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Abstract

We consider a viscous incompressible fluid interacting with an elastic structure located on a part of
its boundary. The fluid motion is modeled by the bi-dimensional Navier-Stokes system and the structure
follows the linear wave equation in dimension 1 in space. Our aim is to study the linearized system coupling
the Stokes system with a wave equation and to show that the corresponding semigroup is analytic. In
particular the linear system satisfies a maximal regularity property that allows us to deduce the existence
and uniqueness of strong solutions for the nonlinear system. This result can be compared to the case where
the elastic structure is a beam equation for which the corresponding semigroup is only of Gevrey class.
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1 Introduction

We consider a viscous incompressible fluid modeled by the Navier-Stokes system in interaction with a de-
formable boundary whose dynamics is governed by the wave equation. More precisely, we consider that the
reference spatial domain for the fluid is (0, L) x (0,1) C R2, L > 0 with periodic boundary conditions on the
lateral boundaries {0} x (0,1) and {L} x (0,1). To simplify the notation, we set

def

I¥R/LZ, (1.1)

so that the reference fluid domain writes Fo & Z x (0,1). The elastic deformation is a function n : Z —
(=1, 00), and the corresponding fluid domain writes as follows:

Fo B {(21,22) €T XR; 22 € (0,1 +n(z1))}. (1.2)

Note that the boundary of F,, is the disjoint union of the elastic structure:

Ly = {(s,1+n(s)), s € I},

and a fixed bottom:
def

-1 =7 x{0}.
We recall the geometry in Figure
We denote by v and p the velocity and the pressure of the fluid and our fluid-structure interaction system
writes as follows
0w+ (v-V)o—divT(v,p) =0, t>0, € Fyu),
dive =0, t>0, z€ Fyu),
v(t,s,1+n(t,s)) = (0m)(t,s)e2, t>0, seZ, (1.3)
v=0, t>0, zel',
Oun — TOssm = —ﬁn(v,p), t>0, seZ,

with the initial conditions

n(0,) =ni, 9n(0,-)=n3 and v(0,-)=0v"in Fo- (1.4)



In system (|1.3), the first two equations are the Navier-Stokes system, the last one is the wave equation.
The other equations are the boundary conditions obtained by assuming the no-slip conditions for the fluid.
For the notation, we have denoted by(e1, e2) the canonical basis of R?, the Cauchy stress for the fluid is

T(v,p) & 20D(v) — pla, D(v) = % (Vv + (Vv)"), (1.5)

and the force of the fluid acting on the structure is

= def

Hy(v,p)(t,5) = { (L4 10:0*)/? [T(0,p)m] (£,5, 1+ (t,5)) - e2 | - (L6)

To simplify, we have assumed that the density of the fluid is constant and equal to 1. For the other physical
constants, we suppose that
v > 0 (viscosity), 7 > 0.

In (1.6), the vector fields n is the unit exterior normal to F,;). We have n = —ez on I'_1 and on I'; (),

n(t,x1,x2) = 1 —0an(t,x1) . .
o) = s | ) 7

Similar systems as (1.3) have been already analyzed in the literature (see below), and an important
feature of these systems is that the incompressibility of the fluid and the no-slip boundary conditions yield
the following relation

d [T
— t,s) ds =0.
i . n(t,s) ds

In what follows, we choose the initial deformation 77? with null mean value so that our solutions satisfy
L
/ n(t,s) ds=0 (t=>0). (1.8)
0
This leads us to consider the spaces
L
Ly(T) < {f € L*(7); / f(s) ds = o} , HL(D) = H (T)NLLIZ) (r=0) (1.9)
0
and the orthogonal projection M : L*(Z) — L% ().

We take the projection of the last equation of (T.3) on L3%(Z) and on L% (Z)". The projection on L% (Z)

writes

dun+ Ain = —H,(v,p), t>0, seT, (1.10)
where
Hs © LL(T), D(A) E HL(T), Ai:D(A)—Hs, n— —1dsen, (1.11)
and
Hy (v, p) = MEH, (v, p). (1.12)

The projection on L (Z)" writes

/0 {1 +1001) [T, p)n] (£, 5,1+ (2, 9)) - ea} ds =0 (1.13)

and it determines the constant for the pressure: for system , the pressure is not determined up to a
constant (as for the Navier-Stokes system without structure) (see [3] for more details). In what follows, we
do not consider and work only with , so that for our solutions, the pressure is determined up to
a constant.

Note that the operator A; defined by satisfies for 6 > 0,

D(AY) = HY (7). (1.14)

In all what follows, we consider the following notations: L%, H * stand for the classical Lebesgue and
Sobolev spaces and we write C° for the space of continuous maps and C§ for the space of continuous and



bounded maps. We use the bold notation for the spaces of vector fields: L* = (L*)?, H* = (H")? etc. For
n:Z — (—1,00), we also use the spaces

Li(}-n) = {he LQ(]:WH . hdy—O}, H;&(}—n) :Hl(}—n)ﬁLi(}-n)a

and
H;&l(]:n) = {h S [Hl(]:n)}, | <h7 1>[H1(]:77)]/7H1(]:77) = 0} .

Observe that H;l(]:n) is the dual space of H(F,) with respect to the pivot space L% (F;). To study (L-3),
we need spaces associated with a moving fluid domain and we introduce spaces of the form Hl(O, T; LY(Fy)),
L*(0,T; H*(F,)), etc. with T' < co. If n(t,-) > —1 (¢t € (0,T)), then

ve HY(0,T;LY(F,)) if y vty y2(1+n(t,y1)) € H'(0,T; LY (Fo))

and similarly, for the other spaces. Finally, in the whole paper, we use C' as a generic positive constant that
does not depend on the other terms of the inequality. The value of the constant C' may change from one
appearance to another.

In order to study the system , one can linearize it and we obtain the following linear system:

Orw —divT(w,q) = F, t>0, y € Fy=,
divw =G, t>0, yeF,,
w(t,s,1+n"(s)) = (0en)(t,s)e2, t>0, se€T, (1.15)
w=0, t>0, yel_,
Oun+ Aim = —Hy=(w,q) + H, t>0, se€Z,

with the initial conditions
w(07 ) = wO in -7:77*7 77(07 ) = 497 8t77(07 ) = Cga (1‘16)

and where n* : Z — (—1,00) is a given function independent of time, so that JF,« is a fixed spatial domain.
The aim of this article is to show that the linear system (1.15)-(1.16]) satisfies a maximal regularity property.
For T € (0, +00] let us define the following Banach spaces

def

Fr(Foe) & L0, T3 L7 (Fpe)) x [L2(0, T3 Hy (Fy=)) N H' (0,75 Hy ' (Fy))] x L7(0,T; HY*(T)),  (1.17)

and
Wr (Fye) < [L2(0, T;H (Fy)) N H' (0, T3 L2(Fy))] x L*(0,T; H' (Fy+) /R)
x [LQ(O, T; HY/*(Z)) n H'(0,T; HY/*(Z)) N H*(0,T; H;/Q(I))] (1.18)

endowed with the norms

def
I(F, G, H)l[57(F,) = IFll20,m2(7,.)) + HG”Lz(O,T;H#(}},*)) + ||G\|H1(0,T;H;¢<f"*)/> + ||H||L2(0,T;H;/2(I))

and

def
I(w, ¢ MllewrF,.) = llwllzormze,.o) + lwlaerize.o) + lallezorp o m

1 o 22y + 1 o2/ oy + Wl 2

Note that from Proposition 4.3, p.159 in [6], we have that the following map is well-defined and onto:

G € L*(0,00; Hy(Fy)) NH' (0,00, Hy ' (Fye)) — G(0,) € Ly (Fye). (1.19)

Theorem 1.1. Assume
n* € Hx(Z), n*>-1 inZ, (1.20)
(F,G, H) € Foo(F=), (1.21)



¢l € HL(Z), (5 € Hy(Z), w’eH'(Fp), (1.22)

divw® = G(0,-) in Fye, w’(s,14+n"(s))=C(s)ea s€Z, w’=0 onT_i. (1.23)
Then (1.15)-(1.16) admits a unique solution
(w,q,n) € Woo (Fy+) (1.24)

Moreover, there exists Cr, > 0, depending on ||n*||g2(z) and on il%f n* such that

0,0l 7,y < Cr (10 et ey 1S iz ) + 1My oy + WO Gy D) - (1225)

For n* satisfying (T.20), let denote by C1(n*) the infimum of the constants Cy, in the above theorem,
that is the norm of the bounded map

(F7 GvHawOaC?an) € SOO(FW*) X Hl(]:”l*) X H?#(I) X H:}%(I) — (w7q717) € QBOO(]:"?*)

where (F,G, H, w?, ¢, Cg) satisfies (1.23]) and (w, ¢,n) is the corresponding solution of ([1.15)-(1.16|) given by
Theorem In what follows, we denote for R > 0

Br={n" € HA(T@); In'l a3 <R and infn +1>1/R}. (1.26)

Then we can show the following result:

Proposition 1.2. For any R > 0, we have

sup CL(n") < +oo.
n*eBRr

Using some standard extension results, we deduce from Proposition the following result

Corollary 1.3. Assume R > 0. Then there ezists a constant C = C(R) such that for any
Te (0,00, 0" €Br, (F,G.H)EFr(Fpr), (w',0,¢) € xH (Fye) x H(T) x Hy(T)
satisfying (1.23) there exists a unique solution (w,q,n) € W (Fyp+) of (1.15)-(1.16]) and we have the estimate
1w, @, M)l r, ey < © (N s ey + 168N ) + 1Sl ) + I CF G D) - (120)

This result will be used for the study of the nonlinear system.
Let us now give some remarks on Theorem

Remark 1.4. The maximal regularity property stated in Theorem is obtained by showing that the cor-
responding semigroup is analytic. More precisely, we define the corresponding operator Ag in , ,
and (2.32), and we show in Theorem that it is the infinitesimal generator of an analytic and exponen-
tially stable semigroup. This result is suggested by [13] and in particular by Proposition 3.2 in this reference.
However their proof is based on a regularization argument and on a priori estimates and we propose here a
direct proof following the strategy already used in [J] and [4)] consisting in showing a resolvent estimate, that
is . In particular, this work focuses on the resolvent equation

A —divT(v,p) = f in Fyx,
divo =0 in Fy~,
v(s,1+n"(s)) = n2(s)e2, s€I,
v=0, yel_,

A —m2 =g
Anz2 + Aimy = —Hy= (v, p) + h.

(1.28)

Note that is coupling the Stokes system which is parabolic and the wave equation which is an
hyperbolic system. It is thus not clear that the system is a parabolic system. In particular, in [3] and
Hl], we consider the same problem with the beam equation instead of the wave equation and the corresponding
semigroup is not analytic but only of Gevrey class. One of the key points relies on the analysis of the effect



of the viscosity of the fluid on the structure equation. More precisely, if one take f =0 and g =0 in (1.28),
the resolvent equation reduces to

Vam = h, where V) = NT+ ALy + A,

where Ly corresponds to the influence of the fluid on the structure (see (3.18)) and (3.7)) for the precise
definition of Vx and Lyx). Then the idea is to show that the operator Ly plays the role of a structural
damping (see [9]) and leads to a parabolic system.

Theorem is the main ingredient to prove the existence and uniqueness of strong solutions for the
nonlinear system (|1.3)). First let us recall the definition of this notion:

Definition 1.5. For T € (0,00) we say that (v,p,n) is a strong solution of (1.3)-(1.4) on [0,T] if
n(t,-)>-1 tel0,T], (1.29)

ve L0, T; H(F,) N HY (0, T;L*(F,)), pe L*(0,T;H' (F,)), (1.30)
n € L*(0,T; Hy*(T)) n H'(0,T; HY*()),

i € L*(0,T; Hy*(T)) 0 H' (0, T; (Hy/*(1))),

the first four equations of are satisfied almost everywhere or in the trace sense, the last equation in
holds in L*(0,T; H'*(T)) and holds true.

For T € (0,00], we say that (v,p,n) is a strong solution of — on [0,T) if for all T' € (0,T),
(v,p,m) is a strong solution of — on [0,T"].

We say that (v,p,n) is a stable strong solution of ID on (0,00) if (v,p,m) is a strong solution of
(L3)-(L.4) on [0,00) and (v,p,n) satisfies (1.30)- ith T = .

