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Emerging Properties in Self-Supervised Vision Transformers

: Self-attention from a Vision Transformer with 8 × 8 patches trained with no supervision. We look at the self-attention of the [CLS] token on the heads of the last layer. This token is not attached to any label nor supervision. These maps show that the model automatically learns class-specific features leading to unsupervised object segmentations.

Introduction

Transformers [START_REF] Vaswani | Attention is all you need[END_REF] have recently emerged as an alternative to convolutional neural networks (convnets) for visual recognition [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF]69,[START_REF] Zhao | Exploring self-attention for image recognition[END_REF]. Their adoption has been coupled with a training strategy inspired by natural language processing (NLP), that is, pretraining on large quantities of data and finetuning on the target dataset [START_REF] Devlin | Bert: Pre-training of deep bidirectional transformers for language understanding[END_REF]55]. The resulting Vision Transformers (ViT) [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF] are competitive with convnets but, they have not yet delivered clear benefits over them: they are computationally more demanding, require more training data, and their features do not exhibit unique properties.

In this paper, we question whether the muted success of Transformers in vision can be explained by the use of supervision in their pretraining. Our motivation is that one of the main ingredients for the success of Transformers in NLP was the use of self-supervised pretraining, in the form of close procedure in BERT [START_REF] Devlin | Bert: Pre-training of deep bidirectional transformers for language understanding[END_REF] or language modeling in GPT [55]. These self-supervised pretraining objectives use the words in a sentence to create pretext tasks that provide a richer learning signal than the supervised objective of predicting a single label per sentence. Similarly, in images, imagelevel supervision often reduces the rich visual information contained in an image to a single concept selected from a predefined set of a few thousand categories of objects [START_REF] Russakovsky | Imagenet large scale visual recognition challenge[END_REF].

While the self-supervised pretext tasks used in NLP are text specific, many existing self-supervised methods have shown their potential on images with convnets [START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF]12,[START_REF] Grill | Bootstrap your own latent: A new approach to self-supervised learning[END_REF][START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF]. They typically share a similar structure but with different components designed to avoid trivial solutions (collapse) or to improve performance [START_REF] Chen | Exploring simple siamese representation learning[END_REF]. In this work, inspired from these methods, we study the impact of self-supervised pretraining on ViT features. Of particular interest, we have identified several interesting properties that do not emerge with supervised ViTs, nor with convnets:

• Self-supervised ViT features explicitly contain the scene layout and, in particular, object boundaries, as shown in Figure 1. This information is directly accessible in the self-attention modules of the last block.

• Self-supervised ViT features perform particularly well with a basic nearest neighbors classifier (k-NN) without any finetuning, linear classifier nor data augmentation, achieving 78.3% top-1 accuracy on ImageNet.

The emergence of segmentation masks seems to be a property shared across self-supervised methods. However, the good performance with k-NN only emerge when combining certain components such as momentum encoder [START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF] and multi-crop augmentation [START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF]. Another finding from our study is the importance of using smaller patches with ViTs to improve the quality of the resulting features.

Overall, our findings about the importance of these components lead us to design a simple self-supervised approach that can be interpreted as a form of knowledge distillation [START_REF] Hinton | Distilling the knowledge in a neural network[END_REF] with no labels. The resulting framework, DINO, simplifies self-supervised training by directly predicting the output of a teacher network-built with a momentum encoder-by using a standard cross-entropy loss. Interestingly, our method can work with only a centering and sharpening of the teacher output to avoid collapse, while other popular components such as predictor [START_REF] Grill | Bootstrap your own latent: A new approach to self-supervised learning[END_REF], advanced normalization [START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF] or contrastive loss [START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF] add little benefits in terms of stability or performance. Of particular importance, our framework is flexible and works on both convnets and ViTs without the need to modify the architecture, nor adapt internal normalizations [START_REF] Pierre H Richemond | Byol works even without batch statistics[END_REF].

We further validate the synergy between DINO and ViT by outperforming previous self-supervised features on the ImageNet linear classification benchmark with 80.1% top-1 accuracy with a ViT-Base with small patches. We also confirm that DINO works with convnets by matching the state of the art with a ResNet-50 architecture. Finally, we discuss different scenarios to use DINO with ViTs in case of limited computation and memory capacity. In particular, training DINO with ViT takes just two 8-GPU servers over 3 days to achieve 76.1% on ImageNet linear benchmark, which outperforms self-supervised systems based on convnets of comparable sizes with significantly reduced compute requirements [START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF][START_REF] Grill | Bootstrap your own latent: A new approach to self-supervised learning[END_REF]. Self-distillation with no labels. We illustrate DINO in the case of one single pair of views (x1, x2) for simplicity. The model passes two different random transformations of an input image to the student and teacher networks. Both networks have the same architecture but different parameters. The output of the teacher network is centered with a mean computed over the batch. Each networks outputs a K dimensional feature that is normalized with a temperature softmax over the feature dimension. Their similarity is then measured with a cross-entropy loss. We apply a stop-gradient (sg) operator on the teacher to propagate gradients only through the student. The teacher parameters are updated with an exponential moving average (ema) of the student parameters.

Related work

Self-supervised learning. A large body of work on selfsupervised learning focuses on discriminative approaches coined instance classification [12,[START_REF] Dosovitskiy | Discriminative unsupervised feature learning with exemplar convolutional neural networks[END_REF][START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF][START_REF] Wu | Unsupervised feature learning via non-parametric instance discrimination[END_REF], which considers each image a different class and trains the model by discriminating them up to data augmentations. However, explicitly learning a classifier to discriminate between all images [START_REF] Dosovitskiy | Discriminative unsupervised feature learning with exemplar convolutional neural networks[END_REF] does not scale well with the number of images. Wu et al. [START_REF] Wu | Unsupervised feature learning via non-parametric instance discrimination[END_REF] propose to use a noise contrastive estimator (NCE) [START_REF] Markus Asano | Self-labelling via simultaneous clustering and representation learning[END_REF] to compare instances instead of classifying them. A caveat of this approach is that it requires comparing features from a large number of images simultaneously. In practice, this requires large batches [12] or memory banks [START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF][START_REF] Wu | Unsupervised feature learning via non-parametric instance discrimination[END_REF]. Several variants allow automatic grouping of instances in the form of clustering [2, [START_REF] Caron | Deep clustering for unsupervised learning of visual features[END_REF][START_REF] Caron | Unsupervised pre-training of image features on non-curated data[END_REF][START_REF] Huang | Unsupervised deep learning by neighbourhood discovery[END_REF][START_REF] Li | Prototypical contrastive learning of unsupervised representations[END_REF][START_REF] Xie | Unsupervised deep embedding for clustering analysis[END_REF]80,[START_REF] Zhuang | Local aggregation for unsupervised learning of visual embeddings[END_REF].

Recent works have shown that we can learn unsupervised features without discriminating between images. Of particular interest, Grill et al. [START_REF] Grill | Bootstrap your own latent: A new approach to self-supervised learning[END_REF] propose a metric-learning formulation called BYOL, where features are trained by matching them to representations obtained with a momentum encoder. Methods like BYOL work even without a momentum encoder, at the cost of a drop of performance [START_REF] Chen | Exploring simple siamese representation learning[END_REF][START_REF] Grill | Bootstrap your own latent: A new approach to self-supervised learning[END_REF]. Several other works echo this direction, showing that one can match more elaborate representations [START_REF] Gidaris | Learning representations by predicting bags of visual words[END_REF][START_REF] Gidaris | Online bag-of-visualwords generation for unsupervised representation learning[END_REF], train features matching them to a uniform distribution [6] or by using whitening [START_REF] Ermolov | Whitening for self-supervised representation learning[END_REF][START_REF] Zbontar | Barlow twins: Self-supervised learning via redundancy reduction[END_REF]. Our approach takes its inspiration from BYOL but operates with a different similarity matching loss and uses the exact same architecture for the student and the teacher. That way, our work completes the interpretation initiated in BYOL of self-supervised learning as a form of Mean Teacher self-distillation [START_REF] Tarvainen | Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results[END_REF] with no labels.

