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Impact of US vaccination strategy 
on COVID‑19 wave dynamics
Corentin Cot1,2*, Giacomo Cacciapaglia1,2, Anna Sigridur Islind3, María Óskarsdóttir3 & 
Francesco Sannino4,5

We employ the epidemic Renormalization Group (eRG) framework to understand, reproduce and 
predict the COVID‑19 pandemic diffusion across the US. The human mobility across different 
geographical US divisions is modelled via open source flight data alongside the impact of social 
distancing for each such division. We analyse the impact of the vaccination strategy on the current 
pandemic wave dynamics in the US. We observe that the ongoing vaccination campaign will not 
impact the current pandemic wave and therefore strict social distancing measures must still be 
enacted. To curb the current and the next waves our results indisputably show that vaccinations alone 
are not enough and strict social distancing measures are required until sufficient immunity is achieved. 
Our results are essential for a successful vaccination strategy in the US.

The United States (US), raged by the SARS-CoV-2 virus, are paying an immense toll in terms of the loss of human 
lives and jobs, with a dreadful impact on society and economy. Understanding and predicting the time evolution 
of the pandemic plays a key role in defining prevention and control strategies. Short-term forecasts have been 
obtained, since the early days, via effective  methods1–3. Furthermore, time-honored mathematical models can 
be used, like compartmental  models4–8 of the SIR  type9 or complex  networks10–12. Nevertheless, it remains very 
hard to understand and forecast the wave pattern of pandemics like COVID-1913.

In this work, we employ the epidemic Renormalization Group (eRG) framework, recently developed  in14,15. It 
can be  mapped15,16 into a time-dependent compartmental model of the SIR  type9. The eRG framework provides a 
single first order differential equation, apt to describing the time-evolution of the cumulative number of infected 
cases in an isolated  region14. It has been extended in Ref.15 to include interactions among multiple regions of 
the world. The main advantage over SIR models is its simplicity, and the fact that it relies on symmetries of the 
system instead of a detailed description. As a result, no computer simulation is needed in order to understand 
the time-evolution of the epidemic even at large  scales15. Recently, the framework has been extended to include 
the multi-wave  pattern17,18 observed in the COVID-19 and other  pandemics19.

The Renormalization Group  approach20,21 has a long history in physics with impact from particle to condensed 
matter physics and beyond. Its application to epidemic dynamics is complementary to other  approaches10–12,22–29. 
Here we demonstrate that the framework is able to reproduce and predict the pandemic diffusion in the US tak-
ing into account the human mobility across different geographical US divisions, as well as the impact of social 
distancing within each one. To gain an insight and to better monitor the human exchange we make use of open 
source flight data among the states. We calibrate the model on the first wave pandemic, raging from March to 
August, 2020. With these insights, we then analyse and understand the current second wave, raging in all the 
divisions. The eRG framework can also be easily adapted to take into account  vaccinations23. We propose a new 
framework and use it to quantify the impact of the vaccination campaign, started on December 14th, on the 
current and future wave dynamics. Our results are in agreement with previous work based on compartmental 
 models30, and confirm that the current campaign will have limited impact on the ongoing wave.

Methodology
In this section we briefly review our methods that include the open source flight data description, their interplay 
with the eRG mathematical model framework and, last but not least, the interplay with vaccine deployment and 
implementation.
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Data description. The flight data comes from the OpenSky Network, which is a non-profit association that 
provides open access to real-world air traffic control dataset for research  purposes31. The OpenSky COVID-19 
Flight Dataset (opens ky- netwo rk. org) was made available in April 2020 and is currently updated on a monthly 
basis, with the purpose of supporting research on the spread of the pandemic and the associated economic 
impact. This dataset has been used to investigate mobility in the early months of the  pandemic32 as well as the 
pandemic’s effect on economic  indicators33.

The data provides information about the origin and destination airports as well as the date and time of all 
flights worldwide. For our analyses we considered domestic flights in the US only. We aggregated the data, to 
obtain the number of flights between all pairs of airports per day, from the beginning of April until the end of 
October, 2020. Subsequently, the airports in each state and the number of flights associated with them were 
combined, to give the number of within and between state flights, on a day to day basis for the whole period.

The number of daily infected cases, which is also used for analysis in this paper, is provided by the open 
source online repository Opendatasoft (public. opend ataso ft. com/ explo re/ datas et/ testi ng- data- covid 19- usa/).

Mathematical modeling. The states within the US have different population and demographic distribu-
tion. A state-by-state mathematical modeling, therefore, is challenged by statistical artifacts. For these reasons 
we group the states following the census divisions (US Censu s Bureau), as summarized in Table 1 and illustrated 
in Fig.  1. Note, that contrary to the official definitions, we include Maryland and Delaware in Mid-Atlantic 
instead of South Atlantic. The main reason is that the population of these two states is more connected to states 
in Mid-Atlantic, as proven by the diffusion timing of the virus.

Building upon our successful understanding of the COVID-19 temporal  evolution34 we apply our framework 
to the US case. Building on that framework we employ the following eRG set of first order differential  equations15 
to describe the time-evolution of the cumulative number of infected cases within the US divisions:

(1)
dαi

dt
= γiαi

(

1−
αi

ai

)

+
∑

j �=i

kij

nmi
(eαj−αi − 1),

Figure 1.  Illustration of the geographical divisions of the US used in this study.

Table 1.  States of the US integrated into 9 divisions. Maryland and Delaware are moved from South Atlantic 
to Mid-Atlantic.

