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Abstract

We consider a viscous incompressible fluid interacting with an elastic structure located on a part of
its boundary. The fluid motion is modeled by the bi-dimensional Navier-Stokes system and the structure
follows the linear wave equation in dimension 1 in space. Our aim is to study the linearized system coupling
the Stokes system with a wave equation and to show that the corresponding semigroup is analytic. In
particular the linear system satisfies a maximal regularity property that allows us to deduce the existence
and uniqueness of strong solutions for the nonlinear system. This result can be compared to the case where
the elastic structure is a beam equation for which the corresponding semigroup is only of Gevrey class.
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1 Introduction

We consider a viscous incompressible fluid modeled by the Navier-Stokes system in interaction with a de-
formable boundary whose dynamics is governed by the wave equation. More precisely, we consider that the
reference spatial domain for the fluid is (0, L)× (0, 1) ⊂ R2, L > 0 with periodic boundary conditions on the
lateral boundaries {0} × (0, 1) and {L} × (0, 1). To simplify the notation, we set

I def
= R/LZ, (1.1)

so that the reference fluid domain writes F0
def
= I × (0, 1). The elastic deformation is a function η : I →

(−1,∞), and the corresponding fluid domain writes as follows:

Fη
def
= {(x1, x2) ∈ I × R ; x2 ∈ (0, 1 + η(x1))} . (1.2)

Note that the boundary of Fη is the disjoint union of the elastic structure:

Γη
def
= {(s, 1 + η(s)), s ∈ I} ,

and a fixed bottom:
Γ−1

def
= I × {0}.

We recall the geometry in Figure 1.
We denote by v and p the velocity and the pressure of the fluid and our fluid-structure interaction system

writes as follows 
∂tv + (v · ∇)v − divT(v, p) = 0, t > 0, x ∈ Fη(t),

div v = 0, t > 0, x ∈ Fη(t),
v(t, s, 1 + η(t, s)) = (∂tη)(t, s)e2, t > 0, s ∈ I,

v = 0, t > 0, x ∈ Γ−1,

∂ttη − τ∂ssη = −H̃η(v, p), t > 0, s ∈ I,

(1.3)

with the initial conditions

η(0, ·) = η0
1 , ∂tη(0, ·) = η0

2 and v(0, ·) = v0 in Fη01 . (1.4)
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In system (1.3), the first two equations are the Navier-Stokes system, the last one is the wave equation.
The other equations are the boundary conditions obtained by assuming the no-slip conditions for the fluid.

For the notation, we have denoted by(e1, e2) the canonical basis of R2, the Cauchy stress for the fluid is

T(v, p)
def
= 2νD(v)− pI2, D(v) =

1

2
(∇v + (∇v)∗) , (1.5)

and the force of the fluid acting on the structure is

H̃η(v, p)(t, s)
def
=
{

(1 + |∂sη|2)1/2 [T(v, p)n] (t, s, 1 + η(t, s)) · e2

}
. (1.6)

To simplify, we have assumed that the density of the fluid is constant and equal to 1. For the other physical
constants, we suppose that

ν > 0 (viscosity), τ > 0.

In (1.6), the vector fields n is the unit exterior normal to Fη(t). We have n = −e2 on Γ−1 and on Γη(t),

n(t, x1, x2) =
1√

1 + |∂sη(t, x1)|2

[
−∂sη(t, x1)

1

]
. (1.7)

Similar systems as (1.3) have been already analyzed in the literature (see below), and an important
feature of these systems is that the incompressibility of the fluid and the no-slip boundary conditions yield
the following relation

d

dt

∫ L

0

η(t, s) ds = 0.

In what follows, we choose the initial deformation η0
1 with null mean value so that our solutions satisfy∫ L

0

η(t, s) ds = 0 (t > 0). (1.8)

This leads us to consider the spaces

L2
#(I)

def
=

{
f ∈ L2(I) ;

∫ L

0

f(s) ds = 0

}
, Hr

#(I)
def
= Hr(I) ∩ L2

#(I) (r > 0) (1.9)

and the orthogonal projection M : L2(I)→ L2
#(I).

We take the projection of the last equation of (1.3) on L2
#(I) and on L2

#(I)⊥. The projection on L2
#(I)

writes
∂ttη +A1η = −Hη(v, p), t > 0, s ∈ I, (1.10)

where
HS

def
= L2

#(I), D(A1)
def
= H2

#(I), A1 : D(A1)→ HS , η 7→ −τ∂ssη, (1.11)

and
Hη(v, p)

def
= MH̃η(v, p). (1.12)

The projection on L2
#(I)⊥ writes∫ L

0

{
(1 + |∂sη|2)1/2 [T(v, p)n] (t, s, 1 + η(t, s)) · e2

}
ds = 0 (1.13)

and it determines the constant for the pressure: for system (1.3), the pressure is not determined up to a
constant (as for the Navier-Stokes system without structure) (see [3] for more details). In what follows, we
do not consider (1.13) and work only with (1.10), so that for our solutions, the pressure is determined up to
a constant.