Self-training and knowledge distillation. Self-training aims at improving the quality of features by propagating a small initial set of annotations to a large set of unlabeled instances. This propagation can either be done with hard assignments of labels [START_REF] Lee | Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks[END_REF][START_REF] Xu | Iterative pseudo-labeling for speech recognition[END_REF]79] or with a soft assignment [START_REF] Xie | Self-training with noisy student improves imagenet classification[END_REF]. When using soft labels, the approach is often referred to as knowledge distillation [START_REF] Buciluǎ | Model compression[END_REF][START_REF] Hinton | Distilling the knowledge in a neural network[END_REF] and has been primarily designed to train a small network to mimic the output of a larger network to compress models. Xie et al. [START_REF] Xie | Self-training with noisy student improves imagenet classification[END_REF] have shown that distillation could be used to propagate soft pseudo-labels to unlabelled data in a self-training pipeline, drawing an essential connection between selftraining and knowledge distillation. Our work builds on this relation and extends knowledge distillation to the case where no labels are available. Previous works have also combined self-supervised learning and knowledge distillation [START_REF] Fang | Seed: Self-supervised distillation for visual representation[END_REF]63,[START_REF] Chen | Big self-supervised models are strong semi-supervised learners[END_REF][START_REF] Noroozi | Boosting self-supervised learning via knowledge transfer[END_REF], enabling self-supervised model compression and performance gains. However, these works rely on a pre-trained fixed teacher while our teacher is dynamically built during training. This way, knowledge distillation, instead of being used as a post-processing step to selfsupervised pre-training, is directly cast as a self-supervised objective. Finally, our work is also related to codistillation [START_REF] Anil | Large scale distributed neural network training through online distillation[END_REF] where student and teacher have the same architecture and use distillation during training. However, the teacher in codistillation is also distilling from the student, while it is updated with an average of the student in our work.

Approach

SSL with Knowledge Distillation

The framework used for this work, DINO, shares the same overall structure as recent self-supervised approaches [START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF][START_REF] Chen | Exploring simple siamese representation learning[END_REF]12,[START_REF] Grill | Bootstrap your own latent: A new approach to self-supervised learning[END_REF][START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF]. However, our method shares also similarities with knowledge distillation [START_REF] Hinton | Distilling the knowledge in a neural network[END_REF] and we present it under this angle. We illustrate DINO in Figure 2 and propose a pseudo-code implementation in Algorithm 1.

Knowledge distillation is a learning paradigm where we train a student network g θs to match the output of a given teacher network g θt , parameterized by θ s and θ t respectively. Given an input image x, both networks output probability distributions over K dimensions denoted by P s and P t . The probability P is obtained by normalizing the output of the network g with a softmax function. More precisely,

P s (x) (i) = exp(g θs (x) (i) /τ s ) K k=1 exp(g θs (x) (k) /τ s ) , (1) 
with τ s > 0 a temperature parameter that controls the 

(x)), (2) 
where H(a, b) = -a log b.

In the following, we detail how we adapt the problem in Eq. (2) to self-supervised learning. First, we construct different distorted views, or crops, of an image with multicrop strategy [START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF]. More precisely, from a given image, we generate a set V of different views. This set contains two global views, x g 1 and x g 2 and several local views of smaller resolution. All crops are passed through the student while only the global views are passed through the teacher, therefore encouraging "local-to-global" correspondences. We minimize the loss:

min θs x∈{x g 1 ,x g 2 } x ∈V x = x H(P t (x), P s (x )). ( 3 
)
This loss is general and can be used on any number of views, even only 2. However, we follow the standard setting for multi-crop by using 2 global views at resolution 224 2 covering a large (for example greater than 50%) area of the original image, and several local views of resolution 96 2 covering only small areas (for example less than 50%) of the original image. We refer to this setting as the basic parametrization of DINO, unless mentioned otherwise.

Both networks share the same architecture g with different sets of parameters θ s and θ t . We learn the parameters θ s by minimizing Eq. ( 3) with stochastic gradient descent. Teacher network. Unlike knowledge distillation, we do not have a teacher g θt given a priori and hence, we build it from past iterations of the student network. We study different update rules for the teacher in Section 5.2 and show that freezing the teacher network over an epoch works surprisingly well in our framework, while copying the student weight for the teacher fails to converge. Of particular interest, using an exponential moving average (EMA) on the student weights, i.e., a momentum encoder [START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF], is particularly well suited for our framework. The update rule is θ t ← λθ t + (1 -λ)θ s , with λ following a cosine schedule from 0.996 to 1 during training [START_REF] Grill | Bootstrap your own latent: A new approach to self-supervised learning[END_REF]. Originally the momentum encoder has been introduced as a substitute for a queue in contrastive learning [START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF]. However, in our framework, its role differs since we do not have a queue nor a contrastive loss, and may be closer to the role of the mean teacher used in self-training [START_REF] Tarvainen | Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results[END_REF]. Indeed, we observe that this teacher performs a form of model ensembling similar to Polyak-Ruppert averaging with an exponential decay [START_REF] Boris | Acceleration of stochastic approximation by averaging[END_REF][START_REF] Ruppert | Efficient estimations from a slowly convergent robbins-monro process[END_REF]. Using Polyak-Ruppert averaging for model ensembling is a standard practice to improve the performance of a model [START_REF] Jean | On using very large target vocabulary for neural machine translation[END_REF]. We observe that this teacher has better performance than the student throughout the training, and hence, guides the training of the student by providing target features of higher quality. This dynamic was not observed in previous works [START_REF] Grill | Bootstrap your own latent: A new approach to self-supervised learning[END_REF][START_REF] Pierre H Richemond | Byol works even without batch statistics[END_REF].

Network architecture. The neural network g is composed of a backbone f (ViT [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF] or ResNet [START_REF] He | Deep residual learning for image recognition[END_REF]), and of a projection head h: g = h • f . The features used in downstream tasks are the backbone f output. The projection head consists of a 3-layer multi-layer perceptron (MLP) with hidden dimension 2048 followed by 2 normalization and a weight normalized fully connected layer [START_REF] Salimans | Weight normalization: A simple reparameterization to accelerate training of deep neural networks[END_REF] with K dimensions, which is similar to the design from SwAV [START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF]. We have tested other projection heads and this particular design appears to work best for DINO (Appendix C). We do not use a predictor [START_REF] Grill | Bootstrap your own latent: A new approach to self-supervised learning[END_REF][START_REF] Chen | Exploring simple siamese representation learning[END_REF], resulting in the exact same architecture in both student and teacher networks. Of particular interest, we note that unlike standard convnets, ViT architectures do not use batch normalizations (BN) by default. Therefore, when applying DINO to ViT we do not use any BN also in the projection heads, making the system entirely BN-free.

Avoiding collapse. Several self-supervised methods differ by the operation used to avoid collapse, either through contrastive loss [START_REF] Wu | Unsupervised feature learning via non-parametric instance discrimination[END_REF], clustering constraints [START_REF] Caron | Deep clustering for unsupervised learning of visual features[END_REF][START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF], predictor [START_REF] Grill | Bootstrap your own latent: A new approach to self-supervised learning[END_REF] or batch normalizations [START_REF] Grill | Bootstrap your own latent: A new approach to self-supervised learning[END_REF][START_REF] Pierre H Richemond | Byol works even without batch statistics[END_REF]. While our framework can be stabilized with multiple normalizations [START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF], it can also work with only a centering and sharpening of the momentum teacher outputs to avoid model collapse. As shown experimentally in Section 5.3, centering prevents one dimension to dominate but encourages collapse to the uniform distribution, while the sharpening has the opposite effect. Applying both operations balances their effects which is sufficient to avoid collapse in presence of a momentum teacher. Choosing this method to avoid collapse trades stability for less dependence over the batch: the centering operation only depends on first-order batch statistics and can be interpreted as adding a bias term c to the teacher: g t (x) ← g t (x) + c. The center c is updated with an exponential moving average, which allows the approach to work well across different batch sizes as shown in Section 5.5:

c ← mc + (1 -m) 1 B B i=1 g θt (x i ), (4) 
where m > 0 is a rate parameter and B is the batch size. Output sharpening is obtained by using a low value for the temperature τ t in the teacher softmax normalization.

Implementation and evaluation protocols

In this section, we provide the implementation details to train with DINO and present the evaluation protocols used in our experiments.

