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Uniform in time propagation of chaos for the 2D vortex model and
other singular stochastic systems

Arnaud Guillin*, Pierre Le Bris† and Pierre Monmarché‡

Abstract
In this article, we adapt the work of Jabin and Wang in [JW18] to show the first result of uniform in

time propagation of chaos for a class of singular interaction kernels. In particular, our models contain the
Biot-Savart kernel on the torus and thus the 2D vortex model.

Keywords: propagation of chaos, relative entropy, logarithmic Sobolev inequality, 2D vortex equation,
singular kernels.
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1 Introduction

1.1 Framework

Our main subject is the convergence of the law of a stochastic particles system with mean field singular
interactions towards its non linear limit. More precisely we will establish the first quantitative bounds in the
number of particles uniformly in time. Let K : Td → Rd be an interaction kernel on the d-dimensional
(d > 2) 1-periodic torus Td (represented as [−1

2 ,
1
2 ]d), on which we will specify some assumptions later. In

this paper, we consider the non linear stochastic differential equation of McKean-Vlasov type{
dXt =

√
2dBt +K ∗ ρ̄t(Xt)dt

ρ̄t = Density of Law(Xt),
(1.1)

where Xt ∈ Td, (Bt)t≥0 is a d-dimensional Brownian motion and f ∗ g(x) =
∫
Td
f(x − y)g(y)dy stands

for the convolution operation on the torus. The density ρ̄t satisfies

∂tρ̄t = −∇ · (ρ̄t (K ∗ ρ̄t)) + ∆ρ̄t. (1.2)

In the other words, the non-linear Equation (1.2) has the following natural probabilistic interpretation : the
solution ρ̄t is the density of the law at time t of the Td valued process (Xt)t≥0 evolving according to (1.1).
As we understand (1.1) to be the motion of a particle interacting with its own law, (1.2) thus describes
the dynamic of a cloud of charged particles (where (Xt)t≥0 would be one particle). In particular, it holds
importance in plasma physics, see [Vla68]. We also consider the associated system of particles, describing
the motion of N particles interacting with one another through the interaction kernel K.

dXi
t =
√

2dBi
t +

1

N

N∑
j=1

K(Xi
t −X

j
t )dt, (1.3)
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where Xi
t ∈ Td is the position at time t of the i-th particle, and (Bi

t, 1 ≤ i ≤ N) are independent Brownian
motions in Td. We assume that (Xi

0)i=1,..,N are exchangeable, i.e. have a law which is invariant by permu-
tation of the particles, so that this property is true for all times. We denote by ρN the density of the law of
the system of particles, formally satisfying

∂tρN = −
N∑
i=1

∇xi ·

 1

N

N∑
j=1

K(xi − xj)

 ρN

+

N∑
i=1

∆xiρN . (1.4)

We define ρkN the density of the law of the first k marginals of the N particles system

ρkN (t, x1, .., xk) =

∫
T(N−k)d

ρN (t, x1, .., xN )dxk+1...dxN ,

which is also, thanks to the exchangeability of particles, the density of the law of any k marginals. More
precisely, in this work, we focus on the equation (1.4) and we will not address the question of the well-
posedness of the stochastic equation (1.3).

Here, although we will consider general assumptions on K, the main example motivating our work is
the singular interaction kernel known as the Biot-Savart kernel, defined in R2 by

K(x) =
1

2π

x⊥

|x|2
=

1

2π

(
− x2

|x|2
,
x1

|x|2

)
. (1.5)

Consider the 2D incompressible Navier-Stokes system on x ∈ R2

∂tu =− u · ∇u−∇p+ ∆u

∇ · u =0,

where p is the local pressure. Taking the curl of the equation above, we get that ω(t, x) = ∇ × u(t, x)
satisfies (1.2) with K given by (1.5) (see for instance Chapter 1 of [MP94]).

One can see equation (1.3) as an approximation of equation (1.1), where the law ρ̄t is replaced by the
empirical measure 1

N

∑N
i=1 δXi

t
. It is well known, at least in a setting where the interaction kernel K is

Lipschitz continuous ([M9́6], [Szn91]), that, under some mild conditions on K, for all fixed k ∈ N and all
t ≥ 0, ρkN (t, ·) converges toward ρ̄k(t, ·) = ρ̄⊗kt asN tends to infinity, where ρ̄t is the density of the law ofXt

solution of (1.1). Thus, provided the particles start independent, they will stay (more or less) independent, as
the law of any k-uplet of particles converges toward a tensorized law. The expression propagation of chaos
to describe this behavior was coined by Kac [Kac56]), and we refer to Sznitman [Szn91] for a landmark
study of the phenomenon. Of course there is a huge literature on propagation of chaos however limited
for uniform in time results, and always when the interaction potential is regular, see Malrieu [Mal01] for
an example by a coupling approach under convexity conditions and the recent Durmus &al [DEGZ20] via
reflection coupling allowing non convexity but where the interaction is considered small and acts mainly as
a perturbation. For more recent results we refer to [Lac23] (and its uniform in time extension in [LLF23])
for a nice new approach for propagation of chaos furnishing better speed but strong assumptions on the
interactions (regularity, integrability), including a nice survey of the existing results, and [DT21] using Lions
derivatives for uniform in time results on the torus but also under regularity assumptions on the interaction
kernel.

Hence, both these classical and recent results do not apply to the Biot-Savart kernel, which is singular
at 0. For a convergence without rate, and specific to the vortex 2D equation, a first striking result appeared
in [FHM14], relying on proving that close encounters of particles are rare and that the possible limits of the
particles system are made of solutions of the nonlinear SDE. As a second step, in the recent work [JW18],
Jabin and Wang have proven that propagation of chaos still holds in this case with a quantitative rate. The
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goal of the present paper is to extend their works and show a quantitative propagation of chaos uniform
in time. We refer to [FHM14, JW18, BJW19a, BJW19b, BJW20] for detailed discussions on the literature
concerning propagation of chaos with singular kernels, which is still at its beginning for quantitative rates.
Shortly after this work was submitted, an alternative approach to global in time estimates was developed in
[RS23], see also the very recent preprint [CRS23].

Obtaining uniform in time estimates for propagation of chaos is an important challenge to tackle. One of
its applications for instance concerns the use of particle system, which can easily be simulated numerically,
to approximate the solution of a nonlinear physics motivated problem, such as here the vorticity equation
arising from fluid mechanics. Likewise, it provides a framework for studying noisy gradient descent used in
Machine Learning (see the recent [CRW22]) and thus attracts some attention.

The approach of Jabin and Wang [JW18] is to compute the time evolution of the relative entropy of
ρN with respect to ρ̄N and then to use an integration by parts to deal with the singularity of K thanks
to the regularity of the probability density ρ̄t. In order to improve this argument to get uniform in time
propagation of chaos, our main contribution is the proof of time-uniform bounds for ρ̄t, in Lemma 1, from
which a time-uniform logarithmic Sobolev inequality is deduced. From the latter, in the spirit of the work of
Malrieu [Mal01] in the smooth and convex case, the Fisher information appearing in the entropy dissipation
yields a control on the relative entropy itself, inducing the time uniformity. However a major difficulty
is that this quantities are expressed in terms of the solution of the nonlinear equation. We then have to
prove a logarithmic Sobolev inequality, uniformly in time, for ρ̄t, and a sufficient decay of the derivatives
of ρ̄t. To do so, it requires new estimates on regularity and a priori bounds of the solutions of non linear
2D vortex equation. Indeed, we prove that the bounds on the derivative of ρ̄t decay sufficiently fast (see
again Lemma 1) to ensure uniform in time convergence without smallness assumption on the interaction.
Finally, the remaining error term in the entropy evolution due to the difference between (1.2) and (1.4) is
tackled thanks to a law of large number already used in [JW18]. Compared to [FHM14] we thus obtain a
quantitative and uniform in time result.

The organization of the article is as follows. For the remaining of this section, we state the main theorem
as well as the various assumptions on both the initial condition and the interaction kernel K. In Section 2
we gather various tools that will be useful later on: we state the regularity of the solutions, the existence of
uniform in time bounds on the density and its derivatives, and we prove a logarithmic Sobolev inequality.
Finally, in Section 3, we prove the uniform in time propagation of chaos following the method described in
[JW18].

