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Abstract: Despite numerous works devoted to light scattering in multilayer optics, trapped
scattering has not been considered until now. This consists in a roughness-coupling process at
each interface of the multilayer, giving rise to electromagnetic modes traveling within the stack.
Such a modal scattering component is today necessary for completing the energy balance within
high-precision optics including mirrors for gyro-lasers and detection of gravitational waves,
where every ppm (part per million) must be accounted for. We show how to calculate this trapped
light and compare its order of magnitude with the free space scattering component emerging
outside the multilayer.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Light scattering has been extensively studied in multilayer optics [1–8], and today it is possible to
predict and measure total losses (integrated in whole space) less than a few ppm (1 ppm= 10−6 of
the incident flux) in the whole continuous spectral range (400 nm–1.7 µm) [9,10]. Such accuracy
is crucial for applications in high precision optics, including space applications (rejection rates
in sensor matrices), mirrors for gyro-lasers (blind zones) and detection of gravitational waves
[11–13] (see LISA/LIGO/Virgo projects).

The source of scattering in optical coatings is known to be the roughness at each interface
within multilayers [3,4]. This has been largely proved for high-energy deposition techniques (Ion
Assisted Deposition, Dual Ion Beam Sputtering, Magnetron Sputtering and others) [14]. Using
these techniques, it is known that the substrate roughness replicates at each interface of the stack,
hence creating a roughness and scattering threshold. For this reason polishing techniques are key,
and substrates must be used with roughnesses less than a fraction of a nanometer in the optical
bandwidth of spatial frequencies (typically less than the inverse wavelength) [15–17].

Despite this relevant state of the art, numerous efforts are still devoted to controlling and
reducing wide-angle scattering in complex interferential filters [9] (e.g., space multiplexors). The
same balance is observed for mirrors for which total losses should not exceed a few ppm (e.g.,
gravitational waves). Solutions have been proposed to reduce scattering on the basis of destructive
interference between the scattering sources [18,19], a process that relies on the generalization of
the anti-scattering effect [20] for coatings produced at oblique deposition [3–4]. However these
techniques require a unity mutual coherence between all scattering sources; such techniques
are extremely sensitive to surface cross-correlation coefficients and cannot be guaranteed in all
situations (namely those where the material grain size dominates the replication effect [14]).

Within this context it must be stressed that one effect has not been considered until now in
the energy balance of an optical multilayer. This missing term is trapped scattering [21], that is,
the amount of light that remains embedded within the stack and cannot emerge into free space.
This trapped light results from a coupling process allowed by the interface roughnesses, and
propagates in the form of electromagnetic modes guided within the layers. For this reason, we
call it a roughness-induced scattering, a process that can be seen by analogy with the well-known
grating coupler [22]. The grating coupler is a common technique that has been extensively used
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in experiments where light must penetrate a low thickness waveguide (i.e., when no side coupling
is possible). In this case the grating is located at the top of the waveguide and is illuminated by
a source in the far field of the incident medium. The grating period must fit the requirements
for generating discrete spatial frequencies which attain the modal constants of the guide; the
grating shape can be used to optimize the coupling efficiency, though it is mainly driven by the
opto-geometrical structure of the guide (including an air gap if necessary).

The process of trapped scattering is much more complex for several reasons. First of all, the
deterministic periodic profile of the grating is replaced by a random topography (the roughness)
that gives rise to a continuum of spatial frequencies. Secondly, there are several random
topographies located at all interfaces in the stack, and each of them must be considered. Also, we
have to take account of interference between all modes coupled by the different roughnesses,
so that the energy carried by the modes is driven by mutual coherence factors. Eventually the
stacks are not reduced to a single layer waveguide, but may include hundreds of layers supporting
numerous modes for each polarization.

Hence one key question to answer in this theoretical paper concerns the amount of trapped
light in multilayers, and importantly, whether this trapped light is greater or less than the radiative
light which emerges outside the stack (in free space in the far field). The result will depend on
the statistical nature of roughness and on the associated surface cross-correlation coefficients,
as well as on the coating design and on the illumination conditions (incidence, wavelength and
polarization).

It should also be stressed that the trapped scattering is involved in the absorption balance of
the coating. Indeed, trapped light propagates in the form of guided modes at all polar (azimuthal)
directions within multilayers whose imaginary indices most often lie around 10−5 or 10−6 [23];
these modes are attenuated over a distance that can exceed one cm, creating an additional “modal”
(roughness-induced) absorption that may spread into a region much larger than that of the
“classical” absorption. To recall, classical absorption A occurs in the spot size region and its
density dA/dz is proportional to the modulus squared of the electromagnetic field [24], with z
the altitude within the stack. The result is that modal absorption may dominate the classical
absorption, and this information is crucial to avoid any unnecessary optimization of the thin film
deposition parameters. An illustration is given in Fig. 1. Note here that we do not consider the
decoupling of the trapped light along the rough waveguide, which is a second-order effect.

Fig. 1. Schematic diagram of classical and modal absorption. Illumination is given by the
blue arrows, with the classical absorption region in blue. The guided modes are in red, and
the transverse dimensions of the modal absorption region are illustrated in red.

