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Abstract

In this paper we focus on a periodic resource allocation problem ap-
plied on a dynamical system which comes from a biological system. More
precisely, we consider a system with N resources and N activities, each
activity use the allocated resource to evolve up to a given time T > 0
where a control (represented by a given permutation) will be applied on
the system to re-allocate the resources. The goal is to find the optimal
control strategies which optimize the cost or the benefit of the system.
This problem can be illustrated by an industrial biological application,
namely the optimization of a mixing strategy to enhance the growth rate
in a microalgal raceway system. A mixing device, such as a paddle wheel,
is considered to control the rearrangement of the depth of the algae cul-
tures hence the light perceived at each lap. We prove that if the dynamics
of the system is periodic, then the period corresponds to one re-allocation
whatever the order of the involved permutation matrix is. A nonlinear op-
timization problem for one re-allocation process is then introduced. Since
N ! permutations need to be tested in the general case, it can be numeri-
cally solved only for a limited number of N . To overcome this difficulty,
we introduce a second optimization problem which provides a subopti-
mal solution of the initial problem, but whose solution can be determined
explicitly. A sufficient condition to characterize cases where the two prob-
lems have the same solution is given. Some numerical experiments are
performed to assess the benefit of optimal strategies in various settings.

Keyword: Photobioreactor, Optimization, Nonlinear adaptive control, Mi-
croalgae, Light extinction, Compensation condition, Turbidostat.
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1 Introduction
Microalgae are photosynthetic microorganisms whose potential has been high-
lighted in the last decades, especially for renewable energy and wastewater treat-
ment [37, 18, 30]. Compared with terrestrial plants, whose growth is slower due
to CO2 availability, the high actual photosynthetic yield of microalgae cultures
leads to higher biomass production potential. Some algal species can be grown
to target numerous high added value commercial applications: pharmaceuti-
cal, cosmetics or food industries [12, 33]. These microorganisms are generally
cultivated at industrial scale in simpler and cheaper open raceway ponds or in
high-tech closed photobioreactors, using solar or artificial light depending on
the applications.

The biomass productivity in these reactors depends on the photosynthesis
efficiency resulting from the light distribution along depth. Light intensity is
strongly attenuated in the photobioreactor due to the absorption and scattering
of the microalgae and the background turbidity of the cultivation medium. De-
pending on the position of the algal cells in the reactor, they perceive different
light intensities which further influence the photon harvesting dynamics. Light
attenuation is generally described by a Beer-Lambert law [20] where the light
extinction rate varies with the process type and algal concentration. Some stud-
ies have more accurately represented the way light is attenuated in the process,
especially to deal with very dense multi-scattering medium where a photon can
be scattered several times before being eventually absorbed [27]. There were a
lot of works dedicated to better represent growth in a dense reactor [20, 36], with
experimental validation [14, 19, 9] which were later carried out in more com-
plicated geometries, also accounting for the influence of the solar angle [1, 29].
The influence of the background turbidity and the reactor geometry have often
been neglected, even if its influence on the average growth rate turns out to be
non-negligible, especially for some geometries [25].

The gap with industrial production is however still important and other
factors should be taken into account, such as temperature, pH, nutrients, etc.
There exists several realistic models for photobioreactor dynamics accounting
for these effects [21, 5, 4, 32, 3]. These models were even made more accurate
by including hydrodynamics [24, 11, 2]. Finally, a new generation of models
is emerging when considering also the bacterial community interacting with
microalgae [7, 31, 8]

Here we come back to the theory and focus on the core mechanisms involved
in photobioreactor productivity, especially when background turbidity is taken
into account. This theoretical study will give the main direction to be optimized
in real systems. Authors in [26] provided an optimal condition to maximize the
surface biomass productivity in a simplified framework. This so-called com-
pensation condition consists in cancelling the net growth rate at the reactor
bottom. It was validated by some experimental studies [34, 35]. This princi-
ple allows to adapt the biomass concentration to the reactor depth in order to
maximize productivity. It has been assessed numerically, with Model Predictive
Control, and shown to be still valid for more complicated and realistic cases
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where temperature and light simultaneously vary [28, 10].
In this paper, we focus on understanding how this principle can be affected

by the background turbidity, and more precisely how this can modify the theo-
retical results of [26]. Our first contribution, was to extend the work in [26] by
choosing a more realistic description of the algal growth dealing with photoin-
hibition. Our second contribution consisted in considering a general biomass
dependent light extinction function accounting for the background turbidity of
the system. The concept of optical depth productivity is introduced, and a
condition is derived on the optical depth for globally maximizing productivity.
This optimum corresponds to the compensation condition. We then use this
optimal condition to characterize the optimization of the surface biomass pro-
ductivity depending on the minimum achievable water depth. When the light
extinction rate is affine with respect to the algal biomass, an upper limit to the
productivity (obtained for an infinitely small depth) is given. A nonlinear con-
troller is given and is proved to stabilize the evolution of the biomass towards
the optimal desired value. The optimal behaviours are illustrated in different
cases by numerical experiments.

This paper is organized as follows. In Section 2, we define the key concepts
such as average growth rate and light distribution. We then study the optimiza-
tion problem in Section 3. More precisely we investigate the global behaviour of
the optical depth productivity and the optimal condition in Subsection 3.1. The
optimal biomass concentration for a given reactor depth to maximize the surface
biomass productivity is investigated in Subsection 3.2. A nonlinear controller is
then introduced in Section 4 to stabilize the biomass concentration towards its
optimal value. We illustrate and discuss the behaviour of the optima in different
cases by some numerical experiments in Section 5.