Remark 1.6. Classical interpolation results imply that a strong solution (v,p,n) on [0,T], for T € (0,00),
satisfies

(1.31)

n € C([0,T]; HE(Z)), dn € C°(10,T]; Hy(T)), v € C°([0, T H' (F,)),
and that a stable strong solution (n,v,p) on (0,00) satisfies
1 € Gy ([0, 00); H4(Z)), 9 € C3([0,00); Hy(T)), v € Cy([0, 00); H' (Fy))-
We assume that the initial conditions satisfy:

m € H(T), ms € Hy(Z), ni>-1 inZ, o eH (Fp) (1.32)

dive® = 0 in F0s (5,14 1m0(s)) =m3(s)ez s€Z, =0 onTl_y. (1.33)
First, we can obtain the existence and uniqueness of strong solutions of (|1.3]) for small times:

Theorem 1.7. For any (vo,n?,ng) satisfying (1.32)-(1.33), there exists a unique mazimal strong solution
(v,p,m) of (L.3)-(1.4) on [0, Tmax) with Tmax € (0,00] and with the following alternatives:

o Tmax = 00,
o Thax < o0 and

= o0. (1.34)
Lo (T)

. 1
i 00616, 000 Wl 5, ey + | 1

This result is already known and proved in [I3]. We can also deduce from Theorem [I.1] the existence and
uniqueness of global strong solutions of (1.3)) for small data:

Theorem 1.8. There exists ¢c1 > 0 such that for any (v°, 10, n3) satisfying (L.32)-(1.33), and

72122y + Il 2 () + ”’UOHHl(}'n?) <a (1.35)

there exists a unique stable strong solution (v,p,n) of (1.3)-(1.4) on [0, c0).



In order to prove the above results, we first transform the equations of (1.3]) by using a change of variables
so that the spatial domain of the fluid becomes F,« where

n =nd (for Theorem [L7) n* =0 (for Theorem [L§)) (1.36)

and then we use Theorem [[I] and a fixed point argument.

Remark 1.9. One can consider a more general structure equation
O1n + 10ssssM — 20551 — 0¢ssm = —I?H,, (v, p). (1.37)

A large part of the literature on this subject is done for the case of a beam equation a1 > 0: [§] (existence
of weak solutions), [3], [I5] and [I2] (existence of strong solutions), [I7] (stabilization of strong solutions),
[2] (stabilization of weak solutions around a stationary state). In that case, at the opposite to the case of a
wave equation, the viscosity of the fluid is not enough to modify the nature of the beam equation and one has
to add the damping term —80:ssm with § > 0 to obtain a parabolic system.

Without this damping term (that is for 6 = 0 and a1 > 0), the existence of strong solutions is more
difficult to achieve. It is obtained with an additional term of inertia of rotation (—Owssm in ) in [13)].
Without any additional terms, the corresponding fluid-structure system is studied in [3], where we proved the
ezistence and uniqueness of strong solutions by an approach similar to the one done here: we also work with
resolvent estimates but the corresponding semigroup is not analytic, only of Gevrey class. In particular the
results for the linear and for the nonlinear system are weaker than the results presented here and we have
a lost of regularity at initial time. Note that in [J], we focus in the case of small initial deformations and
we only manage to remove this assumption in [§] by estimating the commutators between the operator Ly
introduced above (and defined in ) and the beam operator.

Here, we do not need in the analysis to consider these commutators and we obtain our result without
assuming smallness of the initial deformations. This is mainly due to the fact that the wave operator is the
square root of the beam operator so that the operator Lx coming from the fluid has a stronger influence on
the structure equation.

To finish this remark, we want to point out that in the framework of weak solutions, there have been some
works studying the ezistence of weak solutions for a beam equation without dissipation (or a similar structure

equation): [11), [16], [19)], etc.

Remark 1.10. The result of Theorem that is the analyticity of the semigroup corresponding to the
linear system is an important property and can be used for instance to show stabilization results. In the
case of parabolic systems, there is a systematic method to show stabilization results with a control of finite
dimension provided that a Fattorini-Hautus criterion is satisfied, see [1J].

Using the analyticity of the semigroup, we can also show that the solutions of (1.3 can be extended to
holomorphic functions. For § > 0 and T € (0, +o00] we introduce:
Sro E{2€C;0< |z| < T, |arg(z)| < a}.
Corollary 1.11. Let us consider the strong solutions (v, p,n of . obtained in Theorem- and in
Theorem Then they are analytic in time with values in H (Fn) x H# (}',7) X H;!Q (Z). More precisely,
1. If (v,p,m) is a strong solutions of (1.3)-(1.4) on [0,To], To € (0,00), there exists 6p > 0 such that
(v,p,n) admits an holomorphic extension in Sty,0, with values in H*(F,) x Hy(F,) X H;’!Q(I).

2. There exist c2 € (0, cl] and Oy > 0, where ¢1 is the constant in Theorem such that for any (v°, 07, n3)

satisfying (|1.32] - , and

”"7?”H2(I) + ||778||H1(I) + ||UO||H1(f,,9> S ¢ (1.38)

then the strong solution (v,p,n) of (L.3) obtained in Theorem admits an holomorphic extension in
Soo.0, With values in H?(F,) x H#(]:n) X HS/Q(I)
Remark 1.12. Using the above corollary, one can obtain several properties on the solutions of (L.3]). For

instance, considering the change of variables X used to prove Theorem[I.7] or Theorem[I.8 and applying the
Cauchy formula, one can show that the n-th time derivatives of (vo X,n,d:n) satisfy

FIe) dm dn+1)
H ( t(n) (t7 ))7 dtm™ 77('5: ')7 dt(nt1) n(t

) <
Hl(J-'n)xH (I)><H2 () n



for some constant Cy,, > 0 depending on n and the initial conditions.

The outline of the article is as follows: first in Section we use a standard change of variables to
write the system (|1.3]) in a fixed spatial domain and see how the corresponding linearization leads to the
linear system The analyticity of the semigroup for the linear system is stated in Theorem with
the corresponding resolvent estimate. Section [3.1]is devoted to the introduction of several useful operators
together with their properties and in particular the operator Ly corresponding to the force of the fluid acting
on the structure. Before estimating the inverse of the operator V) introduced above (see ((3.18) and for
its definition), we start by estimating the inverse of an approximation of V) in Section n Section
we use these estimates to deduce the same estimates for V) and deduce the resolvent estimates that lead
to the analyticity of the semigroup. Finally, in Section 4] we recall the idea of the proof of Theorem
and of Theorem based on Theorem by using a fixed point argument. Since this part of the analysis
is now classical and has already been done for instance in [I3], we only give the idea and postpone some
technical details in the appendix. The time analyticity of the solutions, stated in Corollary is proved
in Section [l

2 Change of variables and linearization

2.1 The system written in a fixed domain

In order to transform system into a system with a fixed spatial fluid domain, we construct a change

of variables. This change of variables is different from our previous articles [3, [4] and is similar to the one

already considered in [I3]. With our previous change of variables, we would be able to obtain the local in time

existence, but we would not manage to obtain the criterion for the global existence stated in Theorem [L.7}
There exists a linear map R such that for any o > 0,

R:H“(Z)—){weH““/Q(}}));w:O on F,l}, ne Ry (2.1)

is continuous and satisfies (R,)r, = 7. Note that, in this article, we will use the above mapping for o = 1,
a=3/2,a=5/4, and a = 7/4.
We consider the change of variables

Y2
X o Fpe = Ty, Y1, Y2 >—>(y1,y2+7€,*(y1,7>). 2.2
n*,m n n ( ) n—n 1+ 17 (y1) (2.2)
Using the continuous embedding H**(F) — W"*(F,), and (2.1) for a = 7/4, one can check that if
n* € H*(I),if n* > —1in Z and if

<C*

1
L4l pee )

I H

then there exists C = C(C.) such that
HVXn*m - IQHLOO(]-'"*) <C H77 - 77*HH7/4(1) .
In particular, there exists k = x(C,) > 0 such that if
In=n"llgr/ary <& (2.3)

then X, , is a C*-diffeomorphism.
In what follows, we assume that our deformation 1 depends on ¢, that n(t) satisfies (2.3)) for all ¢ with
n* given by (1.36)), and we use the simplified notation:

F & Fope. (2.4)

If no confusion can arise, we write

def def

X(6) S Xy, V(6 X (2.5)



so that X (t,-) transforms F onto F,;). Then, we write

w(t,y) < o(t, X(t,y)) and q(t,y) =< p(t, X(t,y)), (2.6)
so that
o(t,w) = w(t,Y (L)) and p(t,o) = q(t, Y (t,)). (2.7)
After some calculation (see Appendix E[), system ((1.3)), (1.4]) rewrites,

Ow — div T(w, q) = ﬁ(n,w, q) in (0,00) x F,
divw = @(n, w) in (0,00) X F,
w(t,s,1+n"(s)) = (0en)(t,s)e2, t>0, s, (2.8)
w=0, t>0,yel_q,
8“77 + A177 = 7H77* (w7 Q) + ﬁ[(nv w)a t>0,

with the initial conditions

n(0,) =77, 9n0,)=n3 and w(0,-)=w" < °(X(0,-) in F, (2.9)
where N R N
F(n,w,q) = Fi(n,w) + F2(n,w, q), (2.10)
’\ dcf awl 8Y 6’(1}@ 8Yk
Zay at _Jz,;wfaykaTj(X)’
0w, ([ OYx dw; %Yy 0X,
Prmuna) 20 3 500 (G- 60 ) +v 3 O e %,
azwi 8Yk aYg E)wl 8 Yk
+ ijk:z OYr Oy (Omj (X )313] (X) - 5kd52’]) + VZ Yk am
aYk
_ Z 2 (axz X)— 5,671) . (@11
G(n,w) & div((Iz — Cof(VX)")w) = Vw : (I — Cof(VX)), (2.12)
and

}?[(777 w)(t,s) = M |:l/((957]* — 9sm) <% + 8w2> (t,s,1+n"(s))

Oy Oy
811}1 8Yk 811}2 8Yk ®
—v(0sn) Zk: (3yk <87552(X) — Ok 2) + En (TM(X) - 6k,1>) (t,s,1+n"(s))

+2’/Z (‘ZZE <g§’; X)—(sk,z)) (t,s,l—}-n*(s))} (2.13)

In the above statements Cof(VX) is the matrix of the cofactors of VX. Using the above change of
variables, we can rewrite Theorem and Theorem The definitions of strong solutions are deduced
from Definition [L.5

Definition 2.1. For T € (0,00) we say that (w,q,n) is a strong solution of ([2.8)-([2.13) on [0,T] if
holds, if (w,q,n) € Wr(F), if the first four equations of are satisfied almost everywhere or in the trace
sense, the last equation in ) holds in L*(0,T; H*(T)) and 1.' holds true

For T € (0,00], we say that (w,q,m) is a strong solution of (2.8))- on [0,T) if for all T' € (0,T),
(w, q,n) is a strong solution of . - on [0,T"].

We say that (w,q,n) is a stable strong solution of - on (0,00) if (w,q,n) is a strong solution

of (2.8)-(2.13) on [0,00) and (w,q,n) € Weo (F).



The hypotheses (1.32))-(1.33) on the initial conditions are transformed into
m € Ha(Z), ms € Hy(I), n!>-1 inZ, w’eH(F), (2.14)

div (Cof(VX(0,-))"w’) =0in F, w’(s,1+7n"(s)) =n3(s)e2 s€Z, w’=0 onT_1. (2.15)

With the above notations and definitions, the statements of Theorem and Theorem are transformed
into the following theorems:

Theorem 2.2. Let ( ,171,173) satisfying (2.14)—(2.15), there exists a unique mazimal strong solution
(w,q,n) of . on [0, Tmax) with Tmax € (0,00] and with the following alternatives:

o Tmax = o0,
o Thax < o0 and

= . (2.16)
Lo(Z)

. 1
i 06,003, 90, Wl + | 53

Theorem 2.3. There exists c1 > 0 such that for any (wo,n?,ng) satisfying (2.14)—(2.15), and
Il 2y + 2l ) + [0l ) < @ (2.17)

there exists a unique stable strong solution (w,q,n) of (2.8)-(2.13) on [0, c0).