In Section 2, we recall the key results of a theory we developed [7,25–27] for optical micro-
cavities supporting arbitrary sources in their volume or at their interfaces. The sources are
described with magnetic and electric currents. The media can be dielectric or metallic. They
are linear, isotropic and non-magnetic. The key result is the formula for the spectral density of
the electromagnetic power provided by the cavity. We then show in Section 3 how this theory
can be extended to light scattering in multilayers. This extension follows directly from previous
works [6,28] devoted to scattering. However, we focus on the scattering power formula, rather
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than on the flux formula currently used in the scattering literature. This is a key point which
enables the trapped light problem to be solved. Section 4 is devoted to numerical calculation in
typical coatings (mirrors and Fabry-Perot filters) and in more complex stacks (multiple cavity
narrow-band filters). In all cases, the trapped light in the coating is quantified for each mode
order and polarization, and plotted against spatial frequency and incident wavelength. A detailed
comparison is given in regard to free space scattering. Also, a comparison is given for the amount
of light trapped under total reflection within the substrate. A conclusion is given in Section 5.
To our knowledge, this is the first time trapped scattering has been quantified within multilayer
optics, and we expect that the community will find this work useful.

2. Electromagnetic power provided by sources within multilayer micro-cavities

This work first relies on two previous papers [26,27] that we devoted to light emitted by multilayer
micro-cavities. The cavities can be all-dielectric or combined with plasmonics. The sources are
physical sources located inside the stack, and are described with electric and magnetic currents.
These currents can be located at the surfaces or in the bulks within the cavity. The intensity
patterns are obtained from Maxwell’s equations and the main results (those we need for the
trapped scattering) are reviewed in this section. Note that fields and currents do not interact in
this work. In what follows we work in the harmonic regime, which means that all quantities
X(r⃗, z,ω) are Fourier transforms versus time, with ω the conjugate Fourier variable of time (t).
For the sake of clarity this temporal frequency ω will be omitted.

We limit ourselves to surface currents, which will describe the situation of roughness scattering
(see next Section 3). These currents are tangential and written as:

J⃗(r⃗, z) =
p∑︂

i=0
J⃗i(r⃗)δ(z − zi) M⃗(r⃗, z) =

p∑︂
i=0

M⃗i(r⃗)δ(z − zi), (1)

with J⃗i, M⃗i the electric and magnetic currents at interfaces located at heights zi in the stack (see
Fig. 2), and where δ is the Dirac distribution. The spatial variable is r⃗ = (x, y) in a transverse
plane parallel to all average surfaces. The layer number of the stack is denoted p.

Fig. 2. Geometry of the multilayer cavity, with refractive indices ni and thicknesses ei.

The electromagnetic power provided by all sources is classically given as [7]

F =
(︃
1
2

)︃
Re

{︃∫
(M⃗∗.H⃗ − J⃗.E⃗∗)dΩ

}︃
, (2)

with dΩ a bulk element, X* the conjugate complex of X, and E⃗, H⃗ the electric and magnetic fields.
Parseval’s theorem applied to Eqs. (1) and (2) in the second Fourier plane leads to [7,25–27]

f (σ⃗) = 2π2σRe

{︄ p∑︂
i=0

{︂
⃗̂M∗

i (σ⃗).
⃗̂Hi(σ⃗) −

⃗̂Ji(σ⃗). ⃗̂
′E∗
i (σ⃗)

}︂}︄
, (3)
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where f (σ⃗) is the power spectral density, that is, the power provided per unit spatial pulsation σ
and polar angle φ

f (σ⃗) = dF/dσdφ, (4)

with
σ⃗ = σ(cosφ, sinφ) = 2πν⃗, (5)

and ν⃗ the spatial frequency.
All currents and fields X̂(σ⃗) in Eq. (3) are tangential and Fourier transforms of X(r⃗) versus

variable, r⃗, whose conjugate (Fourier) variable is the spatial pulsation σ⃗. The polar angle φ gives
the azimuthal direction of the emitted wave. At low frequencies that allow light to emerge into
the extreme media (substrate and superstrate) the normal angle θ in the extreme (transparent)
media is given by the spatial pulsation (see Fig. 3)

σ<k ⇒ σ = k sin θ with k = 2πn/λ, (6)

with λ the wavelength concerned, and n the refractive index of the surrounding (extreme) medium.
Notice also that the fields in Eq. (3) are denoted Xi or X′

i to take account of boundary conditions.
Actually both fields are taken at interface i but Xi is on the lower side (in medium i+ 1) while X′

i
on the upper side (in medium i).

Fig. 3. Relationship between spatial pulsation σ⃗ and wave direction (θ, φ). The wave
vector is denoted k⃗.

To go further we need to express the fields as functions of currents, or conversely. Let us start
by keeping the currents. For that, we first notice that each field Xi in Eq. (3) is the superposition
of fields Xji provided by currents (Jj, Mj), that is

H⃗i =

p∑︂
j=0

H⃗ji E⃗′i =

p∑︂
j=0

E⃗′ji. (7)

Complex admittances Yi, Y ′
i and transfer coefficients Cij, C′

ij are then introduced [7] to obtain
the tangential individual fields Xji in the form

j = i ⇒ H⃗ii = Yiz⃗ ∧ E⃗ii (8a)

j>i ⇒ H⃗ji = Y ′
i z⃗ ∧ E⃗′

ji = Y ′
i z⃗ ∧ C′

jiE⃗
′
jj (8b)

j<i ⇒ H⃗ji = Yiz⃗ ∧ E⃗ji = Yiz⃗ ∧ CjiE⃗jj, (8c)

where the notation∧ is used for an outer product of vectors. Equations (8a)–(8c) are necessary since
they must be written in regions where the admittances are continuous [7,25–27]. Yi and Y ′

i are
calculated by recurrence from the substrate (ñs) and superstrate (ñ0) effective indices respectively.
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All quantities (admittances and transfer coefficients) depend on the coating design (including
the extreme media) and vary with spatial frequency. These formula are valid in transparent
or absorbing media, for plane waves (σ<k0,s), guided modes [max(k0, ks)<σ<max(ki)] and
evanescent waves [σ>max(ki)], with max(ki) the maximum index of the multilayer [7,25–27].

