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Abstract 
 

The unique capability of additive manufacturing (AM) to deal with complex geometries drives the 

traditional topological optimization and lightweight design to a new paradigm. However, AM constraints are 

still hard to integrate into the optimization procedure, and the multiple conflict design objectives are difficult 

to handle when making decisions. In addition, the computation cost is usually high. To solve these problems, 

this paper proposes a new generative design method with a manufacturing validation so that the designer’s 

decision-making is more efficient. This method first uses a CSG (constructive solid geometry)-based 

technique to generate and represent topology geometries with smooth boundaries and parametric control. 

Then, a genetic algorithm is used to operate the CSG geometries in order to search for optimal solutions. 

Finally, a set of finite optimal non-dominated design solutions on the Pareto front are located and presented 

for the designer’s further decision making. The proposed method can generate a large quantity of qualified 

optimal alternative solutions with smooth geometric boundaries but the computation cost is less. It is 

promising to design qualified solutions, especially for lightweight structure design, in AM. Several 

demonstration examples and comparison case studies with existing methods in literature are presented at the 

end of this paper to show the advantages. 
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1. Introduction 
 

Additive manufacturing (AM) is defined as a process of joining materials to directly fabricate physical 

models via 3D model data, usually layer upon layer, as opposed to subtractive manufacturing methodologies 

[1]. Compared to conventional manufacturing processes, the AM processes give more freedom to designers 

and engineers to enable them to produce highly complex geometries and material compositions [2, 3]. Since 

parts are fabricated layer by layer in AM processes, design knowledge, tools, rules, processes, and 

methodologies have set them apart from traditional manufacturing processes [4]. Therefore, design for 

additive manufacturing (DfAM), a new research field investigating design methods and tools in AM 

processes, has emerged to consider the manufacturing constraints within the design process [5-7]. A 

successful design for AM should be based on the interaction between engineering design, material science 

and manufacturing. As stated in [4], “The coupling between the design, representation, analysis, 

optimization, and manufacture still needs to be solved.” Due to new design freedom, it provides a high 

potential to save materials in lightweight application. Hence, lightweight design always has been a hot topic 

to attract people into the domain of AM. There are generally four main groups of methods for lightweight 

design in AM [7]. Topology optimization (TO), which searches for a free-form material layout within a 

given design space in order to obtain the best structural performance, is one of the four methods that explore 

complex and lightweight shapes with computational automation. Some of the most popular methodologies in 

topology optimization include the homogenization method, solid isotropic material with penalization (SIMP) 

and level set methods, etc. Topology optimization has been applied in the design of automotive, aircraft and 

aerospace structures, for which mass constraints are frequently imposed. To date, commercial TO software, 

such as Altair, ANSYS, Autodesk Fusion 360, have gained popularity in various industrial applications.  
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However, existing topology optimization methods still have several limitations that impede industrial 

application. Firstly, although topology optimization has great potential to exploit the design freedom 

provided by AM, AM processes cannot always print the obtained structures with successes. This is primarily 

because AM still has some manufacturing constraints which need to be considered in the topology defining 

process. Therefore, manufacturing-oriented topology optimization for AM has seen a significant interest 

since industrial applications can only accept qualified design solutions. In addition, structural optimization 

problems in industry are usually constrained by multiple conflicting objective functions and boundary 

conditions in FEA (finite element analysis). Nevertheless, most existing methods can only provide a single 

topological result for a given optimization problem. Many of the existing optimization methods convert a 

multi-objective optimization problem into a single-objective optimization, called mono-objective 

optimization, and obtain one particular solution at convergence. Therefore, these methods naturally 

eliminate other non-dominant solutions, called the Pareto set, in the solution space. Due to the conflicting 

nature among the predefined objectives, there is a need of a Pareto-optimal set representing trade-offs for 

further decision making according to diverse preferences for specific requirements and compromise in 

engineering applications. 

 

Furthermore, from the perspective of optimization techniques, topology optimization methods are usually 

classified into two main categories: gradient-based TO and non-gradient-based TO methods [8]. Gradient-

based methods rely on the gradient information, called sensitivity, to search for the optimal solutions. They 

are widely used in the density (SIMP) approach, the level-set approach, topological derivatives, etc. The 

main reason is that the gradient-based methods can efficiently solve fine-resolution problems with up to 

millions of design variables by using a few hundred function evaluations [8]. Non-gradient-based TO 

methods, also called black-box TO [32], usually use evolutionary algorithms and other soft computing 

techniques to generate near-optimal topologies of mechanical structures. Evolutionary-based TO methods 

are more flexible for problems without gradient information. Moreover, evolutionary computation applies 

global search techniques and hence can tend to converge towards a global optimal rather than a local optimal 

[31]. One of the main challenges that limits the wide use of an evolutionary algorithm in TO is that the 

elements using fine grid representation causes a great deal of design variables, which limits its effectiveness 

and convergence [31, 32]. 

 

To deal with the limitations of current TO methods, especially evolutionary TO methods for AM as 

introduced above, this paper proposes a new generative design method which is based on evolutionary 

computation. In order to reduce the design variables and improve the rate of convergence, a modified CSG 

(Constructive Solid Geometry)-based geometric representation is applied to define the structure geometry so 

as to release the potential of multi-objective evolutionary algorithms. With CSG representation, AM 

manufacturing constraints can be easily embedded into the evolutionary operation. Hence, the optimization 

procedure can obtain a set of multi-objective Pareto solutions that are valid design solutions for AM. It 

differs from traditional TO approaches which use a density-based or gradient method to obtain a single local 

optimal solution with less consideration of AM constraints. This also enables the designer to explore and 

compare more alternatives along the Pareto front to fit their application requirements when making 

compromises from multiple predefined objectives. The remaining contents of this paper are organized as 

follows: the second section reviews the related works with comments; the third section presents the 

proposed approach in detail; the fourth section gives some examples for demonstration and comparison with 

existing methods, and the last ends with conclusions and perspectives. 

 

2. Related work 
 

Due to the capability to deal with complexity and reduced manufacturing constraints as compared with 

conventional manufacturing processes, AM shows that the traditional TO methods can be widely applied. 

Lightweight design is more attractive than ever. Although AM has gained popularity, it is still a challenge 

for designers to fully understand the unique capabilities of AM as well as the process-related constraints. 

Hence, qualitative design rules or guidelines and quantitative design evaluation frameworks were proposed 

for DfAM [9-11]. These methods can help to obtain a design solution that meets limited AM constraints for 

manufacturability requirements, but has less optimization. However, to further benefit from AM, design 

methods involving structural optimization for AM should not only consider manufacturability, but also need 



to improve the functional performance of AM parts via quantitative justification, e.g., simulation and 

calculation, as well as lightweight improvement. As such, designers can exploit more design potential and 

have more freedom. Therefore, computation-driven TO is widely adopted as a quantitative design tool for 

AM. The following subsections review the representative works from literature set out in three main 

categories. 