2.2 The linear system and the operator Ay

From the prev10us section, and in particular from system (2.8 ., we are led to consider the linear system
(T1E)-(L.16) written in the fixed domain F (defined by 1.! We introduce the notation

CrE{AeC; Re()) =0}, (2.18)

CEE{xeC; Al >a}. (2.19)

Let us consider the following functional spaces
Vo(F)E{fel®(F);divf=0inF, f-n=0 ondF},
Vo(F)E{feH(F); divf=0inF, f=0 ondF},
f'nd7:0} (6 >0). (2.20)
oF
We introduce the operator A : L*(Z) — L*(8F) defined by

(An)(y) = (Mn(s)) ez if y=(s,14n"(s)) € Ty,

vior) & { feH OF);

_ (2.21)
(An)(y) =0 if yeTl_1.
The adjoint A* : L*(0F) — L*(Z) of A is given by
(Av)(s) = M ((1+ 107" (5)*) (s, 1+ 7 () - e2) . (2.22)
We observe that A(L*(Z)) € V°(8F), and since * € H*(Z), then for any 6 € [0, 1],
AH®(T)) c V?(8F), (2.23)
A*(H?(0F)) c D(AY?) (2.24)
and
0/2 0/2
IAnllsro 07y = c(O) AT *nllas  (n € D(AT)). (2.25)
Using (2.23) for 6 = 1/2 and recalling (1.14), we deduce A(D(Ai“)) C H'?(8F) so that
A HY2(0F)) c DAY, (2.26)

10



We consider the space L*(F) x D(Ai’“) X D(Ai/‘l) equipped with the scalar product:

([ @0 ] [0 0 ]) :/ w - w® dy+ (440, A7)+ (A A )
F S

S

def

(where s = L%(Z), see ([.11)) and we introduce the following spaces:

W {[w,m, 1] € L2(F) x D(AY*) x D(AY*) ; w-n = (Anz) -n on 9F, divw = 0 in ]—'} . (227)
We also consider the space L*(F) x D(Aim) x Hs equipped with the scalar product:

1 1 2 2 1/2 (1 1/2 (2 1 2
<[w(1)ﬂ7§ ) S )] 7 [w<2>7n§ ) S >]> = [ w® . w® gy + (Al/ p®, A2 )) n (77§ ) S )) 7
0 F Hs Hs

and we introduce the following space:
def 2 1/2 _ : —0Nn;
Ho = {[w,mmg] €L (F)xD(AY") xHs ; w-n=(An2)-non dF, divw =0 in ]-'}. (2.28)
Lemma 2.4. The orthogonal projection Py from L*(F) x D(Ai/z) X Hs onto Ho satisfies
Py € L(L2(F) x D(AY*) x D(AY*), H). (2.29)

Proof. We have proven in [2, Proposition 3.1 and Proposition 3.2] that for any [w, n1,7] € L*(F)x D(A}/?) x
H.Sy

w w— Vp
Po|m| = m
72 n2 + A" (pn)

where p € H'(F). Hence, from the trace theorem and (2.24) with = 1/2 we have

—Vp
0 | e L3(F) x D(A¥*) x D(AY*)
A (pn)

and we deduce the result. O

We now define the linear operator Ag : D(Ao) C H — H:
D(Ao) & {[w, n,m2] € HA(F) x D(AY") x D(AY*) ; w = Anz on OF, divw =0 in ;r} , (2.30)

and for [w,nh 772} € D(Ap), we set

Aw
_ w
Ao [m| & 72 (2.31)
2 —Aim — A" (2D(w)n)
and _
Ao ¥ PyA,. (2.32)

Note that Ao is well-defined due to Lemma
By using the above operators, we can rewrite the linear system (|1.15]) for G = 0, as follows

alw w F w w®
|| = Ao n |+F |0}, n | (0)=|¢]- (2.33)
On ] H Oen ¢

One of the main goals of this article is to show the following result:

11



Theorem 2.5. The operator Ao defined by (2.30)—(2.32) has compact resolvents, it is the infinitesimal
generator of an analytic and exponentially stable semigroup on H. In particular, there exists Co > 0 such
that for all A € CT,
-1
AT = A0) ™ £ 5 < Co- (2.34)

The proof of Theorem [2.5]is a consequence of Lemma [2.6] and Proposition Indeed these results imply
that C* C p(Ao) and that holds for all A € C*. Tt is standard that for all A € Ct and 0 € p(Ao)
imply that the semigroup generated by Ay is analytic and exponentially stable. Let us recall how this can
be done: proceeding as in the proof of Lemma 3.10 in [2], we write

(M — Ag) = Im AT — Ag)(I + ReA@Im AT — Ap) ™)
and we deduce that there exists ¢g such that
{AeC; |Re| < colImA|} C p(Ao) (2.35)

and that || H()\I — Apg) ! HE(H) is bounded in this set. Then using [6, Theorem 2.10, p.109], we deduce that

Ao is the infinitesimal generator of an analytic semigroup on H.
Finally, using that 0 € p(Ao) (and that p(Ao) is an open set) and (2.35)), we deduce that

{NeC; ReX > —¢c} C p(Ao)

for some € > 0. According to [6] Proposition 2.9, p.120] the semigroup (ert)t>g is exponentially stable.
Lemma 2.6. The operator Ay defined by [2.30)-(2.32) satisfies CT C p(Ao).

Proof. For that, assume F = [f, g, h] € H and let us prove the existence and uniqueness of [v,71,72] € D(Aop)
solution of (A — Ag)[v,m1,m2] = F, that rewrites

A —divT(v,p) = f inF,
divo =0 in F,
v=An: on JdF, (2.36)
A =12 = g,
Az + Aim = —A" {T(v,p)njor} + h.

Let us first assume A € CT\{0} and consider a variational formulation associated with (2.36)): find
[v,m] €V {[v,m2] € H'(F) x D(A}?) 5 dive =0 in F, v=Ana on OF |, (2.37)

such that for any [p, (2] € V,

1/ 172 1/2
A - od 2 [ Dv:Dedy+~(AY?n,, A
(/fv wy+(n27<2)ﬂs>+ V/f v : Dy y+A( V%02, Ay Cz)Hs

_ /Tf g dy+ (n, gz)Hs _ %(A}/Qg,A}”cg)Hs. (2.38)

Using the Korn and the Poincaré inequalities, a trace inequality, with 6 = 1/2 and the fact that
Re(A) > 0, we can apply the Lax-Milgram theorem and we deduce the existence and uniqueness of [v,72] € V
satisfying for any [¢, (2] € V. Taking (2 =0 in and using the De Rham theorem, we obtain the
existence of ¢ such that (w, ) is the weak solution of the Stokes system (the three first equations of (2:36))).

From f € L*(F), we deduce div T(v,p) € L?(F). Hence, we have T(v, p)njor € H™"/?(3F) and from
we deduce A" {T(v, p)njar} € D(AY*).

Writing 71 = A" (2 4+ g) and using that (w,q) satisfies the three first equations of , we obtain
from the last equation of :

N2 + Aim = —A" {T(v,p)njor } + b in DA (239)

We deduce from the above system that n1 € D(AY*) and thus n; = A1 — g € D(AY*). Since f € L2(F),
from regularity results for the Stokes system with H*-boundary (see [12, Lemma 1]) we obtain v € H?(F)

12



and p € H'(F). In particular, from trace results and (2.24), we obtain A* {T(v, p)n} € D(Ai/él). Then from
[2-39) we get 1 € D(A5’*). Finally, we have proved that [w,71,72] € D(Ao), and thus, that CT\{0} C p(Ao).
Consider now the case A = 0. The system (2.36) rewrites

—divT(v,p) = f in F,

dive=0 in F,
v=—Ag on J0F, (2.40)
2 =—g

A17]1 = —A* {']T(v,p)n‘a}-} + h.
We observe that in that case, the Stokes system can be solved independently from the structure equation.
Hence, from regularity results for the Stokes system with H>-boundary (see [12, Lemma 1]), we obtain the
existence and uniqueness of w € Hz(]-') and ¢ € H' (F) satisfying the first three equality in (2.40). Next,

from T(w, ¢)n € H'/?(8F) and (2.24) we get A* (T(w, q)n) € D(Ai/‘l) and the last equality in (2.40) admits
a unique solution n; € D(Ai’/ 4). Finally, e = —g € D(A?/ 4) and we have prove the existence and uniqueness
of [w,n1,n2] € D(Ao) satisfying (2.40).

O

In particular, we deduce from Lemma [2.6| and from the properties of the resolvent, that for any a > 0

we have

sup  [A[[(A = Ao) |2y < oo (2.41)
AECH M| <a

Proposition 2.7. There exists a > 0 such that

sup [A[I(A = Ao) |20y < o (2.42)
xect

The proof of this result is the core of the article and is done in Section [3:3] The proof of the following
proposition is standard but for sake of completeness we give it in the next section after the introduction of
some notation.

Proposition 2.8. The operator Ao defined by (2.30)-(2.32) satisfies

[H, D(Ao)]1 /2 = {[w,m,ng] € H'(F) x D(A1) x D(AY?) ; w = Az on OF, divw =0 in ]—'} . (2.43)

2.3 Proofs of Theorem [1.1]

We are now in a position to prove Theorem [[.1}

Proof of Theorem [Tl First, we introduce the lifting operator R defined by R(g) = z where z is the solution
of
—-Az+Vx=0 inF,
divz=g¢g in F,
z=0 ondF.

According to [I8, Lemma 8.1 and Lemma 8.2] we have
R € L(H,'(F),L*(F)) N L(Hyx(F), H?(F)). (2.44)
Then we consider w = w — R(G) so that (L.15)), (1.16) becomes

o —divT(w,q) =F, t>0, yeF,
divw=0, ¢t>0, yeF,
w(t,s,1+n0"(s)) = (Om)(t,s)e2, t>0, seT, (2.45)
w=0, t>0, yel_q,
Oun + A1n = —A" {T(ﬁ;, q)n|6}-} + ﬁ, t>0, seZ,

with the initial conditions
w(0, ) = ﬁov n(0,-) = C?v 9n(0,) = Cg (2.46)
and where
FEF - R(3,G) + 2vdivD(R(G)),
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77 def

HH-M {(1 F 107712 [20D(R(G))n] (¢, 5,1 + 177 (s)) - e2} ,
@ =w’ — R(G(0,-)).
From , we have
R(G) € L*(0,00; H*(F)) N H' (0, 00; L*(F)) < C°([0, 00); H' (F)),

so that from (1.21)),
F e L*(0,00;L°(F)), H € L*(0,00; D(A;/%)),

and from (|1.22)), (1.23]), Proposition and Lemma [2.4]

~0 ~
w F
Qe [H,D(Ao)l1j2, Po 0f¢€ L?(0, 00; H).
(s i

The linear system (2.45)), (2.46|) rewrites as (2.33]), and maximal regularity results for analytic semigroups
(see e.g. [0} Theorem 3.1, p. 143]) ensure that

w
n | € L*(0,00;D(Ao)) N H' (0, 00; H), (2.47)
aﬂ]
with
@ @’ F
7 <allla +|Po |0 : (2.48)
0] 1| 20 005D (A0)) 111 (0,020 @ Ml pa s H L2 0,000

and using the above formula on w, F and fL we deduce (1.25). This concludes the proof of Theorem O

2.4 Proof of Proposition and Corollary

Proof of Proposition[I.4 Assume R > 0 and n° € Br. We show the existence of x* > 0 and C > 0,
depending only on R such that for any 77 € Br

17— 0"l grragry < w" = Cr(@) < CCL(n"). (2.49)
()

If the above implication holds true, one can end the proof of Proposition assume (7],) is a sequence of
Br such that R
sup CL (1) = o0. (2.50)
n
Using standard compactness results and the embedding H;/ *(Z) < L*(Z), there exists n* € Br such that,
up to a subsequence,

T —n" weakly in HL(Z), 7, —n" strongly in H;M(I).

Then relation (2.49) contradicts (2.50).
It thus remains to show (2.49) to conclude the proof of Proposition We thus assume that 77 € Br
satisfies

7 —=n"llgr/azy <" (2.51)

Taking " < k (see (2.3)), we can consider the change of variable X« 7 : F,« — F5 defined by (2.2). For
sake of simplicity, in what follows we use the notations

FEFp, XE¥Xpem YEX (2.52)

Let us consider o
(FvGaH) esoo(]:ﬁ)v (253)

14



and

(L€ HL(T), (e HLI), @°ecH (F), (2.54)
such that _
diva® = G(0,) in Fy, @°(s,14+7(s)) =C3(s)e2 s€Z, @’ =0 onl_i. (2.55)
Let us consider the solution
(w,q,m) € Weo (F3) (2.56)

of (1.15)-(1.16]) given by Theorem (with n* replaced by 7).