The final result takes the form

f (σ⃗) = 2π2σ Re(f0 + f1), (9)

where f 0 designates the so-called incoherent component. This component is specific to the case
where the mutual coherence is zero between the fields emitted from different surface currents, so
that these fields do not interfere. It can be expressed in terms of cavity coefficients αi, βi, γi as

f0(σ⃗) =
p∑︂

i=0
{αi |M̂i |

2 + βi |Ĵi |
2 + γiz⃗.(M̂∗

i ∧Ĵi)}, (10)

with
αi = −YiY ′

i /∆Yi βi = 1/∆Y∗
i (11)

γi = 2jIm{Yi/∆Yi} ∆Yi = Yi − Y ′
i . (12)

Equation (10) shows how the cavity coefficients drive the energy of sources at each spatial
frequency, whatever the frequency bandwidth (free space, modal and evanescent). Note that
evanescent waves will not contribute to the energy balance of transparent media, due to the
imaginary value of f 0 in this frequency range [7,25–27]. The specificity of the frequency ranges
is illustrated in Fig. 4.

Fig. 4. Schematic diagram of bandwidths associated with plane, modal and evanescent
waves, (case k0 < ks).

Calculation of the correlated component f1 is more tedious, and leads to [7,25–27]:

f1(σ⃗) =
∑︂
i, j

j>i

fij +
∑︂
i, j

j<i

fij (13)

with

fij, j>i =
C′

jiY
′
i

∆Yj
[z⃗.(M∗

i ∧Jj) − YjM∗
i .Mj] +

C′∗
ji

∆Y∗
j
[Ji.J∗j −Y∗

j z⃗.(M∗
j .Ji)] (14)

fij, j<i =
CjiYi

∆Yj
[z⃗.(M∗

i ∧Jj) − Y ′
j M

∗
i .Mj] +

C∗
ji

∆Y∗
j
[Ji.J∗j −Y

′∗
j z⃗.(M∗

j .Ji)]. (15)

Equations (14) and (15) emphasize the interaction of all currents, whether they are electric or
magnetic. These interactions allow the possibility of light enhancement or inhibition, provided
that the mutual coherence of the sources is not zero.
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To conclude this section, note that the power density could have also been expressed in terms
of the tangential fields, with the result

f0(σ) =
p∑︂

i=0
(Yi |Ei |

2 − Y ′
i |E

′
i |

2) (16)

fij, j>i = C′
jiY

′
i E

′
jj(E

∗
ii−E

′∗
ii ) + C

′∗
ji E

′∗
jj (YiEii − Y ′

i E
′
ii)] (17)

fij, j<i = CjiYiEjj(E∗
ii−E

′∗
ii ) + C

′∗
ji E

′∗
jj (YiEii − Y ′

i E
′
ii). (18)

However, these formulae do not emphasize the cavity coefficients and hence do not allow an
analytical discussion of the modes (see Section 3).

3. Application to roughness-induced scattering in multilayer optics

When starting with the theory of light scattering in multilayers [2,6,7,28], the boundary conditions
are first written for each surface profile. Then both the fields and the surface normal are expanded
to first-order under the assumption of low slope and low roughness-to-wavelength ratio, which is
appropriate for optical (polished) surfaces and high-precision optics [3,4]. Furthermore, the total
field is written as the sum of the scattered field and the (ideal) stationary field that would exist in
the absence of roughness. This procedure leads to a system of Maxwell’s equations that must
satisfy the scattered field. Eventually the system of equations is written with regard to a perfectly
planar multilayer supporting electric and magnetic currents at all interfaces. These currents are
fictitious in the sense that they result from a mathematical treatment, but the theoretical problem
is identical to that of micro-cavities (addressed in the previous section).

Hence we now have to develop the exact form of the scattering currents J⃗i, M⃗i in order to pass
from the micro-cavity problem to the scattering problem. The scattering currents are originally
written in the former (spatial) first-Fourier space as [7]

J⃗i(r⃗) = −hi(r⃗)z⃗ ∧ ∆i

[︄
∂H⃗0(r⃗, z)
∂z

]︄
(19)

M⃗i(r⃗) = −hi(r⃗)z⃗ ∧ ∆i

[︄
∂E⃗0(r⃗, z)
∂z

]︄
+ ⃗grad(h) ∧ ∆i[E⃗0(r⃗, z)], (20)

with E⃗0, H⃗0 the (ideal) stationary electromagnetic field, z = hi(r⃗) the topography of surface i, and
∆i[X⃗] the step (discontinuity) in field X⃗ at surface i, with the normal towards z> 0.

We have already expressed the Fourier transforms of these currents in previous Refs. [6,28].
In the case of illumination by a plane wave of spatial pulsation σ⃗0, they are all proportional to
the Fourier transform ĥi(σ⃗ − σ⃗0) of the surface profile i with argument σ⃗ − σ⃗0 (a memory effect
specific to first-order theory), and to the complex amplitude A⃗0(σ⃗, zi) of the stationary wave at
surface i. The result is

⃗̂
iJ(σ⃗) = jω (ϵi+1 − ϵi) ĥi(σ⃗ − σ⃗0) A⃗

0
tg(zi) (21)

⃗̂
iM(σ⃗) = −jω

[︃
ϵi+1 − ϵi
ϵi+1

]︃
ĥi(σ⃗ − σ⃗0) A0

z,i(zi) (σ⃗ ∧ z⃗), (22)

with ϵi the permittivity of medium i, ω the temporal frequency and A⃗0
tg,i, A0

z,i the tangential and
normal components of the stationary wave.