 

2.1 Incorporating manufacturing constraints into topology optimization 

 

AM processes can bring more design freedom to realize extremely complex geometries, but still have 

manufacturing limitations or constraints. These should be considered in the topology optimization process to 

guarantee manufacturability when designing for AM. One of the most important constraints is the support 

structure for many powder bed based processes, e.g. Selective Laser Melting (SLM). In general, a support 

structure needs to be designed to sustain the overhang areas during the printing process. Support structure 

wastes print time and material. In addition, the removing of these structures in the post-processing stage is 

still challenging and costly. Therefore, design self-support or support-free structures is desirable. Due on the 

popularity of density-based TO method, most studies investigated self-support structure for TO are based on 

density filter-based methods. There are two main methods to obtain self-supporting structure in density-

based TO methods. A direct method for obtaining a self-supporting structure is to add additional materials to 

regions that do not meet self-supporting criteria. Leary [12] proposed a density-based support-free structure 

generation method by changing the optimal geometry to meet the angle constraints. The method is a post-

processing approach which alters the mass and performance of the original optimal part. Other research has 

concentrated on integrating overhang constraints with density-based TO methods. The main idea is to 

transform AM constraints into a filter that incorporates the characteristics of a generic AM process. A filter-

like projection function was introduced by Gaynor and Guest [13, 14]. The projection-based topology 

optimization scheme can guarantee the maximum printable angle. One of the limitations in the method is 

that the topology variables are multiple non-linear functions. Hence, it may cause convergence issues for 

complex design problems. Langelaar [15, 16] proposed a nonlinear spatial filter that imitates the powder-

bed-based AM process. The proposed AM fabrication model was defined on a regular mesh. In [17], 

Langelaar improved the proposed AM filter [15] and integrated the optimization of self-support and the 

build orientation determination into the density-based TO method. Wang et al. proposed a density gradient-

based boundary slop constraint (density filter) method to control the overhang angle. The AM filter 

proposed by Langelaar [15] was used by several authors [18-22]. Barroqueiro et al. [18] addressed the 

minimum feature size and overhang angle constraints in a simplified fabrication model using an AM filter. 

Fu et al. [19, 20] integrated a smooth boundary representation with an AM filter to solve overhang 

constraints with SIMP. A slightly extended version of the AM filter was used by Thore et al. [21]. Zhao et al. 

[22] proposed an explicit local constraint for a density-based TO problem. By efficiently detecting the 

overhang regions using discrete convolution, the number of unsupported elements is required to be zero. 

Due to the linear sensitivity that only depends on the design density, the method has a higher convergence 

rate. While some other studies have attempted to design self-supporting structures based on geometric 

feature-driven topology optimization, such as the Level set method, the Moving Morphable Components 

(MMC) method [23, 24] and the Moving Morphable Void (MMV) methods [25]. Allaire et al. [26] 

addressed the self-supporting design using a level set method. They proposed an implicit constraint function 

based on a simplified model for the manufacturing. However, the method cannot fully eliminate the 

overhang. Wang et al. [27] proposed a single domain integral form to detect the overhang constraints for a 

level set method. By comparison with density-based methods, the level set approach can obtain smoother 

geometrical information of the structural boundary but would encounter more difficulties regarding 

convergence. MMC and MMV methods establish a direct connection between structural topology 

optimization and CAD modeling [23]. These methods are different from the traditional TO methods by 

eliminating materials from the design domain. The optimal topology structure is obtained by using a 

gradient-based optimization method. Based on the explicit characteristics of MMC and MMV, Guo et al. [28] 

established and optimized a set of explicit geometry parameters to obtain the self-supporting structure. 

 

Based on the above observations, almost all existing AM-oriented TO methods use gradient-based 

optimization by using mathematical programming or shape sensitivities to update and drive the geometry 

topology to optimality. Although the gradient-based methods are efficient with respect with function 



evaluations [8], a gradient is not easy to obtain due to the complexity of engineering problems. Compared to 

gradient based TO methods with local searching, evolutionary-based TO methods are based on evolutionary 

algorithms which have more potential to identify global optima for multi-objective problems [31]. 

Evolutionary algorithms can run more efficiently by using parallel computing [8]. In addition, the rapid 

development of computing hardware, like Graphics Processing Unit (GPU), also opens up new possibilities 

to accelerate these solvers. The following subsection reviews this category in detail. 

 

2.2 Evolutionary computation for multi-objective topology optimization 

 

In engineering optimization problems, there are large numbers of conflicting objectives, such as obtaining 

maximum compliance and minimum mass for the final design. Traditional optimization methods usually 

convert a multi-objective problem into a single-objective problem by converging one particular single 

solution on the Pareto frontier. Compared to mono-objective optimization problems, the presence of multi-

objective optimization problems paves a way to obtain a set of so-called non-dominated alternative solutions, 

widely known as Pareto-optimal solutions, instead of a single optimal solution for better decision making. 

Such Pareto-optimal solutions give more options for designers to select the one that best fits their needs and 

requirements [29]. One powerful method to obtain a Pareto-optimal set is to utilize metaheuristics-based 

techniques, such as multi-objective evolutionary algorithms, multi-objective particle swarm optimization. 

Metaheuristics, e.g. randomized black box algorithms can solve problems with non-linear and non-

differentiable objectives. Evolutionary algorithms are one type of the popular metaheuristic algorithms. 

They are biologically inspired algorithms based on the concepts of genotype and phenotype. The phenotype 

(or individual) is a population of candidate solutions of an optimization problem. The genotype is defined as 

a set of variables that can be mutated and altered. In evolutionary algorithms, phenotype (solutions) are 

encoded into the genotype (variables) where operators are used. Eiben and Smith [30] give a definition of 

representation, “mapping from the phenotypes onto a set of genotypes”. In geometric topology optimization, 

the representations for evolutionary computation proposed in [31, 32] are categorized into three types: grid, 

geometric and indirect representation, as shown in Fig. 1. 

 

 
 

Fig. 1. Three types of representations for evolutionary-based topology optimization [31, 32] 

 

In grid representation, the genotype encodes properties of fixed locations in a grid that decomposes the 

design space. The representation is applied in density-based topology optimization. In indirect representation, 

the genotype encodes variable properties of a generative model which implicitly defines material locations 

or geometry. The Lindenmayer system (L-system) [33, 34], neuro-evolution [35] and compositional pattern 

producing networks (CPPNs) [36] are applied in order to obtain topology structures. In geometric 

representation, the genotype encodes properties of a set of fixed or movable shape primitives that define the 

geometry of the structure within the design space. Properties of the shape primitives are position, shape or 

thickness, et al. The potential of structural complexity depends on the number of primitives. Voronoi-cells 

[37], Delaunay-triangulation [38, 39] and the Level set methods belong to the geometric representation. 