Vision Transformer. We briefly describe the mechanism of the Vision Transformer (ViT) [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF][START_REF] Vaswani | Attention is all you need[END_REF] and refer to Vaswani et al. [START_REF] Vaswani | Attention is all you need[END_REF] for details about Transformers and to Dosovitskiy et al. [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF] for its adaptation to images. We follow the implementation used in DeiT [69]. We summarize the configuration of the different networks used in this paper in Table 1. The ViT architecture takes as input a grid of non-overlapping contiguous image patches of resolution N × N . In this paper we typically use N = 16 ("/16") or N = 8 ("/8"). The patches are then passed through a linear layer to form a set of embeddings. We add an extra learnable token to the sequence [START_REF] Devlin | Bert: Pre-training of deep bidirectional transformers for language understanding[END_REF][START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF]. The role of this token is to aggregate information from the entire sequence and we attach the projection head h at its output. We refer to this token as the class token [CLS] for consistency with previous works [START_REF] Devlin | Bert: Pre-training of deep bidirectional transformers for language understanding[END_REF][START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF]69], even though it is not attached to any label nor supervision in our case. The set of patch tokens and [CLS] token are fed to a standard Transformer network with a "pre-norm" layer normalization [START_REF] Xu | The best of both worlds: Combining recent advances in neural machine translation[END_REF][START_REF] Klein | Opennmt: Open-source toolkit for neural machine translation[END_REF]. The Transformer is a sequence of self-attention and feed-forward layers, paralleled with skip connections. The self-attention layers update the token representations by looking at the other token representations with an attention mechanism [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF].

Implementation details. We pretrain the models on the ImageNet dataset [START_REF] Russakovsky | Imagenet large scale visual recognition challenge[END_REF] without labels. We train with the adamw optimizer [44] and a batch size of 1024, distributed over 16 GPUs when using ViT-S/16. The learning rate is linearly ramped up during the first 10 epochs to its base value determined with the following linear scaling rule [START_REF] Goyal | Accurate, large minibatch sgd: Training imagenet in 1 hour[END_REF]: lr = 0.0005 * batchsize/256. After this warmup, we decay the learning rate with a cosine schedule [START_REF] Loshchilov | Sgdr: Stochastic gradient descent with warm restarts[END_REF]. The weight decay also follows a cosine schedule from 0.04 to 0.4. The temperature τ s is set to 0.1 while we use a linear warm-up for τ t from 0.04 to 0.07 during the first 30 epochs. We follow the data augmentations of BYOL [START_REF] Grill | Bootstrap your own latent: A new approach to self-supervised learning[END_REF] (color jittering, Gaussian blur and solarization) and multi-crop [START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF] with a bicubic interpolation to adapt the position embeddings to the scales [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF]69]. The code and models to reproduce our results is publicly available.

Evaluation protocols. Standard protocols for selfsupervised learning are to either learn a linear classifier on frozen features [START_REF] Zhang | Colorful image colorization[END_REF][START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF] or to finetune the features on downstream tasks. For linear evaluations, we apply random resize crops and horizontal flips augmentation during training, and report accuracy on a central crop. For finetuning evaluations, we initialize networks with the pretrained weights and adapt them during training. However, both evaluations are sensitive to hyperparameters, and we observe a large variance in accuracy between runs when varying the learning rate for example. We thus also evaluate the quality of features with a simple weighted nearest neighbor classifier (k-NN) as in [START_REF] Wu | Unsupervised feature learning via non-parametric instance discrimination[END_REF]. We freeze the pretrain model to compute and store the features of the training data of the downstream task. The nearest neighbor classifier then matches the feature of an image to the k nearest stored features that votes for the label. We sweep over different number of nearest neighbors and find that 20 NN is consistently working the best for most of our runs. This evaluation protocol does not require any other hyperparameter tuning, nor data augmentation and can be run with only one pass over the downstream dataset, greatly simplifying the feature evaluation. 

Main Results

We first validate the DINO framework used in this study with the standard self-supervised benchmark on ImageNet. We then study the properties of the resulting features for retrieval, object discovery and transfer-learning.

Comparing with SSL frameworks on ImageNet

We consider two different settings: comparison with the same architecture and across architectures.

Comparing with the same architecture. In top panel of Table 2, we compare DINO with other self-supervised methods with the same architecture, either a ResNet-50 [START_REF] He | Deep residual learning for image recognition[END_REF] or a ViT-small (which follows the design of DeiT-S [69]). The choice of ViT-S is motivated by its similarity with ResNet-50 along several axes: number of parameters (21M vs 23M), Table 3: Image retrieval. We compare the performance in retrieval of off-the-shelf features pretrained with supervision or with DINO on ImageNet and Google Landmarks v2 (GLDv2) dataset. We report mAP on revisited Oxford and Paris. Pretraining with DINO on a landmark dataset performs particularly well. For reference, we also report the best retrieval method with off-the-shelf features [START_REF] Revaud | Learning with average precision: Training image retrieval with a listwise loss[END_REF]. 

ROx

Properties of ViT trained with SSL

We evaluate properties of the DINO features in terms of nearest neighbor search, retaining information about object location and transferability to downstream tasks. The results on ImageNet classification have exposed the potential of our features for tasks relying on nearest neighbor retrieval. In this set of experiments, we further consolidate this finding on landmark retrieval and copy detection tasks.

Image Retrieval. We consider the revisited [START_REF] Radenović | Revisiting oxford and paris: Large-scale image retrieval benchmarking[END_REF] Oxford and Paris image retrieval datasets [START_REF] Philbin | Lost in quantization: Improving particular object retrieval in large scale image databases[END_REF]. They contain 3 different splits of gradual difficulty with query/database pairs. We report the Mean Average Precision (mAP) for the Medium (M) and Hard (H) splits. In Table 3, we compare the performance of different off-the-shelf features obtained with either supervised or DINO training. We freeze the features and directly apply k-NN for retrieval. We observe that DINO features outperform those trained on ImageNet with labels. An advantage of SSL approaches is that they can be trained on any dataset, without requiring any form of annotations. We train DINO on the 1.2M clean set from Google Landmarks v2 (GLDv2) [START_REF] Weyand | Google landmarks dataset v2-a large-scale benchmark for instance-level recognition and retrieval[END_REF], a dataset of landmarks designed for retrieval purposes. DINO ViT features trained on GLDv2 are remarkably good, outperforming previously published methods based on off-the-shelf descriptors [START_REF] Tolias | Particular object retrieval with integral max-pooling of cnn activations[END_REF][START_REF] Revaud | Learning with average precision: Training image retrieval with a listwise loss[END_REF].

Copy detection. We also evaluate the performance of ViTs trained with DINO on a copy detection task. We report the mean average precision on the "strong" subset of the INRIA Copydays dataset [START_REF] Douze | Evaluation of gist descriptors for web-scale image search[END_REF]. The task is to recognize images that have been distorted by blur, insertions, print and scan, etc. Following prior work [5], we add 10k distractor images randomly sampled from the YFCC100M dataset [66]. We perform copy detection directly with cosine similarity on the features obtained from our pretrained network. The features are obtained as the concatenation of the output [CLS] token and of the GeM pooled [START_REF] Radenović | Finetuning cnn image retrieval with no human annotation[END_REF] output patch tokens. This results in a 1536d descriptor for ViT-B. Following [5], we apply whitening on the features. We learn this transformation on an extra 20K random images from YFCC100M, distincts from the distractors. Table 4 shows that ViT trained with DINO is very competitive on copy detection. 

Discovering the semantic layout of scenes

As shown qualitatively in Figure 1, our self-attention maps contain information about the segmentation of an image. In this study, we measure this property on a standard benchmark as well as by directly probing the quality of masks generated from these attention maps.

Video instance segmentation. In Tab. 5, we evaluate the output patch tokens on the DAVIS-2017 video instance segmentation benchmark [START_REF] Pont-Tuset | The 2017 davis challenge on video object segmentation[END_REF]. We follow the experimental protocol in Jabri et al. [START_REF] Jabri | Space-time correspondence as a contrastive random walk[END_REF] and segment scenes with a nearestneighbor between consecutive frames; we thus do not train any model on top of the features, nor finetune any weights for the task. We observe in Tab. 5 that even though our training objective nor our architecture are designed for dense tasks, the performance is competitive on this benchmark. Since the network is not finetuned, the output of the model must have retained some spatial information. Finally, for this dense recognition task, the variants with small patches ("/8") perform much better (+9.1% (J &F) m for ViT-B).