Note that the operator A1 defined by (1.11) satisfies for θ > 0,

D(Aθ1) = H2θ
# (I). (1.14)

In all what follows, we consider the following notations: Lα, Hk stand for the classical Lebesgue and
Sobolev spaces and we write C0 for the space of continuous maps and C0

b for the space of continuous and
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bounded maps. We use the bold notation for the spaces of vector fields: Lα = (Lα)2, Hk = (Hk)2 etc. For
η : I → (−1,∞), we also use the spaces

L2
#(Fη) =

{
h ∈ L2(Fη) |

∫
Fη
hdy = 0

}
, H1

#(Fη) = H1(Fη) ∩ L2
#(Fη),

and
H−1

# (Fη) =
{
h ∈ [H1(Fη)]′ | 〈h, 1〉[H1(Fη)]′,H1(Fη) = 0

}
.

Observe that H−1
# (Fη) is the dual space of H1

#(Fη) with respect to the pivot space L2
#(Fη). To study (1.3),

we need spaces associated with a moving fluid domain and we introduce spaces of the form H1(0, T ;Lq(Fη)),
L2(0, T ;Hk(Fη)), etc. with T 6∞. If η(t, ·) > −1 (t ∈ (0, T )), then

v ∈ H1(0, T ;Lq(Fη)) if y 7→ v(t, y1, y2(1 + η(t, y1)) ∈ H1(0, T ;Lq(F0))

and similarly, for the other spaces. Finally, in the whole paper, we use C as a generic positive constant that
does not depend on the other terms of the inequality. The value of the constant C may change from one
appearance to another.

In order to study the system (1.3), one can linearize it and we obtain the following linear system:
∂tw − divT(w, q) = F, t > 0, y ∈ Fη∗ ,

divw = G, t > 0, y ∈ Fη∗ ,
w(t, s, 1 + η∗(s)) = (∂tη)(t, s)e2, t > 0, s ∈ I,

w = 0, t > 0, y ∈ Γ−1,
∂ttη +A1η = −Hη∗(w, q) +H, t > 0, s ∈ I,

(1.15)

with the initial conditions

w(0, ·) = w0 in Fη∗ , η(0, ·) = ζ0
1 , ∂tη(0, ·) = ζ0

2 , (1.16)

and where η∗ : I → (−1,∞) is a given function independent of time, so that Fη∗ is a fixed spatial domain.
The aim of this article is to show that the linear system (1.15)-(1.16) satisfies a maximal regularity property.
For T ∈ (0,+∞] let us define the following Banach spaces

FT (Fη∗)
def
= L2(0, T ; L2(Fη∗))×

[
L2(0, T ;H1

#(Fη∗)) ∩H1(0, T ;H−1
# (Fη∗))

]
× L2(0, T ;H

1/2
# (I)), (1.17)

and

WT (Fη∗)
def
=
[
L2(0, T ; H2(Fη∗)) ∩H1(0, T ; L2(Fη∗))

]
× L2(0, T ;H1(Fη∗)/R)

×
[
L2(0, T ;H

5/2
# (I)) ∩H1(0, T ;H

3/2
# (I)) ∩H2(0, T ;H

1/2
# (I))

]
(1.18)

endowed with the norms

‖(F,G,H)‖FT (Fη∗ )
def
= ‖F‖L2(0,T ;L2(Fη∗ )) + ‖G‖L2(0,T ;H1

#
(Fη∗ )) + ‖G‖H1(0,T ;H1

#
(Fη∗ )′) + ‖H‖

L2(0,T ;H
1/2
#

(I))

and

‖(w, q, η)‖WT (Fη∗ )
def
= ‖w‖L2(0,T ;H2(Fη∗ )) + ‖w‖H1(0,T ;L2(Fη∗ )) + ‖q‖L2(0,T ;H1(Fη∗ )/R)

+ ‖η‖
L2(0,T ;H

5/2
#

(I))
+ ‖η‖

H1(0,T ;H
3/2
#

(I))
+ ‖η‖

H2(0,T ;H
1/2
#

(I))
.