The last step is to introduce Eqs. (21) and (22) into Eqs. (9)–(15) to obtain the power spectral
density f (σ⃗) of surface light scattering. Implementation is via 2 computer codes that we developed
for light scattering (current formulae) [6,7,28] and for micro-cavities (power formulae) [7,25–27].
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Numerical results will be given in Section 4. Note that Eqs. (21) and (22) should be further
developed to take account of light polarization.

It should be stressed at this stage that all scattering patterns related to low-loss multilayers are
calculated in the literature from a flux formulation, and not from a power formulation. So one
may wonder why the focus here is on the electromagnetic power, since flux Φ and power F will
be identical in the assumed transparent extreme media (F=Φ+A, with A the absorption). This
key point must be addressed in order to solve the trapped light problem.

The flux formulation Φ is derived from the Poynting flux of the scattered field through a plane
at height z in the extreme media, that is

Φ = Re
{︃∫

P⃗(r⃗, z).z⃗ dxdy
}︃

with P⃗ =
(︃
1
2

)︃
E⃗∗ ∧ H⃗, (23)

with a (time) low-pass receiver, this flux is constant if the extreme media are transparent. Using
again the admittance formalism and Parseval’s theorem, expansion of Eq. (23) in the Fourier
space leads to the flux spectral densities by reflection and transmission, that is [7,25–27]

dΦ−

dσdφ
= g− (⃗σ) = 2π2σ Re(ñ0) |A−

0 |
2 in the incident medium (24)

dΦ+

dσdφ
= g+ (⃗σ) = 2π2σ Re(ñs) |A+s |

2 in the substrate medium. (25)

All fields in Eqs. (24) and (25) are tangential. The retrograde and progressive scattered fields
in the superstrate and substrate are denoted A−

0 (⃗σ) and A+s (⃗σ) respectively. These flux Eqs. (24)
and (25) are well suited to predicting the angular scattering patterns in the extreme media of
indices n0 (incident medium) and ns (substrate). The total fluxes emerging in free space between
0° and 90° by reflection and transmission can be written as

Φ− =

k0∫
0

g−(⃗σ)dσdφ Φ+ =
ks∫

0

g+(⃗σ)dσdφ. (26)

Observe in the second term in Eq. (26) that the substrate is assumed to be a semi-infinite
medium. We also note in Eqs. (24) and (25) the presence of the real part of the effective indices
ñ, which removes the contribution of evanescent waves in the energy balance. Indeed we have in
the case of transparent extreme media

σ>k0,s ⇒ Re(ñ0,s) = 0. (27)

Equation (27) is valid at all high spatial frequencies, including the modal range where the
modal constants (or modal frequencies characteristic of guided waves) of the coating may exist
[7,25–27]. Recall that this modal range is

max(k0, ks)<σ<max(ki). (28)

Hence, the flux formulae do not allow the (modal) flux carried by the guided modes to be
predicted a priori; using these formulae would give a 0 modal flux. The reason is that the
Poynting flux Eq. (23) is calculated through a plane at height z, while the modes carry energy
perpendicular to these planes. Note also that for an absorbing waveguide, the guided flux is 0 at
infinity since the modes are attenuated. The result is that the power Fm in that modal bandwidth
is totally absorbed (Fm =Am), while the modal flux is 0 (Φm = 0) at infinity.
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On the other hand, the power formalism given by Eqs. (2) and (9) gives the total energy
provided by the sources at each spatial frequency, and this energy can be predicted for all
directions both in free space and in the modal range. Then the modal power can be written as

Fm =

max(ki)∫
max(k0,ks)

f (⃗σ)dσdφ = 2π2
max(ki)∫

max(k0,ks)

σ Re{f0 (⃗σ) + f1 (⃗σ)}dσdφ. (29)

This quantity can be directly computed once the scattering power density f (⃗σ) is known, which
is the case at this stage. The major contribution of the integral will be around the real part of the
modal constants κq of the coating at which peaks (resonances) occur in the spectral density, with
spectral widths proportional to the imaginary parts of these constants, and amplitudes inversely
proportional to them [7]. These modal constants κq are given by the complex poles of the
reflection factor of the stack [7,25–27], that is

1/R(κq) = 0 (30)

It should be stressed that these reflection poles are identical to those of the power spectral
density f (σ), that is, to those of the cavity coefficients given in Eqs. (11) and (12) and Eqs. (14)
and (15). Indeed Eq. (30) could also be written as ∆Y(κq, z) = 0, a condition which holds for the
modes through the entire depth of the stack [7,25–27]. Note also that the functions R or ∆Y only
depend on the modulus of the frequency (not on its direction), so that the modes carry energy at
all polar directions φ within the stack.

The modal power in Eq. (29) can be calculated in two ways. In the case of absorbing
waveguides, the poles κq are complex and cannot be reached by the (real) spatial frequency σ;
hence the spectral density f (σ⃗) shows no singularity so Eq. (29) can be directly computed. On
the other hand, for transparent waveguides the poles (when they exist) are real and can be excited
by the spatial frequency, so that one has to deal with singularities; the solution is given by the
residue theorem [29] which, for a pole located at the boundary, can be written

Fm =

max(ki)∫
max(k0,ks)

f (σ⃗)dσdφ = jπ
∑︂

q
Res(f )κq . (31)

Note that singularities must be addressed to avoid any ambiguity, mainly for transparent media.
Indeed we know [7,25–27] for transparent media that the cavity coefficients of scattering are
purely imaginary at high frequencies (including the modal range). Hence, the scattering power
density Eq. (9) is 0 but its integral is not 0, because of its singularities associated with the poles.
This is in agreement with the fact that the trapped light is 0 in the absence of modes (or poles).
Another way to avoid the ambiguity and summarize this situation is, with A the absorption, to
write

lim
A→0

Fm(A) = lim
A→0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max(ki)∫

max(k0,ks)

f (σ⃗, A)dσdφ

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ≠
max(ki)∫

max(k0,ks)

{︃
lim
A→0

f (σ⃗, A)
}︃

dσdφ. (32)

It should also be noticed that both power and flux densities are imaginary in the modal range
for transparent media.