Probing the self-attention map. In Fig. 3, we show that different heads can attend to different semantic regions of an image, even when they are occluded (the bushes on the third row) or small (the flag on the second row). Visualizations are obtained with 480p images, resulting in sequences of 3601 tokens for ViT-S/8. In Fig. 4, we show that a supervised ViT does not attend well to objects in presence of clutter both qualitatively and quantitatively. We report the Jaccard similarity between the ground truth and segmentation masks obtained by thresholding the self-attention map to keep 60% of the mass. Note that the self-attention maps are smooth and not optimized to produce a mask. Nonetheless, we see a clear difference between the supervised or DINO models with a significant gap in terms of Jaccard similarities. Note that self-supervised convnets also contain information about segmentations but it requires dedicated methods to extract it from their weights [START_REF] Gur | Visualization of supervised and self-supervised neural networks via attribution guided factorization[END_REF].

Transfer learning on downstream tasks

In Tab. 6, we evaluate the quality of the features pretrained with DINO on different downstream tasks. We compare with features from the same architectures trained with supervision on ImageNet. We follow the protocol used in Touvron et al.

[69] and finetune the features on each downstream task. We observe that for ViT architectures, self-supervised pretraining transfers better than features trained with supervision, which is consistent with observations made on convolutional networks [START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF][START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF][START_REF] Bulent Sariyildiz | Concept generalization in visual representation learning[END_REF]. Finally, self-supervised pretraining greatly improves results on ImageNet (+1-2%).

Ablation Study of DINO

In this section, we empirically study DINO applied to ViT. The model considered for this entire study is ViT-S. We also refer the reader to Appendix for additional studies.

Importance of the Different Components

We show the impact of adding different components from self-supervised learning on ViT trained with our framework. Figure 4: Segmentations from supervised versus DINO. We visualize masks obtained by thresholding the self-attention maps to keep 60% of the mass. On top, we show the resulting masks for a ViT-S/8 trained with supervision and DINO. We show the best head for both models. The table at the bottom compares the Jaccard similarity between the ground truth and these masks on the validation images of PASCAL VOC12 dataset. In Table 7, we report different model variants as we add or remove components. First, we observe that in the absence of momentum, our framework does not work (row 2) and more advanced operations, SK for example, are required to avoid collapse (row 9). However, with momentum, using SK has little impact (row 3). In addtition, comparing rows 3 and 9 highlights the importance of the momentum encoder for performance. Second, in rows 4 and 5, we observe that multi-crop training and the cross-entropy loss in DINO are important components to obtain good features. We also observe that adding a predictor to the student network has little impact (row 6) while it is critical in BYOL to prevent collapse [START_REF] Chen | Exploring simple siamese representation learning[END_REF][START_REF] Grill | Bootstrap your own latent: A new approach to self-supervised learning[END_REF]. For completeness, we propose in Appendix B an extended version of this ablation study.

Importance of the patch size. In Fig. 5, we compare the k-NN classification performance of ViT-S models trained Table 7: Important component for self-supervised ViT pretraining. Models are trained for 300 epochs with ViT-S/16. We study the different components that matter for the k-NN and linear ("Lin.") evaluations. For the different variants, we highlight the differences from the default DINO setting. The best combination is the momentum encoder with the multicrop augmentation and the cross-entropy loss. We also report results with BYOL [START_REF] Grill | Bootstrap your own latent: A new approach to self-supervised learning[END_REF], MoCo-v2 [START_REF] Chen | Improved baselines with momentum contrastive learning[END_REF] and SwAV [START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF] with different patch sizes, 16 × 16, 8 × 8 and 5 × 5. We also compare to ViT-B with 16 × 16 and 8 × 8 patches. All the models are trained for 300 epochs. We observe that the performance greatly improves as we decrease the size of the patch. It is interesting to see that performance can be greatly improved without adding additional parameters. However, the performance gain from using smaller patches comes at the expense of throughput: when using 5×5 patches, the throughput falls to 44 im/s, vs 180 im/s for 8×8 patches.

Impact of the choice of Teacher Network

In this ablation, we experiment with different teacher network to understand its role in DINO. We compare models trained for 300 epochs using the k-NN protocol.

Building different teachers from the student. In momentum teacher. First we consider using the student network from a previous epoch as a teacher. This strategy has been used in a memory bank [START_REF] Wu | Unsupervised feature learning via non-parametric instance discrimination[END_REF] or as a form of clustering hard-distillation [START_REF] Caron | Deep clustering for unsupervised learning of visual features[END_REF]2,[START_REF] Chen | Unsupervised image classification for deep representation learning[END_REF]. Second, we consider using the student network from the previous iteration, as well as a copy of the student for the teacher. In our setting, using a teacher based on a recent version of the student does not converge. This setting requires more normalizations to work. Interestingly, we observe that using a teacher from the previous epoch does not collapse, providing performance in the k-NN evaluation competitive with existing frameworks such as MoCo-v2 or BYOL. While using a momentum encoder clearly provides superior performance to this naive teacher, this finding suggests that there is a space to investigate alternatives for the teacher.

Analyzing the training dynamic. To further understand the reasons why a momentum teacher works well in our framework, we study its dynamic during the training of a ViT in the left panel of Fig. 6. A key observation is that this teacher constantly outperforms the student during the training, and we observe the same behavior when training with a ResNet-50 (Appendix D). This behavior has not been observed by other frameworks also using momentum [START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF][START_REF] Grill | Bootstrap your own latent: A new approach to self-supervised learning[END_REF], nor when the teacher is built from the previous epoch. We propose to interpret the momentum teacher in DINO as a form of Polyak-Ruppert averaging [START_REF] Boris | Acceleration of stochastic approximation by averaging[END_REF][START_REF] Ruppert | Efficient estimations from a slowly convergent robbins-monro process[END_REF] with an exponentially decay. Polyak-Ruppert averaging is often used to simulate model ensembling to improve the performance of a network at the end of the training [START_REF] Jean | On using very large target vocabulary for neural machine translation[END_REF]. Our method can be interpreted as applying Polyak-Ruppert averaging during the training to constantly build a model ensembling that has superior performances. This model ensembling then guides the training of the student network [START_REF] Tarvainen | Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results[END_REF].

Avoiding collapse

We study the complementarity role of centering and target sharpening to avoid collapse. There are two forms of collapse: regardless of the input, the model output is uniform along all the dimensions or dominated by one dimension. The centering avoids the collapse induced by a dominant dimension, but encourages an uniform output. Sharpening induces the opposite effect. We show this complementarity by decomposing the cross-entropy H into an entropy h and the Kullback-Leibler divergence ("KL") D KL : H(P t , P s ) = h(P t ) + D KL (P t |P s ).

(5)

A KL equal to zero indicates a constant output, and hence a collapse. In Fig. 7, we plot the entropy and KL during training with and without centering and sharpening. If one operation is missing, the KL converges to zero, indicating a collapse. However, the entropy h converges to different values: 0 with no centering and -log(1/K) with no sharpening, indicating that both operations induce different form of collapse. Applying both operations balances these effects (see study of the sharpening parameter τ t in Appendix D).

Compute requirements

In Tab. 8, we detail the time and GPU memory requirements when running ViT-S/16 DINO models on two 8-GPU machines. We report results with several variants of multicrop training, each having a different level of compute requirement. We observe in Tab. 8 that using multi-crop improves the accuracy / running-time tradeoff for DINO runs.

For example, the performance is 72.5% after 46 hours of training without multi-crop (i.e. 2×224 2 ) while DINO in 2×224 2 +10×96 2 crop setting reaches 74.6% in 24 hours only. This is an improvement of +2% while requiring 2× less time, though the memory usage is higher (15.4G versus 9.3G). We observe that the performance boost brought with multi-crop cannot be caught up by more training in the 2×224 2 setting, which shows the value of the "local-to-global" augmentation. Finally, the gain from adding more views diminishes (+.2% form 6× to 10× 96 2 crops) for longer trainings.

Overall, training DINO with Vision Transformers achieves 76.1 top-1 accuracy using two 8-GPU servers for 3 days. This result outperforms state-of-the-art self-supervised systems based on convolutional networks of comparable sizes with a significant reduction of computational requirements [START_REF] Grill | Bootstrap your own latent: A new approach to self-supervised learning[END_REF][START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF]. Our code is available to train self-supervised ViT on a limited number of GPUs. In Tab. 9, we study the impact of the batch size on the features obtained with DINO. We also study the impact of the smooth parameter m used in the centering update rule of Eq. 4 in Appendix D. We scale the learning rate linearly with the batch size [START_REF] Goyal | Accurate, large minibatch sgd: Training imagenet in 1 hour[END_REF]: lr = 0.0005 * batchsize/256. Tab. 9 confirms that we can train models to high performance with small batches. Results with the smaller batch sizes (bs = 128) are slightly below our default training setup of bs = 1024, and would certainly require to re-tune hyperparameters like the momentum rates for example. Note that the experiment with batch size of 128 runs on only 1 GPU. We have explored training a model with a batch size of 8, reaching 35.2% after 50 epochs, showing the potential for training large models that barely fit an image per GPU.