Division composition

Division names Division code States within the division

New England NE Massachusetts, Connecticut, New Hampshire, Maine, Rhode Island and Vermont

Mid-Atlantic MA New York, Pennsylvania, New Jersey, Maryland and Delaware

South Atlantic SA Florida, Georgia, North Carolina, Virginia, South Carolina and West Virginia

East South Central ESC Tennessee, Alabama, Kentucky and Mississippi

West South Central WSC Texas, Louisiana, Oklahoma and Arkansas

East North Central ENC Illinois, Ohio, Michigan, Indiana and Wisconsin

West North Central WNC Missouri, Minnesota, Iowa, Kansas, Nebraska, South Dakota and North Dakota

Mountains M Arizona, Colorado, Utah, Nevada, New Mexico, Idaho, Montana and Wyoming

Pacific P California, Washington, Oregon, Hawaii and Alaska

https://opensky-network.org/community/blog/item/6-opensky-covid-19-flight-dataset
https://public.opendatasoft.com/explore/dataset/testing-data-covid19-usa/export/?disjunctive.state_name&sort=date
https://www2.census.gov/geo/pdfs/reference/GARM/Ch6GARM.pdf
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where

with Ii(t) being the cumulative number of infected cases per million inhabitants for the division i and ln indicat-
ing its natural logarithm. These equations embody, within a small number of parameters, the pandemic spreading 
dynamics across coupled regions of the world via the temporal evolution of αi(t) . The parameters γi and ai can 
be extracted by the data within each single wave. The fit methodology is described  in14,15.

In the US, it is well known that the COVID-19 pandemic started in NE and MA (mainly in New York City) 
and then spread to the other divisions. Thus, we define the US first wave period from March to the end of August 
as shown in Fig. 2. In particular, one observes a peak of new infected in NE and MA around April, while for the 
other divisions the main peak occurs around July. We also observe an initial feature in the latter divisions that 
we did not attempt to model except for ENC (mostly located in Chicago) and WNC. For the two latter divisions, 
we considered these as two independent first wave components. The US second wave is thus associated with the 
episode starting in October, 2020.

As a first method, working under the assumption that the US pandemic indeed originated in New York 
(MA), we first determine the kij matrix entries between the division MA and the others. The values are chosen 
to reasonably reproduce the delay between the main peaks of the first wave in pairs of divisions (C.f. the top 
section in Table 2). Interestingly, with the exception of NE, the entries of the k matrix are comparable to the ones 

(2)αi(t) = lnIi(t),

Figure 2.  Weekly new number of cases for all the 9 divisions.

Table 2.  Values of the kij entries among US divisions. In the top section, the values between Mid-Atlantic 
(MA) and the other divisions are obtained from fits of the first wave timing. In the central and bottom sections, 
the complete matrix (except the entries between MA and NE) is obtained using flight data for the first wave 
(from April 1st to May 31st) and the second (from September 1st to October 31st), respectively.

kij values (1st wave fits)

Division code NE MA SA ESC WSC ENC WNC M P

MA 0.72 0 0.0014 0.00075 0.0017 0.0023 0.0005 0.002 0.0053

First wave kij values (Flight data, from April 1st to May 31st)

NE 0 0.72 0.0045 0.00088 0.00087 0.0024 0.00052 0.00067 0.00091

MA 0.72 0 0.019 0.0056 0.0041 0.012 0.0025 0.0031 0.0059

SA 0.0043 0.018 0 0.0085 0.013 0.019 0.0057 0.0050 0.0067

ESC 0.00092 0.0053 0.0093 0 0.0051 0.0068 0.0023 0.0035 0.0065

WSC 0.00095 0.0038 0.014 0.0055 0 0.0092 0.0054 0.011 0.010

ENC 0.0025 0.012 0.018 0.0063 0.0086 0 0.0082 0.0079 0.0099

WNC 0.00038 0.0022 0.0056 0.0019 0.0046 0.0070 0 0.0055 0.0027

M 0.00050 0.0020 0.0042 0.0026 0.011 0.0072 0.0043 0 0.028

P 0.00084 0.0055 0.0063 0.0050 0.010 0.0092 0.0033 0.030 0

Second wave kij values (Flight data, from September 1st to October 31st)

Region-X 0.0066 0.028 0.029 0.013 0.019 0.027 0.014 0.03 0.03

NE 0 0.72 0.0028 0.00046 0.00031 0.0015 0.00026 0.00041 0.00082

MA 0.72 0. 0.011 0.002 0.0017 0.0064 0.0013 0.0021 0.0029

SA 0.0026 0.011 0 0.005 0.005 0.0096 0.003 0.0033 0.0035

ESC 0.00041 0.0019 0.0051 0 0.0019 0.0028 0.00087 0.0012 0.0015

WSC 0.00028 0.0015 0.0049 0.0018 0 0.0028 0.0016 0.004 0.0034

ENC 0.0014 0.0062 0.0089 0.0028 0.003 0 0.0039 0.0043 0.0045

WNC 0.00024 0.0013 0.0028 0.0009 0.0017 0.0038 0 0.0028 0.0016

M 0.00032 0.0017 0.0029 0.0011 0.0054 0.004 0.0026 0 0.014

P 0.00074 0.0028 0.0032 0.0014 0.0046 0.0041 0.0018 0.015 0
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we used for  Europe34. For NE, a large coupling is needed due to the tight connections between the two regions, 
in particular New York City with the neighbouring states and Massachusetts.