1.2 Main results

First, let us describe the assumptions made on the initial condition. Unless otherwise specified, Lp and Hp

respectively refer to the spaces Lp(Td) andHp(Td). Given λ > 1, we denote by C∞λ (X ) the set of functions
f in C∞(X ) such that 0 < 1

λ ≤ f ≤ λ < ∞, and C∞>0(X ) = ∪λ>1C∞λ (X ), which is simply the set of
positive smooth functions when X is compact.

Assumption 1. We make the following assumptions on ρ̄0 :

• There is λ > 1 such that ρ̄0 ∈ C∞λ (Td)

• For all n ≥ 1, C0
n := ‖∇nρ̄0‖L∞ <∞

Remark 1. Let us discuss the smoothness assumption on the initial condition. Via Theorem 2 below, which
follows from the result of [BA94], this will ensure the smoothness of ρ̄t. This fact (and the fact that we con-
sider, as we will see later, a smooth solution ρN of (1.4)) allows us to justify all calculations in comfortable
way. This could however be improved. First, as in [JW18], the calculations should hold for any entropy
solution of (1.4). Second, it is also shown in [BA94], in the case of the vorticity equation, that an initial
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condition in L1 yields existence and uniqueness of a solution of (1.2) which is smooth for positive times. One
could thus think of using the non-uniform in time result of [JW18] on a small time interval [0, ε], and then
complete the proof on [ε,∞[ with our result. We would then require some bounds on ρ̄ε and its derivatives
of a sufficient order (depending on the Sobolev embedding, see the proof of Lemma 1 below) that we could
propagate in time.

For the sake of clarity and conciseness however we choose not to insist in this direction.

Let us describe the assumptions on the interaction kernel K. Below,∇· stands for the divergence opera-
tor.

Assumption 2. We make the following assumptions on K :

• ‖K‖L1 <∞.

• In the sense of distributions,∇ ·K = 0,

• There is a matrix field V ∈ L∞ such that K = ∇ · V , i.e for 1 ≤ α ≤ d, Kα =
∑d

β=1 ∂βVα,β .

The problem of finding a matrix field V ∈ L∞(Td) such that K = ∇ · V for a given K is a com-
plex mathematical question. We refer to [BB03] and [PT08] and the references therein for a more de-
tailed discussion on the literature. As it was noted in Proposition 2 of [JW18], the existence of such a
matrix V is true for any kernel K ∈ Ld (using the results of [BB03]), or for any kernel K such that
∃M > 0, ∀x ∈ Td, |K(x)| ≤M/|x| (using the results of [PT08]).

Remark 2. If a function a satisfies∇ · a = 0, then for ψ : Td 7→ R we have∇ · (aψ) = (a · ∇)ψ

Suppose K̃ is an interaction kernel in Rd (such as the Biot-Savart kernel). It is possible to periodize K̃
on the torus as follows. For f a function on the torus (identified as a 1-periodic function on Rd), writing
f ∗X g(x) =

∫
X f(x− y)g(y)dy the convolution operator on a space X ,

K̃ ∗Rd f(x) =

∫
Rd
K̃(x− y)f(y)dy =

∑
k∈Zd

∫
Td
K̃(x− y + k)f(y − k)dy

=

∫
Td

∑
k∈Zd

K̃(x− y + k)

 f(y)dy,

and thus K̃ ∗Rd f(x) = K ∗Td f(x), where K(x) =
∑

k∈Zd K̃(x + k). In particular, the periodized
Biot-Savart kernel obtained by taking K̃ from (1.5) reads

K(x) =
1

2π

x⊥

|x|2
+

1

2π

∑
k∈Z2,k 6=0

(x− k)⊥

|x− k|2
:= K̃(x) +K0(x). (1.6)

It has been shown that the sum definingK0 converges (in the sense thatK0(x) = limN→∞
∑
|k|2≤N,k 6=0

(x−k)⊥

|x−k|2 )
in C∞ (see for instance [Sch96]). It is straightforward to check that K is periodic, bounded in L1, and di-
vergence free. Finally, Proposition 2 of [JW18] yields the existence of V ∈ L∞ such that K = ∇ · V . As a
consequence, Assumption 2 holds in the case of the periodized Biot-Savart kernel.

Remark 3. Notice that, for the Biot-Savart kernel on the whole space R2

K̃(x) =
1

2π

x⊥

|x|2
,
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the matrix field Ṽ such that K̃ = ∇ · Ṽ can be chosen explicitly

V (x) =
1

2π

 − arctan
(
x1
x2

)
0

0 arctan
(
x2
x1

)  .

One could also consider collision-like interactions, as mentioned in [JW18]. Let φ ∈ L1 be a function
on the torus, M be a smooth antisymmetric matrix field and consider the kernel K = ∇ · (M1φ(x)≤0). By
construction, K is the divergence of a L∞ matrix field, and since M is antisymmetric K is divergence free.

Example 1. Consider in dimension 2 the function φ : x 7→ |x|2 − (2R)2 for a given radius R > 0 and the
matrix

M =

(
0 −1
1 0

)
,

which yield
K(x) = 2x⊥δφ(x)=0.

This interaction kernel models particles, seen as balls of radius R, interacting via some form of collision.

The well-posedness of the equations (1.2) and (1.4) under Assumptions 1 and 2 will be discussed respec-
tively in Sections 2.1 and 3.5. In particular we will see in Theorem 2 that ρ̄t is in C∞λ (R+ ×Td).

The comparison between the law of the system of N interacting particles and the law of N independent
particles satisfying the non-linear equation (1.1) is stated in terms of relative entropy.

Definition 1. Let µ and ν be two probability densities on TdN . We consider the rescaled relative entropy

HN (ν, µ) =

{
1
NEµ

(
ν
µ log ν

µ

)
if ν � µ,

+∞ otherwise.
(1.7)

For the sake of conciseness, for all k ∈ N and t ≥ 0, we denote ρN (t) : x ∈ TdN 7→ ρN (t, x) and
ρ̄N (t) : x ∈ TdN 7→ ρ̄⊗Nt (x). The main result is the following

Theorem 1. Under Assumptions 1 and 2, there are constants C1, C2 and C3 such that for all N ∈ N and
all exchangeable density probability ρN (0) ∈ C∞>0(TdN ) there exists a weak solution ρN of (1.4) such that
for all t ≥ 0

HN (ρN (t), ρ̄N (t)) ≤ C1e
−C2tHN (ρN (0), ρ̄N (0)) +

C3

N
(1.8)

In particular, if ρN (0) = ρ̄N (0), the first term of the right-hand side vanishes, and this property has been
called entropic propagation of chaos, see for example [HM14].

1.3 Strong propagation of chaos

We show that Theorem 1 yields strong propagation of chaos, uniform in time. For µ and ν two probability
measures on Tdk, denote by Π (µ, ν) the set of couplings of µ and ν, i.e. the set of probability measures Γ
on Tdk × Tdk with Γ(A× Tdk) = µ(A) and Γ(Tdk × A) = ν(A) for all Borel set A of Tdk. Let us define
the usual L2-Wasserstein distance by

W2 (µ, ν) =

(
inf

Γ∈Π(µ,ν)

∫
Tdk

dTdk(x, y)2Γ (dxdy)

)1/2

,

where dTdk is the usual distance on the torus. For x = (xi)i∈J1,NK ∈ TdN , we write π(x) = 1
N

∑N
i=1 δxi the

associated empirical measure.
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Corollary 1. Under assumptions 1 and 2, assuming moreover that ρN (0) = ρ̄N (0), there is a constant C
such that for all k ≤ N ∈ N and all t ≥ 0,

‖ρkN (t)− ρ̄k(t)‖L1 +W2

(
ρkN (t), ρ̄k(t)

)
≤ C

(⌊
N

k

⌋)− 1
2

and
EρN (t) (W2(π(X), ρ̄t)) 6 Cα(N)

where α(N) = N−1/2 ln(1 +N) if d = 2 and α(N) = N−1/d if d > 2.

As shown in [BGV07], the last result yields confidence interval in uniform norm when estimating ρ̄t with
π(XN

t ) convoluted to a smooth kernel.
We postpone the proof as it will rely on results shown later. It will however be a direct corollary of

Theorem 1 and of the logarithmic Sobolev inequality proven in Corollary 2, which is a crucial ingredient in
the proof of Theorem 1.

2 Preliminary work

2.1 First results on the non-linear PDE

We have the following result concerning the solution of (1.2).