Training with small batches

Conclusion

In this work, we have shown the potential of selfsupervised pretraining a standard ViT model, achieving performance that are comparable with the best convnets specifically designed for this setting. We have also seen emerged two properties that can be leveraged in future applications: the quality of the features in k-NN classification has a potential for image retrieval where ViT are already showing promising results [START_REF] El-Nouby | Training vision transformers for image retrieval[END_REF]. The presence of information about the scene layout in the features can also benefit weakly supervised image segmentation. However, the main result of this paper is that we have evidences that self-supervised learning could be the key to developing a BERT-like model based on ViT. In the future, we plan to explore if pretraining a large ViT model with DINO on random uncurated images could push the limits of visual features [START_REF] Goyal | Selfsupervised pretraining of visual features in the wild[END_REF].

Table 12: Low-shot learning on ImageNet with frozen ViT features. We train a logistic regression on frozen features (FROZEN). Note that this FROZEN evaluation is performed without any finetuning nor data augmentation. We report top-1 accuracy. For reference, we show previously published results that uses finetuning and semi-supervised learning. Low-shot learning on ImageNet. We evaluate the features obtained with DINO applied on ViT-S on low-shot learning. In Tab. 12, we report the validation accuracy of a logistic regression trained on frozen features (FROZEN) with 1% and 10% labels. The logistic regression is trained with the cyanure library [START_REF] Mairal | Cyanure: An open-source toolbox for empirical risk minimization for python, c++, and soon more[END_REF]. When comparing models with a similar number of parameters and image/sec, we observe that our features are on par with state-of-the-art semi-supervised models. Interestingly, this performance is obtained by training a multi-class logistic regression on frozen features, without data augmentation nor finetuning.

B. Methodology Comparison

We compare the performance of different self-supervised frameworks, MoCo-v2 [START_REF] Chen | Improved baselines with momentum contrastive learning[END_REF], SwAV [START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF] and BYOL [START_REF] Grill | Bootstrap your own latent: A new approach to self-supervised learning[END_REF] when using convnet or ViT. In Tab. 13, we see that when trained with ResNet-50 (convnet), DINO performs on par with SwAV and BYOL. However, DINO unravels its potential with ViT, outperforming MoCo-v2, SwAV and BYOL by large margins (+4.3% with linear and +6.2% with k-NN evaluations). In the rest of this section, we perform ablations to better understand the performance of DINO applied to ViT. In particular, we provide a detailed comparison with methods that either use a momentum encoder, namely MoCo-v2 and BYOL, and methods that use multi-crop, namely SwAV. We also observe that adding a predictor has little impact [START_REF] Anil | Large scale distributed neural network training through online distillation[END_REF][START_REF] Assran | Recovering petaflops in contrastive semisupervised learning of visual representations[END_REF]. However, in the case of BYOL, the predictor is critical to prevent collapse (7, 8) which is consistent with previous studies [START_REF] Chen | Exploring simple siamese representation learning[END_REF][START_REF] Grill | Bootstrap your own latent: A new approach to self-supervised learning[END_REF]. Interestingly, we observe that the teacher output centering avoids collapse without predictor nor batch normalizations in BYOL [START_REF] Buciluǎ | Model compression[END_REF][START_REF] Caron | Unsupervised pre-training of image features on non-curated data[END_REF], though with a significant performance drop which can likely be explained by the fact that our centering operator is designed to work in combination with sharpening. Finally, we observe that multi-crop works particularly well with DINO and MoCo-v2, removing it hurts performance by 2 -4% (1 versus 4 and, 5 versus 6). Adding multi-crop to BYOL does not work out-of-the-box (7, 10) as detailed in Appendix E and further adaptation may be required.

Relation to SwAV. In Tab. 15, we evaluate the differences between DINO and SwAV: the presence of the momentum encoder and the operation on top of the teacher output. In absence of the momentum, a copy of the student with a stopgradient is used. We consider three operations on the teacher output: Centering, Sinkhorn-Knopp or a Softmax along the batch axis. The Softmax is similar to a single Sinkhorn-Knopp iteration as detailed in the next paragraph. First, these ablations show that using a momentum encoder significantly improves the performance for ViT (3 versus 6, and 2 versus 5). Second, the momentum encoder also avoids collapse when using only centering (row 1). In the absence of momentum, centering the outputs does not work (4) and more advanced operations are required (5, 6). Overall, these ablations highlight the importance of the momentum encoder, not only for performance but also to stabilize training, removing the need for normalization beyond centering.

Details on the Softmax(batch) variant. The iterative Sinkhorn-Knopp algorithm [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF] used in SwAV [START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF] is implemented simply with the following PyTorch style code.

# x is n-by-K # tau is Sinkhorn regularization param x = exp(x / tau) for _ in range(num_iters): # 1 iter of Sinkhorn # total weight per dimension (or cluster) c = sum(x, dim=0, keepdim=True)

x /= c # total weight per sample n = sum(x, dim=1, keepdim=True) # x sums to 1 for each sample (assignment)

x /= n When performing a single Sinkhorn iteration (num iters=1) the implementation can be highly simplified into only two lines of code, which is our softmax(batch) variant:

x = softmax(x / tau, dim=0) x /= sum(x, dim=1, keepdim=True)
We have seen in Tab. 15 that this highly simplified variant of SwAV works competitively with SwAV. Intuitively, the softmax operation on the batch axis allows to select for each dimension (or "cluster") its best matches in the batch.

Validating our implementation. We observe in Tab. 13 that our reproduction of BYOL, MoCo-v2, SwAV matches or outperforms the corresponding published numbers with ResNet-50. Indeed, we obtain 72.7% for BYOL while [START_REF] Grill | Bootstrap your own latent: A new approach to self-supervised learning[END_REF] report 72.5% in this 300-epochs setting. We obtain 71.1% for MoCo after 300 epochs of training while [START_REF] Chen | Improved baselines with momentum contrastive learning[END_REF] report 71.1% after 800 epochs of training. Our improvement compared to the implementation of [START_REF] Chen | Improved baselines with momentum contrastive learning[END_REF] can be explained by the use of a larger projection head (3-layer, use of batchnormalizations and projection dimension of 256).

Relation to other works. DINO is also related to UIC [START_REF] Chen | Unsupervised image classification for deep representation learning[END_REF] that use outputs from the previous epoch as hard pseudo-labels for "unsupervised classification". However, we use centering to prevent collapse while UIC resorts to balance sampling techniques as in [START_REF] Caron | Deep clustering for unsupervised learning of visual features[END_REF]. Our work can be interpreted as a soft UIC variant with momentum teacher. The concurrent work CsMI [START_REF] Xu | Seed the views: Hierarchical semantic alignment for contrastive representation learning[END_REF] also exhibits strong performance with simple k-NN classifiers on ImageNet, even with convnets. As DINO, CsMI combines a momentum network and multi-crop training, which we have seen are both crucial for good k-NN performance in our experiments with ViTs. We believe studying this work would help us identifying more precisely the components important for good k-NN performance and leave this investigation for future work.

C. Projection Head

Similarly to other self-supervised frameworks, using a projection head [12] improves greatly the accuracy of our method. The projection head starts with a n-layer multilayer perceptron (MLP). The hidden layers are 2048d and are with gaussian error linear units (GELU) activations. The last layer of the MLP is without GELU. Then we apply a 2 normalization and a weight normalized fully connected layer [START_REF] Chen | Exploring simple siamese representation learning[END_REF][START_REF] Salimans | Weight normalization: A simple reparameterization to accelerate training of deep neural networks[END_REF] with K dimensions. This design is inspired from the projection head with a "prototype layer" used in SwAV [START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF]. We do not apply batch normalizations. BN-free system. Unlike standard convnets, ViT architectures do not use batch normalizations (BN) by default. There-ViT-S, 100 epochs heads w/o BN heads w/ BN k-NN top-1 69.7 68.6 fore, when applying DINO to ViT we do not use any BN also in the projection heads. In this table we evaluate the impact of adding BN in the heads. We observe that adding BN in the projection heads has little impact, showing that BN is not important in our framework. Overall, when applying DINO to ViT, we do not use any BN anywhere, making the system entirely BN-free. This is a great advantage of DINO + ViT to work at state-of-the-art performance without requiring any BN. Indeed, training with BN typically slows down trainings considerably, especially when these BN modules need to be synchronized across processes [START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF][START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF][START_REF] Caron | Unsupervised pre-training of image features on non-curated data[END_REF][START_REF] Grill | Bootstrap your own latent: A new approach to self-supervised learning[END_REF].