Thus, we set
wit,y) = a(t, X(y), alty) = q(t, X(1)),
F(ty) € Ft,X(y), G(ty) = det(VX )AL X (), w’(y) = a"(X(y)), (2.57)
and we verify that (w, g, n) is solution to the system
Orw — divT(w, q) = ﬁg(?],w,q) + F in (0,00) X F,
divw = G(j,w) + G in (0,00) X F,
w(t, 5, 147" () = (@) (t,)ez, >0, s€T, (2.58)
w=0, t>0, yel_,
Oun + A = —Hy- (w, q) + H@,w) + H, ¢>0,

with the initial conditions

n(0,)=¢Y, 8n0,)=¢ and w(0,) =w’ in F, (2.59)

where the mappings Fs (7, w, q), G(7, w) and H (7}, w) are given by [2.11), [.12) and (2.13). In Appendix
we prove that

H(ﬁ2(7~]»7«U:CI),é(77: w)7ﬁ(ﬁ7w)) g CHﬁ_77*||H7/4(I)H(w7q777)“moo(}')7 (260)

s

where C' = C(R) > 0. The above estimate and the definition of Cy(n") yield

sl 7y < B ) [10°, ¢ )l 2y 2yt ) + I1(F Gy Dl

+CCL(n)|n—n" HH;M(Z) | (w, g, m)llaw o (7)
and for k¥ = k" (R) small enough in (2.51) we obtain

I, ¢l ) < 262 (0") (I1°, 2 lless 7y x13, )1, @) + 1B G H) ) ) -
Moreover, we prove in Appendix that there exists a constant C' = C(R) such that

(@, @, M)l (7;) < Cll(w, ¢, m)llaw (7)) HwOHHl(f) < CH@OHHl(fﬁ) (2.61)

and
||(F7G’H)||Soo(]:) < CH(FanH)HSoo(-‘Fﬁ)' (2.62)

Thus we deduce that
1,3 M) llar 5y < CCr") (1@ 2 Dl (a3 0y st o + I G Dllscim)

for some constant C' = C(R). Then (2.49) follows. O

Proof of Corollary[1.3. Using Theorem|[L.1]and Proposition[1.2} we only need to extend (F, G, H) € Fr(Fy)
in functions defined on (0, c0) with a control on the norm of the extensions. For F' and H we simply extend
them by 0 in (7,00). For G we first use the surjectivity of the map defined by . Using the open
mapping theorem, there exists

GW € L2(0,00; Hy(Fy+)) N H (0,00 Hy (Fy))
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such that
G(l)(ov ) = G(Ov ')7 ”G(l) HL2(0,00§H;#<]:TI*))mH1<0,OO;H;1(]:n*)) < CHG(07 )HLQ#(]:T,*) < C”wOHHl(}'n*)'

Then we set )
G =G —GW e LX(0,T; Hy(Fp)) N H' (0,75 Hy ' (Fy))

and we have G?(0,-) = 0. We extend G® in (T, 2T) by setting G? (t) = G® (2T —t) so that
G® € L?(0,2T; Hyy(Fy+)) 0 Ho (0,273 HE ' (Fye))
and then we extend G'® by 0 in (2T, 00). This gives us an extension of (F,G, H) such that (F,G, H) €

Too (Fy+) and
I(F, G, H) 5o (7, < CIE G H) 577,

for some constant C' independent of (F,G, H) and of T O

3 Resolvent estimates of A

This section is devoted to the proof of Proposition that allows us to obtain Theorem that is the
analyticity and the exponential stability of the semigroup generated by Ao.

3.1 Definition and properties of some operators
We define the Stokes operator
D(A) EVH(F)NH?(F), AZEUPA:DA) - VI(F), (3.1)

where P : L?(F) — Vo (F) is the Leray projection operator.
Let us consider vy 5 < (A — A)"'Pf, that is the solution of

Aﬁ)\yf — diVT(i)\)\yf,z/)\Ayf) = f in f7
divij\x,f =0 in F, (3.2)
i)\/\,f =0 on 8]'-

We can define the following operator (see ([2.22]))
T € LILA(F), DAY, Tof & A" {T(@xs,5x0)mor} - (3.3)

Using a trace theorem, regularity results for Stokes system with H’-boundary (see [12, Lemma 1]) and
resolvent estimates for the Stokes operator A (defined by (3.1)), we have that

suIZr [|Tx]] < oo. (3.4)

N £(L2(F),D(A}/*)

Let us consider the following system for A € C*:

)\’lU)\J] —div rJ.‘|.‘(’l,l))\7n7 q)‘ﬂl) =0 in f,
div Wx,n = 0 in _F, (3.5)
wxany =An on OF,

where A is defined by (2.21). Since n* € H*(Z) we can apply [12, Lemma 1]: for any n € D(A‘;’/4), the above
system admits a unique solution (wx,y, gx,,) € H*(F) x H4(F). We can thus define the operators

Wi € L(D(AY*), H*(F)), Qx € L(D(AY"), Hy(F)), Lx € LD(AY*), D(A?)) (3.6)
as ‘
Wan = wam  QanE gamy Lan = A" {T(wag, gam)njor} - (3.7)
Note that we have
Wi € L(D(AY"), H'(F)) N £(D(A*), L*(F)), (3.8)
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and the following estimate
[Wanllzcr) < CIAT Y *nllus (0 € D(AYY)), (3.9)

where the constant C' does not depend on A (see [4]).
We can now prove Proposition [2:8}

Proof of Proposition[2.8 With the above notation, we see that
D(Ao) = {[w,m, m] € H*(F) x D(AY") x D(AY) ; w — Womz € D(A) }

and
#H = {fw,m,m] € L(F) x D(AYY) x DAY ; w - Woms € VE(F) }.

We deduce by interpolation that:
[D(Aa), M1z = {[w,m,me] € H 5 (m1,m2) € D(A1) x DAY?), w0 = Womz € [D(&), Va(Flyj2 } -

Then from [10, Theorem 1.1] (which remains true for nonsmooth boundary provided H?-regularity for Stokes
system holds) and [14] we deduce

[D(A), Vo (F)]1/2 = [H(F) NHy(F), L(F)]1/2 N Vo (F) = Vo (F).

O
In system (3.5), we can write
(w)\,?’lv q)\,ﬁ) = (wO,na qO»’f?) + )‘(Z)\,Tlv TD\,TI) (310)
where
)\ZA,n — diV T(Zk,m'frk,n) = *wo,n in ]:,
divzay, =0 in F, (3.11)
Zxn =0 on OF.
From (3.5) and (3.7)), we have the following relations
(Lan,¢) = )\/ W,y Wi dy + QV/ D(wx,y,) : D(wxe) dy (3.12)
F F
and
2V/ D(wo,y) : D(Zx¢) dy = 21// D(zx,,) : D(woc) dy = 0.
F F
Combining the above relations, we deduce the following decomposition
Ly=Lo+ K" + \PKY = Lo+ AKy, Ky & K" + 3K, (3.13)
where
KOO [ wnywgdy and (57n.0) % 2 [ Dar,) D) dy. (3.14)
F F
We have the following properties on these operators:
Proposition 3.1. The operator Lo can be extended as a self-adjoint positive operator
Lo € L(D(A;""), D(A))
and satisfies
1/4 1/4 1/4
A e < ALZomm) parsays pearssy < P2l A llrg (0 € DAY, (3.15)
for some constants p1, p2 > 0.
The operators
K\ € LAY, D(AYY)  and KY€ £(D(A*), D(AT)
are positive and self-adjoint and there exists ps > 0 such that for any A such that Re A > 0, we have
0 < (K mhws < psll AT nlls  (n € (DAY, (3.16)
3 —
0 < (K m myms < SHIAT s (€ (DAY, (3.17)

Ry
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Proof. The first part of the proposition comes from (3.12), from (3.8) and from Korn’s inequality with a
trace theorem. The properties of K ;U are a consequence of (3.9). The properties of K ;2) are a consequence
of (3.9) with the estimate (see [4, Proposition 3.2, (3.15)]):

—1/2
l2x,nlle2 7y < CJA] Y llwo,nllL2(7)-

O
Next, we define the operator
Va = NPT+ ALy + A1 = N2(I + K») + ALo + A, (3.18)
and an “approximation” of V:
VA NI + K)) + 2pA A% + Ay, (3.19)

where p > 0 is a constant to be fixed later.

The operator Vj is crucial is the forthcoming analysis to prove Theorem [2.5] It appears naturally when we
consider the equation (Al — Ag)[v, m1,n2] = [f, 9, h]. Indeed, if f =0 and g = 0, this equation is transformed
into

v=Winz, n2=Mn, Vim =h. (3.20)
We thus need to study the inverse of V. In particular from the second step of Theorem that we already
did, we know that Vj : D(A§/4) — D(A}M) is invertible.
We have the following properties on Ky:
Lemma 3.2. The operator Ky defined by satisfies for any X € CF :

I+ Kx)nllaes = IInllas (0 € Hs), (3.21)
AV EKanllaes < CIIAT *nlles (n € (D(AY*))), (3.22)
1A *nllaes < CIAY I+ Kn)nllus  (n € (D(AY)), (3.23)

where the constant C' does not depend on m or on A.

Proof. First, from (3.16)-(3.17) we deduce that Re(Kxn,n)ug = 0 if Re(\) > 0, which yields (3.21).
Second, multiplying the first equation of (3.11) by wa,¢ and integrating by parts, we find that

K)\'n = A* {T(Z)\,W’JT)\J])TL‘@]:} . (3.24)
Thus, using the trace inequality, classical resolvent estimates for the Stokes operator and (3.9), we obtain
1/4
|41 an|| < C T o)l /2 o) < C M Tz ) s,
Hs #
—1/4
< Ollwo s llea(r) < ClIAT nlls-
Finally, for the last relation, we use (3.21)) and (3.22):
HA}MWH < HA1/4(1+ KA)UH + HA%KWH < HA}/4(]+KA)UH +C lnllyy
Hg Hs Hs Hs

<[l + K

+ NI+ Kl < C AT+ K|
S

Hs
O
We have the same properties for the adjoint of Ky:
Lemma 3.3. The operator Ky defined by (3.13) satisfies for any A € CJ :
(T +E)mllas = [Inllns (0 € Hs), (3.25)
14V K nllaes < CIIAT  nlls (0 € (D(A)), (3.26)
143 nlles < CNAYH T+ Knllns - (n € (D(AY)), (3.27)

where the constant C' does not depend on n or on .
Proof. We note that yields
K5 =K{" + K,
and thus Re(K3n,n)ng > 0 if Re(\) > 0, which yields (3:25). Relation is a direct consequence of
Finally, the proof of is the same as the proof of @ O
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3.2 Estimation of IN//\_I

The aim of this section is to estimate the inverse of Vy defined by (3.19). We recall that the notation C is

introduced in (2.19)). First we show the following result on an “approximation” of Vj:

Lemma 3.4. There exists a constant C1 such that for all A € CT,
|1 +20041% + A > o (AP lInllas + Aimllaes) (€ D(AD).
S
Proof. We write
2 2
T +202402 + A = N Il + 40" A2+ Al
S S

2
1/2
Al/ﬁ‘

2 2
+4pReA<H,\A}/‘*nH +HA?;/4nH )+2Re)\2
Hs Hs Hs

> A" il +2(20" = DIAP

If 20> — 1 > 0, then we deduce
2
|21+ 220 + A= Il + A,
Else, we have 2p° — 1 < 0 and we deduce from (3.29) that

NT4200AY2 1 Al = I Il 2 )2 A Ayl
(AT +2pAAY" + An)n HS/| I Imll5 + 2207 = DIAF Il 1A1nll5 4 + 1Al

= (1= 20" (A ey — IAunllae,)? +26% (N Il + 1Avnll, )

12 |2 2
A, Al

(3.28)

(3.29)

(3.30)