 



Although evolutionary-based algorithms are widely used for multi-objective topology optimization [40-42]. 

they are not sufficient or efficient enough to deal with many thousands of design variables when applied to 

large-scale optimization problems [29]. Traditional evolutionary-based topology optimization methods, e.g. 

the density-based method, operate the design space divided into many small elements and uses the gradient 

information (local stresses and strain energy densities) to improve the search updates. However, large 

quantities of small elements cause a great deal of design variables that limit its effectiveness and 

convergence. In order to improve the efficiency and convergence for topology optimization algorithms, a 

critical issue for evolutionary-based topology optimization method is to reduce the design variables [8, 31]. 

Therefore, it is essential to choose the suitable topology representation. In grid representations, the structure 

is represented by fine grid elements (up to several million). Within the vast search space, it is impossible to 

obtain the convergence to the global optimal within reasonable computational efforts. Compared to grid 

representations, geometric representations [31] can reduce the dimensionality of the design space 

significantly. Although many evolutionary algorithms have been applied in topology optimization problems, 

the manufacturing constraints for AM processes have rarely been mentioned. 

 

2.3 Generative design method 

 

Generative design methods, a set of design exploration methods, are widely known in architectural [43] and 

industrial design. There are many explanations for generative design methods, including shape grammars 

[44], L-system, cellular automata [45], etc. In structural design, evolutionary algorithms are usually applied 

to generate design solutions that are close to predefined objectives and criteria [7]. Instead of focusing on 

one optimal solution such as traditional TO, generative design can populate a large number of design 

solutions from the design space for designer’s reference and further decision making. Hence, the application 

of a generative design method for topology optimization may avoid the existing limitations, such as mono-

optimal solutions, difficulties in obtaining gradients, etc., of conventional TO methods as discussed above. 

Recently, a set of commercial software provides new functions of the generative design method for AM 

processes in their structure design module, such as Autodesk and Altair. However, these tools, based on 

traditional multi-objective topological optimization, only alters the way of removing materials from the 

design space to populate alternative solutions, most of which are invalid. Key manufacturing constraints of 

AM processes have been ignored in the material removing procedure. The result is that these commercial 

tools usually generate very complex geometries without validation for manufacturing. Hence, designers have 

to use their own knowledge to evaluate and select the optimal solution from the large number of populated 

non-valid alternatives, which is quite difficult for operation in design practice. In the academic community, 

similarly, quite few researchers have considered the manufacturing constraints in generative design 

algorithms. In [46, 47], a new design methodology using generative multi-agent algorithms for AM process 

was developed to mimic termite colony behavior. The proposed generative design tool can simultaneously 

design, optimize and evaluate the manufacturability of an AM concept part. It provided a new method to 

preserve manufacturability and required functionality. However, the method only takes support structures as 

the only AM constraint. Recently, a new concept combining generative design with deep learning was 

provided to explore more design space [48]. The proposed GANs (generative adversarial networks) gave the 

possibility to embed existing AM process knowledge into generative design methods. However, the method 

only concentrates on design exploration and generating numerous design solutions without optimization. In 

addition, it is difficult to evaluate candidate solutions and obtain a large amount of training data. 

 

According to the application of generative design in the architectural design field, generative design is 

described as a design exploration approach to support designers in automating the design process [43]. In 

contrast with high design freedom and aesthetic needs in the architectural field, engineering problems in the 

manufacturing field are usually driven by the performance and manufacturability. Therefore, in this paper, 

the generative design for AM is defined as a new design process that integrates the specific manufacturing 

information into the geometry definition procedure and can populate a large quantity of qualified alternative 

design solutions to meet the application requirements and AM constraints. To cope with this definition and 

meet the needs of design practice in industry, a new AM-oriented generative design method based on 

constructive solid geometry (CSG) modeling is proposed. The use of the CSG-based modeling method to 

construct optimal structures was firstly investigated in [38, 39]. The researchers utilized Delaunay 

triangulation skeletons to obtain overlapping rectangles and then to generate a final structure via a series of 



Boolean operations. However, there are still several limitations for this method. Firstly, the final structure 

obtained has sharp internal corners where the stress is significantly greater than the surrounding region. 

Hence, stress concentration is easy to occur. Secondly, manufacturing constraints were not considered and 

the method was not developed for manufacturing, especially specific AM processes. Inspired by that work, 

the approach proposed by this paper makes significant improvements by modifying the original method and 

embedding additional manufacturing constraints for AM process. The following section presents the 

proposed method in detail. 

 

3. AM-oriented generative design method 
 

The proposed method has two main steps. The first step is the generation and representation of validated 

topology geometry to meet AM manufacturability, and the second is to populate alternative design solutions 

and conduct optimization via multi-objective evolutionary algorithm. 

 

3.1 Geometry representation with reduced variables  

 

As introduced above, to reduce the number of design variables and release the potential of evolutionary 

algorithms, the CSG representation is applied. The detailed steps to generate a CSG geometry topology are 

described in Fig. 2. One principle difference from other topology optimization methods is that the build 

orientation is determined before topology optimization. The basic idea in the proposed method is to utilize a 

set of moving and fixed nodes to obtain Delaunay triangulation skeletons. Then, by allocating a radius to 

each node, a set of overlapped primitives connected with different nodes can be obtained. Manufacturability 

analysis and continuum topology validations are then utilized to guarantee the design validity. For a 

primitive meeting manufacturability analysis, Boolean operators are applied to obtain the final continuum 

structure. The workflow can be summarized in the following steps: 

 

1. Define the fixed nodes 

2. Determine the pre-optimal build orientation 

3. Define the variable/moving nodes 

4. Generate primitive units 

5. Manufacturability analysis 

6. Continuum topology validation 

 



 
 

Fig. 2. Flowchart of the generation of qualified AM design solutions with CSG-based geometric representation of the AM-

oriented generative design method 

 

 

3.1.1 Define the fixed nodes 

 

The proposed geometric representation scheme defines the structural topology by position of a set of nodes 

in the design space. For a design domain as shown in Fig. 3(a), we firstly need to define a set of fixed nodes 

representing spatial locations where materials must exist. Generally, loading contact points and support 

boundary limits are regions where fixed nodes are placed. Hence, they are usually on the boundaries of a 

design domain. Within the design domain, a set of moving nodes, which can be located anywhere, are 

defined as design variables. Section 3.1.3 below will show how to define these points in the design domain. 

As shown in Fig. 3(b), green nodes represent the variable nodes and red nodes represent the fixed nodes. 

Connecting the fixed nodes and the variable nodes by the edges, a topology skeleton can be generated via 

the use of the Delaunay triangulation algorithm (Fig. 3(b)). 