Note that from Proposition 4.3, p.159 in [6], we have that the following map is well-defined and onto:

G ∈ L2(0,∞;H1
#(Fη∗)) ∩H1(0,∞;H−1

# (Fη∗)) 7−→ G(0, ·) ∈ L2
#(Fη∗). (1.19)

Theorem 1.1. Assume
η∗ ∈ H2

#(I), η∗ > −1 in I, (1.20)

(F,G,H) ∈ F∞(Fη∗), (1.21)
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ζ0
1 ∈ H2

#(I), ζ0
2 ∈ H1

#(I), w0 ∈ H1(Fη∗), (1.22)

divw0 = G(0, ·) in Fη∗ , w0(s, 1 + η∗(s)) = ζ0
2 (s)e2 s ∈ I, w0 = 0 on Γ−1. (1.23)

Then (1.15)-(1.16) admits a unique solution

(w, q, η) ∈W∞(Fη∗) (1.24)

Moreover, there exists CL > 0, depending on ‖η∗‖H2(I) and on inf
I
η∗ such that

‖(w, q, η)‖W∞(Fη∗ ) 6 CL
(
‖w0‖H1(Fη∗ ) + ‖ζ0

1‖H2
#

(I) + ‖ζ0
2‖H1

#
(I) + ‖(F,G,H)‖F∞(Fη∗ )

)
. (1.25)

For η∗ satisfying (1.20), let denote by ĈL(η∗) the infimum of the constants CL in the above theorem,
that is the norm of the bounded map

(F,G,H,w0, ζ0
1 , ζ

0
2 ) ∈ F∞(Fη∗)×H1(Fη∗)×H2

#(I)×H1
#(I) 7−→ (w, q, η) ∈W∞(Fη∗)

where (F,G,H,w0, ζ0
1 , ζ

0
2 ) satisfies (1.23) and (w, q, η) is the corresponding solution of (1.15)-(1.16) given by

Theorem 1.1. In what follows, we denote for R > 0

BR =
{
η∗ ∈ H2

#(I) ; ‖η∗‖H2
#

(I) 6 R and inf
I
η∗ + 1 > 1/R

}
. (1.26)

Then we can show the following result:

Proposition 1.2. For any R > 0, we have

sup
η∗∈BR

ĈL(η∗) < +∞.

Using some standard extension results, we deduce from Proposition 1.2 the following result

Corollary 1.3. Assume R > 0. Then there exists a constant C = C(R) such that for any

T ∈ (0,∞], η∗ ∈ BR, (F,G,H) ∈ FT (Fη∗), (w0, ζ0
1 , ζ

0
2 ) ∈ ×H1(Fη∗)×H2

#(I)×H1
#(I)

satisfying (1.23) there exists a unique solution (w, q, η) ∈WT (Fη∗) of (1.15)-(1.16) and we have the estimate

‖(w, q, η)‖WT (Fη∗ ) 6 C
(
‖w0‖H1(Fη∗ ) + ‖ζ0

1‖H2
#

(I) + ‖ζ0
2‖H1

#
(I) + ‖(F,G,H)‖FT (Fη∗ )

)
. (1.27)

This result will be used for the study of the nonlinear system.
Let us now give some remarks on Theorem 1.1.

Remark 1.4. The maximal regularity property stated in Theorem 1.1 is obtained by showing that the cor-
responding semigroup is analytic. More precisely, we define the corresponding operator A0 in (2.30), (2.31),
and (2.32), and we show in Theorem 2.5 that it is the infinitesimal generator of an analytic and exponen-
tially stable semigroup. This result is suggested by [13] and in particular by Proposition 3.2 in this reference.
However their proof is based on a regularization argument and on a priori estimates and we propose here a
direct proof following the strategy already used in [3] and [4] consisting in showing a resolvent estimate, that
is (2.34). In particular, this work focuses on the resolvent equation

λv − divT(v, p) = f in Fη∗ ,
div v = 0 in Fη∗ ,

v(s, 1 + η∗(s)) = η2(s)e2, s ∈ I,
v = 0, y ∈ Γ−1,
λη1 − η2 = g

λη2 +A1η1 = −Hη∗(v, p) + h.

(1.28)

Note that (1.15) is coupling the Stokes system which is parabolic and the wave equation which is an
hyperbolic system. It is thus not clear that the system (1.15) is a parabolic system. In particular, in [3] and
[4], we consider the same problem with the beam equation instead of the wave equation and the corresponding
semigroup is not analytic but only of Gevrey class. One of the key points relies on the analysis of the effect
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of the viscosity of the fluid on the structure equation. More precisely, if one take f = 0 and g = 0 in (1.28),
the resolvent equation reduces to

Vλη1 = h, where Vλ = λ2I + λLλ +A1

where Lλ corresponds to the influence of the fluid on the structure (see (3.18) and (3.7) for the precise
definition of Vλ and Lλ). Then the idea is to show that the operator Lλ plays the role of a structural
damping (see [9]) and leads to a parabolic system.