2 Description of the model
For a given light intensity I [µmol m−2 s−1], the growth rate of microalgae is
defined by a Haldane-type description parametrized as in [6]

µ(I) := µmax
I

I + µmax

θ ( II∗ − 1)2
, (1)

where θ is the initial slope of µ [d−1], µmax denotes the maximum value of µ
and I∗ represents the optimal light intensity. This description results from a
mechanical consideration of the light harvesting dynamics represented by the
Han system in steady state [16]. The light attenuation is described by a Beer-
Lambert law

I(X, z) := Is exp
(
ε(X)z

)
, (2)

where X [g m−3] represents the biomass concentration, z ∈ [−h, 0] denotes the
vertical position of the algal cells with h [m] the depth and Is is the light
intensity at the reactor surface. The light extinction ε, which summarises the
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light absorption and diffusion, is considered to be correlated to the biomass
concentration X

ε(X) := α0(s)Xs + α1, (3)

where 0 < s ≤ 1, α0(s) > 0 [m2 g−1] stands for the specific light extinction
coefficient of the microalgae species. It depends on the parameter s. The
background turbidity, α1 [m−1], is due to all non-microalgae components i.e.
suspended solids and dissolved colored material. The dependence of s in α0 will
be omitted hereafter when no confusion may occur.

From (2) one can compute the mean light intensity received by the algae
culture

Ī = Is

∫ 0

−h
eε(X)zdz =

Is
ε(X)

(
1− e−ε(X)h

)
.

This quantity is a decreasing function of ε(X), which confirms the intuition that
a higher biomass concentration or a higher background turbidity leads to lower
mean light received in the reactor, due to stronger light attenuation.

Replacing I by (2) in (1), one can see that the growth rate varies with depth
of the reactor. Lower growth rate in the upper part of the reactor results from
the photo-inhibition caused by the high light intensity. Similarly, growth rate
is weak in the lower part of the reactor because of the low light intensity. The
mean growth rate in the reactor is defined by

µ̄(X,h) :=
1

h

∫ 0

−h
µ(I(X, z))dz. (4)

Applying then a change of the variable y = ε(X)z, it can be written as

µ̄(X,h) =
1

ε(X)h

∫ ε(X)h

0

µ(I(−y))dy, (5)

so that the mean growth rate depends on the optical depth ε(X)h. This quantity
is denoted by Y [-] hereafter. In this case, the average growth rate (5) can also
be written as a function of Y (i.e. µ̄(X,h) = µ̄(Y )). Our aim is to optimize the
surface biomass productivity (units: g ·m−2 · d−1) which is defined by

Π := (µ̄−R)Xh. (6)

Remark 2.1. The evolution of the biomass concentration X is given by

Ẋ = (µ̄−R−D)X, (7)

where R [d−1] is the respiration rate and D [d−1] denotes the reactor dilution
rate. Note that at equilibrium, the biomass surface productivity Π is the product
between dilution rate (D = µ̄−R) and surface biomass Xh.

Note that a nonlinear controller for D is introduced in Section 4 to stabi-
lize (7) to the value of X optimizing productivity.
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Remark 2.2. The average growth rate (4) is defined for flat reactors with a
rectangular section. For more complex geometries, for instance horizontal tri-
angular cylinder or horizontal semicircular cylinder, (4) still play an important
role for the average growth rate in these reactors. We refer [25] for further de-
tails. For sake of simplicity, our analysis applies to flat systems (flat panels,
raceways, ...) but could straightforwardly be extended to other shapes.

3 Analysis of the optimal productivity
In this section, we investigate the optimization problem associated with the
productivity Π. Note that the biomass concentration X and the depth h are
both defined in R+.

3.1 Global optimality condition
First, let us define the optical depth productivity1 (units: d−1) by

P := (µ̄−R)Y. (8)

Remark 3.1. According to the definition of the optical depth productivity (8), a
thin reactor with high biomass concentration is equivalent to a deep reactor with
low biomass concentration as long as they both share the same optical depth Y .
A low value of Y means a weaker photon harvesting since less light is absorbed.
On the reverse, a too high Y means that light hardly reaches the bottom of the
reactor, with an area where respiration (loss of CO2) exceeds growth (fixation of
CO2). Hence, it is necessary to determine the optimal Y value maximizing the
efficiency of the productivity P .

Theorem 3.1. Given a surface light intensity Is, there exists an optimum Yopt
which maximizes the optical productivity P . This value satisfies µ (I(Yopt)) = R
and can be computed explicitly according to the growth rate at the surface µ(Is):

Yopt =


ln

(
2IsRµmax
θI∗2

µmax−R+ 2Rµmax
θI∗ −

√
(µmax−R)(µmax−R+ 4Rµmax

θI∗ )

)
, µ(Is) > R,

ln

(
2IsRµmax
θI∗2

µmax−R+ 2Rµmax
θI∗ +

√
(µmax−R)(µmax−R+ 4Rµmax

θI∗ )

)
, µ(Is) ≤ R.