Theorem 2. Under Assumption 2, let µ0 ∈ C∞λ (Td). Then the system{
∂tρ̄t = −∇ · ((K ∗ ρ̄t) ρ̄t) + ∆ρ̄t, in R+ ×Td
ρ̄0 = µ0,

(2.1)

has, in the class of bounded solutions, a unique solution ρ̄(t, x) ∈ C∞λ (R+ ×Td).

Proof. The first part of the theorem (existence, uniqueness and smoothness) can be proven by following
closely the proof done by Ben-Artzi in [BA94]. For the sake of completeness, this is detailed in Appendix A.
Note that a similar result has also been recently proven in [Wyn23], where the Ck regularity of ρ̄t for any
given k and any given t is shown. The proof relies heavily on the fact that the kernelK is divergence free, that
the convolution operation tends to keep the regularity of the most regular term, and that the Fokker-Planck
equation has a smoothing effect.

Let us now prove the second part of the result, namely the time uniform bounds on ρ̄t. Assume that
µ0 ∈ C∞λ (Td), which by definition implies 1

λ ≤ µ0 ≤ λ, and consider ρ̄t the unique solution of (2.1). We
start by proving that K ∗ ρ̄t is in C∞. By definition

K ∗ ρ̄t(x) =

∫
Td
K(x− y)ρ̄t(y)dy = −

∫
Td
K(y)ρ̄t(x− y)dy.

Then

K ∗ ρ̄t(x) = −
∫
Td
∇ · V (y)ρ̄t(x− y)dy = −

∫
Td
V (y)∇yρ̄t(x− y)dy.

Since V ∈ L∞(Td) and ρ̄ ∈ C∞(R+ × Td), we easily deduce that K ∗ ρ̄, as well as all its derivatives, are
Lipschitz continuous on [0, T ]×Td for all T > 0. Hence K ∗ ρ̄ is C∞. Moreover, using that ∇ ·K = 0 (in
the sense of distribution), we immediately get that∇ · (K ∗ ρ̄t) = 0 for all t > 0.

For t > 0 and x ∈ Td, consider Zs the strong solution of the following stochastic differential equation
for s ∈ [0, t]

dZs =
√

2dBs −K ∗ ρ̄t−s(Zs)ds, Z0 = x

6



which exists, is unique and non-explosive since K ∗ ρ̄t−s is smooth and bounded. Then

ρ̄(t, x) = Ex (ρ̄0(Zt)) .

The bounds on ρ̄t follow.

2.2 Higher order estimates

We have already established that ρ̄t is bounded uniformly in time. In this section, we extend this result to all
its derivatives.

Lemma 1. For all n > 1 and α1, ..., αn ∈ J1, dK, there exist Cun , C
∞
n > 0 such that for all t > 0,

‖∂α1,...,αn ρ̄t‖L∞ ≤ Cun and
∫ t

0
‖∂α1,...,αn ρ̄s‖2L∞ds ≤ C∞n

Proof. Thanks to Morrey’s inequality and Sobolev embeddings, it is sufficient to prove such bounds in the
Sobolev spaceHm for allm, in other words it is sufficient to prove similar bounds for ‖∂α1,...,αn ρ̄s‖2L2 for all
multi-indexes α. The proof is by induction on the order of the derivatives, we only detail the first iterations.
We write f = ∇ · ((K ∗ ρ̄t) ρ̄t) = (K ∗ ρ̄t) · ∇ρ̄t.

Integrated bound for ‖∇ρ̄t‖2L2 . We have

1

2

d

dt

∫
Td
|ρ̄t|2 =

∫
Td
ρ̄t∂tρ̄t =

∫
Td
ρ̄t∆ρ̄t −

∫
Td
ρ̄tf.

On the one hand, ∫
Td
ρ̄t∆ρ̄t = −

∫
Td
|∇ρ̄t|2.

On the other hand,∫
Td
ρ̄tf =

∫
Td
ρ̄t∇ · ((K ∗ ρ̄t) ρ̄t) = −

∫
Td
∇ρ̄t · (K ∗ ρ̄t) ρ̄t = −

∫
Td
ρ̄tf = 0.

Hence,

1

2

d

dt
‖ρ̄t‖2L2 + ‖∇ρ̄t‖2L2 = 0.

By integrating the equality above, we get
∫ t

0 ‖∇ρ̄t‖
2
L2 =

‖ρ̄0‖2
L2−‖ρ̄t‖2L2

2 ≤ λ2

2 = C∞1 .

Integrated bound for ‖∂α1,α2 ρ̄t‖2L2 and uniform bound for ‖∇ρ̄t‖2L2 . Similarly, we calculate

1

2

d

dt

∫
Td
|∂α1 ρ̄t|2 =

∫
Td
∂α1 ρ̄t∂α1(∂tρ̄t) =

∫
Td
∂α1 ρ̄t∂α1 (∆ρ̄t − f)

= −
∑
α2

∫
Td
|∂α1,α2 ρ̄t|2 +

∫
Td
∂α1,α1 ρ̄tf.

Bounding ∫
Td
∂α1,α1 ρ̄tf ≤ ‖∂α1,α1 ρ̄t‖L2‖f‖L2 ≤

1

2

∑
α2

‖∂α1,α2 ρ̄t‖2L2 +
1

2
‖f‖2L2 ,
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and

‖f‖2L2 =

∫
Td

∣∣∣∣∣∣
d∑

γ=1

(Kγ ∗ ρ̄t) ∂γ ρ̄t

∣∣∣∣∣∣
2

≤ ‖K ∗ ρ̄t‖2L∞‖∇ρ̄t‖2L2 ≤ ‖K‖2L1‖ρ̄t‖2L∞‖∇ρ̄t‖2L2 ,

where we used Young’s convolution inequality, we get

1

2

d

dt
‖∂α1 ρ̄t‖2L2 +

1

2

∑
α2

‖∂α1,α2 ρ̄t‖2L2 ≤
1

2
‖K‖2L1‖ρ̄t‖2L∞‖∇ρ̄t‖2L2 .

By integrating the equality above and using Theorem 2, we get

‖∂α1 ρ̄t‖2L2 − ‖∂α1 ρ̄0‖2L2

2
+

1

2

∫ t

0

∑
α2

‖∂α1,α2 ρ̄s‖2L2ds ≤
1

2
‖K‖2L1λ

2

∫ t

0
‖∇ρ̄s‖2L2ds

≤1

2
‖K‖2L1λ

2C∞1 .

This provides both the existence of C∞2 such that for all t ≥ 0,
∫ t

0 ‖∂α1,α2 ρ̄s‖2L2ds ≤ C∞2 , and the
existence of Cu1 such that for all t ≥ 0, ‖∂α1 ρ̄t‖2L2 ≤ Cu1 .

Integrated bound bound for ‖∂α1,α2,α3 ρ̄t‖2L2 and uniform bound for ‖∂α1,α2 ρ̄t‖2L2 . We have

∂αf =
∑
γ

(∂αKγ ∗ ρ̄t)∂γ ρ̄t +
∑
γ

(Kγ ∗ ρ̄t)∂α,γ ρ̄t,

and

∂αKγ∗ρ̄t =

∫
Td
∂αKγ(x−y)ρ̄t(y)dy = −

∫
Td
∂αKγ(y)ρ̄t(x−y)dy = −

∫
Td
Kγ(y)∂αρ̄t(x−y)dy

= −
∑
β

∫
Td
Vγ,β(y)∂α,β ρ̄t(x− y)dy =

∑
β

Vγ,β ∗ ∂α,β ρ̄t.

Hence

∑
γ

(∂αKγ ∗ ρ̄t) ∂γ ρ̄t =
∑
γ

∑
β

Vγ,β ∗ ∂α,β ρ̄t

 ∂γ ρ̄t

= (V ∗ ∂α∇ρ̄t)∇ρ̄t,

and thus

‖
∑
γ

(∂αKγ ∗ ρ̄t) ∂γ ρ̄t‖L2 ≤ ‖V ∗ ∂α∇ρ̄t‖L∞‖∇ρ̄t‖L2 ≤ ‖V ‖L∞‖∂α∇ρ̄t‖L1‖∇ρ̄t‖L2 .