 



 
 

Fig. 3. Node definition for design domain: (a) original design domain; (b) node definition (red nodes represent fixed nodes; green 

nodes are variable nodes) 

 

3.1.2 Determine the pre-optimal build orientation 

 

Build orientation concerns the direction along which the AM machine deposit materials. It has significant 

impact on the printing results, such as the final cost, accuracy, and surface roughness of the part as well as 

the mechanical properties. Hence, it is important to determine an optimal build orientation before any 

printing [49-51]. There has been a lot of research on build orientation determination for a well-defined CAD 

model, but much less work on the build orientation in the design stage and TO. In [52], an approach to 

simultaneously optimize build orientation and part topology was utilized to minimize the amount of 

supported surface area and support material. However, this work, also including previous research, omitted 

an important fact that AM processes have specific printable overhang length or bridge length without the 

need of any support. This length is determined by the material properties and the geometric parameters, e.g. 

layer thickness and successive inclination angles. Hence, in some conditions of the overhang area, the 

materials can be supported by themselves. This phenomenon is also called self-supporting. Fig. 4, shows 

bottom layers of materials supporting upper layers of materials in inclination. In this paper, this method 

looks at self-supporting and applies it to the pre-build orientation optimization for the design domain. A 

design domain with a pre-build orientation means the following detail design will respect the orientation 

constraints. Hence, the build orientation will be integrated in the following TO process from the beginning. 

Generally, there are two main steps to determine the pre-build orientation for a design domain. 

 

 

 
 

Fig. 4. Overhang downward-facing inclination with different angles and skeleton positions. (h represent the height of each 

overhang region in build orientation; 
iL  , 

iS  and 
iα  represent ith  overhang region, overhang skeleton and overhang angle, 

respectively.) 

 



Firstly, as the overhang inclination angle directly determines if the overhang region is self-supporting, it is 

crucial to obtain as many inclination angles as possible to meet self-supporting requirements in the design 

domain so as to harness the benefits of this phenomenon in AM. Fig. 4 provides a relationship between the 

overhang inclination angle and the overhang region. In the overhang regions 
i

L , 
i

S  and 
i

α represent the 

corresponding skeleton and inclination angle, respectively. The skeleton angle has a direct impact on the 

overhang downward-facing inclination angle. Therefore, a transformation relationship between self-

supporting primitive and self-supporting skeleton is proposed to help to determine the optimal build 

orientation. In order to acquire more self-supporting skeletons in the design domain, an objective function 

for a regular rectangular design domain is formulated as: 

 

 1( ) ( )
x z

f min P Pθ =  (1)

 

Where θ  is the rotation angle, 
X

P  and 
Z

P  in Fig. 5 are the projected lengths of the design domain on the X 

and Z direction, respectively. Mathematically, the objective can be represented by minimizing the 

proportional value of the projected length of the design domain on the X and Z direction to enable to obtain 

more self-supporting primitives along the Delaunay triangulation skeleton. Fig. 5(c) and (d) are two 

examples of the optimal build orientations by using the objective expressed via Equation (1). 

 

 
 

Fig. 5. The pre-optimal build orientation for the design domain 

 

Secondly, in many AM processes, there is a spacing Δ filled by support structures between part bottom and 

baseplate, as illustrated in Fig. 6. This space is necessary to facilitate the post processing, e.g. removing a 

part from the base without damage. Hence, this space is also called the mandatory support cost region (base 

support region between the base and the part [17]). Therefore, the second objective is to minimize the 

support cost regions. Since this region and its related support volume depend on the pre-build orientation of 

the design domain and the detailed bottom shape of the part, it would be hard to estimate the exact support 

volume before the determination of the final topology geometry of the part. However, the projection length 

of the bottom boundary in the design domain has a positive proportional relationship with the support 

volume in this support cost region. In this situation, the minimization of the support structure ( S∆ ) is 

converted to minimize the number of fixed nodes that need support. The objective for the rectangular design 

domain in Fig. 5(a) is given by: 

 

 2 2
( ) ( ) ( 0,1,2,..., )

i
f min S f min N i mθ θ∆= ⇒ = =∑ ∑  (2)

 

Where 
i

N  indicates whether ith  fixed node is the lowest point, where 0 and 1 imply the absence and 

presence of fixed nodes. Fig. 6(b) is the final optimal build orientation for the illustrative design domain. In 

this illustrative example, the design domain is a rectangular simple shape and it is easy to identify the 

optimal pre-build orientation. However, it is necessary to consider the stability of part in printing for large-

scale TO problems. From this perspective, the build orientation in Fig. 5(c) is more stable. For real design 

cases, in particular redesign cases for AM, the design domain with complex boundaries may require the 

support of other defined objectives for searching. It should be noted that the goal of the pre-optimal build 



orientation is summarized as to obtain as many self-supported skeletons as possible in the design domain 

and to minimize the support cost on the premise of ensuring printing stability. 

 

 
 

Fig. 6. Determination of build orientation for the design domain via minimizing the support cost region 

 

3.1.3 Define the variable/moving nodes 

 

 

 

 
 

Fig. 7. (1): Adaptive number of variable nodes determination: (a). p variable nodes definition; (b). Create group clustering from 

nearby variable nodes; (c). All nodes definition (n variable nodes in green and m fixed nodes in red).  

(2) and (3): Comparison before and after group clustering analysis. (a, d). Delaunay skeletons; (b, e). manufacturable primitive 

units; (c, f). final topology shapes. 

 

 

In the CSG topology generation, geometry skeletons are determined by the number and position of nodes. 

Fixed nodes are defined by the boundary conditions. Hence, the influence of the number of variable nodes 

on the triangle skeletons is crucial. Generally, the more points that are within the design domain, the more 

complex the Delaunay triangulation mesh is. As a result, more CSG volume would be generated based on 

the Delaunay triangulation mesh. In contrast, if there are fewer moving points defined in the design domain, 

then a sparse Delaunay triangulation mesh will be generated and less volume would be defined. Both of the 



two cases are hard to approach the global optimal solution. Hence, it is critical to define a set of suitable 

numbers of moving points within the design domain for optimization. To solve this problem, an adaptive 

method is proposed to determine the optimal number of variable nodes based on the minimum distance. 

Firstly, a maximum number of variable nodes (shown in Fig. 7(1-a)) are randomly set for generating a 

sufficiently complex triangular mesh. Then, a clustering analysis is carried out based on the minimum 

Euclidean distance between variable nodes as shown in Fig. 7(1-b). Finally, the center of each group is 

determined as a final variable node as shown in Fig. 7(1-c). After adaptive variable node determination, the 

number of variable nodes is reduced from p  to n  (1 n p≤ ≤ ). If the distance 
ijD  of any two variable nodes 

is less than the minimum group distance, 
i

N  and 
jN  are in the same clustering group. We use an average 

value of the nodes in a group as the radius of new node. 

 

 ( , 0,1, 2, ..., , )ij groupD D i j p i j≤ ∈ ≠  (3)

 

An example in Fig. 7(2, 3) shows the Delaunay skeletons, manufacturable primitive units and final topology 

shapes before and after group clustering analysis. Before clustering analysis, the number of manufacturable 

primitive units is 25 and most of them are overlapping. However, there are 11 primitive units after group 

clustering. Group clustering can help reduce the number of the overlapping units. In addition, the number of 

adaptive variable nodes can be controlled by the minimum group distance. By using group clustering 

analysis, we only need to define a maximum number of variable nodes and enable to obtain a wide range of 

Delaunay triangular skeletons with different numbers of variable nodes. This clustering process will be 

conducted within each iteration loop in the following evolutionary optimization procedure to be introduced 

in Section 3.2.  