O

Theorem 3.5. There ezists a > 0 such that for all A € CL the operator Vj : D(A?M) — D(A}M) is an

isomorphism and for (0, 8) € [—1/4,5/4]% such that 0 < 0 + 8 < 1, the following estimate holds
p f ( b ) ’ g

sup [ A2 ATV AT | Lous) < oo,
rect

sup [A*7 222 AY (V) T AT £y < oo
rect

Proof. We combine (3.19) with Lemma [3.2]

i, > s P i ], - s o ]
S S S

wla,, )
Hs Hs

> |

NAY 4 200 Ay + A?MWHH -C (I/\I HAiMn‘
S

Applying Lemma [3:4] we deduce
|4 | = en (INPIAY alles + 14T *nloes ) = © (|A| |4 ||+ ]|a | ) .
Hs Hs Hs

On the other hand, from an interpolation inequality and the Young inequality we have

1/2

1/2 _
|43 | < O™ (INPIAY “llacs + 14T s )
S

Hs

< I 41t

5/4
Al/ 7]H

‘Hs H

Combining the above inequality with (3.34), we deduce that for « large enough, and for A € C/,

|4 V| = € (IAPIAY “nllacs + 147 0l )
S
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Since

Vi = N1+ K3) + 20017 + Ay,
and since K satisfies the same properties as K (see Lemma , we also deduce that for a large enough,
and for A € CF,

HAV Win

| = C(APIAY s + 14T s ) (3.37)
Hs

From and (3:37), we deduce that Vi D(Ai’/‘l) — D(Ai“) is a closed operator (since A; is a closed
operator) and has a closed range. Applying [7, Corollary 11.17, p.28], we deduce that \~/A is invertible.
Moreover and yield and for (0,8) = (1/4,—1/4) and (0,8) = (5/4,—-1/4). By
a duality argument, this implies (3.31) and (3.32) for (0,8) = (—1/4,1/4) and (0,8) = (—1/4,5/4). We
deduce the result by an interpolation argument. O

3.3 Estimation of V,!
In order to show the resolvent estimate for the operator Ao defined by ([2.31)-(2.32), assume X € CJ for

a > 0 given in Theorem and [f, g, h] € H. We have that [v, 71, n2] ERoy - Ao)'[f, g, h] satisfies
A —divT(v,p) = f in F,
divo =0 in F,
v=An; on OF, (3.38)
A —n2 =g
Az + Aim = —A" {T(v,p)njor} + h,

for some pressure function p.
First we decompose the fluid velocity of the above system by using W and A introduced in (3.7) and
(3-1):
v=Wn2 + (M — A)"'Pf.

This allows us to rewrite the system (3.38]) as

A —m2 =g
3.39
{ A2 + Aini + Lanz = Taf + h, ( )

where Ly € L(D(AY*), D(A)*)) and Th € L(L*(F),D(A)*)) are defined by (3.7) and (3.3). Then, we
define

et | 0O =T
Ay & [ A LJ , (3.40)
and we can write (3.39) as follows:
my _ g
(AL 4+ Ax) {772] = {ﬂfﬂz] . (3.41)

We recall that since C* C p(Ao), we know that Vi defined in (3.18) is invertible and some calculation
yields the following formulas for the inverse of A\I + Ay and of Al — Ap:

I—-V'A
A+ A = A ; (3.42)
Vit AL AVt

and
A= A)T'TPHAWLV T WAV TAL ALY

(M — Ap) ™" = Vo, L-ViiA (3.43)
A
AV T -vitA AVt

Here, we estimate the inverse of the operator V) defined in (3.18) for A € C} and a > 0 given in
Theorem [3.5] From now on, we fix p < p1/4 where p; is defined in Proposition The main result of this
section is the following;:
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Theorem 3.6. There ezists o > 0 such that, for (0,8) € [-1/4, 3/4]2, such that 0 < 045 < 1, the following
estimate holds
sup A2 ALV AL o) < oo (3.44)
rect

Proof. Comparing (3.18) and (3.19)), we see that
Va—Va=2AS, SEL,—2p477

and thus _ _
Vit = [T+ AV tsv (3.45)

In the above relation, note that from (3.6)), S : D(A?M) — D(A}M) so that V'SVt D(A}/Zl) — D(A“;’/4).
Moreover, from Proposition and in particular (3.15), we have with our choice of p that S : D(Ai/zl) —
D(Ai/ "Y' is a positive self-adjoint operator satisfying

VneHs, [ISV2AT nllns < Cllnllns.- (3.46)
Moreover, (3.46) with a duality argument yields
€ Hs, 11471l < Cllnllacs. (3.47)
Combining the above inequalities with (3.31]) we obtain for 8 € [-1/4,3/4],
vneHs, [SVEV AT s < CINTY P n]lns, (3.48)
and for 6 € [-1/4,3/4],
vneHts, [ATVS 2 nllas < CINT2 22 n]lns - (3.49)
Let us multiply (3.45) by SV;ln with n € Hs:

<Sl/2‘7A_IW:SI/QVA_IU>H _ HSI/QVA_IU
s

2 51 -1 —1
]HS+<AVX SV, SV; ”>ns' (3.50)

On the other hand, from (3.19), (.13)), (3.16) and (3.17), we deduce for any A € C* and for any ¢ € D(A41),

Re(AC, Val)ms = Re(W)[IXCIf3s + AP Re(A(KLVC, Ons + MK Omis
+ 20 A1 41 Cll3es + Re(N A *Cll3es > 0. (3.51)
Using ¢ = ‘7/\_ISV/\_17] in the above relation and combining it with (3.50)), we deduce
vneHts, SV nllns < I1STPV Ml
Thus, coming back to equality (3.45) we deduce that for 7 € Hs, and for (8, 8) € [~1/4,3/4]? such that
0<0+8<1,
ATV AT nllacs < ATV P ATnllns + INITATVA SVt Al
< [JATV Al nlles + IMIATVSY 2 (e 1572Vt Al s
< [JATV ATl + IMATVESY 2 2 1SV AT s -

Then using estimates (3.31)), (3.48), (3.49) and a density argument yields (3.44)). O
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3.4 Proof of Proposition

We are now in position to prove Proposition and thus completes the proof of Theorem

Proof of Proposition Let us consider o > 0 given by Theoremand let us assume A € CL (see ([2.19)).

From (3.43)) and (2.27), we have
f 2

MM —A40) 7! g = [|AAT = A)T'Pf + NWAV, T f — AWAVS P Arg + NPWaVy

h H

2
+ HAA‘;’/“V;I’ﬂf AT = VT AL g+ AAYAV T

2
+ HﬁA}“VngAf AV YT A AQA}/“V;%HH
S

Using that A is the generator of an analytic semigroup, we have
A = A) ' Pf e < Cllf Lz
From (3.9), (3.44) with (6, 8) = (0,0) and (3.4)),

APIWAV  Tafllez oy < ClITaf s < Cliflluz -

From (3.44) with (0, 8) = (3/4,—1/4) and (3.4),
ATV T fllws < Clf ez -
From (3.44)) with (0, 8) = (1/4,—1/4) and (3.4),
IV TSl < Cllfllee -
From (3.9) and (3.44) with (6,8) = (1/4,1/4)
NIWAVA  Argllee ) < ClIAT gl
From (3.44) with (6, 5) = (3/4,1/4)

At - vt A, < Cla gl

From with (0, 8) = (1/4,1/4)
N |Ad v A< CllAY gl
From and with (8, 8) = (0,0)
AP IWAVS hlla ey < ClIAY Bl
From with (8, 8) = (3/4,—1/4)
N HAi’/‘*V;Ih

< CJ|AY bl
[ < CIAY Bles

From with (0, 8) = (1/4,—1/4)

AP Ay V]|, < AT Bl

Combining the above estimates, we deduce (2.42)).

4 Strong solutions for ([1.3))-(1.4)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

In this section, we recall the main steps to obtain the existence and uniqueness results for the nonlinear

system (|1.3)-(1.4), or equivalently for the system (2.8)-(2.13).
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4.1 Proof of Theorem
This section is devoted to the proof of Theorem (or equivalently Theorem [2.2]).

Local in time existence First, for (w®,n),n3) satisfying - we show the ex1stence of a local
in time solution for (2.8 - by a fixed point argument We recall that in that case n* = ). In particular,
Cof(VX(0,-)) =12 and the divergence condition in rewrites divw® = 0 in F.

For R > 0 and T > 0 we consider the closed subset of Fr(F) (see (L.17))):

def

%RT_ (F7G7H)€ST(]:)7 (07)_01n]:7 H(FvG7H)H3’T(—7'_)<R} (41)

To simplify, we assume here that T'< 1. For any (F G H) € Br,1, we cons1der the solution (w,n,q) of

- - ) given by Corollary . with ( Cl , Cg ( ) In particular, using , we can take R large

enough such that
R>21+ ||[w077]?7773]||H1(]~')><H2(I)><H1(I)7 ilefn? +1>1/R, (4.2)

and then there exists a constant C' = C(R) such that
(w, q:m)llews 7 < C. (4.3)

First we notice that by interpolation, there exists a constant C' = C'(R) such that

0l g3 /40,7507 74 2y) + 190l Lao,750578 (1)) + 10l 130, 7085/ (7)) < C- (4.4)

Using Proposition A.1 in [3] we deduce

1/6 1/6
llm— 771||L°<>(0TH7/4(1)) <crt llm— 771||H3/4(0TH7/4(I)) <cr (4.5)

for some constants C' = C(R).

From the above estimate, we see that for T small enough . ) holds and we can construct the change
of variables X and Y defined by ([2.5) . with n* = nl) In the appendix, we express X and Y, and their
derivatives (see m - ‘We can then consider the mapping

Z:(F,G,H) ~ (F(n,w,q),G(n,w), H(n,w)) (4.6)

where the maps F, G and H are defined by (2.10), (2.12) and (2.13), and (w, q,n) defined as above. The

estimations of F , G and H follow from standard arguments and we postpone them in Appendix |B| Using
B.27)), (B.34) and (B.36)), we deduce that for T' < 1, Z is well-defined from B r 1 into Fr(F) and satisfies

||Z(F7 G7 H)HST(}—) < CT1/67 (47)
for some constant C' = C(R). From (4.7)), for all T > 0 small enough, we deduce
Z(F,G,H) € Bgrr.

With estimates similar to (B.27), (B.34) and (B.36]), one can also show that, taking T possibly smaller,
Z is a strict contraction on Br r and using the Banach fixed point theorem, we deduce the existence and
uniqueness of (F,G, H) € Br,r such that

Z((F,G,H)) = (F,G,H).

The corresponding solution (w, q,7n) of system (|1.15)-(1.16) is a solution of (2.8)-(2.13).
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Uniqueness. Assume that (v(i),p”)7 n(i)), t = 1,2 are strong solutions of ([1.3])-(1.4) on [0, T“)), T 5 0,
associated with (v°,77,19) (satisfying (T.32)-(T.33)).

Assume that to € [0, min(T™, 7)) is such that
(77(1) (t07 ')7 atn(l)(t(h ')7 v(l) (t07 )) = (77(2) (t07 ')7 8t77(2) (t07 ')7 U(z) (t07 ))
Then we show below that there exists 7" > 0 such that,

@0, pD M) = @2, p ) in [to, o+ T]. (4.8)

To prove the above implication, we can assume to = 0, the general case follows by Changmg t tot —to.
First using an estimate of the type . there exists 7 > 0 depending on 77( and on 77( such that

In particular, (see (2.3))), we can construct the change of variables X and Y defined by (2.5) with n* =
n(0,-) and transform (v, p™) into (w”, ¢?) so that (w'”, ¢, n™) is a strong solution of (2.8)—(2.13)
on [0,T7], for T € (0,T). Let us write, for i = 1,2,

“(t,-) —n'(0, - < T, i=1,2).
W) = 0|, <5 DT i=12)

(F(i)7 G(i), H(i)) def (F( (2)7 q(i))7 G(77<i),w(i)), H(n(i)7 w(i)))

where the maps F, G and H are defined by (2.10), (2.12) and (2.13). There exists R large enough such that
for any T € (0,71,

(FD,.GY HYY e Brp, (i=1,2),

where B g, 7 is defined by and such that the analogue of holds true. They are both fixed points of
Z defined by (4.6)), and from the above proof, Z admits a unique fixed point on Bg,r for T' small enough.
We thus dedu.