In the next section we carry out numerical calculations for a series of typical coating designs.
To this end we consider realistic values for the imaginary indices of the thin films, which are
known to be around 10−5 or 10−6 in the best situations (actually these values are extremely
difficult to measure [23]). Rather than using the residue theorem that involves a path integration
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in the complex plane, we prefer to perform a direct integration on the real axis, as highlighted in
Eq. (29). Note that for these low imaginary indices, the resonance peaks are intense so that the
major contribution of the integral Fm lies around the real parts of the poles.

4. Numerical calculation for trapped light scattering

Here we consider common thin film materials that most often constitute the optical coatings for
visible-light applications. These are Nb2O5 (high-index material) and SiO2 (low-index material).
The design wavelength for optical coatings will be 600 nm. At this wavelength the real indices
are taken as n′

H = 2.304 (for Nb2O5) and n′
L = 1.489 (for SiO2). For simplicity the slight

index dispersion of these materials is neglected. The imaginary indices are known to be around
n′′

H ≈ 10−5 for Nb2O5 and n′′

L ≈ 10−6 for SiO2. However, the imaginary index for Nb2O5 will be
taken to be around 10−4, so as to simplify the numerical calculation. Indeed, recall that the peak
width is proportional to this quantity, and the peak maximum to its inverse, while we have to
integrate density curves for complex filters with numerous narrow peaks in the modal range at all
wavelengths. Note also that though the imaginary indices remain difficult to measure, variations
around these typical values have negligible impact on the trapped light.

In this section we consider in turn the cases of a mirror and a Fabry-Perot filter. Eventually the
trapped light is calculated for a multiple-cavity narrow-band filter. The substrate index is glass
with ns = 1.52. The illumination medium is air, with n0 = 1.

Calculation is carried out for the two polarization modes of the scattered light, denoted S
(transverse electric) and P (transverse magnetic). Illumination is at normal incidence (i= 0°),
which simplifies the out-of-plane calculation (as a function of polar angle φ) of the trapped light
for isotropic surfaces. Note that these days almost all surfaces polished on glass are isotropic.
With these surfaces the non-polarized scattering pattern has rotational symmetry about the normal
of the stack. This is valid for both free space and modal patterns. Indeed, as previously mentioned,
the cavity poles are radial since reflection of a (bulk) isotropic stack does not depend on the
direction of the spatial frequency, but only on its modulus. Hence numerical calculation of the
power spectral densities of scattering will be carried out in the incidence plane (φ = 0), in which
we know that an S (or P) illumination gives an S (or P) scattered field (i.e., no cross-polarization
at ϕ= 0°, as predicted to first-order). Hence the curves will be denoted SS and PP in this plane.

Results will first be plotted in the form of spectral densities f (σ, φ = 0◦) = dF/dσdφ, or
integrated over spatial frequency σ and plotted in the form of dF/dφ, that is, the spectral
density of modal power per unit polar angle. Polar integration can be performed directly when
necessary, relying on the fact that the 4 polarized patterns (SS, SP, PS and PP) vary as cos2ϕ and
sin2ϕ with the polar angle [7,25–26]. Hence the non-polarized scattering pattern resulting from
non-polarized illumination is given by the half sum of these 4 polarized patterns.

Since we are interested in the comparison of trapped (modal) scattering Fm to free space
(radiative) scattering Frad, we consider the ratio of these quantities (the coupling efficiency), that
is

ηm = Fm/Frad, (33)

with

Frad =

k0∫
0

f (σ)dσ Fm =

kH∫
ks

f (σ)dσ. (34)

For more detail this ratio can be limited to a particular mode of order q, that is, ηq
m, with

ηm =
∑︂

q
η

q
m. (35)
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Recall that the power density peaks are located around the real poles κ0
q of the cavity calculated

in the absence of absorption. Actually the cavity poles κq are complex (otherwise the density
peaks would be infinite) but their imaginary values are so small that they can be regarded as
similar to the real poles, that is

Real[κq] ≈ κ
0
q. (36)

We need to keep in mind that flux and power are identical in the free space range for transparent
media.

In Eq. (31) we observe that one quantity was not considered, namely

Fs =

ks∫
k0

f (σ)dσ. (37)

This corresponds to the quantity of light that remains trapped under total reflection within a
substrate of finite thickness (but large with respect to wavelength). Hence we will also consider
this key quantity, that is responsible for the side illumination of substrates and which can
commonly be seen with the eye. After normalization by the free-space scattering term, it will be
denoted as

ηs = Fs/Frad. (38)

Note that, with identical results, this quantity could also be addressed with a modal (interferential
and coherent) approach involving the extremely high number of modes within a thick substrate.