(9)

Proof. For a given Y , the optical productivity P can be written from (5) and (8)

P (Y ) =

∫ Yopt

0

µ(I(−y))−Rdy +

∫ Y

Yopt

µ(I(−y))−Rdy

=P (Yopt) +

∫ Y

Yopt

µ(I(−y))−Rdy, (10)

1also called "optical productivity"
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where Yopt is chosen according to (9). On the other hand, for the function

µ(I(−y)) =
µmaxI(−y)

I(−y) + µmax

θ ( I(−y)
I∗ − 1)2

,

there exists a y∗ := ln(Is/I
∗) > 0 with µ(I(−y∗)) = µmax such that µ(I(−y)) is

increasing from 0 to y∗ and decreasing from y∗ to +∞. According to the value
of µ(I(0)) (i.e. µ(Is)), two cases must be considered:

• if µ(I(0)) = µ(Is) > R, the second term of (10) is always negative. Indeed,
in the case where Y is smaller than Yopt, one finds µ (I(−y)) > R, ∀y <
Yopt. In other words, the second term of (10) removes the microalgae
which grow more than they respire. Otherwise, Y is greater than Yopt,
one finds µ (I(−y)) < R, ∀y > Yopt (for the same reason as above). This
means that the second term of (10) adds the microalgae which respire
more than their growth.

• if µ(I(0)) = µ(Is) ≤ R, then there exists a ỹ ∈ [0, y∗) such that µ(I(−ỹ)) =
R. Then if Y is greater than ỹ, the second term of (10) is negative for the
same reason as above. Otherwise, the productivity P (Y ) is negative.

In both cases, the second term of (10) is negative. Thus Yopt maximizes the
quantity P .

In order to compute Yopt, one needs to solve µ(I) = R, or equivalently:

Rµmax

θI∗2
I2 + (R− µmax −

2Rµmax

θI∗
)I +

Rµmax

θ
= 0.

The discriminant of this second order polynomial equation is given by ∆ =
(µmax − R)(µmax − R + 4Rµmax

θI∗ ) > 0, which implies that there exists two real
roots. The sum and the product of two roots are both positive, hence both of
these two roots are also positive. Finally Yopt can be determined by the growth
rate at the surface µ(Is):

• if µ(Is) > R, then there exists one root in the interval (0, Is) and one root
in the interval (Is,+∞). In this case, one has

Yopt = ln

 2IsRµmax

θI∗2

µmax −R+ 2Rµmax

θI∗ −
√

(µmax −R)(µmax −R+ 4Rµmax

θI∗ )

 .

• if µ(Is) ≤ R, then two roots both lie into the interval (0, Is]. In this case,
we choose the smaller one (since it represents the light at lower part of
the reactors)

Yopt = ln

 2IsRµmax

θI∗2

µmax −R+ 2Rµmax

θI∗ +
√

(µmax −R)(µmax −R+ 4Rµmax

θI∗ )

 .
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This concludes the proof.

Remark 3.2. As shown in (9), the value of Yopt only depends on the model
parameters (θ, µmax, I∗, R) and on the light intensity at the reactor surface
Is. In other words, the cancellation of the net growth rate at the bottom of the
reactor is the optimal strategy to maximize optical depth productivity (see in
Figure 2 for illustrations).

3.2 Surface biomass productivity
In this section, we focus on the surface biomass productivity Π. From the
definition of Π (6) and the definition of P (8), one has

Π =
X

ε(X)
P. (11)

In general, it is not possible to apply the same strategy (as in the proof of
Theorem 3.1) to optimize Π, since P and Π do generally not have the same
behaviour. Only in the case where s = 1 and α1 = 0, the factor X

ε(X) simplifies,
leading to the same optimum. Using then Theorem 3.1, we deduce directly the
following results.

Corollary 3.1. If the light extinction function defined by (3) satisfies α1 = 0
and s = 1, then Yopt defined by (9) maximizes the productivity Π and Yopt is
the global optimum. Moreover, Ỹopt := Yopt/α0 is the optimal surface biomass.

Proof. Since α1 = 0 and s = 1, Y = ε(X)h = α0Ỹ with Ỹ := Xh the surface
biomass. Meanwhile, using (11), one has P (·) = α0Π(·), then following the
same analysis, one finds that Yopt maximizes P (·), therefore the productivity
Π(·). Finally, Ỹopt is given by Yopt/α0.

Corollary 3.2. If the objective is to reach a biomass concentration X1, there
exists a unique reactor depth h1 which satisfies ε(X1)h1 = Yopt and maximizes
the productivity Π(X1, ·) for this target biomass.

Proof. Since X1 is fixed, then using (11), one has directly that the optimum is
given by Yopt. In this case, h1 is defined by Yopt/ε(X1).

In Corollary 3.2, we have studied the case with a fixed biomass concen-
tration X. This result does not depend on the considered law ε(X). How-
ever, optimizing X is more tricky, Corollary 3.1 provides a result in the case
with a specific value of α1 and s. In more general case, the strategy used in
the proof of Theorem 3.1 may fail when optimizing X. Indeed, let (X1, h1)
such that Yopt = ε(X1)h1. For a biomass concentration X > X1, one has
Y = ε(X)h1 > Yopt. Applying then Theorem 3.1, one finds immediately
P (Y ) < P (Yopt). However, in the case where the background turbidity is not
negligible (i.e. α1 > 0), one has X

ε(X) >
X1

ε(X1) using the definition (3). Then
according to (11), it is not clear if Π(X1, h1) is larger than Π(X,h1). In this
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way, we focus on the case where α1 > 0 in the following. Let us start with a
technical lemma.

Lemma 3.1. Let h1 a given depth and (X1, h1) such that Yopt = ε(X1)h1, then
there exists X̃ > X1 such that Π(X̃, h1) > Π(X1, h1).

Proof. Using the definition of the surface biomass productivity (6) and the
definition of the average growth rate (4), and applying a change of variable
I = Is exp(ε(X)z), one has

Π(X,h1) =
X

ε(X)

∫ Is

I(X,h1)

µ(I)−R
I

dI.