L2-normalization bottleneck in projection head. We illustrate the design of the projection head with or without l2normalization bottleneck in Fig. tency within the architecture, we choose to use GELU also in the projection head. We evaluate the effect of using ReLU instead of GELU in this table and observe that changing the activation unit to ReLU has relatively little impact.

D. Additional Ablations

We have detailed in the main paper that the combination of centering and sharpening is important to avoid collapse in DINO. We ablate the hyperparameters for these two operations in the following. We also study the impact of training length and some design choices for the ViT networks.

Online centering. We study the impact of the smoothing parameters in the update rule for the center c used in the output of the teacher network. The convergence is robust m 0 0.9 0.99 0.999 The teacher outperforms the student. We have shown in Fig. 6 that the momentum teacher outperforms the student with ViT and we show in this Figure that it is also the case with ResNet-50. The fact that the teacher continually outperforms the student further encourages the interpretation of DINO as a form of Mean Teacher [START_REF] Tarvainen | Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results[END_REF] self-distillation. Indeed, as motivated in Tarvainen et al. [START_REF] Tarvainen | Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results[END_REF], weight averaging 0 100 epochs 40 45 50 55 60 val acc@1 Student Teacher usually produces a better model than the individual models from each iteration [START_REF] Boris | Acceleration of stochastic approximation by averaging[END_REF]. By aiming a target obtained with a teacher better than the student, the student's representations improve. Consequently, the teacher also improves since it is built directly from the student weights.

k-NN
Self-attention maps from supervised versus selfsupervised learning. We evaluate the masks obtained by thresholding the self-attention maps to keep 80% of the mass. We compare the Jaccard similarity between the ViT-S/ [START_REF] Chen | Exploring simple siamese representation learning[END_REF] 

E. Multi-crop

In this Appendix, we study a core component of DINO: multi-crop training [START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF]. 

  Figure2: Self-distillation with no labels. We illustrate DINO in the case of one single pair of views (x1, x2) for simplicity. The model passes two different random transformations of an input image to the student and teacher networks. Both networks have the same architecture but different parameters. The output of the teacher network is centered with a mean computed over the batch. Each networks outputs a K dimensional feature that is normalized with a temperature softmax over the feature dimension. Their similarity is then measured with a cross-entropy loss. We apply a stop-gradient (sg) operator on the teacher to propagate gradients only through the student. The teacher parameters are updated with an exponential moving average (ema) of the student parameters.

Figure 3 :

 3 Figure 3: Attention maps from multiple heads. We consider the heads from the last layer of a ViT-S/8 trained with DINO and display the self-attention for [CLS] token query. Different heads, materialized by different colors, focus on different locations that represents different objects or parts (more examples in Appendix).

  Figure 5: Effect of Patch Size. k-NN evaluation as a function of the throughputs for different input patch sizes with ViT-B and ViT-S. Models are trained for 300 epochs.

Figure 6 :

 6 Figure 6: Top-1 accuracy on ImageNet validation with k-NN classifier. (left) Comparison between the performance of the momentum teacher and the student during training. (right) Comparison between different types of teacher network. The momentum encoder leads to the best performance but is not the only viable option.

Figure 7 :

 7 Figure 7: Collapse study. (left): evolution of the teacher's target entropy along training epochs; (right): evolution of KL divergence between teacher and student outputs.

Figure 8 :

 8 Figure 8: Self-attention for a set of reference points. We visualize the self-attention module from the last block of a ViT-S/8 trained with DINO. The network is able to separate objects, though it has been trained with no supervision at all.

Figure 10 :

 10 Figure10: Self-attention heads from the last layer. We look at the attention map when using the [CLS] token as a query for the different heads in the last layer. Note that the [CLS] token is not attached to any label or supervision.

  photocopier

Figure 11 :

 11 Figure 11: t-SNE visualization of ImageNet classes as represented using DINO. For each class, we obtain the embedding by taking the average feature for all images of that class in the validation set.

  

  Algorithm 1 DINO PyTorch pseudocode w/o multi-crop.

	# gs, gt: student and teacher networks
	# C: center (K)
	# tps, tpt: student and teacher temperatures
	# l, m: network and center momentum rates
	gt.params = gs.params
	for x in loader: # load a minibatch x with n samples
	x1, x2 = augment(x), augment(x) # random views
	s1, s2 = gs(x1), gs(x2) # student output n-by-K
	t1, t2 = gt(x1), gt(x2) # teacher output n-by-K
	loss = H(t1, s2)/2 + H(t2, s1)/2
	loss.backward() # back-propagate
	# student, teacher and center updates
	update(gs) # SGD
	gt.params = l * gt.params + (1-l) * gs.params
	C = m * C + (1-m) * cat([t1, t2]).mean(dim=0)
	def H(t, s):
	t = t.detach() # stop gradient
	s = softmax(s / tps, dim=1)
	t = softmax((t -C) / tpt, dim=1) # center + sharpen
	return -(t * log(s)).sum(dim=1).mean()

sharpness of the output distribution, and a similar formula holds for P t with temperature τ t . Given a fixed teacher network g θt , we learn to match these distributions by minimizing the cross-entropy loss w.r.t. the parameters of the student network θ s : min θs H(P t (x), P s

Table 1 :

 1 Networks configuration. "Blocks" is the number of Transformer blocks, "dim" is channel dimension and "heads" is the number of heads in multi-head attention. "# tokens" is the length of the token sequence when considering 224 2 resolution inputs, "# params" is the total number of parameters (without counting the projection head) and "im/s" is the inference time on a NVIDIA V100 GPU with 128 samples per forward.

	model	blocks dim heads #tokens #params im/s
	ResNet-50 -2048 -	-	23M 1237
	ViT-S/16	12 384	6	197	21M 1007
	ViT-S/8	12 384	6	785	21M 180
	ViT-B/16	12 768 12	197	85M 312
	ViT-B/8	12 768 12	785	85M	63

Table 2 :

 2 Linear and k-NN classification on ImageNet. We report top-1 accuracy for linear and k-NN evaluations on the validation set of ImageNet for different self-supervised methods. We focus on ResNet-50 and ViT-small architectures, but also report the best results obtained across architectures. * are run by us. We run the k-NN evaluation for models with official released weights. The throughput (im/s) is calculated on a NVIDIA V100 GPU with 128 samples per forward. Parameters (M) are of the feature extractor.

	Method	Arch.	Param. im/s Linear k-NN
	Supervised	RN50	23	1237 79.3	79.3
	SCLR [12]	RN50	23	1237 69.1	60.7
	MoCov2 [15] RN50	23	1237 71.1	61.9
	InfoMin [67]	RN50	23	1237 73.0	65.3
	BarlowT [81] RN50	23	1237 73.2	66.0
	OBoW [27]	RN50	23	1237 73.8	61.9
	BYOL [30]	RN50	23	1237 74.4	64.8
	DCv2 [10]	RN50	23	1237 75.2	67.1
	SwAV [10]	RN50	23	1237 75.3	65.7
	DINO	RN50	23	1237 75.3	67.5
	Supervised	ViT-S	21	1007 79.8	79.8
	BYOL * [30]	ViT-S	21	1007 71.4	66.6
	MoCov2 * [15] ViT-S	21	1007 72.7	64.4
	SwAV * [10]	ViT-S	21	1007 73.5	66.3
	DINO	ViT-S	21	1007 77.0	74.5
	Comparison across architectures				
	SCLR [12]	RN50w4		117	76.8	69.3
	SwAV [10]	RN50w2	93	384	77.3	67.3
	BYOL [30]	RN50w2	93	384	77.4	-
	DINO	ViT-B/16	85	312	78.2	76.1
	SwAV [10]	RN50w5		76	78.5	67.1
	BYOL [30]	RN50w4		117	78.6	-
	BYOL [30]	RN200w2		123	79.6	73.9
	DINO	ViT-S/8	21	180	79.7	78.3
	SCLRv2 [13] RN152w3+SK		46	79.8	73.1
	DINO	ViT-B/8	85	63	80.1	77.4