The last points to consider are the surface profile parameters. Strictly speaking, we should
consider one random roughness at each interface, and numerous cross-correlation coefficients
between all surfaces. For the sake of simplicity, the number of parameters can be reduced under
the assumption that all surfaces in the stack are uncorrelated with identical roughness spectra
γ(ν). This is the case when optical coatings are deposited onto super-polished surfaces, so that
the substrate roughness replication is dominated by the intrinsic roughness brought by the thin
film materials [3,4,20]. Note that this assumption eliminates the interaction of currents (f 1 = 0)
in Eq. (9). Furthermore, the results will depend on the frequency behavior of the roughness
spectrum, and specifically on the correlation length of the surfaces, together with wavelength and
incidence. Indeed the greater the slope of the spectrum, the lower the spectrum at high frequencies,
and the lower the amount of trapped light at normal illumination. Therefore, for greater generality
we will consider a spectrum with slight variations in the range 0<σ<max(ki) = kH , though
this spectrum corresponds to a realistic roughness value (1 nm). This will allow the results to
be corrected when necessary by introducing a weighting factor describing the decrease in the
roughness spectrum.

A 2D Gaussian spectrum can be written as

γ(σ) = (1/4π)δ2L2exp

[︄(︃
−
σL
2

)︃2
]︄

, (39)

with δ the roughness and L the correlation length. The condition for this spectrum to be constant
at frequencies less than kH requires the correlation length to satisfy

L ≪ λ/nH , (40)

with λ= 600 nm and L= 100 nm, the roughness attenuation at the maximum frequency is around
0.23, which is not far from the assumption of slight variations. Note also that 100 nm is a
realistic value for a Gaussian correlation length for super-polished surfaces. In what follows
we use this Gaussian roughness spectrum with δ= 1 nm. It should be stressed that though δ
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Fig. 5. Optical properties (reflection) of the 17 layer multi-dielectric mirror.

represents a roughness value (root mean square of the topography with 0 mean), strictly speaking
this roughness is bandwidth dependent [15–17]. To summarize, since the surface spectrum is
quasi-constant and the surface correlation is constant, the η ratios are slightly dependent on the
topography. As a consequence, the coating design is the key factor that drives the amount of
trapped to free-space scattering.

4.1. Multi-dielectric mirror

Figure 5 relates to a 17 layer multi-dielectric mirror whose design is classically [30] denoted as
Air/(HL)*8H/Glass. H and L designate high-index (H) and low-index (L) thin film layers with
quarter-wave optical thicknesses at the design wavelength λ0 = 600 nm, that is

(ne)H = (ne)L = λ0/4. (41)

The optical properties of this mirror are plotted in Fig. 5 and highlight a reflection bandwidth
around the design wavelength λ0. Illumination is at normal incidence.

In Fig. 6 we have plotted the scattering power density f (σ). The illumination wavelength is the
design wavelength (λ= λ0). Note that the abscissa is the normalized spatial frequency, ν∗, that is:

ν∗ = (λ/2π)σ. (42)

Such a quantity is dimensionless and can be written as ν∗ = n sin θ in the range ν∗<n . Note in
Fig. 6 that the free-space, modal and evanescent bandwidths are respectively BWrad = [0, ns = 1.5],
BWm = [ns = 1.5, nH = 2.3] and BWe = [nH = 2.3,∞]. The curve in BWrad can be directly
converted in the form of a classical scattering pattern (ARS or BRDF cos θ) as [7]

ARS(θ, φ) = BRDF(θ, φ)cosθ = kf (σ) /tgθ, (43)

where ARS is used for angle-resolved scattering and BRDF for bidirectional reflectance dis-
tribution function. In this BWrad frequency range, maxima may appear but their amplitudes
are bounded because the poles remain far from the real axis regardless of the absorption level.
Note that all power quantities take account of light scattered by reflection and transmission
simultaneously; there are two sub-ranges in BWrad, that is, a first one (σ<k0) which is a free-space
range for both the substrate and superstrate (air), and another (k0<σ<ks) which is a free-space
range for the substrate only. Recall that all coupling efficiencies will be normalized with respect
to the free-space scattering that can be measured in air, that is, by the integral Frad of power in
the range (σ<k0).
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Fig. 6. Scattering power density versus normalized frequency for SS and PP polarization.
Case of a 17 layer mirror illuminated at normal incidence at the design wavelength
λ= λ0 = 600 nm.

Conversely to the free-space range, the poles can be real in the modal range BWm for transparent
stacks, hence sharp maxima can be seen in Fig. 6 for both S and P polarisation modes. As
already mentioned, the amplitudes and widths respectively of the peaks tend towards ∞ and
0 when absorption vanishes, so that the density pattern would be a Dirac comb in the modal
range. Here the peaks are limited in amplitude due to the imaginary indices we used (n′′

H ≈ 10−4

and n′′

L ≈ 10−6). In Fig. 6 several modes can be observed, namely 6 S-polarized modes and 4
P-polarized modes. The zero-order mode is that with the highest normalized frequency. The
coupling efficiency ηq

m is given for each mode and polarization in Table 1. We observe in this
table that for TE polarization and depending on the mode order q, the trapped light can be greater
or less than the free space scattering.

Table 1. Coupling Efficiency η
q
m for Each Mode and Polarization in the Case of a 17 Layer Mirror

Illuminated at Normal Incidence at the Design Wavelength λ= λ0 =600 nm. The Abscissa is the Mode
Order q.
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Note in Fig. 6 that the power density is not zero in the evanescent range BWe, because of the
non-zero values of the imaginary indices. This highlights the weight of evanescent waves in the
energy balance of absorbing media, mainly in the absence of modes. However, this weight would
be 0 for transparent stacks, that is

ν∗>nH ⇒ f (ν∗, A = 0) = 0. (44)

In case of a semi-infinite substrate, the range [0, ns] would be a free-space range in the substrate.
With a finite substrate, the free-space range (emerging out of the substrate) is reduced to [0, n0]
while the range BWs = [n0, ns] is that of total internal reflection within the substrate. Integration
of the density in this last (BWs) range gives the amount of light trapped in the substrate under
total reflection (this is different from a modal process).