 

3.1.4 Generate unit primitives 

 

 
 

Fig. 8. A schematic illustration of CSG-based topology optimization method: (a) fixed (red points) and variable (green points) 

node definition; (b) Delaunay triangulation skeleton; (c) assign radius to every node; (d) obtain primitive units; (e) manufacturable 

original primitive units; (f) perform Boolean union for all units; (g) smooth the shape; (h) obtain the final topology geometry 

(green color) by performing Boolean intersection operation in the design domain. 

 



Once the design domain orientation is determined, the following step is to generate alternative topology 

geometries within the design domain. There is a need to give a generic representation of topologies. In this 

method, as said above, CSG generation and representation are adopted. Fig. 8 presents an illustration to 

explain the geometry generation and its post-processing. In Fig. 8(a), the optimal build orientation is 

determined, fixed and moving nodes are defined in the design domain. All defined nodes are sorted by the 

position of those nodes that node 
1i

N −  is always below node 
i

N . If the z positions of node 
1i

N −  and node 
i

N  

are equal, node 
1i

N −  is always located to the left of node 
i

N . In other words, nodes are arranged in 

ascending order of position values (first z, then x). The skeleton of geometry (Fig. 8(b)) is formed by using 

Delaunay triangulation algorithm. The triangulation returns the upper triangular matrix ij
T  

( [ ]( , 0,1,..., -1 , , )
ij

T i j p i j p m n∈ ≠ = + ), as shown in Fig. 9, where 0 and 1 imply the absence and presence of 

connection between nodes i and nodes j, respectively. Then, every node is assigned one radius variable to 

generate a corresponding circle, as shown in Fig. 8(c). In Fig. 8(d), the tangent lines are created from each 

skeleton edge with the corresponding circles. Then, the manufacturability of each primitive unit is analyzed 

by calculating the slope and length of the first tangent line for every primitive unit. The detail of 

manufacturability analysis will be explained in the next subsection. The manufacturable primitive units are 

shown in Fig. 8(e). In Fig. 8(f), the Boolean union is operated to obtain an initial topological structure. In 

order to avoid the sharp angles or corners causing stress concentration, the boundary of the initial structure is 

rounded down to 
0r  as shown in Fig. 8(f) and (g). The last step is to remove the material (red color in Fig. 

8(h)) outside the design domain using the Boolean intersection operation. The final topology structure 

(green color in Fig. 8(h)) is obtained by a set of nodes and radius represented by p and r. 

 

 
 

Fig. 9. Upper triangular matrix representing the connection between nodes/skeletons for the given example 

 

In contrast to traditional topology optimization approaches where structures are represented either by 

element density or nodal values of a level set function, with the CSG-based approach, a set of dynamic 

primitives is adopted as basic geometric blocks. These primitives are allowed to move, deform, overlap and 

merge freely in the design domain by changing the design variables (of the fixed and variable nodes with 

their assigned radius). The structure topology can be optimized by moving the nodes’ positions and 

changing their radius. The method provides a new paradigm for topology optimization in a generative way 

(generate geometric volume in an additive way and control with parameterization). This method is 

convenient for the integration of manufacturing constraints in order to adjust the generated parametric 

alternative solutions with smooth geometric boundaries. Hence, as discussed above, it has great potential to 

solve some of the current challenges in the topology optimization domain. The following subsection 

presents the integration of manufacturing constraints for manufacturability analysis. 

 

3.1.5 Manufacturability analysis 

 

To ensure all the generated topology structures are valid for printing, manufacturability analysis should be 

performed in the TO process. Due to the convenience of parametrization, the minimum printable shape 

feature size, maximum overhang angle and length can be well embedded. The flowchart presented in Fig. 10 

below shows the manufacturability analysis procedure in the proposed CSG-GD method. With the aim that 

it should be applied at a generic level, this paper focuses on two principle factors, minimum printable feature 

size and a feasible self-supporting structure, from the perspective of manufacturability. 

 



 
 

Fig. 10. Flowchart for manufacturability analysis for the CSG-GD method 

 

1. Minimum printable feature size 

 

Minimum printable feature size concerns the minimum shape feature that can be achieved and controlled by 

AM processing. Different AM processes have different printable size limitations. This size can be obtained 

via process benchmarking. With a value of this size, the proposed method can easily integrate the minimum 

size constraints by defining the range of radius r to control the CSG geometries. Considering the nodes 

appearing on the boundary, the minimum feature size should meet the following constraint: 

 

 2min mfsr r≥  (4)

 

In Equation 4, 
mfsr  denotes the minimum feature size constraints, 

min
r  represents the minimum radius of 

nodes. 

 

2. Feasible self-supporting structure 

 



 
 

Fig. 11. Primitive unit shape along Delaunay triangulation skeleton: (a) two external tangents along Delaunay triangulation 

skeleton. (b) parametric geometric control points for subparts of a primitive unit before Boolean union. (c) parametric geometric 

control point for primitive unit after Boolean union operation 

 

As discussed in the previous section, especially for powder bed-based AM processes, a critical issue for self-

supporting structures is to control the inclined angles of structural components. A maximum overhang angle 

is required to ensure that the design can be produced without the need of any supporting structure. In the 

CSG-based generative design method, the requirement of a self-supporting structure can be met by giving an 

angle constraint for controlling every primitive shape. Fig. 11 illustrates an example that the primitive unit is 

obtained along the Delaunay triangulation skeleton. Fig. 11(a) represents two external tangent lines created 

by two circles defined by points, moving notes or design variables, on both sides of the skeleton. From a 

geometric perspective, two tangent lines and circles are determined by control points (blue points as shown 

in Fig.11(b)). Fig. 11(c) shows a primitive unit with updated geometric controlling points generated by 

conducting a Boolean union operation. Regarding the manufacturability of the final topology shape, the 

feasible self-supporting property of every primitive unit can be expressed by a set of parameters related to 

the tangent lines as shown in Fig. 12 on the XOZ plane. Z represents the build orientation in printing. 

   

 
 

Fig. 12. Detailed definition for points and tangent lines of a primitive unit 
 

The distance between two nodes (
i

O  and 
jO ) on the skeleton is  

 2 2( ) ( )
ij i j i j

d x x z z= − + −  (5)

Where ( , )
i i

x z  and ( , )j jx z  are the centers of circles, 
i

C  and 
j

C , with radius 
i
r  and 

jr  respectively. The 

first tangent line 
1ijT  and second tangent line 

2ijT always satisfies the following inequality function:  

 1 2ij ij
z z≤  (6)

Where 
1 1( , )ij ijx z  and 

1 1( , )ji jix z  are the intersection points between first tangent line 
1ijT  and two circles, 

i
C  

and 
jC , respectively. 