  RPar

	Pretrain Arch.	Pretrain M	H	M	H
	Sup. [57] RN101+R-MAC ImNet 49.8 18.5 74.0 52.1
	Sup.	ViT-S/16	ImNet 33.5 8.9 63.0 37.2
	DINO	ResNet-50	ImNet 35.4 11.1 55.9 27.5
	DINO	ViT-S/16	ImNet 41.8 13.7 63.1 34.4
	DINO	ViT-S/16	GLDv2 51.5 24.3 75.3 51.6
					performance,
	reducing the size of the patches ("/8" variants) has a bigger
	impact on the performance. While reducing the patch size
	do not add parameters, it still leads to a significant reduction
	of running time, and larger memory usage. Nonetheless, a
	base ViT with 8 × 8 patches trained with DINO achieves
	80.1% top-1 in linear classification and 77.4% with a k-NN
	classifier with 10× less parameters and 1.4× faster run time
	than previous state of the art [13].		

throughput (1237/sec VS 1007 im/sec) and supervised performance on ImageNet with the training procedure of [69] (79.3% VS 79.8%). We explore variants of ViT-S in Appendix D. First, we observe that DINO performs on par with the state of the art on ResNet-50, validating that DINO works in the standard setting. When we switch to a ViT architecture, DINO outperforms BYOL, MoCov2 and SwAV by +3.5% with linear classification and by +7.9% with k-NN evaluation. More surprisingly, the performance with a simple k-NN classifier is almost on par with a linear classifier (74.5% versus 77.0%). This property emerges only when using DINO with ViT architectures, and does not appear with other existing self-supervised methods nor with a ResNet-50.

Comparing across architectures. On the bottom panel of Table

2

, we compare the best performance obtained across architectures. The interest of this setting is not to compare methods directly, but to evaluate the limits of a ViT trained with DINO when moving to larger architectures. While training a larger ViT with DINO improves the

Table 4 :

 4 Copy detection. We report the mAP performance in copy detection on Copydays "strong" subset[START_REF] Douze | Evaluation of gist descriptors for web-scale image search[END_REF]. For reference, we also report the performance of the multigrain model [5], trained specifically for particular object retrieval.

	Method	Arch.	Dim.	Resolution	mAP
	Multigrain [5]	ResNet-50 2048	224 2	75.1
	Multigrain [5]	ResNet-50 2048 largest side 800 82.5
	Supervised [69] ViT-B/16	1536	224 2	76.4
	DINO	ViT-B/16	1536	224 2	81.7
	DINO	ViT-B/8	1536	320 2	85.5
	4.2.1 Nearest neighbor retrieval with DINO ViT	

Table 5 :

 5 DAVIS 2017 Video object segmentation. We evaluate the quality of frozen features on video instance tracking. We report mean region similarity Jm and mean contour-based accuracy Fm. We compare with existing self-supervised methods and a supervised ViT-S/8 trained on ImageNet. Image resolution is 480p.

	Method	Data	Arch.	(J &F)m	Jm	Fm
	Supervised					
	ImageNet	INet	ViT-S/8	66.0	63.9 68.1
	STM [48]	I/D/Y	RN50	81.8	79.2 84.3
	Self-supervised				
	CT [71]	VLOG	RN50	48.7	46.4 50.0
	MAST [40] YT-VOS RN18	65.5	63.3 67.6
	STC [37]	Kinetics	RN18	67.6	64.8 70.2
	DINO	INet	ViT-S/16	61.8	60.2 63.4
	DINO	INet	ViT-B/16	62.3	60.7 63.9
	DINO	INet	ViT-S/8	69.9	66.6 73.1
	DINO	INet	ViT-B/8	71.4	67.9 74.9

Table 6 :

 6 Transfer learning by finetuning pretrained models on different datasets. We report top-1 accuracy. Self-supervised pretraining with DINO transfers better than supervised pretraining.

		Cifar10 Cifar100 INat18 INat19 Flwrs Cars INet
	ViT-S/16			
	Sup. [69] 99.0	89.5	70.7 76.6 98.2 92.1 79.9
	DINO	99.0	90.5	72.0 78.2 98.5 93.0 81.5
	ViT-B/16			
	Sup. [69] 99.0	90.8	73.2 77.7 98.4 92.1 81.8
	DINO	99.1	91.7	72.6 78.6 98.8 93.0 82.8

  .

	Method Mom. SK MC Loss Pred. k-NN	Lin.
	1 DINO	CE	72.8	76.1
	2	CE	0.1	0.1
	3	CE	72.2	76.0
	4	CE	67.9	72.5
	5	MSE	52.6	62.4
	6	CE	71.8	75.6
	7 BYOL	MSE	66.6	71.4
	8 MoCov2	INCE	62.0	71.6
	9 SwAV	CE	64.7	71.8
	SK: Sinkhorn-Knopp, MC: Multi-Crop, Pred.: Predictor
	CE: Cross-Entropy, MSE: Mean Square Error, INCE: InfoNCE

Table 8 :

 8 Time and memory requirements. We show total running time and peak memory per GPU ("mem.") when running ViT-S/16 DINO models on two 8-GPU machines. We report top-1 ImageNet val acc with linear evaluation for several variants of multi-crop, each having a different level of compute requirement.

		100 epochs	300 epochs
	multi-crop	top-1 time top-1 time mem.
	2×224 2	67.8 15.3h 72.5 45.9h 9.3G
	2×224 2 + 2×96 2 71.5 17.0h 74.5 51.0h 10.5G
	2×224 2 + 6×96 2 73.8 20.3h 75.9 60.9h 12.9G
	2×224 2 + 10×96 2 74.6 24.2h 76.1 72.6h 15.4G

Table 9 :

 9 Effect

	bs	128 256 512 1024
	top-1 57.9 59.1 59.6 59.9

of batch sizes. Top-1 with k-NN for models trained for 100 epochs without multi-crop.

Table 13 :

 13 Methodology comparison for DEIT-small and ResNet-50. We report ImageNet linear and k-NN evaluations validation accuracy after 300 epochs pre-training. All numbers are run by us and match or outperform published results.Relation to MoCo-v2 and BYOL. In Tab. 14, we present the impact of ablating components that differ between DINO, MoCo-v2 and BYOL: the choice of loss, the predictor in the student head, the centering operation, the batch normalization in the projection heads, and finally, the multi-crop augmentation. The loss in DINO is a cross-entropy on sharpened softmax outputs (CE) while MoCo-v2 uses the InfoNCE con-

		ResNet-50	ViT-small
	Method	Linear k-NN	Linear k-NN
	MoCo-v2	71.1	62.9	71.6	62.0
	BYOL	72.7	65.4	71.4	66.6
	SwAV	74.1	65.4	71.8	64.7
	DINO	74.5	65.6	76.1	72.8

trastive loss (INCE) and BYOL a mean squared error on l2-normalized outputs (MSE). No sharpening is applied with the MSE criterion. Though, DINO surprisingly still works when changing the loss function to MSE, but this significantly alters the performance (see rows (1, 2) and (4, 9)).

Table 14 :

 14 Relation to MoCo-v2 and BYOL. We ablate the components that differ between DINO, MoCo-v2 and BYOL: the loss function (cross-entropy, CE, versus InfoNCE, INCE, versus meansquare error, MSE), the multi-crop training, the centering operator, the batch normalization in the projection heads and the student predictor. Models are run for 300 epochs with ViT-S/16. We report top-1 accuracy on ImageNet linear evaluation.

	Method	Loss multi-crop Center. BN Pred. Top-1
	1 DINO	CE	76.1
	2 -	MSE	62.4
	3 -	CE	75.6
	4 -	CE	72.5
	5 MoCov2 INCE	71.4
	6	INCE	73.4
	7 BYOL	MSE	71.4
	8 -	MSE	0.1
	9 -	MSE	52.6
	10 -	MSE	64.8

Table 15 :

 15 Relation to SwAV. We vary the operation on the teacher output between centering, a softmax applied over the batch dimension and the Sinkhorn-Knopp algorithm. We also ablate the Momentum encoder by replacing it with a hard copy of the student with a stop-gradient as in SwAV. Models are run for 300 epochs with ViT-S/16. We report top-1 accuracy on ImageNet linear evaluation.