Now, let us consider

To = sup {T € [O,min(T(1>,T(2))) ;

(77(1)(75’ ')7 3”7(1)(157 ')7 U(l)(ta )) = (77(2)(75: ')7 81577(2) (t7 ')7 v(2) (t7 )) vt € [0’ T]} (49)

Using the above property for ¢ty = 0, the above supremum is well-defined and by continuity of the solutions,
if Tp < min(T(l),T(Q)) then, we have

(n(l)(TOa ’)7 3”7(1)(TO’ ')v U<1>(T03 )) = (77(2> (TOv ')7 3t77(2) (T07 ')7 1)(2) (T07 ))

so that the above argument with to = Ty contradicts that Ty satisfies (4.9). We thus deduce the uniqueness.

Criterion for global existence Assume that (v,p,n) is the maximal strong solution on [0, Tmax) of

(1.3)-(1.4]), associated with (vo, ne,ns 72) (satisfying - - Let us assume that

1
Thax < 00, su v(t, ), n(t,-), on(t,- +H7 < 0. 4.10
* tE(O,TIzzax)H( (&:),m(t: ), Benl ))HHI(H)XH2<Z)XH1(Z) 1+n(t,-) Lo (T) ( )
Then, there exists R > 0 such that for any ¢ € [0, Tnax)
R>1+|[v(t,),n(t,-), 0m(t, a7, < z2@)< a5t (1), ilefn(t7 J+1>1/R (4.11)

In particular, from the first part of the proof (local in time existence), there exists T' > 0 depending only on R
such that we can construct a strong solution of (1.3)) on [¢, t+7'], with initial conditions (v(¢, ), n(t,-), (¢, -)).
This shows that we can go beyond Tmax and leads to a contradiction with the fact that (v, p,n) is a maximal
solution.
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4.2 Proof of Theorem [1.8
The proof of Theorem (or equivalently Theorem is similar to the proof of Theorem [1.7] We use
PENAE)

again a fixed point argument to show the global in time existence of strong solutions for (| . We
recall that in that case n™ = 0.
For R > 0, we consider the closed subset of Foo(F) (see (1.17))):

Br = (F7G7H) G'SOO(]:) 5 G(Ov) :divw07 ”(FvG’H)HSoc(]‘_) < R} .

Note that using ([2.14)—(2.15), we can check that divw® € Li(]—") = [H;#(]:), H;l(]:)} 12 Thus using the
trace theorems, there exists a constant ¢ such that if

R> C”[woa77(1)777(2)]HH1(]-')><H2(I)><H1(I)1 (4.12)

then B r is nonempty.
For any (F,G,H) € Br, we consider the solution (w,q,n) € Wao(F) of (1.15)-(1.16) given by Theo-
rem In particular (1.25) and (4.12) imply

[(w, g, )|l (7) < CR (4.13)

for some constant C independent of R.

In particular, for R small enough (that is, with , for initial conditions small enough) the condition
holds with n* = 0. Then we can consider our change of variables X and Y defined by with n* = 0,
and the mapping Z introduced in is well-defined.

Moreover, we notice that by interpolation, yields

Wl L8 (0,005m5/4 (7)) + 10l 2873 (0,00,m87/4 (7)) < CR, (4.14)

and using the estimates (B.44)), (B.45)), (B.46) and (B.47)), we deduce that for R small enough, Z is well-
defined from Br into Foo (F) and satisfies

IZ(F,G, H) 5. < CR®. (4.15)
From (4.15)), for all R > 0 small enough, we deduce
Z(F,G,H) € Bpg.

Similarly, taking R possibly smaller, we can also show that Z is a strict contraction on Br and using
the Banach fixed point theorem, we deduce the existence and uniqueness of (F, G, H) € B such that

Z((F,G,H)) = (F,G,H).

The corresponding solution (w, q,7n) of system (|1.15)-(1.16) is a solution of (2.8)-(2.13).

5 Time analyticity of the solutions of (|1.3))

In this section we prove Corollary [[LTI}] We first start with some general results for the time analyticity of
the solutions of parabolic systems.

5.1 General results

Let us consider H and V two Banach spaces such that V C H, and for any T' € (0,4o00] and 6 € (0,7/2) let
us consider the sector
Sro E{zeC; 0<|z| <T, |arg(z)| < 6}.

We denote by Hol(St,6; H) the space of functions holomorphic in Sps with values in H. Let us consider
the following norms

T 1/2

def 2 def

Il s g * sup ( | e "’t)Hadt) 1wzt 1l c2isp o + 1 ez sp om0
< 0
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and the following subspaces of Hol(Sr,¢; H):

£2(SroiH) = { f € HOl(Sr.0iH) 5 [1fllc2(sp o) < +00}

W (St V, H) 2 { f € HOl(S1,03V) 5 1 fllwesy pov iy < +00 )
Theorem 5.1. The spaces L2 (St,0;H) and w? (S7,0;V,H) are Banach spaces.

Proof. We only give the proof for £* (St,0; H), the proof is similar for the other space. Suppose that (f,)
is a Cauchy sequence of £2(Sr.0;H). Then the sequence (fy) defined by fn(s,¢) = fu(se'®) is a Cauchy
sequence of the Banach space L2(—0, 0; L2(07 T)), and thus converges to some fe L2(—0, 0; LZ(O, T)). Then
the function f : St9 — H defined by f(se'?) = f(s, ¢) satisfies £l 22(s7.:2) < 00 and

Jm fo = flle2(sp gm0y = 0-

It remains to show that f € Hol(Sr,9; H). For that we define the analytic functions:

Vz € Sro, Fu(z)= fn(§)dE.

[0,2]

By the Cauchy-Schwarz inequality, for any To < T < o0,
1/2
1B = Fanllzoe sy 090 < To 2 fn = Fnll c2(5p.pe0)-

from which we deduce that (F,) converges to some F € L™(Sr,,0; X), with F' analytic in St,,9. Thus f = F'
and we obtain that f is analytic in St,,¢ for any To < T and thus analytic in St,9. O

Theorem 5.2. Assume that A : D(A) — H is the infinitesimal generator of an exponentially stable semi-
group (e'*)i=0 on H that is analytic in the sector S gr. Assume T € (0,+00] and 6 € (0,6"). Then for any
Yo € [D(A),H]1 )2 and f € L*(Sr,0;H), there ewists a unique solution y € W?(Sr,0; D(A), H) of

y =Ay+ f, y(0) = 0. (5.1)

Moreover, there exists C > 0 independent of T' such that
l9llwe sz om0 < C (0l peara,o + 1 lle2csp 0 ) - (5.2)

Proof. First, we note that since z — ¢** and t — Ae** are analytic in Soo 07, then

d zA zA
¢ = Ae (2 € Socy0)-

From the Duhamel formula,

y(z) = ety +/ e(z_s)Af(s) ds (z € Sry).
[0,2]

Let us consider a closed disc D(zo0,7) C St,9 with 7 > 0. Since St,0 is an open set, there exists ¢ € (0,7)
(small enough) such that D(zo,7) —& C St,9. In particular, for any z € D(z0,7), 2 —¢ € Sr,9. Let us denote
by K the compact set defined by

K< {le,2] ; z€ D(20,7)} C Sryp.
Since z — ** and f are analytic in St,9, there exists C; > 0,

dkezA
dzk

F1F P (@)l < CF(RY). (5.3)
L(H)

Vze K, Yk >0,

We can write
y(z) = e(Z_E)Ay(s) +/ e(Z_S)Af(s) ds (z € D(zo0,71)).

[e:2]
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We already know that z — e*~)y(e) € Hol(D(zo,r); H). We show that y; defined by

u(z) = /[ () s = [ et as

[0,z—€]

satisfies y1 € Hol(D(zo,7); H). We have

n n—1 .y 1k k m
d d (z—e)A d sA d
Tn(z) = > e A +/[ e f(z—s) ds.

Pt dznflfk 0,2—¢] dzn
Thus, from (5.3) we deduce that for all z € D(zo,r),
dn
—_— < T(n!).
)| <cerm

This proves that y € Hol(Sr,¢; H) and using (5.1)), we deduce that y € Hol(Sz,0; D(A)).
Now, assume |¢| < 0 and let us write

vs(t) Zy(e®t),  fo(t) = f(et) (t€(0,T)).
We have
Yo = € Ays + € fo, ys(0) = yo. (5.4)

We extend fs by 0 on (T, 00) and we consider the solution of on (0,+00) which is an extension of y,
on (T, 00).

We first consider the case yo = 0: we extend ys, fo by 0 on (—o00,0) and we take the Fourier transform
of :

Go(6) = (176~ AT fy(§) (€ €R).

By adapting, for instance the proof of (iii) = (i) of [6] Paragraph II.1, Theorem 2.11, p.112], we deduce
that for 6 € (0,0"),

sup  { A = A) " lzeo + AN =) lepo } < +oo.

)\ESOCY%+9

We thus deduce

~ - e
14T sy + |92 gy < CIToll2cm0,

where the constant C' is independent on ¢. Hence, (5.2)) follows in the case yo = 0.
Now we consider the case f = 0: since [D(A), H]1 2 is the trace space of L*(0,00; D(A)) N H'(0,00;H),
there exists u € L*(0,00; D(A)) N H' (0, 00; H) such that u(0) = yo and

llull L2 (0,00:p(a)) + Hu,|lL2(O,oo;’H) < C||y0||[D(A>,H]1/2-

Hence, s & ys — u satisfies
% = 61¢A§¢ + e Au — Ul, g¢(0) =0,

and we are reduced to the first case. O

5.2 Proof of Corollary

We are now in position to prove Corollary First we use Theorem to obtain an angle # > 0 such
that (e**) on A is analytic in the sector Sa .
For T € (0, +o0] let us define the following spaces (see (1.17) and ([1.18]))
Fr(Fo) & L2 (S10; L (Fyr)) x W (Sr,3 Hy (Fye ), Hy ' (Fy)) x L2(Sr.0 Hy (1))
and

def

W (Fpe) {(w,q, n) 3 w € W(Sr0; H (Fy- ), L2 (Fyp+)), q € L2 (Sr0: H' (Fy+ ) /R),

n € W(Sro; HY/*(Z), HY*(T)), 0 € WQ(ST,Q;H;/Q(I),H;”(I))}.
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We endow these spaces with the norms

def

ICE, G H)lig0. 7,00 = IFlle2(sp0m2 @ +11Glwe (s, g L (Fpe ) Hy (Fpe)) T HHHL2($T9 Y2 (1) (5.5)

and

def
ll(w, g, )||Ql]9 (Fpe) = ||w||w2(sT,3;H2(Fn*),LZ(IU*)) + ||(I|\L2(5T,9;Hl(fn*)/R)
!
e sy gimsr @y, m32 @y T 10 e sy g3 @, 2 @)

We deduce from Theorem that the above spaces are Banach spaces.
Combining Theorem and Theoremwe obtain the analogue of Theorem that provides a unique

solution (w, q,n) of (1.15)-(1.16]) in S, with
H(U’»Q:Tl)”m‘;(fn*) <C (HwOHHl(f,,*) + ||<?||Hi(1) + ||C3||H3#(I) + H(FvaH)HS%(}'n*)) . (5.6)

Moreover, following the proof of Proposmonand Corollary[T.3] we can choose the constant C' independent
of T and so that its dependence on n" comes only from R provided n* € Br (see 1.26).

Then the proof of Corollary [[.11] follows the proofs in Section[4.I]and in Section[d.2] For instance, taking
n* =1} and setting F = F,«, we can define the following closed subset of 7 (F):

def

Bhr < {(F.G.H) €§H(F): GO,)=0inF, |(F.G,H)|s ) < }
Then taking R large enough such that ( . ) holds true, there exists a constant C=C(R ) such that for any
(F,G,H) € %R T there exists a unique solution (w, q,7n) of - with ( Cl , CQ ( N1, M2 ) in St,9 with

Thus using the same proof as in Section we deduce the existence of T' = T'(R) small enough such that
we have a solution of — in St,9. By uniqueness, this solution extends the solution that we obtained
in Section A1}

To complete the first point of Corollary assume that we have a strong solution on [0, 7p]. Then, by
continuity of 7, there exists R > 0 such that 7(t,-) € Br (see ) for t € [0,T5]. From the above proof,
it implies that there exists a uniform 7" such that we can extend the solution of — int+ St for
all t € [0,75]. Then the domain of analyticity contains the union of t + Sr.9, t € [0, To], and we deduce the
result by choosing 6y € [0, 0) small enough.

