

Characterization of fracture anisotropy in clayey rocks by Digital Image Correlation

Audrey Bonnelye¹, Hakim Gharbi¹, **Alexandre Dimanov**¹, <u>Michel Bornert</u>², Manel Mezni¹, Simon Hallais¹, Patrick Aimedieu², Andrew King³, Nathalie Conil⁴

¹Laboratoire de Mécanique des Solides (EP); ²Laboratoire Navier (ENPC); ³Synchrotron Soleil (Psiché line); ⁴ANDRA (Bure)

Guéguen Conference 2019, Potsdam

Outline

- 1. Introduction / Context
- 2. Aims and Experimental approach
- 3. 2D Experimental approach and results
- 4. 3D Experimental approach and results
- 5. Conclusions / perspectives

The Problem:

France depends to 80% on nuclear Energy. Total volume of nuclear wastes: 1 540 000 m3 in 2016 (Andra), including 3650 m3 of Long-lived high-level waste (LLHL).
Previsions (after dismantling power plants): 4 400 000 – 5 050 000 m3
10 000 – 32 000 m3 LLHL.

10 000 – 32 000 M3 LLHL.

For comparison: Internal volume of Notre Dame de Paris 100 000 m3.

For now: All wastes reside temporarily in surface storage facilities of Andra.

One solution: Long term storage (>100 k years) in deep underground repositories

2 possible geological formations:

impermeable evaporites or sedimentary rocks Salt rock formation: USA, Germany Clayey rock formation: France, Belgium, Switzerland

To remain impermeable the rocks must be able to: 1) accommodate deformation mostly by ductile flow; 2) self heal microfractures

Rock Salt

Cubic crystal structure (FCC)

A few % porosity

SEM-in situ uniaxial compression

200 μm

Anisotropic Crystal Plasticity: grain to grain incompatibilities triggering Grain Sliding and microdamage...

Brine — Solution - precipitation — self healing.

To remain impermeable the rocks must be able to 1) accommodate deformation mostly by ductile flow; 2) self heal microfractures

Clayey Rock TOT sheet minerals $\longrightarrow \mu m$ sized crystallites

- nano-porous clay particles
- micro-porous clay aggregates

5 µm

25 % RH 45 % RH 65 % RH 85 % RH

swelling self healing. Brine

----- 10 μm ------

19,9 % RH

swelling & gelling

Nuclear waste repositories in Cox argillites

Short/mean term stability:

Desaturation/saturation of rocks in EDZ Mechanical & transport properties. -Development of *phenomenological Thermo-Hydro-Mechanical models*.

Long term stability:

Development of predictive Thermo-Hydro-Mechanical models based on *physically sound micro-mechanisms*.

Need for local scale experimental input

Cox Argilites: Multiple scales of heterogeneity

1. Introduction / Context Cox Argilite: composite heterogeneous structure at microscale

Broad Ion beam cross section (vacuum)

Back-scattered electrons (Z and density)

Secondary electrons (topography)

clay matrix (I/S) 25-55 wt% (swelling)

- + Calcite (23-42 wt%)
- + Quartz (20-31 wt%)
- + minor Pyrite...

Noticeable natural variability

Structural Anisotropy: sedimentary bedding

2. Aims & experimental approach

Aims: investigate the anisotropy of crack propagation under uniaxial loading with respect to the bedding

2. Aims & experimental approach

Aims: investigate the anisotropy of crack propagation under uniaxial loading with respect to the bedding

Plane Broad Ion beam polished (cryogeny)

2. Aims & experimental approach

Experimental approach: Double Cleavage Drilled Compression (DCDC)

Compression of rectangular column with a central through-thickness hole

Follow nucleation and stable crack propagation by Digital Image Correlation (DIC)

3. 2D experimental approach

2D investigation by Optical Microscopy and 2D DIC

Test geometry: 3 orientations Test duration: ≈ 1h30 mn (sample ~ as received)

Region of Interest (ROI): 3,46 mm x 2,53 mm Optical microscope (X10) 4 x 8MPixel images Pixel size: 0,55 µm

Correlation window: 25 pixels Local Strain Gage: 13,75 µm

DIC software: CMV

3. 2D experimental approach

2D investigation by Optical microscopy

3. Results

Mean axial strain (calculated by DIC over ROI)

4. 3D experimental approach

3D investigation by X-ray tomography

X-ray transparent uniaxial rig V. De Greef

XRCT, beamline PSICHÉ

4. 3D experimental approach

Cox argilite samples

3D investigation by X-ray tomography

- ϕ = 3.6 mm, L = 8 mm ϕ = hole 0.6 mm
 - Oriented 90 $^\circ$

Sample mounting

4. 3D experimental approach

Cox argilite samples

3D investigation by X-ray tomography $\phi = 3.6 \text{ mm}, \text{ L} = 8 \text{ mm}$

 φ = hole 0.6 mm

Step by step compression Scan duration: ≈ 40 mn voxel: 1.29 µm Correlation window: 40 voxels Gage length: 52µm

Volume of Interest:

4,6mmx4,6mmx2,6mm DVC soft: CMV3D, Paraview

DVC calculated axial strain: step 2 to 6

Local strain gage = 52 μ m

axial strain Ezz: step 1 to 6

Transverse strain Exx just above hole

1 dient X - 1.000e-02
0.005
0
-0.005
-1.000e-02

Step2

5. Conclusions

1. 2D DIC evidenced the « classical DCDC » strain field + the **influence of clayey rock anisotropy** on the fracture propagation pattern

2. 3D DVC qualitatively confirms the 2D observations (orientation 90°)

5.000e-0 0.0025

-0.0025 5.000e-0 **5. Conclusions & Perspectives**

- 1. 3D investigations for other orientations more detailed quantification of local discontinuities (improved DVC)
- 2. (More) Local scale investigations in E-SEM

Example: ESEM uniaxial Compaction

Example: ESEM uniaxial Compaction

Compaction/shear

Compaction/flexion/shear

shear/compaction/opening

shear/compaction/opening

Opening/compaction

Opening/compaction

opening

opening