2 2( , )ij ijx z  and 
2 2( , )ji jix z  are the intersection points between second tangent line 

2ijT  

and two circles, 
i

C  and 
jC , respectively. The mathematical equation of tangent lines is defined as: 

 ( 1, 2):
jik jik

ijk
ijk jik ijk jik

k
z z x x

T
z z x x

=
− −

=
− −  (7)



,
( )

ijk ijk ijk
xP z  is the intersection point of 

i
C  and the kth tangent line defined by 

i
C  and 

jC  ( 1, 2)k = . Hence, 

the overhang angle 
ijθ  denotes the angle between build orientation Z  and first tangent line 

1ijT . It can be 

shown as the following: 

 
1 2

1 2

arctan
ij

ij ij

ij ij

x x

z z
θ

−
=

−
 (8)

As can be seen from Eq. (8), the advantage of the present formulation is that the self-supporting requirement 

can be achieved by introducing several explicit geometry constraints. The first tangent line is always 

denoted as the tangent that is on the inclination side of the primitive unit. Hence, this illustration is similar 

for the symmetric case as compared to the current case in Fig. 12. 

 

The existence of the first tangent line is closely related to the values of the distance 
ijd  and the radius 

corresponding to the center of circle. Tab. 1 below lists all geometric relationships between the two circles 

on both sides of the skeleton. These relationships can be used as rules to evaluate the manufacturability of 

primitive unit via the calculation of inclination angles using Eq. (8). 
 

Tab. 1 Five kinds of primitive units defined by two circles on both sides of the Delaunay triangulation skeleton 

No. Relationship between circles Geometric domain Primitive unit First tangent line exists? 

1 d R r> +  

  

Yes 

2 d R r= +  

  

Yes 

3 R r d R r− < < +  

  

Yes 

4 d R r= −  

  

No 

5 0 d R r≤ < −  

  

No 



 

As discussed above, most existing self-support TO methods only control the overhang inclination angle to 

less than a predefined maximum overhang angle value. However, the maximum overhang angle is not the 

only factor that defines the self-support structure. The printable overhang distance also plays a key factor in 

guaranteeing self-supporting manufacturability. Therefore, this factor should be included in the TO process. 

For example, in the SLM processes, the support point respecting the maximum bridge printing length of 

process capability can provide a stable support for local overhang regions and avoid any surface collapse in 

printing. This factor was considered for the support structure design in [53], where support points were 

carefully selected to support the overhang regions. An illustrative example to explain this factor is described 

in Fig. 13, where the printable bridge length with different values of the SLM process was investigated in 

[54, 55]. It is clear that small overhangs can be printed when the bridge size is less than a certain overhang 

distance. Hence, it is essential to consider the maximum overhang angle and the printable overhang distance 

simultaneously in developing a self-supporting structure. 

 

 
 

Fig. 13. (a). Effect of unsupported bridge for metal 3D printing [54] and (b). Self-support bridge guaranteeing manufacturability 

[55] 

 

Based on the previous work, the proposed method in this paper defines three types of printable self-

support/overhang structure conditions to guarantee the manufacturability as shown in Fig. 14. 

 

Situation 1: The overhang angle θ  is large than the maximum overhang angle 
M

θ  and the horizontal 

overhang 
H

L  is less than half of the maximum overhang distance 2
M

O . 

(a). Both lower sides of the overhang are self-supported. 

(b). The one lower side of the overhang is self-supported. 

 

Situation 2: The overhang angle 90θ ≈ o  and the horizontal overhang 
H

L  is less than the maximum 

overhang distance 
M

O . 

(c). Both sides of the overhang are self-supported. 

 

In essence, type (c) is subordinate to type (b). The connected non-self-supporting overhang should be 

represented as a whole overhang and then manufacturability needs to be analyzed. 

 



 
 

Fig. 14. Three types of printable overhang where the overhang angle is larger than the maximum overhang angle 

 

With the parametric characteristic of the proposed CSG-GD method, it is easy to control these factors 

simultaneously as discussed above. In Fig. 15. 
i

N , 
jN  and 

k
N are defined fixed or variable nodes. ( )ij ij jiT P P , 

( )kj kj jkT P P  corresponds to the first tangent lines of non-self-supporting primitive units, respectively. Blue 

and green primitive units dictate self-supporting structures; grey and orange primitive units represent non-

self-supporting structures. 

 

 
 

Fig. 15. Overhang distance representations for the proposed CSG-GD method 

 

In Fig. 15(a), a non-self-supporting primitive unit 
ijU  is connected to two self-supporting units, 

0i
U  and 

1, jU . 

This type belongs to the situation 1-(a). In Fig. 15(b), the lower sides of two interconnected non-self-

supporting structures are connected to two self-supporting structures, respectively. The maximum overhang 

distance constraint should satisfy the following mathematical expressions at the same time: 

 

 
sin

2 ( )

sin

max
ij ij

ij max

ij ij max

O
t

t O

θ
θ θ

θ

 ≤ >
 ≤∑

 (9)

 

In Equation 9, ( )ij ij jit p p  represents the overhang distance of a non-self-supporting primitive unit 
ijU . 

ijθ  

denotes the overhang angle. 
max

O  and 
max

θ  are the maximum overhang distance and maximum overhang 

angle, respectively. 

 

3.1.6 Continuum topology validation 

 



 
 

Fig. 16. Flowchart of continuum geometry validation and repaired geometry generation 

 

As discussed above, the initial topology skeleton is defined by the Delaunay triangulation algorithm. A 

manufacturability analysis is performed to obtain the manufacturable primitive units. However, since the 

manufacturability analysis is conducted to check each primitive unit before the Boolean operation in the 

post-processing step, which may cause discontinuity of invalid topologies, hence there is a need to check the 

volume continuum after the Boolean operation and other post-processing operations for the geometries. To 

check the connectivity of the topology structure, it is necessary to ensure all the fixed nodes are in the design 

domain and the topology structure is a continuous volume. Fig. 16 gives a flowchart of continuum topology 

validation and repaired geometry generation. 

 

In the geometry continuum check, there are usually two circumstances for an inconsistent topology: 1) not 

all the fixed nodes are connected to the continuum structure. 2) there are two or more disconnected topology 

structures. Under these circumstances, the inconsistent topology structure must be detected and repaired. 

One solution is to delete these inconsistent topologies, but this may reduce much of the original solution 

space. Hence, a continuum geometry repair approach is employed to detect and repair the geometry. In [38], 

a graph based geometry repair algorithm is used to repair the geometry by adding minimum possible 

segments to the Delaunay triangulation mesh to form a volume connection set. The details on the related 

graph based repair can be found in [56] on water distribution networks. 

