IIB 2019

Crystal Slip and Grain Boundary Sliding: two stroke engine driving ductile localisation

A. Dimanov¹,

M. Bornert², J. Rahanel¹, **M. Bourcier¹, A. Gaye², A. El Sabbagh¹**, E. Héripré¹, W. Ludwig³, A. King⁴, H. Gharbi¹,, A. Tanguy¹, S. Hallais¹,

¹Laboratoire de Mécanique des Solides (EP); ²Navier (ENPC); ³Mateis (INSA Lyon)-ESRF; ⁴Soleil (Psiché)

ÉCOLE POLYTECHNIQUE

I. Introduction: multiscale localization in natural ductile shear zones

Rupin et al. 2007: Austenite – Ferrite steel

• .

El Sabbagh et al: 2018: Al

II. Micromechanical approach: in situ testing and Full Field Measurements by DIC

II. Micromechanical approach: in situ testing and Full Field Measurements by DIC & DVC

II. Micromechanical approach: in situ testing and Full Field Measurements by DIC & DVC

1) Markers: Au grids (e- lithography), Au particles (film dewetting). Volume dispersion of Cu particles

2) Measurements: of 2D & 3D kinematic fields by DIC & DVC

3) **Computation**: of surface & volume strain fields

Grain size: 300 µm \longleftrightarrow 300 µm

Conjugate Shear Localization at sample scale

L = 1mm

Conjugate Shear Localization & deformation bands at microstructure scale

Two scales of heterogeneity: characteristic length scale about 2 - 3 grain sizes

Bourcier et al 2013

Meso/micro scale (polycrystal microstructure)

micro scale (grain)

III. Exemples of ductile localization: Rock salt (NaCl), SEM monitoring: CSP & GBS identification

Two simultaneous mechanisms: Crystal slip plasticity (CSP) & Grain Boundary Sliding (GBS)

III. Exemples of ductile localization: Rock salt (NaCl), SEM monitoring: **GBS quantification**

Bourcier et al., 2013; Gaye et al 2014

III. Exemples of ductile localization: Rock salt (NaCl), SEM monitoring: CPFEM modelling

Axial strain CP-FEM

III. Exemples of ductile localization: Rock salt (NaCl), SEM monitoring: CPFEM modelling

Axial strain CP-FEM

III. Exemples of ductile localization: Rock salt (NaCl), SEM & XR-MCT monitoring: deformation bands

CSP and GBS are cooperative

III. Exemples of ductile localization: Rock salt (NaCl), SEM & XR-MCT monitoring: deformation bands

Grains ~ 50 - 100 $\mu m,$, $L=105~\mu m$

Grains ~ 100 - 300 $\mu m,$, L = 105 μm

2 scales of localization: sample & microstructure Deformation bands spacing varies with grain size

Same bands for 2 independent mesures

0,1μm.s⁻¹ (10⁻⁵ s⁻¹), 200°C

200C

5

0,1µm.s⁻¹ (10⁻⁵ s⁻¹), 200°C

5

0,1µm.s⁻¹ (10⁻⁵ s⁻¹), 200°C

0,1µm.s⁻¹ (10⁻⁵ s⁻¹), 200°C

 $\bullet \Delta F_{21}$

 $\Delta F_{22} - 1$

2

 $\varepsilon_{11}(\%)$

2.0^{1e-3}

1.5

1.0

0.5

-1.0

-1.5

-2.0l

0

1

 ΔF 0. -0.5 $\Delta F_{11} - 1$

 ΔF_1

 $arepsilon_{11}$ (%)

Evolution of CSP

Evolution of GBS

chronology

0,5 T_f Cumulated

- Simultaneously active CSP & GBS.
- Simultaneously active octaedric& non-octaedric slip.

• Évolution of localisation intensities

GBS and GB migration/thrusting

Coupled GBS & GB migration Incremental Out of plane sliding & thrusting

CONCLUSIONS

CSP and GBS cooperation lead to the formation and spreading of deformation bands at the microstructure scale

Dominant CSP needs minor contribution of GBS

Dominant GBS needs minor contribution of CSP

Apropriate criteria for GBS activation are still lacking

Perspectives Constitutive equations of GBS

Developpements of micro / nano testing of bi-crystals in situ dual beam