Therefore

‖∂αf‖2L2 ≤ 2‖V ‖2L∞‖∂α∇ρ̄t‖2L1‖∇ρ̄t‖2L2 + 2‖K‖2L1‖ρ̄t‖2L∞‖∂α∇ρ̄t‖2L2 .
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Similarly to previous computations,

1

2

d

dt

∫
Td
|∂α1,α2 ρ̄t|2 =

∫
Td
∂α1,α2 ρ̄t∂α1,α2 (∆ρ̄t − f)

=−
∑
α3

∫
Td
|∂α1,α2,α3 ρ̄t|2 +

∫
Td
∂α1,α2,α2 ρ̄t∂α1f

≤−
∑
α3

‖∂α1,α2,α3 ρ̄t‖2L2 + ‖∂α1,α2,α2 ρ̄t‖L2‖∂α1f‖L2

≤−
∑
α3

‖∂α1,α2,α3 ρ̄t‖2L2 +
1

2

∑
α3

‖∂α1,α2,α3 ρ̄t‖2L2

+ ‖V ‖2L∞‖∂α1∇ρ̄t‖2L1‖∇ρ̄t‖2L2 + ‖K‖2L1‖ρ̄t‖2L∞‖∂α1∇ρ̄t‖2L2

≤− 1

2

∑
α3

‖∂α1,α2,α3 ρ̄t‖2L2 + ‖V ‖2L∞‖∇ρ̄t‖2L2‖∂α1∇ρ̄t‖2L2

+ ‖K‖2L1‖ρ̄t‖2L∞‖∂α1∇ρ̄t‖2L2 ,

and thus

1

2

d

dt
‖∂α1,α2 ρ̄t‖2L2 +

1

2

∑
α3

‖∂α1,α2,α3 ρ̄t‖2L2 ≤‖V ‖2L∞‖∂α1∇ρ̄t‖2L2‖∇ρ̄t‖2L2

+ ‖K‖2L1‖ρ̄t‖2L∞‖∂α1∇ρ̄t‖2L2 .

Integrating over time, and using Theorem 2

‖∂α1,α2 ρ̄t‖2L2 − ‖∂α1,α2 ρ̄0‖2L2

2
+

1

2

∑
α3

∫ t

0
‖∂α1,α2,α3 ρ̄s‖2L2ds

≤‖V ‖2L∞dCu1
∫ t

0
‖∂α1∇ρ̄s‖2L2ds+ ‖K‖2L1λ

2

∫ t

0
‖∂α1∇ρ̄s‖2L2ds

≤d
(
d‖V ‖2L∞Cu1 + ‖K‖2L1λ

2
)
C∞2

This provides both the existence of C∞3 such that for all t ≥ 0,
∫ t

0 ‖∂α1,α2,α3 ρ̄s‖2L2ds ≤ C∞3 , and the
existence of Cu2 such that for all t ≥ 0, ‖∂α1,α2 ρ̄t‖2L2 ≤ Cu2 .

The proof is then by induction on the order of derivative, iterating the same method.

2.3 Logarithmic Sobolev inequality

We now establish a logarithmic Sobolev inequality (LSI) for ρ̄t solution of (1.2). To this end, we use the fact
that the uniform distribution u on Td satisfies a LSI and that ρ̄t is bounded (below and above) uniformly in
time. Recall the following Holley-Stroock perturbation lemma, from [BGL14, Prop. 5.1.6].

Lemma 2. Assume that ν is a probability measure on Td satisfying a logarithmic Sobolev inequality with
constant CLSν , i.e for all f ∈ C∞>0(Td),

Entν(f) :=

∫
Td
f log fdν −

∫
Td
fdν log

(∫
Td
fdν

)
≤ CLSν

∫
Td

|∇f |2

f
dν.

Let µ be a probability measure with density h with respect to ν such that, for some constant λ > 0, 1
λ ≤ h ≤

λ. Then µ satisfies a logarithmic Sobolev inequality with constant CLSµ = λ2CLSν , i.e for all f ∈ C∞>0(Td)

Entµ(f) ≤ λ2CLSν

∫
Td

|∇f |2

f
dµ.
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We also know that the uniform distribution u (i.e the Lebesgue measure) on Td satisfies a LSI. See for
instance Proposition 5.7.5 of [BGL14], or [Gen04] for a proof in dimension 1, the results in higher dimension
being a consequence of tensorization properties.

Lemma 3. Let u be the uniform distribution on Td . Then u satisfies a logarithmic Sobolev inequality : for
all f ∈ C∞>0(Td)

Entu(f) ≤ 1

8π2

∫
Td

|∇f |2

f
du (2.2)

A direct consequence of Lemma 2, Lemma 3 and the bounds on ρ̄t given in Theorem 2 is the following
theorem, as well as its corollary. It establishes a uniform in time logarithmic Sobolev inequality for ρ̄t,
crucial for the uniform control of the Fisher information appearing in the study of the dissipation of the
entropy between the law of the particles system and the nonlinear ones.

Theorem 3. Under Assumptions 1 and 2, for all t ≥ 0 and all function f ∈ C∞>0(Td),

Entρ̄t(f) ≤ λ2

8π2

∫
Td

|∇f |2

f
dρ̄t

Corollary 2. Under Assumptions 1 and 2, for allN ∈ N, t ≥ 0 and all probability density µN ∈ C∞>0(TdN ),

HN (µN , ρ̄N (t)) ≤ λ2

8π2

1

N

N∑
i=1

∫
Td
µN

∣∣∣∣∇xi log
µN
ρ̄N (t)

∣∣∣∣2
Proof. By tensorization of the logarithmic Sobolev inequality (see for instance Proposition 5.2.7 of [BGL14]),
since ρ̄ satisfies a LSI with constant λ2

8π2 , so does ρ̄N . Using Theorem 3 for f = µN
ρ̄N

we thus get

HN (µN , ρ̄N (t)) =
1

N
Entρ̄N (t)

(
µN
ρ̄N (t)

)
≤ λ2

8π2

1

N
Eρ̄N (t)

(∣∣∣∣∇x µN
ρ̄N (t)

∣∣∣∣2 ρ̄N (t)

µN

)
.

Hence the result.

3 Proofs of the main results

From now on and up to Section 3.5 (excluded), in addition to Assumptions 1 and 2, we suppose that there
exists a solution ρN ∈ C∞>0(R+ ×TdN ) of (1.4). This justifies the validity of the various calculations con-
ducted in this part of the proof. The question to lift this assumption (by taking a limit in a regularized
problem) is addressed in Section 3.5

3.1 Time evolution of the relative entropy

We write

HN (t) = HN (ρN (t), ρ̄N (t)) , IN (t) =
1

N

∑
i

∫
TdN

ρN (t)

∣∣∣∣∇xi log
ρN (t)

ρ̄N (t)

∣∣∣∣2 dx.

as short hands for the relative entropy and relative Fisher information. We start by calculating the time
evolution of the relative entropy.
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Lemma 4. For all t > 0,
d

dt
HN (t) ≤ AN (t) +

1

2
BN (t)− 1

2
IN (t), (3.1)

with

AN (t) :=
1

N2

∑
i,j

∫
TdN

ρN (V (xi − xj)− V ∗ ρ̄t(xi)) :
∇2
xi ρ̄N

ρ̄N
dx

BN (t) :=
1

N

∑
i

∫
TdN

ρN
|∇xi ρ̄N |

2

ρ̄2
N

∣∣∣∣∣∣ 1

N

∑
j

V (xi − xj)− V ∗ ρ̄t(xi)

∣∣∣∣∣∣
2

f

dx.

Here, | · |2f denotes the sum of the square of the coefficients of the matrix.

Proof. It has been shown, in [JW18], that

d

dt
HN (t) ≤ −IN (t)− 1

N2

∑
i,j

∫
TdN

ρN (K(xi − xj)−K ∗ ρ̄t(xi)) · ∇xi log ρ̄Ndx,

with

− 1

N2

∑
i,j

∫
TdN

ρN (K(xi − xj)−K ∗ ρ̄t(xi)) · ∇xi log ρ̄Ndx

=
1

N2

∑
i,j

∫
TdN

ρN (V (xi − xj)− V ∗ ρ̄t(xi)) :
∇2
xi ρ̄N

ρ̄N
dx

+
1

N2

∑
i,j

∫
TdN

(V (xi − xj)− V ∗ ρ̄t(xi)) : ∇xi ρ̄N ⊗∇xi
ρN
ρ̄N

dx.