With similar arguments but adapting Section .2 instead of Section [£.I} we deduce the second point of

Corollary

A Formula for the change of variables

Here we recall standard formula that allow us to obtain the expressions (2.10))-(2.13)) and similar ones (see
Section |2.4)).
Starting from

v(t,z) =w(t, Y(t,z)) and p(t,z)=q(t,Y(t, x)), (A1)
we have
Orvi(t, X (t,v)) = Opw;(t, y) + Z 8“’1 (t X (t,y)), (A.2)
(v~ Vo), (8, X (£, 2)) ij (t.)2 8”’ y)?—i/’;(t,xwy)), (A3)
B, X (00) = 30 5.0 ZY’“ (1, X () (A4)

28



0?v; Z 0*w; ayk 0

Ye
Bu, 0 (t, X(t,y)) R a oz, X (EY) 5 = (1 X(Ly)
awZ 82Y.
+ Z on, B X (B1), (AD)
o Z ey X(t,y)), (A.6)
Ox; 3yk
ow;
divo(t, X (1)) Z 8yk] 2, X (t,y)). (A7)
In particular
det(VX)divo(X) = Vw : Cof(VX) = div(Cof (VX)) w). (A.8)

We have used here that div(Cof(VX)) = 0.
From (/1.6), we deduce

H, (v, p)(t, s) = —v(s7) (% + @) (t,s,1+n(t,s)) —1—21/6 (t,s,1+mn(t,s)) —p(t,s, 1 +n(ts)). (A.9)

81'2 aZE 8
Thus
~ ~ X Owy | Ows N
H, (v,p)(t, ) = Hy= (w, q)(t, ) + v(9sn" — dsn) o, B (t,s,141"(s))
Y2 Y1

LD (G (B0 -sia) + 52 (T2 00) -1 ) ) (o1 4 706D

+2I/Z (ZZ: (gi X)—(sm)) (t,5,14+7°(s)). (A.10)

We can write our change of variables defined by (2.2)) and (2.5) as

X(ty1,92) = (y1,52 + C(ty1,52))  and (6, y1,92) = Ryy—ns (yh %) . (A.11)

Then we have the following formulas:

0 0 0y,¢ =0, c]
VX =1I , Cof(VX) =1 v2 vis | A.12
”[(M %c] of(VX) 2*{0 0 (A.12)
0 0
detVX =140y,¢ VY (X)=1— 0y, C Oy, C s (A.13)
1+0y,¢  1+40y¢
Y, B .
8331'8.13]' X) - O (7”] € {17 2})7 (A14)
82Y2 (X) _ ailylc + 2(aylc)(a§1y2C) _ (ay1<-)2(a§2y2€) (A 15)
dxy 1+ 0y, ¢ (14 0y,¢)? (1+0y,0)?2 .
82Y2 - _ aZlyZC (6y1 C)( yzyzg)’ 823/2:2 (X) — _ aﬁzyzg , (A.16)
071072 (14 0y,()? (14 0y,¢)3 0z (14 0y,¢)?
0
aY(X)=| 0¢ |, 8 Cot(VX)= Pﬁgzc *889141 , (A.17)
14 0y,¢
Y2 Y20y,m" (y1) ( Y2 )
t = Oz Np* , - o Ron(t, ) —n* , |, Al
0l a) = OB (0 70 ) = GO (o iy )+ 419
1 Y2
t, 78173 Nm* ], A.19
y2<( y17y2) 1+,)7 ( ) 2 ”](t,) n (yl 1+n*(y1)> ( )
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Y2 2?/26.11177* (yl) ( Y2 >
0 t = Opya1 Ron(t.)—m* — OziaoRon(t.)—n* T
yl?/lC( 7y17y2) 121 ' (t,)—n (yh 1 n*(y1)) (1 n*(yl))Q 122 'n(t,")—n Y1 1 n*(y1)

Y20y, 511" (Y1) ( Y2 ) 2y2(9y, " (11))? ( Y2 )
— = T 0, Rt ) — , + Oz Ryt —n* S —
(477 ()2 2 = \ I T () L+ 77 ())® 72 =1 \ Y T ()

2 * 2
Y2 (9" (1)) ( Y2 )
e Oy Rog(t,)—n* ,—2——1, (A.20
) P (VT ) (20

1 Y2
Oyry2C(t Y1, y2) = mazmnn(t,-)—n* (yl, W)

a *
— 71/117 (yl))2azan(t,<)fn* (yh b2 )

(14 n*(y1) L+ 7" (y1)
Y20y,1" (41) < Yo )
= 2O T I Ry e |y, —22— ), (A.21
(Wt (s oo R (oo Ty ) (20
OyaaClt gt ye) = ——— 0. . R (y ¥ ) (A.22)
Y292 ) ) (1+7]*(y1))2 T2T2 n(t,)—n 1, 1+7]*(y1) ) .

Y2
1+ n*(y1)> ’ (4.23)

a *
at7y1<(t7 y17y2) = 8961R8m(t,~) (yla y2 > — (y2 vl (yl) amRam(tr) <y1, L) , (A~24)

0:C(t,y1,92) = Rayn(,) (yl,

L+n*(y1) L4707 (y1))? L+7n*(y1)
1 Y2
8t;y2<(t7 Y1,Y2) 1+ (yl) 0, zRam(t, ) (y1 1+ (y1)) ( 5)

B Estimates of the nonlinear terms
This section is devoted to the proof of (4.7)), (4.15), and (2.60])-(2.62)). We assume

<., (B.1)

ot
Lo )

[ H

and all the constants below depend only on C,. For instance, using Sobolev embeddings, the above estimate
yields
1

—_— <C. B.2

H2(Z)

I ooz, + H

B.1 Preliminary results

In this section, we state and prove some preliminary results that allow us to deal with the fixed points of
this article. In order to do prove these results, we need to introduce a change of variables different from
[2:2) in order to transform Fo = Z x (0,1) into F,: for any n',n* satisfying (B.1]), we write

= 1+ 7°(y1)
Xtz Fpp = Fz, (y1,42) = (y17y2m . (B.3)

One can check that )N(nlm2 transforms 7,1 into F,2 and its inverse is )Z'nzml,
In this section, we thus use the change of variables Xg,,+ and for any f: F,;» — R, we set

FE foXon (B.4)

Then we have the following result.

Lemma B.1. Assume (B.1l). Assume p € [1,00] and « € [0,1]. Then there exist C1,Cy > 0 depending only
on Cy and on p,« such that

Cillfllr 7o) < I llze(z, ) < CallfllLrFo), (B.5)

Cillfllmezo) < I fllae(F, ) < Callflle(Fo)- (B.6)
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Proof. The proof of (B.5) follows from a change of variables in the integral. For , we can prove it for
a =0 and a =1 by standard calculation. For a € (0, 1), we recall that

'f W) _ Fy (2>)‘
1 2
iy = 1 my + [ [ Gy ™

2
‘f (1)) f(x@))‘ ) )
M) g @
_||f||L2(f0>+/ / R o da'Vde®. (B.7)
v | X o(z®) — Xn*,o(f(z))‘ (@) L+ (27)

Using (B.2]), we can check that

‘Xﬂ*,o(m(l)) - Xn*,O(w(Q))‘ >C ‘.T(l) — $(2)

and thus we deduce that ||f\|Ha(70> C[[fll#re(F,)- The other estimate is obtained similarly. O

Lemma B.2. Assume (B.1]).

o Iff e H*(Fy), a>1/2 and if g € L*(T), then fg € L*(F,+) and there exists a constant C' depending
on Cy and on o such that
Ifgllcz(z,.) < Cllgllz@lflme .- (B.8)

o If f € H*(Fy), a € [0,1], and if g € H'(Z), then fg € H*(Fy+) and there exists a constant C
depending on Cx and on « such that

19l () < Cllgllmr @) | fllae .- (B.9)
Proof. For both relations, we use (B.4) to work in Fy. By interpolation we can check that

Hf||L2(o,1,Ha(I)) CHfHHQ(Fo)

and thus by the Sobolev embedding, we deduce that if a > 1/2,

||f||L2(0 1L () X CHf”H‘* (Fo)-

From the above estimates with (B.5]), we deduce (B.8).
For the second point, it is sufficient to prove it for a = 0 and o = 1. For o = 0, the relation comes from
the fact that g € L°(Z). For a = 1, we use the first point of this lemma with

9y, (F9) = (90 g + fOug € L*(Fo),  0u,(fg) = (00 )g € L*(Fo),
and we can conclude the proof of the second point of the lemma by interpolation. O
Assume now a € [1,2] and f € H*(F,~), and let us consider f defined by (B4). Then using the above
lemma, we deduce that for some constants C,C2 depending only on C\ and on «,

CulIV Fllza-1z) S NV Sllma-i(7,e) < CallVFllme—i(m)-

In particular, we deduce that is valid for « € [0, 2]:

Corollary B.3. Assume (B.1) and assume o € [0,2]. Then there exist C1,C2 > 0 depending only on C,
and on o such that

C1l| fllme () < [fll e F,.) < Oa || fll e (o) (B.10)
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B.2 Estimates of X and Y

In this section T € (0,00] and X, Y are defined by (2.2)), and either (2.5) or (2.52). We write below the
estimates in the case (2.5)), to obtain them in the case (2.52)), it is sufficient to replace n by 77 that does not
depend on time (so that several estimates below are trivial in that case).

Using the continuous embedding H*/*(Fo) < W*°(F) and (A.13), (A.19), (B.1)), we deduce that there

exists a constant C' depending on C such that

||CHL<><>(0,T;CI(?)) S C[[Ry—n= HLoo(o,T;cl(]:T])) <Cln-n" |‘L<><>(0,T;H7/4(I)) . (B.11)
In particular, assuming that 7 satisfies (2.3]) for all ¢ with x small enough, then there exists a constant C
depending only C, and k such that

1
_ <c. (B.12)
H L4 0y, C | oo (0, 7,00 F))

Combining (B.11)), (B.12), (A.12), and (A.13)), we deduce

VX — IQHLoo(o,T;cO(f)) + ||Cof(VX) — IQHLOO(O!T;CO(?)) +|IVY(X) — 12||L°°(0,T;CO(7))
<C ||77 - 77*||LOC(0,T;H7/4(I)) (B.13)

and
ll[det VXl poc 0,700y < L+ Clln =07l oo 0,7, m7/2(2)) - (B.14)
From (A.23) and (2.1)) for & = 1, we also deduce
[10:Cll oo 0, 7500 @)y < C lIRaumll oo (0,7513/2 (7)) < C IO oo (0,711 (1)) - (B.15)
The above estimate, (A.17) and (B.12)) yield
HatY(X)”LOO(mT;CO(?)) <0 ”athLOO(o,T;Hl(I)) : (B'IG)
Combining (B.15) with (A.24), (A.25) and (B.5)), we also deduce that
Hat,inHLoo(o,T;w(f)) <C HathLOO(O,T;Hl(I)) : (B.17)

The above estimate and (A.17) yield

||at COf(VX)HLoc (O,T;LQ(}')) < C ||at77||Loo (O,T;Hl(I)) . (B18)
From (A.20)-(A.22), (B.1) and Sobolev embeddings, we deduce that
ayiyjc = Oy W*Eiyj + E;’j (B.19)
with N N
HE;] HL°°(0,T;L°°(]-')) + ”E;’J”Loc(o,T;Lfi/S(f)) <C Hn - 77*||Loo(o,T;H7/4(I)) . (B~20)

This decomposition, (B.11]), (B.12)) and (A.14)—(A.16]) yield that

0%Y; kmisik | migik
9,0 X) = Oy E5"" + 257 (B.21)
with
=i,5,k =i,k
=57 | Lo 0,7;50 (7)) + =% ||L°°(O,T;L8/3(]~‘))

2
<C (1 +ln—n ‘|L00(0,T;H7/4(1))> ln—mn ||L°°(O,T;H7/4(Z)) . (B22)

We can also use the decomposition (B.19)), (B-20) and (A.12) to obtain

d - =i,
COf(VX)i,j = aylyl'ri ':57]7’C + :‘G,J,k (B'23)
8yk
with
=i g,k —i,j.k *
1257 | o< (0,750 (7)) + 1267 ”LOO(O,T;LS/B(]-‘)) <Cln—n ‘|La<>(o,T;H7/4(I)) : (B.24)
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B.3 Estimates of F\ @ and H

In this section, we estimate the nonlinearities F G and H defined by (2. 07 and (2. 3 Thebe
estimates are used in Section El for the proofs of Theorem [1.7| and of Theorem (see ) and (4.15)) and
in Section n for the proof of Proposmon 1 (see ([2-60), (2.61), (2.62)).