 

 
 

Fig. 17. Continuum topology validation: (a) original primitive units obtained by Delaunay triangulation skeletons; (b1) 

manufacturable primitive units; (b2) unmanufacturable primitive units; (c1) manufacturable primitive units after Boolean union; (c2) 

pre-defined manufacturable & repaired geometry; (d) geometry of c1 and c2 after Boolean union; (e) final qualified geometry after 

post-processing. 

 

An example of continuum topology validation is exhibited in Fig. 17. Fig. 17(a) represents the original 

primitive units via the Delaunay triangulation algorithm. The topology structures in Fig. 17(b1) and (b2) are 



manufacturable and unmanufacturable primitive units after manufacturability analysis, respectively. The 

topology structure shown in Fig. 17(c1) is checked as an invalid continuum structure. Hence, a continuum 

geometry repair operator is required to repair the invalid structure by adding some primitive units to connect 

all printable units. Initially, it is mandatory to find a connection strategy to connect all the fixed nodes and 

ensure the manufacturability of these primitives. Such a connection strategy among fixed nodes should 

guarantee that repair segments obtain all fixed nodes. The inconsistent geometries (Fig. 17(c1)) are 

connected to repaired segments (Fig. 17(c2)). The repaired geometries via the Boolean union and post-

processing are shown in Fig. 17(d) and (e), respectively. After the continuum geometry repair operation, a 

final qualified AM-oriented continuum topology is formed. 

 

3.2 Alternative design solution generation and optimization 

 

As introduced above, a generative design in structural design mainly uses evolutionary algorithms to 

populate numerous alternative solutions to respond to predefined objectives and constraints. In this paper, in 

order to conduct multi-objective optimization and generate a large number of alternative topology structures, 

a multi-objective evolutionary algorithm, NSGA-II [57], is adopted to obtain a set of Pareto-optimal 

solutions. NSGA-II is a very popular algorithm and it has been demonstrated as one of the most efficient 

algorithm for the most efficient algorithms for multi-objective optimization on many benchmark problems. 

The algorithm flowchart is presented in Fig. 18.  

 

 
 

Fig. 18. Flowchart of a Pareto-optimal solutions search 

 



In Fig. 18(a), the relationship between chromosome and topology geometry is set out to explain the geometry 

generation. The topology skeleton is defined by the position of variable and fixed nodes on the XOZ plane using the 

Delaunay triangulation algorithm. Three types of variables are set for constructing topology geometry. 

Manufacturability analysis and continuum topology validation can enable the final geometry to be qualified. Two 

objective functions are defined to minimize the volume and compliance. 2D triangular mesh is used to complete the 

finite element analysis. The GA parameters and its coding are also shown in Fig. 18(a). 

 

4. Case study 
 

In this section, bi-objective optimization for compliance minimization problems is selected to demonstrate 

the performance of the proposed method. Parameters in the standard NSGA-II algorithm are defined in Tab. 

2. For all cases, the values of the crossover probability of 0.9 and the crossover distribution index are set as 

0.9 and 20 respectively, and a mutation probability of 0.3 and a mutation distribution index of 20 are 

adopted. In order to solve the compliance minimization problem volume V and compliance C are minimized 

simultaneously. The optimization problem is formulated as: 

 

 
1 max

2

:
T

f V V
Min

f u Ku

=


=
 (10)

 

Where V is the volume of the final geometry, 
maxV  is the volume of the design domain, u is the displacement 

vector, K is the global stiffness matrix. 2D triangular meshing technique is applied to mesh the geometry and 

calculate the compliance. 

 

Tab. 2. Parameters definition of NSGA-II algorithm 

Option Description 

Crossover probability 0.9 

Crossover distribution index 20 

Mutation probability 0.3 

Mutation distribution index 20 

 

4.1 Asymmetric design domain case 

 

The design domain and boundaries for the cantilever beam problem is defined by using a previous build 

orientation method in Fig. 19. The design domain is 3L L×  and a point force F  is applied to the boundary. 

Tab. 3 lists a series of parameters used in the problem. 

 
 

Fig. 19. Design domain for case 1 

 

Tab. 3 Parameters used in the cantilever beam problem 

Option Description 

The number of fixed nodes (m) 3 

The number of variable nodes (p) 15 

Population size 100 

Generations 500 

Force (F) 100 N 

Radius range (r) 0.4-3 mm 



Maximum overhang distance (
M

O ) 2 mm 

Maximum overhang angle (θ) 45° 

 

According to the proposed geometry representation method, three fixed nodes are defined on the load and 

support boundary, and seven variable nodes are applied in the design domain. Subsequently, a pre-optimal 

build orientation is determined in order to obtain more Delaunay triangulation skeletons that meet the 

manufacturing constraints (as shown in Fig. 20(a)) The number of adaptive variable nodes are n (1 )n p≤ ≤ . 

Hence, the number of variable is 6 2 +( + ) 48n m n≤ ≤ . The range of x and z position variable varies from 0 to 

20 and 0 to 60, respectively. Fixed nodes are defined at (0, 0), (0, 60) and (20, 60). The sorting of nodes is 

shown in Fig. 20(b). A commonly accepted value of the maximum overhang angle is 40°-50°. In this case, 

the maximum overhang angle and distance are defined as 45° and 2mm respectively. 

 
 

Fig. 20. (a). the optimized build orientation; (b). adaptive node definition; (c). 2D triangular meshing. 

 

The initial parameter of the proposed GD method is set as: population size, 100; stop criterion of the 

optimization, 500 generations. The Pareto-optimal solutions obtained for the optimization problem are 

indicated in Fig. 21. Each point on the Pareto front represents a design structure for the corresponding 

volume ratio. 

 

 
 

Fig. 21. Pareto-optimal solutions for the CSG-based generative design method 

 



It is assumed that solutions with a volume ratio less than 0.25 are infeasible. In Fig. 21, thirteen sample 

optimal solutions for different volume ratios on the Pareto front are selected and corresponding structures 

are indicated. Sample 1 to 7 have a similar shape, but variations in the radius provide differences in the 

objective values. The evolution of the structure is illustrated in Fig. 22. Six different generations are marked 

and the corresponding volume ratios are also shown. 

 
 

Fig. 22. Evolutionary trend of Pareto-optimal solutions 

 

 
 

Fig. 23. The Pareto-optimal curves and corresponding sample solutions for three methods  

 

Fig. 23 compares the results of the proposed method with that of two other methods in literature. In [58], the 

topological sensitivity method was used to generate Pareto-optimal topologies. However, the author focuses 

on the material distribution and ignores the manufacturability. Nevertheless, the proposed method in this 

paper still shows a good performance. In [59], a parameterized level set method is applied to minimize the 

compliance of a single-objective two-dimensional (2D) structure problem. The level set method can 

maintain a smooth level set function and does not need to implement any filter during the optimization 

process. Though level set method provides a slightly better trade-off front than that of the proposed CGS-

based GD method, it needs to make multiple runs with different volume constraints each time and does not 

consider manufacturing constraints a problem. The results of the level set are not qualified AM design 

solutions. Compared to these gradient-based topology optimization methods, the proposed method utilizes a 

small number of design variables and populates a set of qualified and relatively optimal candidate solutions 

on the Pareto front. More importantly, all the generated alternative solutions are valid solutions for the AM 

process, which is critical for industrial design practice in AM. 