Let us consider the latter term
1

N2

∑
i,j

∫
TdN

(V (xi − xj)− V ∗ ρ̄t(xi)) : ∇xi ρ̄N ⊗∇xi
ρN
ρ̄N

dx

=
1

N

∑
i

∑
α,β

∫
TdN

 1

N

∑
j

V (xi − xj)− V ∗ ρ̄t(xi)


α,β

(∇xi ρ̄N )α

(
∇xi

ρN
ρ̄N

)
β

dx.

Let

yiβ :=

(
∇xi

ρN
ρ̄N

)
β

ρ̄N√
ρN

, ziα := (∇xi ρ̄N )α

√
ρN

ρ̄N
, and xiα,β :=

 1

N

∑
j

V (xi − xj)− V ∗ ρ̄(xi)


α,β

,

then, using xy ≤ x2

2 + y2

2 for all x, y ∈ R,

∑
α,β

xiα,βz
i
αy

i
β =

∑
β

yiβ

(∑
α

xiα,βz
i
α

)
≤ 1

2

∑
β

(yiβ)2 +
1

2

∑
β

(∑
α

xiα,βz
i
α

)2

,

and thus, using the Cauchy-Schwarz inequality,∑
α,β

xiα,βz
i
αy

i
β ≤

1

2

∑
β

(yiβ)2 +
1

2

∑
β

(∑
α

(xiα,β)2

)(∑
α

(ziα)2

)

=
1

2

∑
β

(yiβ)2 +
1

2

(∑
α

(ziα)2

)∑
α,β

(xiα,β)2

 .
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Hence

1

N2

∑
i,j

∫
TdN

(V (xi − xj)− V ∗ ρ̄t(xi)) : ∇xi ρ̄N ⊗∇xi
ρN
ρ̄N

dx

≤ 1

2N

∑
i

∫
TdN

ρ̄2
N

ρN

∣∣∣∣∇xi ρNρ̄N
∣∣∣∣2 dx +

1

2N

∑
i

∫
TdN

ρN
|∇xi ρ̄N |

2

ρ̄2
N

∣∣∣∣∣∣ 1

N

∑
j

V (xi − xj)− V ∗ ρ̄t(xi)

∣∣∣∣∣∣
2

f

dx

=
1

2
IN (t) +

1

2N

∑
i

∫
TdN

ρN
|∇xi ρ̄N |

2

ρ̄2
N

∣∣∣∣∣∣ 1

N

∑
j

V (xi − xj)− V ∗ ρ̄t(xi)

∣∣∣∣∣∣
2

f

dx.

This yields the desired result.

3.2 Change of reference measure and Law of Large Number

We now state three general results which will be useful in order to control the error termsAN andBN defined
in Lemma 4. The first one will be used to perform a change of measure from ρN to ρ̄N .

Lemma 5. Let N ∈ N. For two probability densities µ and ν on TdN , and any Φ ∈ L∞(TdN ) and η > 0,

EµΦ ≤ ηHN (µ, ν) +
η

N
logEνeNΦ/η.

Proof. Define

f =
1

θ
eNΦ/ην, θ =

∫
TdN

eNΦ/ηνdx.

Notice f is a probability density. By convexity of the entropy

1

N

∫
TdN

µ log fdx ≤ 1

N

∫
TdN

µ logµdx.

On the other hand

1

N

∫
TdN

µ log fdx =
1

η

∫
TdN

µΦdx +
1

N

∫
TdN

µ log νdx− log θ

N
.

The next two statements are crucial theorems of [JW18].

Theorem 4. [Theorem 3 of [JW18]] Consider any probability measure µ on Td and a scalar function
ψ ∈ L∞(Td ×Td) with ‖ψ‖L∞ < 1

2e and such that for all z ∈ Td,
∫
Td
ψ(z, x)µ(dx) = 0. Then

∫
TdN

exp
( 1

N

N∑
j1,j2=1

ψ(x1, xj1)ψ(x1, xj2)
)
µ⊗Ndx ≤ C = 2

(
1 +

10α

(1− α)3
+

β

1− β

)
, (3.2)

where

α = (e‖ψ‖L∞)4 < 1 , β =
(√

2e‖ψ‖L∞
)4

< 1.

The second one is a nice improvement of the usual level two large deviations bound for i.i.d. random
variables.
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Theorem 5. [Theorem 4 of [JW18]] Consider any probability measure µ on Td and φ ∈ L∞(Td × Td)
with

γ :=
(
16002 + 36e4

) (
sup
p≥1

‖ supz |φ(·, z)|‖Lp(µ))

p

)2
< 1. (3.3)

Assume that φ satisfies the following cancellations

∀z ∈ Td,
∫
Td
φ(x, z)µ(dx) = 0 =

∫
Td
φ(z, x)µ(dx) .

Then, for all N ∈ N, ∫
TdN

exp
( 1

N

N∑
i,j=1

φ(xi, xj)
)
µ⊗Ndx ≤ 2

1− γ
<∞. (3.4)

3.3 Bounding the error terms

Lemma 6. The terms AN and BN introduced in Lemma 4 are such that

AN (t) +
1

2
BN (t) 6 C

(
HN (t) +

1

N

)
with

C = Ĉ1λd‖∇2ρ̄t‖L∞‖V ‖L∞ + Ĉ2λ
2d2‖V ‖2L∞‖∇ρ̄t‖2L∞

where Ĉ1, Ĉ2 are universal constants.

Proof. Recall from Theorem 2 that ρ̄t ∈ C∞λ (Td) for all t ≥ 0. We first bound BN . For (Xi
t)i given in (1.3),

we have

BN =
1

N

∑
i

∫
TdN

ρN
|∇ρ̄t|2

ρ̄t2
(xi)

∣∣∣∣∣∣ 1

N

∑
j

V (xi − xj)− V ∗ ρ̄t(xi)

∣∣∣∣∣∣
2

f

dx

=
1

N

∑
i

E

∣∣∣∣∇ρ̄tρ̄t (Xi
t)

∣∣∣∣2
∣∣∣∣∣∣ 1

N

∑
j

V (Xi
t −X

j
t )− V ∗ ρ̄t(Xi

t)

∣∣∣∣∣∣
2

f


=

1

N

∑
i

d∑
α,β=1

E

∣∣∣∣∇ρ̄tρ̄t (Xi
t)

∣∣∣∣2
 1

N

∑
j

Vα,β(Xi
t −X

j
t )− Vα,β ∗ ρ̄t(Xi

t)

2
≤
λ2‖∇ρ̄t‖2L∞

N

∑
i

d∑
α,β=1

E

 1

N

∑
j

Vα,β(Xi
t −X

j
t )− Vα,β ∗ ρ̄t(Xi

t)

2 .

We apply Lemma 5 to each

Φα,β =

 1

N

∑
j

Vα,β(xi − xj)− Vα,β ∗ ρ̄t(xi)

2

,
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to get, for all CB > 0,

E

 1

N

∑
j

Vα,β(Xi
t −X

j
t )− Vα,β ∗ ρ̄t(Xi

t)

2
≤ CBHN (t) +

CB
N

logE

exp

 1

CB

 1√
N

∑
j

Vα,β(X̄i
t − X̄

j
t )− Vα,β ∗ ρ̄t(X̄i

t)

2 .

This way,

BN ≤
CBλ

2‖∇ρ̄t‖2L∞
N2

∑
i

∑
α,β

log

∫
TdN

ρ̄N exp

 1

CB

 1√
N

∑
j

Vα,β(xi − xj)− Vα,β ∗ ρ̄t(xi)

2 dx

+ CBd
2λ2‖∇ρ̄t‖2L∞HN (t).

In the following we choose CB = 64e2‖V ‖2L∞ . Applying Theorem 4 to

ψ(z, x) =
1

8e‖V ‖L∞
(V (z − x)− V ∗ ρ̄t(z)) ,

which satisfies ‖ψ‖L∞ ≤ 1
4e and is such that∫

Td
ψ(z, x)ρ̄t(x)dx =

1

8e‖V ‖L∞

∫
Td
V (z − x)ρ̄t(x)dx− 1

8e‖V ‖L∞

∫
Td
V ∗ ρ̄t(z)ρ̄t(x)dx = 0,

we get

BN ≤ ĈB‖V ‖2L∞λ2d2‖∇ρ̄t‖2L∞

(
HN (t) +

C̃B
N

)
, (3.5)

where ĈB and C̃B are universal constants.
We now proceed with the bound on AN . Applying Lemma 5 to

Φ =
1

N2

∑
i,j

(V (xi − xj)− V ∗ ρ̄t(xi)) :
∇2
xi ρ̄N

ρ̄N
,

we obtain, for all CA > 0,

AN ≤
CA
N

log

∫
TdN

ρ̄N exp

 1

CAN

∑
i,j

(V (xi − xj)− V ∗ ρ̄t(xi)) :
∇2
xi ρ̄N

ρ̄N

 dx + CAHN (t)

In the following we choose

CA = 4
√

16002 + 36e4‖∇2ρ̄t‖L∞‖V ‖L∞λd := ĈAλd‖∇2ρ̄t‖L∞‖V ‖L∞ .