As a second method, we used the flight data to estimate the number of travellers between different divisions, 
under the assumption that the kij matrix entries are proportional to this set of data. To have a realistic matrix 
for kij , we first take the mean number of flights from division i to division j during the period from April 1st to 
May 31st for the first wave, and from September 1st to October 31st for the second wave. Then, we multiply the 
number of flights by an effective average number of passengers, and normalize it by 106 , following the definition 
of kij15. For the first wave, the optimal average number of passenger is found to be 10, while for the second wave 
we find an optimal value of 5. Note that these values do not correspond to the actual number of passengers in 
the flights: in fact, the values of the couplings kij also take into account the probability of the passengers to carry 
the infection as compared to the average in the division of origin. When the value is low it might suggest that 
the sample of passengers in a flight is less infectious than average, as people with symptoms tend not to travel. 
Controls at airports may also contribute to this. The key information we extract from the flight data is the relative 
flux of infections among different divisions.

The results are listed in the middle and bottom sections of Table 2. We keep the same value from the previous 
fit only for MA-NE. The reason behind this choice is the tight connection between the two divisions, where most 
of the human mobility is imputable to road transport.

By the end of November, we clearly observe a new rise in the number of infections, signalling the onset of 
a second wave pandemic in the US (see Fig. 2). Using our framework, we model and then simulate the second 
wave across the different US divisions.

Finally, to check the geographical diffusion of the virus during the various phases of the pandemic in the 
US, we define an indicator of the uniformity of the new case  incidence18. This indicator can be defined week by 
week via a χ2-like variable, given by:

where I ′
i (t) is the number of new cases per week in division i at time t and 

〈

I
′(t)

〉

 the mean of the same quan-
tity in the 9 divisions. The parameter χ2 quantifies the geographical diffusion of the SARS-CoV-2 virus in the US: 
the smaller its value, the more uniform the pandemic spread within the whole country. The result is shown in 
Fig. 3: during the first peak in April (light gray shade), the value of χ2 is large, signalling that the epidemic diffu-
sion is localized in a few divisions; during the second peak of the first wave (gray shade), the value has dropped, 
signalling that the epidemic has been spreading to all divisions. Finally, the data for the ongoing second wave 
(dark gray shade) shows that χ2 is dropping towards zero, as expected for a more diffuse incidence of infections.

Vaccine deployment and implementation. Various vaccines have been developed for the COVID-19 
pandemic, and their deployment in the US has already started on December 14th (https:// www. washi ngton post. 
com). The effect of the immunization due to the vaccine has been studied in the context of compartmental mod-
els, like  SEIR30. In our mathematical model, the simplest and most intuitive effect is a reduction of both the total 
number of infections during a single wave, ai , and/or the effective diffusion rate of the virus γi , in each division.

To validate this working hypothesis, and understand how the vaccination of a portion of the population 
affects the values of a and γ in the eRG framework, we studied the effect of immunization in a simple percolation 
model, which has been shown to be in the same class of universality as simple compartmental  models35. To do 
so, we set up a Monte-Carlo simulation, consisting of a square grid whose nodes are associated to a susceptible 
individual. Each node can be in four exclusive states: Susceptible (S), Infected (I), Recovered (R) or Vaccinated 
(V). At each step in time in the simulation, for each node we generate a random number r between 0 and 1: if 
the node is in state S in proximity to a node in state I and r < γ∗ , we switch its state to I, else it remains S; if the 

(3)χ2(t) =
1

9

9
∑

i=1

(

I
′
i (t)

〈

I ′(t)
〉 − 1

)2

,

Figure 3.  Evolution of the uniformity indicator χ2 over time (weekly basis). The shaded bands indicate the 
period when epidemic peaks are recorded.

https://www.washingtonpost.com/nation/2020/12/14/first-covid-vaccines-new-york/
https://www.washingtonpost.com/nation/2020/12/14/first-covid-vaccines-new-york/
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node is in state I and r < ǫ∗ , we switch its state to R, else it remains I; if the node is in state R or V, it will not 
change. This model reproduces the diffusion of the infection, where γ∗ is the infection probability on the lattice 
and ǫ∗ is the recovery rate. Finally, we fit the data from the simulation to the solution of a simple eRG equation 
to extract γ and a. The vaccination is implemented by setting a random fraction Rv of nodes to the state V before 
the simulation starts. The values of a and γ as a function of the fraction of vaccinations are shown in Fig. 4: we 
observe that both parameters are reduced by the same percentage as the vaccination up to Rv � 25 %. Above this 
value of vaccinated nodes, the simulation is unstable and the result cannot be trusted. This result, nevertheless, 
demonstrates that the vaccination reduces both parameters a and γ proportionally reinforcing our expectation.

In a realistic scenario, the vaccination of the population can only be implemented in a gradual way, so that the 
total vaccination campaign has a duration in time. We can thereby assume that a fraction Rv of the population is 
vaccinated in a time interval �t . The rate of vaccinations is therefore c = Rv/�t . This implies that the variation 
in γ , during the time interval from tv to tv +�t , is given by:

where γ (tv) is the effective infection rate before the start of the vaccination campaign. The solution for the time-
dependent effective infection rate is

until t = tv +�t , after which γ remains constant again at a reduced value γ (tv) (1− Rv).
To find the variation of a(t) within the vaccination interval tv to tv +�t , we assume that the not-yet-infected 

individuals are vaccinated at the same rate c as the total population. Thus, at any given time, the variation in the 
number of individuals that will be exposed to the infection, Iexp(t) = ea(t) , is proportional to the difference 
ea(t) − eα(t) . This leads to the following differential equation:

 This equation needs to be solved in a coupled system with the eRG one. Note that the derivative is zero outside 
of the time interval [tv , tv +�t ] . In the numerical solutions for the effect of the vaccine, we will add one equation 
for each ai(t) , assuming that the vaccination rate c is the same in all divisions.