Theorem 1.1 is the main ingredient to prove the existence and uniqueness of strong solutions for the
nonlinear system (1.3). First let us recall the definition of this notion:

Definition 1.5. For T ∈ (0,∞) we say that (v, p, η) is a strong solution of (1.3)-(1.4) on [0, T ] if

η(t, ·) > −1 t ∈ [0, T ], (1.29)

v ∈ L2(0, T ; H2(Fη)) ∩H1(0, T ; L2(Fη)), p ∈ L2(0, T ;H1(Fη)), (1.30)

η ∈ L2(0, T ;H
5/2
# (I)) ∩H1(0, T ;H

3/2
# (I)),

∂tη ∈ L2(0, T ;H
3/2
# (I)) ∩H1(0, T ; (H

1/2
# (I))),

(1.31)

the first four equations of (1.3) are satisfied almost everywhere or in the trace sense, the last equation in

(1.3) holds in L2(0, T ;H1/2(I)) and (1.4) holds true.
For T ∈ (0,∞], we say that (v, p, η) is a strong solution of (1.3)-(1.4) on [0, T ) if for all T ′ ∈ (0, T ),

(v, p, η) is a strong solution of (1.3)-(1.4) on [0, T ′].
We say that (v, p, η) is a stable strong solution of (1.3)-(1.4) on (0,∞) if (v, p, η) is a strong solution of

(1.3)-(1.4) on [0,∞) and (v, p, η) satisfies (1.30)- (1.31) with T =∞.

Remark 1.6. Classical interpolation results imply that a strong solution (v, p, η) on [0, T ], for T ∈ (0,∞),
satisfies

η ∈ C0([0, T ];H2
#(I)), ∂tη ∈ C0([0, T ];H1

#(I)), v ∈ C0([0, T ]; H1(Fη)),

and that a stable strong solution (η, v, p) on (0,∞) satisfies

η ∈ C0
b ([0,∞);H2

#(I)), ∂tη ∈ C0
b ([0,∞);H1

#(I)), v ∈ C0
b ([0,∞); H1(Fη)).

We assume that the initial conditions satisfy:

η0
1 ∈ H2

#(I), η0
2 ∈ H1

#(I), η0
1 > −1 in I, v0 ∈ H1(Fη01 ), (1.32)

div v0 = 0 in Fη01 , v0(s, 1 + η0
1(s)) = η0

2(s)e2 s ∈ I, v0 = 0 on Γ−1. (1.33)

First, we can obtain the existence and uniqueness of strong solutions of (1.3) for small times:

Theorem 1.7. For any (v0, η0
1 , η

0
2) satisfying (1.32)-(1.33), there exists a unique maximal strong solution

(v, p, η) of (1.3)-(1.4) on [0, Tmax) with Tmax ∈ (0,∞] and with the following alternatives:

• Tmax =∞,
• Tmax <∞ and

lim sup
t→Tmax

‖(v(t, ·), η(t, ·), ∂tη(t, ·))‖H1(Fη)×H2(I)×H1(I) +

∥∥∥∥ 1

1 + η(t, ·)

∥∥∥∥
L∞(I)

=∞. (1.34)

This result is already known and proved in [13]. We can also deduce from Theorem 1.1 the existence and
uniqueness of global strong solutions of (1.3) for small data:

Theorem 1.8. There exists c1 > 0 such that for any (v0, η0
1 , η

0
2) satisfying (1.32)–(1.33), and

‖η0
1‖H2(I) + ‖η0

2‖H1(I) + ‖v0‖H1(F
η01

) 6 c1 (1.35)

there exists a unique stable strong solution (v, p, η) of (1.3)-(1.4) on [0,∞).
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In order to prove the above results, we first transform the equations of (1.3) by using a change of variables
so that the spatial domain of the fluid becomes Fη∗ where

η∗ = η0
1 (for Theorem 1.7) η∗ = 0 (for Theorem 1.8) (1.36)

and then we use Theorem 1.1 and a fixed point argument.

Remark 1.9. One can consider a more general structure equation

∂ttη + α1∂ssssη − α2∂ssη − δ∂tssη = −H̃η(v, p). (1.37)

A large part of the literature on this subject is done for the case of a beam equation α1 > 0: [8] (existence
of weak solutions), [5], [15] and [12] (existence of strong solutions), [17] (stabilization of strong solutions),
[2] (stabilization of weak solutions around a stationary state). In that case, at the opposite to the case of a
wave equation, the viscosity of the fluid is not enough to modify the nature of the beam equation and one has
to add the damping term −δ∂tssη with δ > 0 to obtain a parabolic system.

