2 μm

𝐝𝐞𝐩𝐭𝐡 𝐨𝐟 𝐟𝐢𝐞𝐥𝐝 ≈
0.61𝜆

𝛼2 ≈ 3.7 µm 

(G = x10)
Yang et al. 2012

3. 2D experimental approach

2D investigation by Optical microscopy

Rotation : Repetability +/- 0.01° Axe X : Repetability +/- 1 μm
Axe Y : Repetability +/- 1.5 μm

Y

Z : 

Autofocus

Rotation



X
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3. Results
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3. Results

At rupture
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3. Results

90°
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3D investigation by X-ray tomography

synchrotron SOLEIL XRCT, beamline PSICHÉ X-ray transparent uniaxial rig

V. De Greef

4. 3D experimental approach
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Sample mounting

Cox argilite samples

φ = 3.6 mm,  L = 8 mm

φ = hole 0.6 mm

Oriented 90 °

3D investigation by X-ray tomography

4. 3D experimental approach
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Step by step compression

Scan duration:  40 mn 

voxel: 1.29 µm

Correlation window: 40 voxels

Gage length: 52µm

Volume of Interest:

4,6mmx4,6mmx2,6mm

DVC soft: CMV3D, Paraview

Cox argilite samples

φ = 3.6 mm,  L = 8 mm

φ = hole 0.6 mm

3D investigation by X-ray tomography

4. 3D experimental approach
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4. Results

φ = 3.56 mm, L = 8 mm, φ = hole 0.6 mm, Oriented 90 °
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Local strain gage = 52 µm

4. Results
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90°

DVC calculated axial strain: step 2 to 6

Mean axial strain (calculated by DVCC over ROI)



Step1 to 6

4. Results
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90°

axial strain Ezz: step 1 to 6



Transverse strain Exx
just above hole

Step2       Step5       Step6       


4. Results
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1. 2D DIC evidenced the « classical DCDC » strain field

+ the influence of clayey rock anisotropy on the fracture propagation pattern

2. 3D DVC qualitatively confirms the 2D observations (orientation 90°)

5. Conclusions 



1. 3D investigations for other orientations
more detailed quantification of local discontinuities (improved DVC)

2. (More) Local scale investigations in E-SEM

5. Conclusions  & Perspectives



Example: ESEM uniaxial Compaction



Example: ESEM uniaxial Compaction



Compaction/shear



Compaction/flexion/shear



shear/compaction/opening
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Opening/compaction
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Essai H11 (90°)