Results
Validating the eRG on the first wave data. The epidemic data (C.f. Fig. 2) shows that the MA division 
(New York City) was first hit hard by the COVID-19 pandemic, and was followed closely by NE. The other divi-
sions witnessed a comparable peak of new infections 3–4 months later. Note that we are using cases normalized 
per million to facilitate the comparison between divisions with different population. As a first study, we want 
to test the eRG equations (1) against the hypothesis that the epidemic has been diffusing from MA to the other 
divisions. The parameters ai and γi are fixed by fitting the data, as shown in Table 3. Thus, the timing of the peaks 
in the divisions is determined by the entries of the kij matrix. Determining all 81 entries from the data is not 
possible, as we only have 9 epidemiological curves. Thus, we assume that only the couplings between the source 
MA and any other division are responsible. The results of the fits are shown in the top block of Table 2, and will 
be used as a control benchmark.

Except for k21 that links NE and MA, all the other k2j are of order 10−3 , thus confirming the range we found for 
the European second  wave34. The value of k21 is of order unity, which implies that there is a stronger connection 
between the two divisions. This may be explained by the fact that there exist a significant flow of people between 
New York City and the neighbouring states (including Massachusetts) in New England. Work commutes and 
weekend travelling by car explains the required high number of travellers per week. Another interesting feature 
is the presence of a small peak of infections for ENC and WNC, around March. This feature cannot originate 
from the MA division, as that would imply a k-value of order 10, which is clearly  unrealistic15. The only viable 

(4)
dγ (t)

dt
= −c γ (tv),

(5)γ (t) =γ (tv)[1− c(t − tv)],

(6)
da(t)

dt
= −c (1− eα(t)−a(t)) = −c

(

1−
I (t)

Iexp(t)

)

.

Figure 4.  a and γ fit parameters versus initial percentage of vaccinated nodes for γ∗ = 0.6 and ǫ∗ = 0.4.
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solution is that the epidemic hit these two divisions from abroad. On the other hand, the second peak observed 
around August can be explained by the interaction with MA.

The values of kij are, in principle, determined by the flow of people between different divisions. Thus, we could 
use any set of mobility  data36 to estimate the relative numbers of the entries, while the normalization also depends 
on the effective infection power of the traveling individuals and it can be determined from the data. With the 
help of mobility data, we can reduce the 81 parameters to a single one. Due to the large distances across divi-
sions, we decided to focus on the flight data, as described in the methodology section. The values of the entries 
are reported in the middle section of Table 2. Note that for MA-NE we used the same value obtained from the 
previous fit, as the people’s flow is mostly dominated by land movements.

Using this matrix of kij to simulate the spread of the first wave across the country, as originating from MA, we 
obtain the curves in the left panels of Fig. 5. For nearly all divisions, we obtain the correct timing for the peak, 
with the exception of SA and ESC (for ENC and WNC, the anomaly may be linked to the presence of a mild 
early peak and the absence of a prominent second peak). The results are more accurate for divisions far from 
MA, thus validating the method as the diffusion of the virus seems to depend on the people travelling (by air) 
among divisions. For SA, the predicted curve is substantially anticipated compared to the data: this discrepancy 
may be explained by the presence of an air hub in Atlanta, GE, so that many of the passengers of flights landing 
there do not stop in the division but instead take an immediate connecting flight.

Understanding the second wave. The US states are currently witnessing a second wave, which is rav-
aging in all the 9 divisions with comparable intensity. Previous studies in the eRG framework have uncovered 
two possible origins for an epidemic wave to start: one is the coupling with an external region with a raging 
 epidemic15, the second is the instability represented by a strolling phase in between  waves17,18. We have shown 
that the former mechanism can account for the peak structure during the first wave.

As a first step, we will try to use the same method to understand the second wave. Since travelling to the US 
from abroad has been strongly reduced and regulated, we will consider the divisions that witnessed a peak in 
July–August as source for the second wave. To this purpose, we define a Region-X15 as an average sum of all the 
divisions with a pandemic peak occurring in the July–August period. The parameters are chosen to reproduce 
the number of cases in the totality of the relevant 7 divisions (SA, ESC, NSC, ENC, WNC, M and P) normalized 
by the total population. For each division, we optimized ai and γi to reproduce the current data adjourned at 
December 16th (C.f. Table 3). For the couplings kij we use the flight data, except for the usual MA-NE couplings 
(C.f. bottom section of Table 2). Finally, the k0j connecting the 9 divisions to the source Region-X are computed 
by summing the k entries between the division j and the 7 divisions used to model Region-X (also derived from 
flight data).

The results of the eRG equations are shown in the right panels of Fig. 5, showing a good agreement. The 
values of the k0j of the Region-X are one order of magnitude larger than the others. This fact can be interpreted 
by the presence of hotspots in each division which also contribute significantly to the new wave. In other words, 
traveling among divisions cannot be the only responsible factor for the onset of the second wave in the US. This 
hypothesis can also be validated by studying the uniformity of the distribution of the new infections in various 
states during the three peaks, as shown in Fig. 3. Comparing the three peak regions, we see that the uniformity 
indicator is systematically decreasing, thus indicating a more geographically uniform presence of the virus.