Let us denote by f(I) = µ(I)−R
I and by F (I) such that F ′(I) = f(I). Note that

F can actually be found explicitly as shown in Appendix B. The latter equa-
tion then becomes Π(X,h1) = X

ε(X) (F (Is)− F (I(X,h1))). Taking the partial
derivative with respect to X gives

∂XΠ(X,h1) =
(1− s)α0X

s + α1

ε2(X)
(F (Is)− F (I(X,h1)))− X

ε(X)
f(I(X,h1))∂XI(X,h1).

Since Yopt = ε(X1)h1, using Theorem 3.1, one has immediately µ(I(X1, h1)) =
µ(I(Yopt)) = R, then one finds f(I(X1, h1)) = 0. Moreover, F (Is)−F (I(X1, h1)) =
P (Yopt) > 0 and s ≤ 1. These imply that ∂XΠ(X1, h1) > 0. In other words,
there exists X̃ > X1 such that Π(X̃, h1) > Π(X1, h1). This concludes the
proof.

According to Corollary 3.2, the couple (X1, h1) satisfies ε(X1)h1 = Yopt and
corresponds to the optimum of Π(X1, ·) for a given X1. However, the previous
lemma implies that this is not the optimal condition to optimize Π(·, h1) for a
given h1. This then enables us to prove the next theorem.

Theorem 3.2. If α1 > 0, there is no global optimum for the productivity Π(·, ·)
in R+ × R+.

Proof. Let us assume that there exists a global optimum for the productiv-
ity Π denoted by (X∗, h∗). Since (X∗, h∗) is a global optimum, in particu-
lar, this is an optimum in the direction of h. Using Corollary 3.2, we find
ε(X∗)h∗ = Yopt. However, using Lemma 3.1, there exists X̃∗ > X∗ such that
Π(X̃∗, h∗) > Π(X∗, h∗). This contradicts the fact that (X∗, h∗) is a global
optimum. Therefore, the productivity Π(·, ·) has no global optimum.

Since no global optimum for the productivity Π can be found when α1 > 0,
then we would like to study the asymptotic behaviour of Π. In the following, we
focus on the optimum in the direction of X and in the direction of h separately.
Given X0 and consider the sequence (Xn, hn)n∈N defined by

hn =
Yopt

ε(Xn−1)
, Xn := argmaxX∈R+

Π(X,hn). (12)
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From the definition above, the sequence (Xn−1, hn)n>0 corresponds to the op-
timum in the direction of h for Xn−1, whereas the sequence (Xn, hn)n>0 corre-
sponds to the optimum in the direction of X for hn. In plain words, these two
sequences defined by (12) aims at searching the local optima by optimizing in
the direction of h and in the direction of X alternately. Let us provide some
more information about the sequence (Xn, hn)n>0.

Theorem 3.3. limn→∞Xn =∞, limn→∞ hn = 0 and

lim
n→∞

Π(Xn, hn) =

{
P (Yopt)
α0

, s = 1,

+∞, s < 1.

Proof. By Lemma 3.1, one has (Xn)n∈N which is a strictly increasing sequence.
Hence, the sequence (hn)n∈N∗ is strictly decreasing by its construction (12).
Since for each n ∈ N∗, hn > 0, then this sequence converges to a limit that we
denote by hlim. Assume that hlim > 0, then from (12), one has

hlim = lim
n→∞

hn = lim
n→∞

Yopt

ε(Xn−1)
= Yopt lim

n→∞

1

α0Xn−1 + α1
,

which means that limn→∞Xn =: Xlim < ∞. Then (Xlim, hlim) is a global
optimum, hence a contradiction with Theorem 3.2. Therefore hlim = 0, which
means that Xlim =∞.

On the other hand, by the construction of these two sequences (Xn−1, hn)n>0,
(Xn, hn)n>0 and Lemma 3.1, one has

Π(Xn−1, hn) < Π(Xn, hn) < Π(Xn, hn+1).

Using (11), one has Π(Xn−1, hn) = Xn−1

ε(Xn−1)P (Yopt) and Π(Xn, hn+1) = Xn
ε(Xn)P (Yopt).

In the case s = 1, passing to the limit of the latter two equations gives

lim
n→∞

Π(Xn−1, hn) = lim
n→∞

Xn−1

ε(Xn−1)
P (Yopt) = P (Yopt) lim

n→∞

Xn−1

α0Xn−1 + α1
=
P (Yopt)

α0
,

lim
n→∞

Π(Xn, hn+1) = lim
n→∞

Xn

ε(Xn)
P (Yopt) = P (Yopt) lim

n→∞

Xn

α0Xn + α1
=
P (Yopt)

α0
.

This gives limn→∞Π(Xn, hn) =
P (Yopt)
α0

. However, in the case 0 < s < 1, the
previous limits become

lim
n→∞

Π(Xn−1, hn) = lim
n→∞

Xn−1

ε(Xn−1)
P (Yopt) =

P (Yopt)

α0
lim
n→∞

X1−s
n−1 = +∞,

lim
n→∞

Π(Xn, hn+1) = lim
n→∞

Xn

ε(Xn)
P (Yopt) =

P (Yopt)

α0
lim
n→∞

X1−s
n = +∞.

Therefore, limn→∞Π(Xn, hn) = +∞. This concludes the proof.

Corollary 3.3. For s = 1, the sequence (Xn, hn) verifies limn→∞ ε(Xn)hn =
Yopt, and the growth rate at the reactor bottom satisfies limn→∞ µ(I(Xn, hn)) =
R.
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Proof. By the construction of sequences (Xn−1, hn)n>0, (Xn, hn)n>0 and Lemma 3.1,
one has

Π(Xn−1, hn) < Π(Xn, hn) < Π(Xn, hn+1).