Then, we apply Theorem 5 to

φ(z, x) =
1

CA

(
(V (z − x)− V ∗ ρ̄t(z)) :

∇2ρ̄t
ρ̄t

(z)

)
,
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which satisfies, thanks to Assumption 2∫
Td
φ(z, x)ρ̄t(z)dz =

1

CA

∫
Td

(
(V (z − x)− V ∗ ρ̄t(z)) :

∇2ρ̄t
ρ̄t

(z)

)
ρ̄t(z)dz

=
1

CA

∫
Td

(divK(z − x)− divK ∗ ρ̄t(z)) ρ̄t(z)dz = 0,

and, thanks to
∫
Td

(V (z − x)− V ∗ ρ̄t(z)) ρ̄t(x)dx = 0,∫
Td
φ(z, x)ρ̄t(x)dx = 0.

Through our choice of CA, (3.3) is verified, as γ ≤
(
16002 + 36e4

) (2d‖V ‖L∞‖∇2ρ̄t‖L∞λ
CA

)2
= 1

4 < 1.
Hence

AN ≤ ĈA‖∇2ρ̄t‖L∞‖V ‖L∞λd

(
HN (t) +

C̃A
N

)
, (3.6)

where ĈA and C̃A are universal constants. The conclusion easily follows.

3.4 Proof of Theorem 1 in the smooth case

It only remains to gather the previous results. Equations (3.1), (3.5) and (3.6) yield

d

dt
HN (t) ≤

(
ĈAλd‖∇2ρ̄t‖L∞‖V ‖L∞ +

ĈB‖V ‖2L∞λ2‖∇ρ̄t‖2L∞d2

2

)
HN (t)

+
C2

N
− 1

2
IN (t),

and using Corollary 2 and ĈA‖∇2ρ̄t‖L∞‖V ‖L∞λd ≤ 1
2

(
2π
λ

)2
+ 1

2

(
λ
2π

)2
Ĉ2
A‖∇2ρ̄t‖2L∞‖V ‖2L∞λ2d2

d

dt
HN (t) ≤−

((
2π

λ

)2

− ĈAλd‖∇2ρ̄t‖L∞‖V ‖L∞ −
ĈB‖V ‖2L∞λ2‖∇ρ̄t‖2L∞d2

2

)
HN (t) +

C2

N

≤− 1

2

((
2π

λ

)2

− Ĉ2
A

λ4

4π2
d2‖∇2ρ̄t‖2L∞‖V ‖2L∞ − ĈB‖V ‖2L∞‖∇ρ̄t‖2L∞λ2d2

)
HN (t) +

C2

N
.

In a more concise way, using Lemma 1, it means there are constants C1, C
∞
2 , C3 > 0 and a function t 7→

C2(t) > 0 with
∫ t

0 C2(s)ds ≤ C∞2 for all t ≥ 0 such that for all t ≥ 0

d

dt
HN (t) ≤ −(C1 − C2(t))HN (t) +

C3

N
.

Multiplying by exp(C1t−
∫ t

0 C2(s)ds) and integrating in time we get

HN (t) ≤ e−C1t+
∫ t
0 C2(s)dsHN (0) +

C3

N

∫ t

0
eC1(s−t)+

∫ t
s C2(u)duds

≤ eC∞2 −C1tHN (0) +
C3

C1N
eC
∞
2 ,

which concludes.
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3.5 Dealing with the regularity of the density of the particle system

As mentioned at the beginning of Section 3, up to now we have proven the result under the additional
assumption that there exists a smooth solution ρN to (1.4). Let us now remove this assumption. Consider
(ζε)ε≥0 a sequence of mollifiers such that ‖ζε‖L1 = 1, whose compact support are assumed to be strictly
contained within

[
−1

2 ,
1
2

]d. Let us consider Kε = K ∗ ζε. We have Kε ∈ C∞(Td) and div(Kε) = 0.
Let ρεN be the unique smooth solution (see Lemma 8 below) of the parabolic equation with smooth

coefficients

∂tρ
ε
N +

1

N

N∑
i,j=1

Kε(xi − xj) · ∇xiρεN =
N∑
i=1

∆xiρ
ε
N , (3.7)

with initial condition ρεN (0, ·) = ρN (0, ·)..
We have the following bounds

Lemma 7. Let γ > 1 be such that ρN (0) ∈ C∞γ (TdN ). Then, for all t ≥ 0 and all ε > 0, ρεN (t) ∈ C∞γ (TdN ).

Proof. Let x ∈ TdN Consider the particle system dXε
i (t) = − 1

N

∑N
j=1K

ε(Xε
i (t) − Xε

j (t))dt +
√

2dBi
t

with initial condition Xε
0 = x, where we denote Xε

t = (Xε
1(t), . . . , Xε

N (t)). We have strong existence and
uniqueness for this SDE. Then

ρεN (t, x) = E (ρεN (0,Xε
t)) .

The bounds on ρεN follow.

Using Lemma 7, we get (ρεN )ε is a sequence of smooth functions uniformly bounded in L∞(R+×TNd).
This yields two results.

First, we can extract a weakly-* converging subsequence inL∞(R+×TNd), i.e there exists ρN ∈ L∞(R+ ×TNd)
such that for all f ∈ L1(R+ ×TNd) we have∫

TNd
ρεNf −→

ε→0+

∫
TNd

ρNf.

We finally check that ρN is indeed a weak solution of (1.4). For all T ≥ 0 and for all f smooth test function
on [0, T ]×TNd

• We have, since ∂tf is smooth and therefore in L1([0, T ]×TNd)∫
TNd

ρεN∂tf →
∫
TNd

ρN∂tf.

• Likewise, since ∆xif is smooth and therefore in L1([0, T ]×TNd)∫
TNd

ρεN∆xif →
∫
TNd

ρN∆xif.

• Finally∫
TNd

ρεNK
ε(xi − xj) · ∇xif −

∫
TNd

ρNK(xi − xj) · ∇xif

=

∫
TNd

ρεN (Kε(xi − xj)−K(xi − xj)) · ∇xif +

∫
TNd

(ρεN − ρN )K(xi − xj) · ∇xif

≤‖ρεN‖L∞‖∇xif‖L∞‖Kε −K‖L1 +

∫
TNd

(ρεN − ρN )K(xi − xj) · ∇xif

→0,

as ‖Kε −K‖L1 → 0 and K(xi − xj) · ∇xif ∈ L1([0, T ]×TNd).
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We have thus proven that ρN is a weak solution of (1.4).
Likewise, we may consider (ρ̄ε)ε, which weakly-* converges to a solution which, by uniqueness, is ρ̄.
Second, ρεN satisfies the assumption made at the beginning of Section 3, i.e ρεN ∈ C∞>0(R+ ×Td). Since

by considering V ε = V ∗ ζε we have Kε = div (V ε), we get that Kε satisfies Assumption 2 and that the
calculations done in Section 3 are valid for this specific kernel, i.e

HN (ρεN (t), ρ̄εN (t)) ≤ HN (ρN (0), ρ̄N (0))e−C
ε
1teC

∞,ε
+
Cε3e

C∞,ε

Cε1

1

N
. (3.8)

Notice how, in the proof of Lemma 1, the constants bounding the various derivatives of ρ̄ only depend
on the initial conditions, on ‖K‖L1 and on ‖V ‖L∞ . Since (ζε)ε≥0 is a sequence of mollifiers, we have
‖Kε‖L1 → ‖K‖L1 as ε tends to 0, and ‖V ε‖L∞ ≤ ‖V ‖L∞ . The righthand side of (3.8) can thus be chosen
independent of ε.