It is also interesting to notice that the value of γi for the second wave is systematically smaller than the infec-
tion rate during the first wave. This is in agreement with the results we found in Ref.17,18, where we modelled 
the multi-wave structure of the pandemic via an instability inside each region. The result of this simple analysis 
supports the hypothesis that the virus is now endemic for all states in the US, thus a multi-wave pattern will 
continue to emerge. Traveling among states (or divisions) is less relevant at this stage.

The result of our eRG analysis shows that the current wave will end in March–April 2021. Note, however, that 
we have not taken into account the potential disastrous effect of the Christmas and New Year holidays, which 

Table 3.  Parameters of the eRG model for the first and second wave in the 9 divisions. For the first wave, we 
report the values from the fit, including the 1σ error. For the second wave, the values are chosen to reproduce 
the current data, adjourned to December 16th.

Division Code

First wave 
parameters (fitted)

Second wave 
parameters

a γ a γ

New England NE 9.397(7) 0.416(7) 11.006 0.214

Mid-Atlantic MA 9.496(7) 0.516(9) 10.882 0.206

South Atlantic SA 9.691(5) 0.370(3) 10.885 0.185

East South Central ESC 9.63(2) 0.331(6) 11.201 0.207

West South Central WSC 9.720(6) 0.340(3) 10.713 0.213

East North Central ENC 8.88(3) 0.300(8) 11.074 0.250

West North Central WNC 8.66(2) 0.342(6) 11.060 0.263

Mountain M 9.478(9) 0.330(4) 11.089 0.213

Pacific P 9.33(1) 0.291(5) 11.535 0.171
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could lead to an increase in the infection rates. In some divisions there is a increase at the end of November, 
which can be attributed to the Thanksgiving holiday.

Effect of the current vaccination strategy. Following the development of multiple vaccines for the 
SARS-CoV-2 virus (https:// www. nature. com/ artic les/ d41586- 020- 03626-1), vaccination campaigns have started 
in many countries, including the US. This will influence the development of the current wave, and help in curb-
ing the future ones. The vaccination campaign started on December 14th in the US (https:// www. washi ngton 
post. com). We also know that the US has purchased 100 million doses from Pfizer (plus an additional 100 mil-
lion from Moderna) (https:// www. forbes. com), so that at least 20% of the population may be vaccinated in this 
first campaign. As of December 28, 0.64% of the total population has been vaccinated (https:// ourwo rldin data. 
org) in a little over 1 week, thus in our study we will use this as a benchmark weekly rate. The data listed above 
defines our starting benchmark for the current vaccination campaign.

Figure 5.  Simulation of the spread of the first wave (left plots) and the second wave (right plots) using 
flight-data-derived kappa matrix. For the first wave, MA is used as a seed region, while for the second wave a 
combination of the first waves among divisions acts as the seed region (Region-X). The vertical dashed lines in 
the right column plots mark the date when the simulation was done. The data points in the grayed region where 
not used to tune the eRG solutions.

https://www.nature.com/articles/d41586-020-03626-1
https://www.washingtonpost.com/nation/2020/12/14/first-covid-vaccines-new-york/
https://www.washingtonpost.com/nation/2020/12/14/first-covid-vaccines-new-york/
https://www.forbes.com/sites/leahrosenbaum/2020/12/07/the-us-has-ordered-enough-of-pfizers-covid-19-vaccine-for-50-million-people-but-thats-all/
https://ourworldindata.org/covid-vaccinations
https://ourworldindata.org/covid-vaccinations
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To study the effect of the vaccinations, we have solved the eRG equations for the second wave, with the addi-
tion of the reduction of ai and γi , as detailed in the methodology section. We show the result for two sample 
divisions in Fig. 6 (dashed curves) as compared to the same solutions without vaccines (solid curves). A vac-
cination at a 0.64% rate per week does not affect the peak of new infections. As a reference, we also increased the 
vaccination rates to 1% and 2% : in these cases, an important flattening of the epidemic curve can be observed 
for SA, where the vaccination started early compared to the peak of infections. This situation may be realized, 
as the vaccine is being administered to the population that is more at risk of being infected by the virus. In the 
other extreme case, represented by WNC, the vaccine is ineffective in changing the current wave because the 
peak has already been attained before the vaccination campaign started.

Our results confirm that the current vaccination strategy, which is performed during a peak episode, is not 
effective to substantially slow down the spread of the virus. On the other hand, the effectiveness for future waves 
is not a question. It would be, in fact, very efficient to be able to administer the vaccine to a larger portion of the 
population before the start of the next wave.

Update of the vaccination to the first quarter 2021. As shown in the right column in Fig. 5, our 
simulation of the second wave, done in mid December 2020, reproduces very well the epidemiological data up 
to March 17, 2021. The only exception is Pacific, which has seen a sharper drop in the number of new infections. 
Furthermore, one can clearly see a rebounce in January that can be accredited to the Christmas holidays. Nev-
ertheless, this small effect does not have a significant impact on the agreement of our prediction with the data.