Using (11), the previous inequalities become

Xn−1

ε(Xn−1)
P (Yopt) <

Xn

ε(Xn)
P (ε(Xn)hn) <

Xn

ε(Xn)
P (Yopt),

where we use the fact that ε(Xn−1)hn = ε(Xn)hn+1Yopt by Definition (12).
Since Xn

ε(Xn) > 0, dividing the latter inequalities by Xn
ε(Xn) > 0 gives

ε(Xn)Xn−1

ε(Xn−1)Xn
P (Yopt) < P (ε(Xn)hn) < P (Yopt).

Moreover, using the definition (3) for s = 1, one has

ε(Xn)Xn−1

ε(Xn−1)Xn
=
α0XnXn−1 + α1Xn−1

α0XnXn−1 + α1Xn
> 1− α1

α0Xn−1 + α1
.

In other words,

(1− α1

α0Xn−1 + α1
)P (Yopt) < P (ε(Xn)hn) < P (Yopt).

Denoting by Yn = ε(Xn)hn and passing the latter inequalities to the limit, one
then has limn→∞ P (Yn) = P (Yopt). On the other hand, P (Y ) =

∫ Y
0
µ(I(−y))−

Rdy is decreasing on the interval (Yopt,+∞) for the reason that µ(I(−y)) is
decreasing and µ(I(−y)) < R on this interval. Since for all n ∈ N, Yn > Yopt,
one has limn→∞ Yn = Yopt. Finally µ(I(−y)) is a continuous function with
respect to y in R+, one has

lim
n→∞

µ(I(Xn, hn)) = lim
n→∞

µ(I(Yn)) = µ(I(Yopt)) = R.

This concludes the proof.

The previous theorem shows that without constraint on the reactors, an
infinite thin reactor with an infinite dense biomass concentration can maximize
the productivity. According to how light attenuates in the reactors (i.e. value
of s), this productivity can be increased infinitely. However for real reactors,
there is a constraint on the minimal reactor depth hlim (below which mixing is
no more possible). An optimal solution can then be found in this case. Indeed,
as shown in Theorem 3.3, a higher productivity can be obtained for higher
biomass concentration and smaller reactor depth. Considering the minimal
reactor depth, one can find the optimal biomass concentration maximizing the
productivity.
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4 Optimal control implementation in closed loop
As shown in previous section, there exists optimal biomass concentration for a
given reactor depth h. In this section, let us show that the evolution of the
biomass concentration X (defined in (7)) can be stabilized to a desired biomass
concentration by applying an appropriate controller. More precisely, we consider
the dilution rate D in (7) as a controller. Let us denote by X? ∈ (0, X(0)) the
desired biomass concentration.

Assumption 1 (H1). We assume that:

a. thanks to an oxygen probe, the quantity Φ := (µ̄(X,h)−R)X is measured
on-line from the plant,

b. the growth rate for the influent light intensity is larger than the respiration
(i.e. µ(Is) > R),

c. the maximal dilution rate Dmax is larger than the maximal growth rate
µmax.

The quantity Φ denotes the average oxygen production which is available
from the reactor. Indeed, oxygen sensors are currently available and easy to
implement. Note that numerical estimators can also be applied to obtain the
quantity Φ. The influent light intensity is logically assumed to enable biomass
growth, i.e. to be neither too low nor too inhibiting. The dilution rate (by
medium addition in the system) and harvesting rate is adapted to the maximal
growth rate of the species.

Proposition 4.1. The control law

D =

{
Dmax X ≥ X̄
(µ̄(X,h)−R) XX? X < X̄

(13)

globally stabilizes equation (7) towards the positive point X?.

Remark 4.1. X̄ > X? is chosen to determine the area where the control will
be at its maximum rate. It is defined so that (µmax −R) X̄X? < Dmax.

Proof. From the definition of (13), the control variable D is positive. On the
other hand, µ̄(0, h) > R, limX→∞ µ̄(X,h) = 0 and µ̄(·, h) is continuously de-
creasing with respect to X. If the initial state X(0) ≥ X̄, then replacing
D = Dmax into (7) gives

Ẋ = (µ̄(X,h)−R−Dmax)X.

In particular, µ̄(X(0), h)−R−Dmax < 0, hence there exists a time t1 > 0 such
that the state X decreases from 0 to t1 and X(t1) = X̄. When t > t1, D = Φ

X? .
Replacing D = Φ

X? into (7) gives

Ẋ = (µ̄(X,h)−R)
X

X?
(X? −X) =

Φ

X?
(X? −X). (14)

11



Note that the system is now in the positive invariant region X < X̄ and cannot
come back again to X ≥ X̄. Moreover, 0 < µ̄(X,h) − R < µmax − R. Then,
integrating (14) gives ∀t ≥ t1, 0 < X? ≤ X(t) ≤ X(0).

In the case the initial state X(0) ∈ (0, X̄), the control variable D = Φ
X? and

the evolution equation (7) once again becomes (14), hence we follow the small
strategy as above.

Finally we find in both two cases that

∀t ≥ 0, 0 < X? ≤ X(t) ≤ X(0).

Therefore, the state X? is globally exponentially stable for the evolution equa-
tion (7) by using the control law (13).

5 Numerical results
In this section, we will illustrate some optimal conditions to maximize the al-
gal productivity. In this way, we first introduce an algorithm to compute the
sequences defined in (12). We then give the parameters that we use for the
numerical experiments and show some numerical results.

5.1 Numerical algorithm
In practice, one can use the next algorithm to compute for two sequences
(Xn−1, hn)n>0 and (Xn, hn)n>0 defined by (12).