Since these phenomena are highly chromatic, variations versus both wavelength and spatial
frequency are plotted in Fig. 7. The wavelength range is (400 nm; 800 nm), and the power
spectral density is given for the half sum of the two polarizations. This figure clearly shows the
dispersion path of the poles when the wavelength is scanned. Any vertical line in the modal
range allows the number of poles or resonances at each wavelength to be counted. The curves
also show how the poles move outside the modal range when the wavelength varies. Note that
these poles can no longer be real when they leave the modal range.

Fig. 7. Variations of the scattering power density versus wavelength and spatial frequency.
Case of the 17 layer mirror designed for normal incidence at 600 nm.

All these curves allow the ratios ηm(λ) and ηs(λ) to be calculated as a function of wavelength;
this quantifies the amount ηm of light trapped in the stack in the form of guided waves (i.e., the
spectral coupling efficiencies), and the amount ηs of light trapped under total reflection in a thick
substrate of finite thickness. We recall here that these amounts are normalized with respect to the
integrated free space scattering Frad in air. Initially we are interested in the spectral behavior of
light trapped ηq

m(λ) by each mode, which is shown in Figs. 8 and 9 for TE and TM polarizations.
In these figures several modes are present and some of them vanish with increasing wavelength.
The first modes which disappear are those of lower spatial frequency (higher-order modes). For
more detail, 9 TE modes and 7 TM modes are present at a wavelength of 400 nm, while 4 TE
and 3 TM modes remain at 800 nm.

The total amount of trapped light is given in Fig. 10 for both TE and TM polarizations. Two
quantities are considered, namely the trapped light in the modal range (ηm) which is the energy
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Fig. 8. TE polarization. Amount ηqm versus wavelength of light trapped by each guided
mode of the stack. Normalization is performed with respect to free space scattering in air.
Case of a 17 layer mirror with design wavelength 600 nm.

Fig. 9. TM polarization. Amount ηqm versus wavelength of light trapped by each guided
mode of the stack. Normalization is performed with respect to free space scattering in air.
Case of a 17 layer mirror with design wavelength 600 nm.
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transferred to all modes [see Eq. (35)], and light trapped under total reflection in the substrate (ηs)
[see Eq. (38)]. We first observe in the whole spectral range that the trapped TE levels are higher
than the TM ones, except at short wavelengths. Furthermore these TE levels approach values
around 5 (for ηs) or 10 (for ηm) over a wide spectral range, which means that this TE trapped
light dominates the free-space scattering. Modal trapped light (ηm) and light trapped under total
reflection (ηs) have similar orders of magnitude.

Fig. 10. Total amount versus wavelength of light trapped in the form of guided modes in
the stack (ηm), or under total reflection (ηs) in the substrate. Normalization is performed
with respect to free space scattering in air. Case of a 17 layer mirror with design wavelength
of 600 nm. Both polarizations are considered.

Note that in the case of an uncoated substrate a single approximate formula can be highlighted
for the ηs ratio. Indeed, following Eq. (9) under the assumption that f 0 shows negligible frequency
variations in the free-space and modal ranges, it is easy to show from Eqs. (34) and (35) that:

ηs ≈

∫ ks

k0
σdσ∫ k0

0 σdσ
=

(︃
ns

n0

)︃2
− 1. (45)

Such a formula shows that the level of trapped scattering in the substrate is similar to that of
the free space scattering. However, the assumption of constant f 0 mainly holds for uncoated
substrates.

4.2. Case of a single-cavity Fabry-Perot filter

Similar results are given in Figs. 11–16 for a thin film Fabry-Perot filter of design Air/M4(6H)M4/
Glass, with M4 =HLHL a 4-layer mirror and 6H a spacer layer. The design wavelength is λ0 = 600
nm. Optical properties of the filter are plotted in Fig. 11, and the power density in Fig. 12. There
are 5 S-polarized and 4 P-polarized modes at wavelength 600 nm. The 2D mapping is given in
Fig. 13, while the amount of trapped light for each mode versus wavelength is plotted in Figs. 14
and 15 for TE and TM polarizations respectively. At wavelength 400 nm, 8 TE modes and 6 TM
modes are present, while 4 TE and 3 TM modes remain at wavelength 800 nm. The total amount
of light trapped in the coating and in the substrate is plotted in Fig. 16. Conclusions are similar
to those of the mirror case.
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4.3. Case of a multiple-cavity filter

Here we consider a 62 layer multiple-cavity narrow-band filter used for space optics. Multiple
cavities are used to obtain a square band-pass with high rejection rates [30]. Optical properties
are plotted in Fig. 17 and show 8 decades rejection (80 dB). The coating is thicker than the
previous ones, and this gives rise to a very high number of modes for each polarization, as
shown in Fig. 18. The trapped light spectral behavior is given in Figs. 19 and 20 for TE and TM
polarizations respectively. The high number of modes creates an intense ripple in the spectral
curves which makes them barely readable. The total light trapped in the coating and in the
substrate is plotted against wavelength in Fig. 21. Conclusions are similar to those of the previous
cases (mirror and single-cavity narrow-band filter).

Fig. 11. Optical properties (transmission) of the single-cavity narrow-band filter.

Fig. 12. Scattering power density versus normalized frequency for SS and PP polarizations.
Case of a single-cavity Fabry-Perot filter illuminated at normal incidence at the design
wavelength λ= λ0 = 600 nm.
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Fig. 13. Variations of scattering power density versus wavelength and spatial frequency.
Case of the single-cavity Fabry-Perot filter designed at 600 nm.