We now use the fact that for u ≥ 0 and v ∈ R we have uv ≤ u log u− u+ ev, to obtain the variational
formulation of the entropy,

NHN (ρεN (t), ρ̄εN (t)) = sup
{
EρεN (t)(g)− Eρ̄εN (t) (eg) + 1, g ∈ L∞

}
, (3.9)

the equality being attained for g = log
(
ρεN
ρ̄εN

)
. We thus consider, for g ∈ L∞,

1

N

(
EρεN (t)(g)− Eρ̄εN (t) (eg) + 1

)
≤ HN (ρN (0), ρ̄N (0))e−C1teC

∞
+
C3e

C∞

1 + C1

1

N
.

By definition of the weak-* convergence in L∞ (since both g and eg are thus in L1), we have the following
convergence EρεN (t)(g) −→ EρN (t)(g) and Eρ̄εN (t) (eg) −→ Eρ̄N (t) (eg) as ε tends to 0. Therefore, for all
g ∈ L∞,

1

N

(
EρN (t)(g)− Eρ̄N (t) (eg) + 1

)
≤ HN (ρN (0), ρ̄N (0))e−C1teC

∞
+
C3e

C∞

1 + C1

1

N
,

which yields Theorem 1, using (3.9) forHN (ρN (t), ρ̄N (t)).

3.6 Proof of Corollary 1

Let k ∈ N, and N ≥ k. The sub-additivity of the entropy (see for instance Theorem 10.2.3 of [ABC+00])
implies that the (rescaled) relative entropy of the marginals is bounded by the total (rescaled) relative entropy

k

⌊
N

k

⌋
Hk(ρkN (t), ρ̄k(t)) ≤ NHN (ρN (t), ρ̄N (t)).

The logarithmic Sobolev inequality established in Corollary 2 implies a Talagrand’s transportation inequality
(see [OV00]), so that the L2-Wasserstein distance is bounded by the relative entropy. Classically, this is also
the case of the total variation thanks to Pinsker’s inequality, and thus

‖ρkN (t)− ρ̄k(t)‖L1 +W2(ρkN (t), ρ̄k(t)) ≤ C
√
kHk(ρkN (t), ρ̄k(t)) ≤ C

√
N⌊
N
k

⌋HN (ρN (t), ρ̄N (t)).

With the additional assumption that HN (ρN (0), ρ̄N (0)) = 0, we thus get the result using Theorem 1. To
obtain the result on the empirical measure, we recall for the sake of completeness the arguments of [JM22,
Proposition 8]. Given x, y ∈ TdN , a coupling of π(x) and π(y) is obtained by considering (xJ , yJ) where J
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is uniformly distributed over J1, NK. From this we getW2(π(x), π(y)) 6 |x−y|/
√
N . Considering (X,Y)

an optimal coupling of (ρN (t), ρ̄N (t)), we bound

E (W2(π(X, ρ̄t)) 6 E (W2(π(X), π(Y))) + E (W2(π(Y), ρ̄t))

6
1√
N
W2(ρN (t), ρ̄N (t)) + E (W2(π(Y), ρ̄t)) .

The last term is tackled with the result for i.i.d. variables established in [FG15].

A Proof of Theorem 2

The proof is based on an iterative procedure, and relies heavily on the work of Ben-Artzi [BA94]. Let
ρ̄(−1) := 0, and then for k ∈ N solve

∂tρ̄
(k) =−

(
u(k−1) · ∇

)
ρ̄(k) + ∆ρ̄(k), in R+ ×Td (A.1)

u(k) =K ∗ ρ̄(k) (A.2)

ρ̄(k)(0, ·) =µ0. (A.3)

Let us recall the following lemma concerning the regularity of the second order parabolic equation. We refer
to Chapter 7 of [Eva10] for a proof on a bounded domain that can be extended to the torus.

Lemma 8. Let a(t, x) be a C∞ function on R+ ×Td and ψ0 ∈ C∞(Td). Then the problem

∂tψ = −a · ∇ψ + ∆ψ, in R+ ×Td
ψ(0, ·) = ψ0,

has a unique solution, which is C∞.

Lemma 9. Suppose µ0 ∈ C∞(Td). Then the system (A.1)-(A.3) defines successively a sequence of C∞
solutions {ρ̄(k), u(k)}k∈N.
Furthermore, for all t ≥ 0 and all k ∈ N, ‖ρ̄(k)(t, ·)‖L∞ ≤ ‖µ0‖L∞ and ‖u(k)(t, ·)‖L∞ ≤ ‖K‖L1‖µ0‖L∞ .
Finally, given a final time T ≥ 0, ρ̄(k) (resp. u(k)) and all its derivatives, both in time and in space, are
bounded on [0, T ]×Td uniformly in k

Proof. We use induction on k. The assertion is clear for ρ̄(0) as the explicit solution to the heat equation.
Suppose {ρ̄(j), u(j−1)}j=0,...,k have be shown to be C∞ solutions bounded uniformly in time.

Regularity. By definition

u(k)(t, x) = K ∗ ρ̄(k)(t, x) =

∫
Td
K(x− y)ρ̄(k)(t, y)dy = −

∫
Td
K(y)ρ̄(k)(t, x− y)dy.

Then

u(k)(t, x) = −
∫
Td

divV (y)ρ̄(k)(t, x− y)dy = −
∫
Td
V (y)∇yρ̄(k)(t, x− y)dy.

Since we are in the compact set Td, that V ∈ L∞(Td), and that ρ̄(k) ∈ C∞(R+ × Td) by induction
hypothesis, we can easily show that u(k), as well as all its derivatives, are Lipschitz continuous. Hence u(k)

is C∞. Using Lemma 8 in (A.1) with k replaced by k + 1 yields the desired result for ρ̄(k+1).
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Boundedness of ρ̄(k+1) and u(k). Let us show that for all T ≥ 0, ρ̄(k+1) and u(k) are both bounded on
[0, T ]×Td, with a bound independent of T . We have, using Young’s convolution inequality and the induction
hypothesis

‖u(k)(t, ·)‖L∞ ≤ ‖K‖L1‖ρ̄(k)(t, ·)‖L∞ ≤ ‖K‖L1‖µ0‖L∞ .

Now ρ̄(k+1) is the unique solution of

∂tρ̄
(k+1) =−

(
u(k) · ∇

)
ρ̄(k+1) + ∆ρ̄(k+1)

ρ̄(k+1)(0, x) =µ0(x).

For t > 0, consider Z(k+1)
s the strong solution of the following stochastic differential equation for s ∈ [0, t]

dZ(k+1)
s =

√
2dBs − u(k)(t− s, Zs)ds,

which exists, is unique and non-explosive since u(k) is smooth, bounded and Lipschitz continuous. Then

ρ̄(k+1)(t, x) = Ex
(
µ0(Z

(k+1)
t )

)
.

We thus get
‖ρ̄(k+1)

t ‖L∞ ≤ ‖µ0‖L∞ .
Notice that this is simply a probabilistic way of presenting the use of the maximum principle.

Boundedness of the derivatives of ρ̄(k+1) and u(k). The boundedness of the derivatives of u(k) is a direct
consequence of the boundedness of the derivatives of ρ̄(k) thanks to Young’s convolution inequality. Then,
the proof for ρ̄(k+1) similar to the proof of Lemma 1, using the boundedness of the derivatives of u(k). To
show that the bounds are in fact independent of k, we follow the proof of Lemma 1, i.e by induction on
the order of the derivative, and within each induction step we prove that both the integrated and uniform
bounds are independent of k. This comes from the fact that the proof initially only relies on the bounds on
‖ρ̄(k+1)

t ‖L∞ and ‖u(k)
t ‖L∞ -which, as we have shown, only depend on ‖µ0‖L∞- and then for each induction

step on the initial condition and on the bounds constructed at the previous step (therefore independent of k).
The bounds concerning the derivatives involving time are then obtained thanks to the bounds on the space
derivatives using (A.1).

Proof of Theorem 2. It is sufficient to prove existence and uniqueness of the solution in [0, T ]×Td for all
T ≥ 0, since then the solutions on [0, T1]×Td and [0, T2]×Td, with T1 < T2, must coincide in [0, T1]×Td,
leading to the existence and uniqueness of the global solution in R+ ×Td. Let us consider T ≥ 0

Existence in [0, T ]×Td for T small enough: Let us show the existence of the limit solution. We consider
here T to be small enough (an explicit bound will be given later) Let G(t, x) =

∑
k∈Zd

1

(4πt)
d
2

exp(− |x+k|2
4t )

be the heat kernel on the d dimensional torus. We have

ρ̄(k)(t, x) = G(t, ·) ∗ µ0(x)−
∫ t

0

∫
Td
G(t− s, x− y)u(k−1)(s, y) · ∇yρ̄(k)(s, y)dyds.