Algorithm 1 Search Optimum
1: Input: Yopt, nmax and X0.
2: Output: (Xn, hn)n>0

3: Set n := 0.
4: while n < nmax do
5: Set n = n+ 1.
6: Compute hn = Yopt/ε(Xn−1).
7: Compute Xn such that dΠX(Xn, hn) = 0.
8: end while

5.2 Parameter settings
The Han model parameters are taken from [13] and recalled in Table 1. Pa-
rameters µmax = 1.64 d−1, θ = 4.09 × 10−7 and I∗ = 202.93µmol m−2 s−1

are then derived from equation (20). The considered surface light intensity is
Is = 2000µmol m−2 s−1. For s = 1, we take from [25] the specific light ex-
tinction coefficient for the species Chlorella pyrenoidosa α0 = 0.2 m2 g−1 and
the background turbidity α1 = 10 m−1. Note that for the case where s < 1,

12



Table 1: Parameter values for Han Model.

kr 6.8 10−3 s−1

kd 2.99 10−4 -
τ 0.25 s
σH 0.047 m2 µmol−1

kH 8.7 10−6 -
R 1.389 10−7 s−1

we compute the coefficient α0(s) to find the one providing an extinction coeffi-
cient as close as possible to the reference linear case which is generally the one
measured:

α0(s) := argminX∈[Xmin,Xmax]|α0(1)X− α0(s)Xs|. (15)

5.3 Numerical study
In this section, we provide some numerical tests to illustrate the influence of the
water depth h, the biomass concentration X and the light extinction function
ε(X) on algal productivity.

5.3.1 Evaluation of different light extinction coefficient

As mentioned in the previous section, the light extinction coefficient α0 needs
to be better estimated when s < 1, in comparison with the reference case s = 1.
For this reason, for a range of biomass concentration X in [0, 1000] (g ·m−3),
we use (15) to find α0 that provide the same average extinction rate. Figure 1
shows ε(X) defined by (3) for different values of s when the background turbidity
α1 > 0.

Figure 1: ε(X) with respect to X for s ∈ {0.2, 0.4, 0.6, 0.8, 1}.
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5.3.2 Global optimum of optical depth

The optimal optical depth Yopt can be computed explicitly using (9) once the
light intensity at the reactor surface Is and the model parameters (θ, µmax, I∗,
R) are fixed. Figure 2 presents the evolution of the growth rate µ and optical
depth productivity P with respect to y for different value of s and α1. One

Figure 2: Growth rate µ and optical depth productivity P with respect to y.
Left: s = 1 and α1 = 10 m−1. Right: s = 0.365 and α1 = 0 m−1.

can see that the optimum is obtained with Yopt = 6.337, which also satisfies
numerically µ(I(Yopt)) = R. Moreover, as mentioned in Remark 3.2, Yopt does
not change for other values of α1 and s.

In the same way, for a given biomass concentration X, Corollary 3.2 provides
a condition to determine the optimal depth to maximize the surface biomass
productivity Π. Figure 3 illustrates this corollary with a biomass concentration
X = 50 g ·m−3 for different values of s and α1. Note that the optimal depth

Figure 3: Productivity (Π) and net growth rate (µnet(X,h)) with respect to
depth (h) for X = 50 g ·m−3. Left: s = 1 and α1 = 10 m−1. Right: s = 0.365
and α1 = 0 m−1.

h∗ satisfies the relation ε(X)h∗ = Yopt. In other words, one can see that this
optimum satisfies µ (I(X,h∗)) = R. It is worth remarking that the range of the
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productivity Π changes for different value of s and α1, this motivates the next
test, where we study how these parameters affect algal growth.

5.3.3 Influence of the background turbidity and s

Here we study the influence of the background turbidity α1 and the value of s on
the productivity Π. We keep the biomass concentration value X = 50 g ·m−3

and compute h by using the relation ε(X)h = Yopt for different values of α1 and
s. Note that the depth h computed in this way is the optimum to maximize the
productivity for the given biomass concentration. Figure 4 represents the opti-
mal surface biomass productivity Π with respect to the background turbidity.
As we can expect intuitively, the larger the background turbidity is, the smaller

Figure 4: Optimal surface biomass productivity with respect to the background
turbidity α1 for X = 50 g ·m−3 and different value of s.

the productivity is. Furthermore, the productivity increases with the value of s
for a fixed value of turbidity α1.

5.3.4 Local optimum in the case s = 1

In reality, the depth h depends on the type of reactors. As an example, h =
0.1 m − 0.5 m for raceway ponds, h = 1 cm − 10 cm for tubular photobioreac-
tors and h = 0.1 mm− 1 mm for biofilm reactors (where the microalgal biomass
is fixed on a support). By knowing the lowest bound admissible for the re-
actor depth (depending on the process type), we only need to optimize the
productivity in the direction of X. Note that the turbidity α1 may change
the optimal condition to maximize the surface biomass productivity Π. In-
deed, Figure 5 illustrates this for a reactor depth h = 0.15 m. Note that X0

satisfies the relation ε(X0)h = Yopt which also means that the net growth
rate at the bottom of the reactor is zero (see the blue point in these two fig-
ures). On the other hand, the red point (X1, h) is the optimum which maximize
the surface biomass productivity Π for this given depth h. One can see that
X0 = X1 = 158.427 g ·m−3 in the case the background turbidity is zero in the
system (Left), meaning that the optimum is the point which cancels the net av-
erage growth rate at the reactor bottom as we have mentioned in Corollary 3.1.
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Figure 5: Productivity (Π) with respect to biomass concentration (X) for h =
0.15 m. Left: α1 = 0 m−1. Right: α1 = 10 m−1.