In the first quarter of 2021, the vaccination campaign has also taken off steadily, with nearly a quarter of 
the US population having received at least one shot of vaccine. Furthermore, since February 27 the FDA has 
authorised the use of the Janssen mono-dose vaccine (https:// www. fda. gov/ emerg ency- prepa redne ss- and- respo 
nse/ coron avirus- disea se- 2019- covid- 19/ janss en- covid- 19- vacci ne), which is now being administered together 
with the two-dose Pfizer and Moderna vaccines. The data show that the rate of vaccinations has been increasing 
approximately linearly with time, thus we updated the prediction to take into account a vaccination fraction c(t) 
growing linearly with time:

Figure 6.  Evolution of the number of infections without vaccination ( c = 0 ) and with a vaccination rate 
of 0.64%/week, 1%/week and 2%/week starting on December 14th and stopping at 20% of the population 
vaccinated. We show the results for two sample divisions: South Atlantic and West North Central.

Table 4.  Percentage of the population vaccinated with at least one dose and with two doses in each division as 
of the date of 24th of march 2021.

Division Code

Percentage of the population 
vaccinated Vaccination rate slope u

Partial vaccination Full vaccination Partial vaccination Full vaccination

New England NE 30.1 16.4 0.00450 0.00641

Mid-Atlantic MA 27.8 14.1 0.00415 0.00554

South Atlantic SA 24.3 13.5 0.00363 0.00530

East South Central ESC 23.1 12.6 0.00345 0.00492

West South Central WSC 23.0 11.9 0.00344 0.00467

East North Central ENC 25.6 14.7 0.00382 0.00575

West North Central WNC 26.3 14.9 0.00393 0.00584

Mountain M 25.7 14.8 0.00386 0.00579

Pacific P 26.6 14.0 0.00397 0.00548

https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/janssen-covid-19-vaccine
https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/janssen-covid-19-vaccine


9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:10960  | https://doi.org/10.1038/s41598-021-90539-2

www.nature.com/scientificreports/

where the numerical values for each division are shown in Table 4.
The new results are shown in Fig. 7 for the 9 divisions. We consider both people that received at least one 

shot (partial vaccination, in dash-dotted lines) and fully vaccinated ones (dashed lines), with an offset of 4 weeks 
between the beginning of the two. We consider them as two extreme cases, defining a systematic error in our 
account of vaccinations. In all divisions, the effect is minor, as the vaccination campaign has started too close to 
the peak of the second wave. The only exception is Pacific, where taking into account vaccinations substantially 
improves the agreement with the data.

The updated results confirm that a vaccination campaign operating during a wave will not significantly affect 
the timing and height of the peak. Social distancing and containment measures remain necessary. Conversely, 
vaccinating a large portion of the population will certainly curb the eventual next wave.

Discussion
In this paper we employ the epidemic Renormalization Group (eRG) framework in order to understand, repro-
duce and predict the diffusion of the COVID-19 pandemic across the US as well as the effect of vaccination 
strategies. By using flight data, we are able to see the changes in mobility across the divisions, and observe how 
these changes affect the spread of the virus. Furthermore, we show that the impact of the vaccination campaign 
on the current wave of the pandemic in the US is marginal. Based on that, the importance of social distancing 
is still relevant. Furthermore, we demonstrate that the current wave is due to the endemic diffusion of the virus. 
Therefore, building upon our previous  results18, in order to control the next pandemic wave the number of daily 
new cases per million must be around or less than 10–20 during the next inter-wave period. This conclusion is 
further corroborated in Ref.37 for Europe.

We learnt that the number of infected individuals in the current wave are not affected measurably by the 
vaccination campaign. However, it is foreseeable that it will impact specific compartments such as the overall 
number of deceased individuals. Our study included an immunization rate between 0.64 to 2% of the total 
population each week. We also updated the results with the actual rates of vaccination in the different divisions, 
as of March 24, 2020. The results of our eRG model agree remarkably well with the new data from December 28, 
2020, to March 17, 2021. To curb the current and the next waves, our results indisputably show that vaccinations 
alone are not enough and strict social distancing measures are required until sufficient immunity is achieved.

(7)c(t) = u t,

Figure 7.  Results of the eRG solutions for the second wave with a vaccination campaign based on the 
data. Here, we consider a vaccination rate linearly increasing in time, with slopes given in Table 4. The eRG 
parameters are the same used for Fig. 5, based on data until December 28, 2020.
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Our results should be employed by governments and decision makers to implement local and global measures 
and, most importantly, the results of this paper can be used as a foundation for vaccination campaign strategies 
for governments.

Given that pandemics are recurrent events, our results go beyond COVID-19 and are universally applicable. 
What we have seen in the data for the US is that it started in New York and, from there, it diffused to the rest of 
the country. It is, therefore, important to contain future pandemics at an early stage.

Data and code availability
All the data used in this work is from open source repositories, cited in the main text. The Wolfram Mathematica 
code will be provided upon request.

Received: 13 January 2021; Accepted: 29 April 2021

References
 1. Perc, M., Gorišek Miksić, N., Slavinec, M. & Stožer, A. Forecasting COVID-19. Front. Phys. 8, 127. https:// doi. org/ 10. 3389/ fphy. 