Let us denote Nk(t) = sup0≤s≤t ‖ρ̄(k+1)(s, ·)− ρ̄(k)(s, ·)‖L∞ . We have, using∇y · u(k) = 0

ρ̄(k+1)(t, x)− ρ̄(k)(t, x) =−
∫ t

0

∫
Td
∇yG(t− s, x− y)

(
ρ̄(k+1)(s, y)− ρ̄(k)(s, y)

)
u(k)(s, y)dyds

−
∫ t

0

∫
Td
∇yG(t− s, x− y)ρ̄(k)(s, y)

(
u(k)(s, y)− u(k−1)(s, y)

)
dyds.
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Remark (using the first moment of the chi distribution) that, for some constant β > 0∫
Td
|∇xG(t, x)|dx ≤ βt−

1
2 .

We thus get

‖ρ̄(k+1)(t, ·)− ρ̄(k)(t, ·)‖L∞ ≤β‖K‖L1‖µ0‖L∞
∫ t

0
(t− s)−

1
2 ‖ρ̄(k+1)(s, ·)− ρ̄(k)(s, ·)‖L∞ds

+ β‖µ0‖L∞
∫ t

0
(t− s)−

1
2 ‖u(k)(s, ·)− u(k−1)(s, ·)‖L∞ds,

and

‖u(k)(s, ·)− u(k−1)(s, ·)‖L∞ ≤ ‖K‖L1‖ρ̄(k)(s, ·)− ρ̄(k−1)(s, ·)‖L∞ .

Therefore

Nk(t) ≤ β‖K‖L1‖µ0‖L∞
∫ t

0
(t− s)−

1
2Nk(s)ds+ β‖K‖L1‖µ0‖L∞

∫ t

0
(t− s)−

1
2Nk−1(s)ds.

Denoting C = β‖K‖L1‖µ0‖L∞ we get

Nk(t) ≤ C
∫ t

0
(t− s)−

1
2 (Nk(s) +Nk−1(s)) ds. (A.4)

Since Nk is continuous, there exists R > 0 such that for all t ∈ [0, T ] we have Nk(t) ≤ R. We thus have,
using this bound in (A.4) and assuming 2C

√
T ≤ 1

2

Nk(t) ≤RC
∫ t

0
(t− s)−

1
2ds+ C

∫ t

0
(t− s)−

1
2Nk−1(s)ds

≤R
2

+ C

∫ t

0
(t− s)−

1
2Nk−1(s)ds.

We use this bound in (A.4)

Nk(t) ≤
R

2
C

∫ t

0
(t− s)−

1
2ds+ C

∫ t

0
(t− s)−

1
2Nk−1(s)ds

+ C2

∫ t

0

∫ s

0
(t− s)−

1
2 (s− u)−

1
2Nk−1(u)duds.

We deal with this last term

C2

∫ t

0

∫ s

0
(t− s)−1/2(s− u)−

1
2Nk−1(u)duds

=C2

∫ t

0
Nk−1(u)

∫ t

u
(t− s)−

1
2 (s− u)−

1
2dsdu

=C2π

∫ t

0
Nk−1(u)du.

Letα =
√
TπC and choose T such thatα ≤ 1

2 (which in turns also yields the previous condition 2C
√
T ≤ 1

2 ).
We have

αC

∫ t

0
(t− s)−

1
2Nk−1(s)ds− C2π

∫ t

0
Nk−1(s)du = C

∫ t

0
Nk−1(s)

(
α(t− s)−

1
2 − πC

)
ds,
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and since α =
√
TπC ≥

√
t− sπC for 0 ≤ s ≤ t ≤ T , we get

αC

∫ t

0
(t− s)−

1
2Nk−1(s)ds ≥ C2π

∫ t

0
Nk−1(s)du,

and thus

Nk(t) ≤
R

4
+ C(1 + α)

∫ t

0
(t− s)−

1
2Nk−1(s)ds.

Iterating this method, we obtain for all n ∈ N

Nk(t) ≤2−nR+ C(1 + α+ · · ·+ αn−1)

∫ t

0
(t− s)−

1
2Nk−1(s)ds,

and thus

Nk(t) ≤ 2C

∫ t

0
(t− s)−

1
2Nk−1(s)ds.

We now show that this implies that

Nk(t) ≤ N0(T )

(
2CΓ

(
1

2

))k
tk/2Γ

(
k + 2

2

)−1

, (A.5)

where we denote Γ (z) =
∫∞

0 tz−1e−tdt. We have that for k = 0, (A.5) is satisfied and, by induction, we
have ∫ t

0
(t− s)−

1
2 s

k
2 ds = t

k+1
2

∫ 1

0
(1− u)−

1
2u

k
2 du = t

k+1
2

Γ
(

1
2

)
Γ
(
k+2

2

)
Γ
(
k+3

2

)
Using the fact that Γ(k+ 1) = k! and Γ(k+ 3

2) = k!Γ(1
2), we get that

∑∞
k=0Nk(t) converges uniformly for

t ∈ [0, T ] and the limits

ρ̄(t, x) = lim
k→∞

ρ̄(k)(t, x) and u(t, x) = lim
k→∞

u(k)(t, x)

exist in C([0, T ]×Td). Now, since for all l, n ∈ N and allα1, ..., αn, ‖∂lt∂α1,...,αn ρ̄
(k)‖L∞ and ‖∂lt∂α1,...,αnu

(k)‖L∞
are bounded uniformly in k, using Arzela-Ascoli theorem, we have uniform convergence, up to an extrac-
tion, of the derivatives. Hence the validity of the limits in C∞([0, T ] × Td), i.e there is convergence of the
functions along with their derivatives of all order in [0, T ]×Td. This gives us the fact that the limit ρ̄ satisfies
(2.1).

Uniqueness in [0, T ]×Td. Suppose ρ̄1 and ρ̄2 are two bounded solutions of (2.1) on [0, T ]×Td. Then

∂t
(
ρ̄1 − ρ̄2

)
−∆

(
ρ̄1 − ρ̄2

)
= −

(
K ∗ ρ̄1

)
· ∇
(
ρ̄1 − ρ̄2

)
−∇ ·

((
K ∗ ρ̄1 −K ∗ ρ̄2

)
ρ̄2
)
,

so that

ρ̄1(t, x)− ρ̄2(t, x) =−
∫ t

0

∫
Td
∇yG(t− s, x− y) ·

(
K ∗y ρ̄1(s, y)

) (
ρ̄1(s, y)− ρ̄2(s, y)

)
dyds

−
∫ t

0

∫
Td
∇yG(x− y, t− s) ·

(
K ∗y ρ̄1(s, y)−K ∗y ρ̄2(s, y)

)
ρ̄2(s, y)dyds.
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Let N(t) := sup0≤s≤t ‖ρ̄1(s, ·)− ρ̄2(s, ·)‖L∞ . Recall

‖K ∗ ρ̄1(s, ·)−K ∗ ρ̄2(s, ·)‖L∞ ≤ ‖K‖L1‖ρ̄1(s, ·)− ρ̄2(s, ·)‖L∞ ,

which implies, like previously, the existence of a constant C such that

N(t) ≤ C
∫ t

0
(t− s)−1/2N(s)ds.

We choose L > 0 such that C
∫ T

0 s−
1
2 e−Lsds ≤ 1

2 , and let Q(t) = e−LtN(t), which satisfies for all t

Q(t) ≤ C
∫ t

0
(t− s)−1/2Q(s)e−L(t−s)ds.

Let R > 0 be such that Q(t) ≤ R.
Then

Q(t) ≤ RC
∫ t

0
(t− s)−1/2e−L(t−s)ds ≤ R

2
.

By induction, we get N(t) = 0 for t ∈ [0, T ]. This concludes the proof of uniqueness.

Existence in R+ × Td. For T small enough, there exists a solution in [0, T ] × Td. Notice that T only
depends on constants independent of time (it depends on the L∞ bound of the initial condition, which we
have shown propagates). It is therefore possible to construct the (unique) smooth solution on all intervals
[t0, T + t0] × Td. Uniqueness allows us to iteratively construct the (unique) smooth solution on R+ × Td.
This concludes the proof.
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