However, Lemma 3.1 indicates that by taking into account the background tur-
bidity (Right), these two points are no longer the same and the optimum then
satisfies X1 = 204.190 g ·m−3 > X0 = 108.427 g ·m−3.

The global behaviour of the surface biomass productivity Π is represented
on Figure 6, for h ∈ (0, 1] and X ∈ (0, 1000]. To discuss the influence of the
background turbidity, we consider two possible values, α1 = 0 m−1 and α1 =
10 m−1. Note that the blue points in the left figure (X,h) satisfy the relation

Figure 6: Global behaviour of productivity (Π) with respect to depth (h) and
biomass concentration (X). Left: α1 = 0 m−1. The blue stars represent the
optimal couple (X,h) such that Π finds its global maximum. Right: α1 =
10 m−1. The red circles represent the suboptimal couple (X,h) where Π finds
its maximum in the direction of h for a given X. The black squares represent
the suboptimal couple (X,h) where Π finds its maximum in the direction of X
for a given h.

ε(X)h = Yopt which is also the global optimum. However, by taking into account
the background turbidity (see figure on the right), no global optimum exists as
mentioned in Theorem 3.2. Instead, for a given biomass concentration, the
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optimal depths can still be found using the relation ε(X)h = Yopt (represented
by the red circles in the right figure). For a given water depth, the optimal
concentrations are obtained by cancelling the derivative of Π(·, h) (represented
by the black squares in the right figure). Furthermore, one can observe that this
two suboptima become closer when X increases and h decreases, meanwhile the
productivity also increases in this direction.

Let us setX0 = 50 g ·m−3, α1 = 10 m−1 and nmax = 104. Figure 7 illustrates
the properties of these two sequences constructed by Algorithm 1. Starting

Figure 7: Up: First-two elements of these two sequences. Down Left: Sur-
face biomass Xnhn and optical depth ε(Xn)hn for the sequence (Xn, hn)n>0.
Down Right: Productivity Π(Xn, hn) and net growth rate at the reactor bottom
µ(Xn, hn)−R for the sequence (Xn, hn)n>0.

from the figure on the top, the blue point and the yellow point are the first-
two element of the sequence (Xn−1, hn)n>0, the red point and the purple point
are the first-two element of the sequence (Xn, hn)n>0. Recall that the sequence
(Xn−1, hn)n>0 always satisfies ε(Xn−1)hn = Yopt and the net growth rate at the
reactor bottom is always 0. We then only study the asymptotic behaviour of
the sequence (Xn, hn)n>0. As shown in bottom left figure, the surface biomass
Xnhn converges to Yopt

α0
and the optical depth ε(Xn)hn converges to Yopt, as

proved in Lemma 3.3. The productivity Π(Xn, hn) converges to P (Yopt)/α0,
see bottom right figure as proved in Theorem 3.3. Finally, the net growth rate
at the reactor bottom converges to zero, which is the global optimum condition
in the case where the background turbidity is 0 (see Corollary 3.1). In particular,
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since (Xn, hn) are the optima in the direction of X for each hn, one can see that
the net growth rate at the reactor bottom for these optima are always negative,
meaning that the compensation condition is only satisfied asymptotically.

5.3.5 Local optimum in the case s < 1

We start with a similar study as in Figure 5 in the case s < 1. Recall that
the depth of the reactor is given by h = 0.15 m and two background tur-
bidity values are given by α1 = 0 m−1 and α1 = 10 m−1. Figure 8 illus-
trates the results for s = 0.365. Recall that the blue point (X0, h) satisfies

Figure 8: Productivity (Π) with respect to biomass concentration (X) for h =
0.15 m. Left: α1 = 0 m−1. Right: α1 = 10 m−1.

the relation ε(X0)h = Yopt which also means that the net growth rate at
the reactor bottom is zero, and the red point (X1, h) represents the optimum
which maximizes the productivity for this depth h. In the case α1 = 0 m−1,
we find X0 = 13.327 g ·m−3 and X1 = 1149.298 g ·m−3, whereas we obtain
X0 = 4.715 g ·m−3 and X1 = 1064.574 g ·m−3 in the case α1 = 10 m−1. These
two points do not coincide even when the background turbidity is zero, which
is different from the case s = 1.

Figure 9 presents the global behaviour of surface biomass productivity in
the case s = 0.365. Unlike for the case s = 1 (Figure 6), the influence of the
background turbidity becomes smaller when s < 1. However, similarly to this
s = 1 case (Right), the productivity becomes larger when the biomass concen-
tration X increases and the water depth h decreases. Furthermore, Figure 10
shows the divergence of the productivity Π, as proved in Theorem 3.3.

5.3.6 Controller test

We present the efficiency of the controller D designed in Proposition 4.1. Let
us set h = 0.1 m, s = 1, X(0) = [2500, 50]g m−3, Dmax = 10µmax and keep
other parameter settings. Figure 11 illustrates the behaviour of the biomass
concentration X under our controller D. Note that the desired biomass con-
centration X? = argmaxX∈R+

Π(X,h). One can see that the evolution of the
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Figure 9: Global behaviour of productivity (Π) with respect to depth (h) and
biomass concentration (X). Left: α1 = 0 m−1. Right: α1 = 10 m−1. The red
circles represent the suboptimal couple (X,h) where Π finds its maximum in
the direction of h for a given X. The black squares represent the suboptimal
couple (X,h) where Π finds its maximum in the direction of X for a given h.

Figure 10: Π(Xn, hn) for the sequence (Xn, hn)n>0.