2020. 00127 (2020).
 2. Hâncean, M.-G., Perc, M. & Juergen, L. Early spread of COVID-19 in Romania: Imported cases from Italy and human-to-human 

transmission networks. R. Soc. Open Sci. 7, 200780. https:// doi. org/ 10. 1098/ rsos. 200780 (2020).
 3. Zhou, T. et al. Preliminary prediction of the basic reproduction number of the Wuhan novel coronavirus 2019-nCoV. J. Evid. Based 

Med. 13, 3–7. https:// doi. org/ 10. 1098/ rspa. 1927. 0118 (2020).
 4. Prem, K. et al. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: 

a modelling study. Lancet Public Health 5(5), E261–E270. https:// doi. org/ 10. 1016/ S2468- 2667(20) 30073-6 (2020).
 5. Scala, A. et al. Time, space and social interactions: Exit mechanisms for the COVID-19 epidemics. Sci. Rep. 10, 13764. https:// doi. 

org/ 10. 1038/ s41598- 020- 70631-9 (2020).
 6. Friston, K. J. et al. Second waves, social distancing, and the spread of COVID-19 across America. Wellcome Open Res. 5, 103. 

https:// doi. org/ 10. 12688/ wellc omeop enres. 15986.3 (2021).
 7. Sonnino, G., Mora, F. & Nardone, P. A stochastic compartmental model for COVID-19 (2020). arxiv:  2012. 01869.
 8. Abou-Ismail, A. Compartmental models of the COVID-19 pandemic for physicians and physician-scientists. SN Compr. Clin. 

Med.https:// doi. org/ 10. 1007/ s42399- 020- 00330-z (2020).
 9. Kermack, W. O., McKendrick, A. & Walker, G. T. A contribution to the mathematical theory of epidemics. Proc. R. Soc. A 115, 

700–721. https:// doi. org/ 10. 1098/ rspa. 1927. 0118 (1927).
 10. Zhan, X.-X. et al. Coupling dynamics of epidemic spreading and information diffusion on complex networks. Appl. Math. Comput. 

332, 437–448. https:// doi. org/ 10. 1016/j. amc. 2018. 03. 050 (2018).
 11. Perc, M. et al. Statistical physics of human cooperation. Phys. Rep. 687, 1–51. https:// doi. org/ 10. 1016/j. physr ep. 2017. 05. 004 (2017).
 12. Wang, Z., Andrews, M. A., Wu, Z.-X., Wang, L. & Bauch, C. T. Coupled disease-behavior dynamics on complex networks: A review. 

Phys. Life Rev. 15, 1–29. https:// doi. org/ 10. 1016/j. plrev. 2015. 07. 006 (2015).
 13. Scudellari, M. How the pandemic might play out in 2021 and beyond. Nature 584, 22–25. https:// doi. org/ 10. 1038/ d41586- 020- 

02278-5 (2020).
 14. Della Morte, M., Orlando, D. & Sannino, F. Renormalization group approach to pandemics: The COVID-19 case. Front. Phys. 8, 

144. https:// doi. org/ 10. 3389/ fphy. 2020. 00144 (2020).
 15. Cacciapaglia, G. & Sannino, F. Interplay of social distancing and border restrictions for pandemics (COVID-19) via the epidemic 

Renormalisation Group framework. Sci. Rep. 10, 15828, https:// doi. org/ 10. 1038/ s41598- 020- 72175-4 (2020). arxiv:  2005. 04956.
 16. Della Morte, M. & Sannino, F. Renormalisation Group approach to pandemics as a time-dependent SIR model. Front. Phys. 8, 583. 

https:// doi. org/ 10. 3389/ fphy. 2020. 00144 (2021).
 17. Cacciapaglia, G. & Sannino, F. Evidence for complex fixed points in pandemic data. https:// doi. org/ 10. 21203/ rs.3. rs- 70238/ v1 

(2020). arxiv:  2009. 08861.
 18. Cacciapaglia, G., Cot, C. & Sannino, F. Multiwave pandemic dynamics explained: How to tame the next wave of infectious diseases. 

Sci. Rep. 11, 6638. https:// doi. org/ 10. 1038/ s41598- 021- 85875-2 (2021).
 19. Taubenberger, J. K. & Morens, D. M. 1918 influenza: The mother of all pandemics. Rev. Biomed. 17(1), 69–79 (2006).
 20. Wilson, K. G. Renormalization group and critical phenomena. 1. Renormalization group and the Kadanoff scaling picture. Phys. 

Rev. B 4, 3174–3183. https:// doi. org/ 10. 1103/ PhysR evB.4. 3174 (1971).
 21. Wilson, K. G. Renormalization group and critical phenomena. 2. Phase space cell analysis of critical behavior. Phys. Rev. B 4, 

3184–3205. https:// doi. org/ 10. 1103/ PhysR evB.4. 3184 (1971).
 22. Li, L. et al. Analysis of transmission dynamics for Zika virus on networks. Appl. Math. Comput. 347, 566–577. https:// doi. org/ 10. 

1016/j. amc. 2018. 11. 042 (2019).
 23. Wang, Z. et al. Statistical physics of vaccination. Phys. Rep. 664, 1–113. https:// doi. org/ 10. 1016/j. physr ep. 2016. 10. 006 (2016).
 24. Danby, J. M. A. Computing applications to differential equations modelling in the physical and social sciences (Reston Publishing 

Company, Reston***, 1985).
 25. Brauer, F. Early estimates of epidemic final sizes. J. Biol. Dyn. 13, 23–30. https:// doi. org/ 10. 1080/ 17513 758. 2018. 14697 92 (2019).
 26. Miller, J. C. A note on the derivation of epidemic final sizes. Bull. Math. Biol. 74, 2125–2141. https:// doi. org/ 10. 1007/ s11538- 012- 

9749-6 (2012).
 27. Murray, J. D. Mathematical Biology. Interdisciplinary Applied Mathematics 3rd edn. (Springer, New York***, 2002).
 28. Fishman, D., Khoo, E. & Tuite, A. Early epidemic dynamics of the West African 2014 Ebola outbreak: estimates derived with a 

simple two-parameter model. PLoS Curr. Outbreaks 6, (2014).
 29. Pell, B., Kuang, Y., Viboud, C. & Chowell, G. Using phenomenological models for forecasting the Ebola challenge. Epidemics 22, 

62–70. https:// doi. org/ 10. 1016/j. epidem. 2016. 11. 002 (2018) (The RAPIDD Ebola Forecasting Challenge).
 30. Paltiel, A. D., Schwartz, J. L., Zheng, A. & Walensky, R. P. Clinical outcomes of a COVID-19 vaccine: Implementation over efficacy. 