	Method Momentum	Operation	Top-1
	1 DINO	Centering	76.1
	2 -	Softmax(batch)	75.8
	3 -	Sinkhorn-Knopp	76.0
	4 -	Centering	0.1
	5 -	Softmax(batch)	72.2
	6 SwAV	Sinkhorn-Knopp	71.8

  Projection head design w/ or w/o l2-norm bottleneck.linear layers is n + 1 (n from the MLP and 1 from the weight normalized layer) while without bottleneck the total number of linear layers is n in the head. In this table, we report ImageNet top-1 k-NN evaluation accuracy after 100 epochs pre-training with ViT-S/16. The output dimensionality K is set to 4096 in this experiment. We observe that DINO training fails without the l2-normalization bottleneck when increasing the depth of the projection head. L2-normalization bottleneck stabilizes the training of DINO with deep projection head. We observe that increasing the depth of the projection head improves accuracy. Our default is to use a total of 4 linear layers: 3 are in the MLP and one is after the l2 bottleneck.

							w/ l2-bottleneck	w/o l2-bottleneck
							g(x)	g(x)
							B x K	B x K
						projection head h	n-layer MLP l2 normalization linear layer B x 256 B x 256	projection head h	n-layer MLP
							B x 384	B x 384
							f	f
							x B x 3 x 224 x 224	x	B x 3 x 224 x 224
						Figure 9: Output dimension. In this table, we evaluate the effect
						of varying the output dimensionality K. We observe that a
						K	1024 4096 16384 65536 262144
						k-NN top-1 67.8 69.3	69.2	69.7	69.1
						large output dimensionality improves the performance. We
						note that the use of l2-normalization bottleneck permits to
						use a large output dimension with a moderate increase in the
						total number of parameters. Our default is to use K equals
						to 65536 and d = 256 for the bottleneck.
						GELU activations. By default, the activations used in ViT
		9. We evaluate the accuracy	are gaussian error linear units (GELU). Therefore, for consis-
	# proj. head linear layers	1	2	3	4	ViT-S, 100 epochs heads w/ GELU heads w/ ReLU
	w/ l2-norm bottleneck	-	62.2 68.0	69.3	k-NN top-1	69.7	68.9
	w/o l2-norm bottleneck	61.6 62.9 0.1	0.1		
	of DINO models trained with or without l2-normalization		
	bottleneck and we vary the number of linear layers in the		
	projection head. With l2 bottleneck, the total number of		
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Appendix A. Additional Results

k-NN classification. In Tab. 10, we evaluate the frozen representations given by ResNet-50 or ViT-small pre-trained with DINO with two evaluation protocols: linear or k-NN. For both evaluations, we extract representations from a pretrained network without using any data augmentation. Then, we perform classification either with weighted k-NN or with a linear regression learned with cyanure library [START_REF] Mairal | Cyanure: An open-source toolbox for empirical risk minimization for python, c++, and soon more[END_REF]. In Tab. 10 we see that ViT-S accuracies are better than accuracies obtained with RN50 both with a linear or a k-NN classifier. However, the performance gap when using the k-NN evaluation is much more significant than when considering linear evaluation. For example on ImageNet 1%, ViT-S outperforms ResNet-50 by a large margin of +14.1% with k-NN evaluation. This suggests that transformers architectures trained with DINO might offer more model flexibility that benefits the k-NN evaluation. K-NN classifiers have the great advantage of being fast and light to deploy, without requiring any domain adaptation. Overall, ViT trained with DINO provides features that combine particularly well with k-NN classifiers.

Self-supervised ImageNet pretraining of ViT. In this experiment, we study the impact of pretraining a supervised ViT model with our method. In Tab. 11, we compare the performance of supervised ViT models that are initialized with different pretraining or guided during training with an additional pretrained convnet. The first set of models are SwAV. However, the ranges could definitely be overlapping and experimenting with finer hyperparameters search could lead to a more optimal setting. In this table, we vary the parameter s that controls the range of scales used in multi-crop and find the optimum to be around 0.3 in our experiments. We note that this is higher than the parameter used in SwAV which is of 0.14.

Multi-crop in different self-supervised frameworks.

We compare different recent self-supervised learning frameworks, namely MoCo-v2 [START_REF] Chen | Improved baselines with momentum contrastive learning[END_REF], BYOL [START_REF] Grill | Bootstrap your own latent: A new approach to self-supervised learning[END_REF] and SwAV [START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF] with are pretrained either with two 224 2 crops or with multicrop [START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF] training, i.e. two 224 2 crops and six 96 2 crops for each image. We report k-NN and linear probing evaluations after 300 epochs of training. Multi-crop does not benefit all frameworks equally, which has been ignored in benchmarks considering only the two crops setting [START_REF] Chen | Exploring simple siamese representation learning[END_REF]. The effectiveness of multi-crop depends on the considered framework, which positions multi-crop as a core component of a model and not a simple "add-ons" that will boost any framework the same way. Without multi-crop, DINO has better accuracy than other frameworks, though by a moderate margin (1%). Remarkably, DINO benefits the most from multi-crop training (+3.4% in linear eval). Interestingly, we also observe that the ranking of the frameworks depends on the evaluation protocol considered.

Training BYOL with multi-crop. When applying multicrop to BYOL with ViT-S, we observe the transfer performance is higher than the baseline without multi-crop for the first training epochs. However, the transfer performance growth rate is slowing down and declines after a certain 

F. Evaluation Protocols F.1 k-NN classification

Following the setting of Wu et al. [START_REF] Wu | Unsupervised feature learning via non-parametric instance discrimination[END_REF], we evaluate the quality of features with a simple weighted k Nearest Neighbor classifier. We freeze the pretrained model to compute and store the features of the training data of the downstream task.

To classify a test image x, we compute its representation and compare it against all stored training features T . The representation of an image is given by the output [CLS] token: it has dimensionality d = 384 for ViT-S and d = 768 for ViT-B. The top k NN (denoted N k ) are used to make a prediction via weighted voting. Specifically, the class c gets a total weight of i∈N k α i 1 ci=c , where α i is a contribution weight. We use α i = exp(T i x/τ ) with τ equals to 0.07 as in [START_REF] Wu | Unsupervised feature learning via non-parametric instance discrimination[END_REF] which we do not tune. We evaluate different values for k and find that k = 20 is consistently leading to the best accuracy across our runs. This evaluation protocol does not require hyperparameter tuning, nor data augmentation and can be run with only one pass over the downstream dataset.

F.2 Linear classification

Following common practice in self-supervised learning, we evaluate the representation quality with a linear classifier. The projection head is removed, and we train a supervised linear classifier on top of frozen features. This linear classifier is trained with SGD and a batch size of 1024 during 100 epochs on ImageNet. We do not apply weight decay.

For each model, we sweep the learning rate value. During training, we apply only random resizes crops (with default parameters from PyTorch RandomResizedCrop) and horizontal flips as data augmentation. We report centralcrop top-1 accuracy. When evaluating convnets, the common practice is to perform global average pooling on the final feature map before the linear classifier. In the following, we describe how we adapt this design when evaluating ViTs.

ViT-S representations for linear eval. Following the feature-based evaluations in BERT [START_REF] Devlin | Bert: Pre-training of deep bidirectional transformers for language understanding[END_REF], we concatenate the [CLS] tokens from the l last layers. We experiment with the concatenation of a different number l of layers and similarly to [START_REF] Devlin | Bert: Pre-training of deep bidirectional transformers for language understanding[END_REF] we find l = 4 to be optimal.

ViT-B representations for linear eval. With ViT-B we did not find that concatenating the representations from the last l layers to provide any performance gain, and consider the final layer only (l = 1). In this setting, we adapt the 

G. Self-Attention Visualizations

We provide more self-attention visualizations in Fig. 8 and in Fig. 10. The images are randomly selected from COCO validation set, and are not used during training of DINO. In Fig. 8, we show the self-attention from the last layer of a DINO ViT-S/8 for several reference points.

H. Class Representation

As a final visualization, we propose to look at the distribution of ImageNet concepts in the feature space from DINO. We represent each ImageNet class with the average feature vector for its validation images. We reduce the dimension of these features to 30 with PCA, and run t-SNE with a perplexity of 20, a learning rate of 200 for 5000 iterations. We present the resulting class embeddings in Fig. 11. Our model recovers structures between classes: similar animal species are grouped together, forming coherent clusters of birds (top) or dogs, and especially terriers (far right).