 

Most research in literature has suggested that the maximum overhang angle for L-PBF was 45°. However, 

this angle depends on the parameter setting of specific AM machines. Hence, the design optimization 

method should have the capability to include this flexibility. Due to the parametric control for all variables, 



the proposed method is convenient in that it adjusts all the parameters according to the needs of specific AM 

processes. In order to further verify the effectiveness of the proposed CSG-based method, different 

maximum manufacturing overhang angle constraints are investigated. Fig. 24 gives a part of the Pareto-

optimal solutions for two maximum overhang angles, 60 o  and 75o , respectively. 

 

 
 

Fig. 24. Pareto-optimal solutions for different overhang angle constraints 
 

 

4.2 Symmetric design domain case 

 

In topology optimization problem, design domain with symmetric boundary conditions is often encountered. 

To show the effectiveness of the proposed method, a symmetry beam problem is tested. To solve this 

problem, a simple skeleton mirroring method is designed to obtain symmetry skeletons as an adaption of the 

Delaunay triangulation algorithm. According to the proposed method framework above, the pre-optimal 

build orientation definition and the fixed and variable nodes determination results are presented in Fig. 25. 

 

 
 

Fig. 25. Design domain and adaptive node definition for case 2 

 

In this case, three fixed nodes and fifteen variable nodes are defined and the corresponding mirror nodes are 

generated as shown in Fig. 26(a). A Delaunay triangulation skeleton is represented by a set of connected 

nodes. In Fig. 26(b), the skeletons that do not meet the symmetry condition are colored in red. The 

symmetry problem can be solved by mirroring the skeleton on the other side. The mirror skeletons are 



shown in blue in Fig. 26(c). The final skeleton is composed of the original skeleton and mirror lines. Once 

the symmetry skeleton is obtained, the subsequent operations are the same, as shown in Fig. 8. 

 

 
 

Fig. 26. Symmetry skeleton for the proposed CSG-based generative design method 

 

Regarding the symmetry problem, fixed nodes are defined at the positions of (20, 0), (0, 60) and (40, 60). 

The number of adaptive variable nodes is n  (1 )n p≤ ≤ . Hence, the number of all variables is 

6 2 ( 1 ) 47n m n≤ + − + ≤ . The range of x and z position variable varies from 0 to 20 and 0 to 60, respectively. 

The maximum overhang angle and distance are also defined as 45° and 2mm. Fig. 27 captures the Pareto-

optimal solutions obtained by the proposed CSG-based generative design method. Solution 2 to 9 have a 

similar shape with different widths. With the increase in the width of primitives, the internal gaps gradually 

decrease. In solution 11, the internal holes/cavities disappear. 

 

 
 

Fig. 27. Pareto-optimal solutions for case 2 

 

To further demonstrate the proposed method, the results obtained are compared with that of two other 

existing methods. The Pareto-optimal curves and the corresponding structure of three methods are shown 

below in Fig. 28. As shown in Fig. 28(a), three Pareto-optimal curves have the same trend. The CSG-GD 

method and topological sensitivity perform similarly when the volume ratio is less than 0.3 or more than 

0.45. However, the parameterized level set method has a better Pareto front on average. When the volume 

ratio is higher than 0.65, three methods exhibit similar Pareto-optimal values. 

 



 

 
 

Fig. 28. The Pareto-optimal curves for three methods in symmetry beam problem 

 

As discussed above, though the proposed CSG-based GD method does not exhibit a better performance than 

that of the level set method, it better integrates AM manufacturing constraints into generative design 

algorithm. In addition, the proposed method has the potential to achieve a good compromise for multi-

objective optimization problems via the providing of a set of qualified alternative solutions to facilitate 

decision-making for the designers. Generally, compared to the sensitivity-based TO method, the proposed 

approach has a better trade-off in Pareto-optimal tracing and has a similar performance to that of the level 

set method. Due to the consideration of many manufacturing constraints in AM, the proposed method can 

better exert the potential of AM and generate qualified design solutions.  

 

To validate the manufacturability of the obtained Pareto optimal solutions, several Pareto solutions of the 

two cases were selected and printed by an SLA (Stereolithography) machine. The printing sizes were set as

20 60 5mm× × and 40 60 5mm× × respectively for the asymmetric design domain case and the symmetric 

design domain case respectively. Figure 29 presents the printing results, which shows the structures are self-

supported and there is no failure in the printing. Similarly, other AM process, e.g. SLM, can also be used for 

evaluation, but we only need to reset some of the manufacturing constraints’ values, such as the maximum 

bridge length of the AM process, in the TO procedure. 

 

 
 

Fig. 29. Asymmetric design domain case: (a). volume ratio = 0.4; (b). volume ratio = 0.6;  

symmetric design domain case: (c). volume ratio = 0.4; (d). volume ratio = 0.6. 

 

5. Conclusions and perspectives 
 

In this paper, a new CSG-based generative design method is proposed to generate and search for optimal 

qualified AM design solutions. General AM manufacturing constraints are analyzed and modelled to support 

practical DFAM needs. It differs from the traditional TO method based on gradient information, as it has the 

potential to deal with manufacturing constraints through an explicit geometrical representation. The main 

contribution of this work is the introduction of a CSG geometry representation for topology optimization for 

AM and the realization of parametric control of explicit geometries with smooth boundaries. The application 



of geometric shape control points in the TO operation can greatly reduce the number of design variables and 

release the potential of evolutionary algorithm-based TO methods. Furthermore, a major advantage of the 

proposed method is to obtain strong convex Pareto sets, which are qualified design solutions for conflicting 

objective functions. Hence, a Pareto-optimal set can represent the trade-off for further decision making when 

compromise should be made with diverse preferences in specific applications. 

 

Currently, the proposed method only adopts the Delaunay triangulation mesh to generate topology skeleton 

and defines quite simple primitive shapes. Therefore, to further improve this method, more skeleton 

generation methods should be investigated and the NURBS-based unit shape definition method could be 

explored, which may be helpful in embedding more complex AM manufacturing constraints. For some non-

convex design domains with complex boundaries, the proposed method would possibly encounter some 

difficulty. To reduce the complexity, a set of geometric operations could be used to decompose the design 

domain into multiple simpler convex geometries. In the authors’ future work, complex design domains will 

be explored to extend the proposed method and isogeometric analysis (IGA) will be applied to the 

framework. Then, a three-dimensional generative design method will be extended. To avoid the emergence 

of closed internal holes, open lattice unit cells will be applied to fill into the 3D structure. In addition, more 

manufacturing constraints of hybrid AM process will be considered to support the design for hybrid AM 

process. 
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