Proof of (4.7). We first prove (£.7) and in that case, we recall that we assume T < 1, that n* = n{
)

satisfies (B.1)) with C’ = 2R (see (4.2))). In all this part, the constants C' may depend on R and we already
have the estimates and ({ . on (w,q,n). Since n* = 77?, we can use Proposition A.1 in [3] and with

we deduce

* 1/6 * 1/6
ln—n ||Loo(o,T;H7/4(z)) <CT / ln—mn ||H3/4(0,T;H7/4(I)) <CT s (B.25)
The above estimate and (B.13]) yield

IVX = I2|| oo 0 00 @) + 1Cof(VX) = 2|l oo 0. 0o ) + VY (X) — 12||LW(07T;CO(?)) <CTY5. (B.26)

We first estimate the nonlinearity F given by (2.10). Combining (4.3) and ( , we deduce

c’)wi QY‘
H ' (x < OT”||am||mo,T;H1(z>>uwnm(o,T;Hl(f)) <or'?,
L2(0,T;L2(F))

8yj ot
Combining (4.4) and -, we deduce

Ow; 0Yy, 1/4 * 2 1/4
Wy =2 <CTY* (1 +|In - (0.1 w ‘ <ort/,
‘ ! Oy Oz, L2 TLA(F) Al = 17N oo 0,0:m773 @) 101 s 0, 7015/4 )y <

Combining (4.3) and -, we deduce

28 (o) 8 (i)

YrOyi \ Ox; L2(0,T5L2(F)) YrOYL \ OLj i L2(0,T5L2(F))
H (fm X) - 5k> <or's,
Yk axz L2(0,T5L2(F))

Combining (4.3, the embedding H* (F) C L8 . for o = 1, (B.21), (B.22), (B.13) and (B.25)), we

deduce
92 ) 2
H@wl (9 Y;k (X) Hawj 8 Yk X (9Xg
dyy. Oxj L2(0,T5L2(F)) Ok Oz;0x¢ i |l L2(0,m12(5))

* 3 * 1/6
Cl+ln—n HLoo(o,T;H7/4(I))) ln—mn HLoo(o,T;H7/4(1)) lwll L2 (0,7m2(F)) < CT / )
The above estimates yields that

<cr/e. (B.27)

ﬁ ) ) ‘ X
H (77 v q) L2(0,T;L2(F))

The estimate of G(n, w) defined by (2.12) in L*(0, T} Hj(F)) leads to estimate

82107; 8w1
- 03,5 — Cof(VX)i5] —

a [Cof(V X)) (B.28)

in L*(0,T; L*(F)). Combining (&.3), the embedding Hl(]: ) C L8 ), (B3) for o = 1, (B:23)(B:24), (B.25),
and (B.26)), we deduce

Hé(n, w)‘ cr'/s, (B.29)

Thus, from the boundary condition of ( and (A.12) we deduce that (Io — Cof(VX)")w =0 on O.F.
Hence, from ,if ¢ € HL(F), then

(G, w W), @) =y L () = /F Vo - (I, — Cof (VX)*)w) dy. (B.30)

L2(0.TiHY (F))
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The above relation yield that

" e .
&, , < Ol = CotTx s, (B:31)

and similarly,

c (||at Cof (VX )wllp2 5y + [[(Cof(VX) — Jz)atwum(f)) . (B.32)

The two above relations, combined with (£3), (44), (B-18), (B.26) and (B.25), imply

oG, ., <

A 3/8
HG(U HHl(OTH . < CT(|0un|| oo o, 7511 @ 10l 15 0, 711574 (7))

+ CTY |l g1 0 112(5)) < CTVC. (B.33)
Gathering the above estimate and (B.29)), we obtain

H@(n,w)‘ + Hé(n,w)” <CoT/e, (B.34)

HL(0,T:H " (F))

L2(0,T; HY (]:))

Finally, to estimate ﬁ(n, w) given by in L? (0,T; H;#/Q(I)), we can estimate
-~ 8’[1}1 8w2 8w1 8Yk 811}2 8Yk
YTk xy Ik xy
174 (am o0 ) CZ ( (8302( ) 5k,2> + En (3201( ) (5k,1>)

T 2yzk: (g;"j (%(x) - 5k,2>) (B.35)

in L*(0,T; H' (F)). Here

) & Ro e _<’y72)’ Sty ye) = R, .(,y72)’
¢t y1,92) dun=dum(te) \ YL T ey (t y1,y2) 2unte) \ Y T )

where we recall that R is the lifting defined by (2.1). In particular, using (B.10)),

1/6
H HL‘X’(OTHE’/‘L(]:)) ||77 n HLOO(OTH7/4(I)) CT 5

HCHLOO 0TH5/4(]-‘)) ||77||LOO(OTH7/4(I)) “

The estimate of (B.35) in L*(0,T; H'(F)) leads to the same kind of estimates as above so that

<cr'/e. (B.36)

Hlfl(n,w)’ ()

L2(O,T;H1/2

Gathering (B.27), (B.34), and (B.36) we deduce @
Proof of (2. 60|) [2.62). The proofs of (2.60), ([2.61) and (2.62) are quite similar. Here we recall that

= oo, that ", 7 € Br (see (1.26)), F = F,~ and that (2.51)) holds. In particular, we use the estimates
in Appendlx where the constants C' may depend on R (see ) We can also assume that k" < 1 for
simplicity.

Let us estimate [ (17, w, q) given by . With , we first have

6wj 8Yk
H OyrOy; (Ta:j(x) B 6’“")

8Yk
Hayk (axz X0 - 5)

?w; (0Yy . 0Y, )
e 3y X (X) 64160,
L2(0,00L2(F)) Haykayz <8x]~( )3%‘( ) = Okibes

<Ol =n"lgr/ae) (lwll £2(0,00;m82(7)) + 1Vl £2(0,001.2(F))) -
L2(0,00;L2(F))

L2(0,00;L2(F))
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Combining (B.13), the embedding H'(F) c L¥(F), ), (B§) for a =1 and (B:21)-(B-22), we deduce

H ow; Yy (x 90X, H ow; 9%Y, ()
Oy 51‘33@’ i |l 2(0,00L2(7)) 1| Ok 023 L2(0,00L2(F))
<Clln - 77*HH7/4(I)||w||L2(0,oo;H2(F))'
The above estimates yield that
HFQ(ﬁ’w’q)‘ L2(0,00L2(F)) Clin=n"lgr/acn (lwll 20,0012 (7)) + IVl 2200, 001.2(F))) - (B.37)

The estimate of G(7, w) defined by 2.12) in L?(0, 00; Hy (F)) leads to estimate (B-28) in L*(0, 00; L*(F)).
29

With the same argument leading to (B. we obtain

Jocio)

L2(0,005112, (f)) Cln—n HH7/4(I>||7~UHL2(0ooH2(f)) (B.38)

Moreover, combining (B.31)), (B.32), (B.13), (B.18) and (#.13) implies
|GG, w)||

Hl(ocoH;l(J-‘)) <Clg—n HH7/4(I) (||wHH1(OooL2(J:))+||w||L2(OTH2(.7:))) (B.39)

Finally, to estimate H(n,w) in L?(0, oo; H;ﬂ ()), we estimate (B.35) in L*(0, 00; H'(F)). This leads to
the same estimates as above so that

|71, w)| o

Gathering (B.37] ,7 (B.39), (B.40) yields (2
2.61)-(

The proof of (12.61)-(2.62)) follows the same approach For instance, one can use and the above
estimates for FQ (7, w, q) to deduce

0w
0x;0Tm,

HT/4(T) L2(0,00;H2(F))- -
Clla ="l [[wll (B.40)

1/2

LQ(O,oo;H

2 .
O7wi OV an £ (X) Vet (V)

Oyr Oy 836 i

X
L2(0,00L2(F3))  hit

8wi 82Yk
+ zk: H T (X)\/det(VX)

L2(0,00;L2(F))

< COllwllr2(0,00m2(F))  (B.41)
L2(0,00;L2(F))

and we obtain similarly [|(@, q,m)lw.. =) < Cll(w,q,n)|lw. (7). For the other estimates of (2.61)-(2.62), we
can give the ideas to prove

HGHLQ(O,oo;H#l#(J-'))r‘le(O,oo;H;l(}')) C||G||L2(o o0 HY, (Fi))NH (0,00, H . (Fi7)

the other relations are obtained in the same way. First, from lb and (A.13) we can write

oG

3 x) 2%
aiyi - (ayiy2<) ( ) 1 +8y2C Z 8:Ck

ayz

Combining (B.11] - the embedding H" (F) c L8 ), - ) for a =1 and ( , we deduce

||G||L2(0 00; Hl (F) X C||GHL2(0 co; HY L (F)-

Then differentiating the relation for G in (2.57) with respect to time, we obtain

oG G
E T

oG G
(59), . - <8t""(y)> | o
HN(F),HY (F) H=1(F5), HL(Fy)

We notice that ||<p(Y)||H1(;ﬁ) < Cll@ll g1 (7). This leads us to the estimate

(X) (B.42)

and thus

111 000012 (1) < CNC 10,0005 (700
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Proof of . The proof is similar to the two previous ones. Here T' = oo, n* = 0 so that it satisfies
with Cx = 1. At the contrary to the two previous proofs, the constants C' do not depend on R, and
we have assumed R < 1 to simplify. We use the estimates in Appendix@ where the constants C' do not
depend on R since here " = 0. We have already the estimates and (4.14) on (w,q,n).

First, let us estimate ﬁ(n, w, q) defined by . With , we deduce

8wj 8Yk
H Oy dyi (%(X) - 6’”)

w; [0V aY,
e (S0 G0 s
L2(0,00;L2(F)) YrOYe Zj g

oYy
.
o (G 00— o)
SO+l oo 0,00:m7/4 @) 1Ml Loo (0,00 774 (2)) (Il 120,002 (7)) + IVl L2(0,005m2(7))) < CR®.
Combining (B.13), the embedding H'(F) c L¥(F) and (B.21)(B.22), we deduce

811)] 82Yk an
Oyk 896]83:[ yi

L2(0,00;L2(F))

L2(0,00;L2(F))

L2(0.00n2(F) || OUk 073

x)

L2(0,00;L2(F))
3 2
<O+ H77||L<>0(o,oo;H7/4(I))) H77||L<>O(o,oo;H7/4(I))||wHL2(0,oo;H2(}')) < CR".
Moreover, combining (4.13)) and -7 we deduce

Oy; Ot < CuathL“(O,oo;Hl(I))||wHL2(O,oo;H2(F)) < CRza

L2(0,00;L2(F))

and combining (4.14]) and (B.13), we deduce
‘ Bwi 6Yk
w

7 dyi, Oz;
The above estimates yield

2
<O+ H’?”Loc(o,oo;H7/4(z)))||wHLS(o,oo;HS/4(F))Hw||L8/3(o,oo;H7/4(J-')) < CR".
L2(0,00;L2(F))

] 2
HF(n,w,q)’ o < O (B.44)

The estimate of G(n, w) defined by 2.12) in L?(0, 00; Hy (F)) leads to estimate (B-28) in L*(0, 00; L*(F)).
29

With the same argument leading to (B. we obtain

ot

3 2
12(0,00: 1, (7)) <C(1+ HnHLOO(O,oo;H7/4(I))) HUHLw(o,oo;H7/4(I))Hw||L2(0,oo;H2(f)) < CR”. (B.45)

Moreover, combining (B.31)), (B.32), (B.13)), (B.18) and (4.13) implies

o]

H1(0 0050 (]__)) ||77||Loo(o 0o HT/4(T)) ||1UHH1(0 oo;L2(F))

+ Cllon|| oo (0,00:11 (z)) 1wl L2 (0, 00512 (7)) < CR?. (B.46)

Finally, to estimate H(n,w) in L?(0, oo; H;ﬂ (T)), we estimate (B.35) in L*(0, 00; H' (F)). This leads to
the same estimates as above so that

6]

2 2
L2(0,oo;H;/2(I)) < C(1+||77||L°<>(0,oo;H7/4(1))) ||77||L°<>(0,oo;H7/4(1))Hw||L2(0,oo;H2(}')) < CR”. (BAT)

Gathering (B.44)), (B.45), (B.46) and (B.47)), we deduce (4.15).
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