Health Affairs Vo.40, No.1 (2020).
 31. Schäfer, M., Strohmeier, M., Lenders, V., Martinovic, I. & Wilhelm, M. Bringing up opensky: A large-scale ads-b sensor network 

for research. In IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks, 83–94 
(IEEE, 2014).

 32. Islind, A. S., Óskarsdóttir, M. & Steingrímsdóttir, H. Changes in mobility patterns in Europe during the COVID-19 pandemic: 
Novel insights using open source data (2020). arxiv:  2008. 10505.

 33. Bank of England. Monetary policy report and interim financial stability report—may 2020. https:// www. banko fengl and. co. uk/ 
report/ 2020/ monet ary- policy- report- finan cial- stabi lity- report- may- 2020 (2020).

 34. Cacciapaglia, G., Cot, C. & Sannino, F. Second wave COVID-19 pandemics in Europe: A temporal playbook. Sci. Rep. 10, 15514, 
https:// doi. org/ 10. 1038/ s41598- 020- 72611-5 (2020). arxiv:  2007. 13100.

https://doi.org/10.3389/fphy.2020.00127
https://doi.org/10.3389/fphy.2020.00127
https://doi.org/10.1098/rsos.200780
https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1016/S2468-2667(20)30073-6
https://doi.org/10.1038/s41598-020-70631-9
https://doi.org/10.1038/s41598-020-70631-9
https://doi.org/10.12688/wellcomeopenres.15986.3
http://arxiv.org/abs/2012.01869
https://doi.org/10.1007/s42399-020-00330-z
https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1016/j.amc.2018.03.050
https://doi.org/10.1016/j.physrep.2017.05.004
https://doi.org/10.1016/j.plrev.2015.07.006
https://doi.org/10.1038/d41586-020-02278-5
https://doi.org/10.1038/d41586-020-02278-5
https://doi.org/10.3389/fphy.2020.00144
https://doi.org/10.1038/s41598-020-72175-4
http://arxiv.org/abs/2005.04956
https://doi.org/10.3389/fphy.2020.00144
https://doi.org/10.21203/rs.3.rs-70238/v1
http://arxiv.org/abs/2009.08861
https://doi.org/10.1038/s41598-021-85875-2
https://doi.org/10.1103/PhysRevB.4.3174
https://doi.org/10.1103/PhysRevB.4.3184
https://doi.org/10.1016/j.amc.2018.11.042
https://doi.org/10.1016/j.amc.2018.11.042
https://doi.org/10.1016/j.physrep.2016.10.006
https://doi.org/10.1080/17513758.2018.1469792
https://doi.org/10.1007/s11538-012-9749-6
https://doi.org/10.1007/s11538-012-9749-6
https://doi.org/10.1016/j.epidem.2016.11.002
http://arxiv.org/abs/2008.10505
https://www.bankofengland.co.uk/report/2020/monetary-policy-report-financial-stability-report-may-2020
https://www.bankofengland.co.uk/report/2020/monetary-policy-report-financial-stability-report-may-2020
https://doi.org/10.1038/s41598-020-72611-5
http://arxiv.org/abs/2007.13100


11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:10960  | https://doi.org/10.1038/s41598-021-90539-2

www.nature.com/scientificreports/

 35. Cardy, J. L. & Grassberger, P. Epidemic models and percolation. J. Phys. A Math. Gen. 18, L267–L271. https:// doi. org/ 10. 1088/ 
0305- 4470/ 18/6/ 001 (1985).

 36. Yang, C. et al. Taking the pulse of COVID-19: A spatiotemporal perspective. Int. J. Digit. Earth 13, 1186–1211. https:// doi. org/ 10. 
1080/ 17538 947. 2020. 18097 23 (2020).

 37. Priesemann, V. et al. Calling for pan-european commitment for rapid and sustained reduction in SARS-CoV2 infections. Lancet 
397(10269), 92–93 (2020).

Author contributions
This work has been designed, analysed and performed conjointly and equally by the authors CC, GC, ASI, MO 
and FS, who have equally contributed to the writing of the article. ASI and MO have extracted and processed 
the data from flights; CC has worked on the numerical results from the eRG equations and analysed the epide-
miological data.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to C.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

https://doi.org/10.1088/0305-4470/18/6/001
https://doi.org/10.1088/0305-4470/18/6/001
https://doi.org/10.1080/17538947.2020.1809723
https://doi.org/10.1080/17538947.2020.1809723
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Impact of US vaccination strategy on COVID-19 wave dynamics
	Methodology
	Data description. 
	Mathematical modeling. 
	Vaccine deployment and implementation. 

	Results
	Validating the eRG on the first wave data. 
	Understanding the second wave. 
	Effect of the current vaccination strategy. 
	Update of the vaccination to the first quarter 2021. 

	Discussion
	References