Figure 11: Evolution of the biomass concentration X in closed loop for two
initial conditions.
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biomass concentrationX in closed loop converges to the desired optimal biomass
concentration (after five days).

6 Conclusion
The concept of optical productivity P has been defined and a global optimum
Yopt has been found to maximize P . This condition corresponds to a situation
where the net growth rate at the reactor bottom is zero. This optimum can be
used to characterize the optimal water depth which maximizes surface biomass
productivity Π for a target biomass concentration value. When the light extinc-
tion rate is affine with respect to the biomass concentration, an upper limit to
the productivity is given which is obtained for an infinitely small depth and an
infinitely large biomass concentration.

The proposed nonlinear controller stabilizes the biomass concentration to its
optimal value X?. It could be improved by integrating an extremum seeking
strategy [23, 15] to automatically target the desired biomass without identifying
it in advance.
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A Han model to Haldane description
Let us consider the Han model [16]:

Ȧ = −σIA+ B
τ ,

Ḃ = σIA− B
τ + krC − kdσIB,

Ċ = −krC + kdσIB,

(16)

where A,B,C are the relative frequencies of the three possible photosynthetic
states of the microalgae which satisfies

A+B + C = 1. (17)

Here I is the photon flux density, a continuous time-varying signal. The other
parameters are σ, that stands for the specific photon absorption, τ which is the
turnover rate, kr which represents the photosystem repair rate and kd which is
the damage rate. The system (16) can be reduced to two equations by using (17).
Indeed, one can for instance eliminate B in (16) and gets{

Ȧ = −(σI + 1
τ )A+ 1−C

τ ,

Ċ = −(kr + kdσI)C + kdσI(1−A),
(18)

We then complete the system above with initial conditions

(A(0), C(0)) = (A0, C0) ∈ {(x, y) ∈ R2
+|x+ y ∈ [0, 1]}.
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Figure 12: Evolution for open state A and photoinhibition state C with the
initial condition (A(0), C(0)) = (1, 0). Note that we use an Euler Explicit
scheme to solve the system (18) by using the parameters presented in Table 1.
An log scale is also used for the time variable.

The dynamics of the open state A reaches its steady state following a process
whose speed is very high compared to the dynamics of the photoinhibition state
C [17] (for instance see Figure 12). This phenomenon is mainly due to the
presence of the multiplicative parameter kd which is relatively small (see Table 1,
where an example of possible values for the Han parameters is given). Since we
usually focus on light variation at large timescale (larger than second) in real life
applications, we can then apply a slow-fast dynamics using singular perturbation
theory [22]. More precisely, this consists in equating the first equation of (18)
to zero and find the pseudo steady state of A as 1−C

τσHI+1 . Replacing this into
the second equation of (18), the previous two equations can finally be reduced
to one equation, namely

Ċ = −(kdτ
(σI)2

τσI + 1
+ kr)C + kdτ

(σI)2

τσI + 1
.

The growth rate in the steady state of this system is then defined by

µHan(I) :=
kσI

kd
kr
τ(σI)2 + τσI + 1

. (19)

Finally by identifying (1) and (19) correctly, one finds

θ = kσ, I∗ =

√
kr

kdτσ2
, µmax =

kσ

τσ + 2
√

kdτσ2

kr

. (20)

B Explicit computations for average growth rate
In this section, we provide details about the computation on µ̄. As mentioned in
Appendix A, the growth rate described by Han model can be easily written in
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the Haldane description. We choose to present the corresponding computation
hereafter with Han model parameters. From the definition of µ̄ (4), one has

µ̄ =
1

h

∫ 0

−h
µHan(I(X, z))dz =

krkσ

hε(X)

∫ Is

Ib

1

kdτ(σI)2 + kr(τσI + 1)
dI,

where Ib = Is exp(−ε(X)h). Define a = kdτσ
2, b = krτσ, c = kr. According to

the sign of the discriminant ∆ of equation aI2 + bI + c, three cases must be
considered.

• ∆ > 0 : Then there exists two reel roots denoted by d1 = −b+
√
b2−4ac

2a and
d2 = −b−

√
b2−4ac

2a . Hence one has

µ̄ =
krkσ

ahε(X)

(
e1 ln

∣∣∣∣Is − d1

Ib − d1

∣∣∣∣+ e2 ln

∣∣∣∣Is − d2

Ib − d2

∣∣∣∣ ).
with e1 + e2 = 0 and e1d2 + e2d1 = −1, i.e. e1 = 1

d1−d2 = a√
b2−4ac

and
e2 = 1

d2−d1 = − a√
b2−4ac

. Using e2 = −e1, we find

µ̄ =
krkσe1

ahε(X)
ln

∣∣∣∣ (Is − d1)(Ib − d2)

(Ib − d1)(Is − d2)

∣∣∣∣ .
• ∆ = 0 : Then there exists a unique root denoted by d = − b

2a . And one
has

µ̄ =
krkσ

hε(X)

Is − Ib
(Is − d)(Ib − d)

• ∆ < 0 : Then one has

aI2 + bI + c =
4ac− b2

4a

(( I + b
2a√

4ac−b2
4a2

)2
+ 1
)
.

Applying a change of variable by setting y =
I+ b

2a√
4ac−b2

4a2

, one gets

µ̄ =
krkσ

hε(X)

2√
4ac− b2

(
arctan(

2aIs + b√
4ac− b2

)− arctan(
2aIb + b√
4ac− b2

)
)
.

Since one has the explicit formulation of the average growth rate µ̄, the
surface biomass concentration Π can be then computed explicitly including its
derivatives. This is at the basis of the determination of the optimal biomass
concentration X for a given depth h.
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