Fig. 14. TE polarization. Amount ηqm versus wavelength of light trapped by each guided
mode of the stack. Normalization is performed with respect to free space scattering in air.
Case of the single-cavity Fabry-Perot filter with design wavelength 600 nm.
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Fig. 15. TM polarization. Amount ηqm versus wavelength of light trapped by each guided
mode of the stack. Normalization is performed with respect to free space scattering in air.
Case of the single-cavity Fabry-Perot filter with design wavelength 600 nm.

Fig. 16. Total amount versus wavelength of light trapped in the form of guided modes in
the stack (ηm), or under total reflection (ηs) in the substrate. Normalization is performed
with respect to free space scattering in air. Case of the single-cavity Fabry-Perot filter with
central wavelength 600 nm. Both polarizations are considered.
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Fig. 17. Optical properties (transmission) of a multiple cavity filter plotted on a logarithmic
scale.

Fig. 18. Power density of scattering versus normalized frequency for SS and PP polarizations.
Case of a multiple cavity narrow-band filter designed for normal illumination at wavelength
λ= λ0 = 600 nm.
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Fig. 19. TE polarization. Amount ηqm versus wavelength of light trapped by each guided
mode of the stack. Normalization is performed with respect to free space scattering in air.
Case of the multiple-cavity cavity narrow-band filter with design wavelength 600 nm.

Fig. 20. TM polarization. Amount ηqm versus wavelength of light trapped by each guided
mode of the stack. Normalization is performed with respect to free space scattering in air.
Case of the multiple-cavity narrow-band filter with design wavelength 600 nm.
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Fig. 21. Total amount versus wavelength of light trapped in the form of guided modes in
the stack (ηm), or under total reflection (ηs) in the substrate. Normalization is performed
with respect to free space scattering in air. Case of the single-cavity narrow-band filter with
central wavelength 600 nm. Both polarizations are considered.

4.4. Gratings and localized defects

It should be stressed that the same formalism allows the extreme sensitivity of the coupling
process to be predicted (at least at first-order) when a grating is used. To this end it is sufficient to
replace the random surface profile by a periodic one, that is, the Gaussian roughness spectrum by
the grating spectrum. Consider first a 1D grating whose pattern is denoted h0(x). Such a pattern
replicates itself in 1 (x) direction with period T, so that the periodic grating profile can be written
as

h(x, y) = h0(x, y)∗x
∑︂

q
δ(x − qT)

⇒ ĥ(σx,σy) =

(︃
1
T

)︃∑︂
q

ĥ0

(︃
2πq
T

,σy

)︃
δ(σx − 2πq/T). (46)

Actually this Dirac comb must be convolved with the illuminated area S(x, y), since the
proportionality of the scattered field to ĥ only occurs for an illumination plane wave [7]. With
Ŝ(σx,σy) the Fourier transform of S(x, y), the real spectrum of the surface topography must now
be written as

ĥ(σx,σy) =

(︃
1
T

)︃∑︂
q

ĥ0

(︃
2πq
T

,σy

)︃
Ŝ(σx − 2πq/T). (47)

Recall now that the scattering pattern is the product of the surface spectrum and the cavity
coefficients. Hence in the modal range this grating spectrum (not far from a Dirac comb for
large illumination areas) must be superimposed onto to the multilayer cavity coefficients (which
also tend to another Dirac comb when absorption A vanishes). The coupling efficiency will
be negligible unless matching conditions are satisfied in the form 2πq/T ≈ Real[κq] ≈ κ

0
q [see

Eq. (36)]. Sensitivity increases with the inverse absorption 1/A and with the illuminated area (or
the inverse incident divergence). For a 2D grating with 2 periods Tx and Ty, Eq. (47) should be
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replaced by

ĥ(σx,σy) =

(︃
1

TxTy

)︃∑︂
q,p

ĥ0

(︃
2πq
Tx

,
2πp
Ty

)︃
Ŝ
(︃
σx −

2πq
Tx

,σy −
2πp
Ty

)︃
(48)

and this orthonormal quasi-Dirac comb would intersect the radial quasi-Dirac comb of the
multilayer to obtain an optimized coupling efficiency.

In a similar way the coupling process from a single (isolated) localized defect can be predicted.
With a circular defect of radius b and amplitude a, the defect spectrum is written as

h(x, y) = h(r) = aCirc(r/b) ⇒ ĥ(σ) =
(︂ a
2π

)︂ b∫
0

rJ0(σr)dr, (49)

with J0 the 0-order Bessel function. This last formula shows that small defects in size
(︂
b ≤ λ

2nH

)︂
will create more (normalized) trapped light in the modal range.

5. Conclusion

We have presented a theory for the calculation of trapped light scattering within multilayer
optics. To our knowledge, this component of scattering had not been calculated until now,
and prediction of its order of magnitude was crucial, especially since no technique is able to
measure it directly; indeed this trapped light is absorbed during propagation in the stack, and the
propagation length is too short for any local decoupling process to occur without modification to
the incident medium. A series of coating designs was considered and it was shown that over a
wide range of wavelengths, the trapped scattering in the form of electromagnetic modes within
the coating can largely dominate the free space scattering. The same conclusion was drawn for
light trapped under total reflection in a substrate of finite thickness. These results prove that
trapped scattering can no longer be neglected in any high precision energy balance where each
ppm must be eliminated (see for instance the case of mirrors for gyro-lasers or for detection of
gravitational waves). Also, it should be kept in mind that this trapped scattering is absorbed
during propagation within the stack, which may help in the analysis of the absorption processes
(low extinction coefficients, or imaginary indices, may create unexpected absorption levels).
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