Without this damping term (that is for δ = 0 and α1 > 0), the existence of strong solutions is more
difficult to achieve. It is obtained with an additional term of inertia of rotation (−∂ttssη in (1.37)) in [13].
Without any additional terms, the corresponding fluid-structure system is studied in [3], where we proved the
existence and uniqueness of strong solutions by an approach similar to the one done here: we also work with
resolvent estimates but the corresponding semigroup is not analytic, only of Gevrey class. In particular the
results for the linear and for the nonlinear system are weaker than the results presented here and we have
a lost of regularity at initial time. Note that in [3], we focus in the case of small initial deformations and
we only manage to remove this assumption in [4] by estimating the commutators between the operator Lλ
introduced above (and defined in (3.7)) and the beam operator.

Here, we do not need in the analysis to consider these commutators and we obtain our result without
assuming smallness of the initial deformations. This is mainly due to the fact that the wave operator is the
square root of the beam operator so that the operator Lλ coming from the fluid has a stronger influence on
the structure equation.

To finish this remark, we want to point out that in the framework of weak solutions, there have been some
works studying the existence of weak solutions for a beam equation without dissipation (or a similar structure
equation): [11], [16], [19], etc.

Remark 1.10. The result of Theorem 1.1, that is the analyticity of the semigroup corresponding to the
linear system is an important property and can be used for instance to show stabilization results. In the
case of parabolic systems, there is a systematic method to show stabilization results with a control of finite
dimension provided that a Fattorini-Hautus criterion is satisfied, see [1].

Using the analyticity of the semigroup, we can also show that the solutions of (1.3) can be extended to
holomorphic functions. For θ > 0 and T ∈ (0,+∞] we introduce:

ST,θ
def
= {z ∈ C; 0 < |z| < T, | arg(z)| < θ}.

Corollary 1.11. Let us consider the strong solutions (v, p, η) of (1.3)-(1.4) obtained in Theorem 1.7 and in

Theorem 1.8. Then they are analytic in time with values in H2(Fη)×H1
#(Fη)×H5/2

# (I). More precisely,

1. If (v, p, η) is a strong solutions of (1.3)-(1.4) on [0, T0], T0 ∈ (0,∞), there exists θ0 > 0 such that

(v, p, η) admits an holomorphic extension in ST0,θ0 with values in H2(Fη)×H1
#(Fη)×H5/2

# (I).

2. There exist c2 ∈ (0, c1] and θ0 > 0, where c1 is the constant in Theorem 1.8, such that for any (v0, η0
1 , η

0
2)

satisfying (1.32)–(1.33), and

‖η0
1‖H2(I) + ‖η0

2‖H1(I) + ‖v0‖H1(F
η01

) 6 c2 (1.38)

then the strong solution (v, p, η) of (1.3) obtained in Theorem 1.8 admits an holomorphic extension in

S∞,θ0 with values in H2(Fη)×H1
#(Fη)×H5/2

# (I).

Remark 1.12. Using the above corollary, one can obtain several properties on the solutions of (1.3). For
instance, considering the change of variables X used to prove Theorem 1.7 or Theorem 1.8 and applying the
Cauchy formula, one can show that the n-th time derivatives of (v ◦X, η, ∂tη) satisfy∥∥∥∥( d(n)

dt(n)
v(t,X(t, ·)), d

(n)

dt(n)
η(t, ·), d

(n+1)

dt(n+1)
η(t, ·)

)∥∥∥∥
H1(Fη)×H3

#
(I)×H2

#
(I)

6
Cn
tn
,

7



for some constant Cn > 0 depending on n and the initial conditions.

The outline of the article is as follows: first in Section 2, we use a standard change of variables to
write the system (1.3) in a fixed spatial domain and see how the corresponding linearization leads to the
linear system (1.15). The analyticity of the semigroup for the linear system is stated in Theorem 2.5 with
the corresponding resolvent estimate. Section 3.1 is devoted to the introduction of several useful operators
together with their properties and in particular the operator Lλ corresponding to the force of the fluid acting
on the structure. Before estimating the inverse of the operator Vλ introduced above (see (3.18) and (3.7) for
its definition), we start by estimating the inverse of an approximation of Vλ in Section 3.2. In Section 3.3,
we use these estimates to deduce the same estimates for Vλ and deduce the resolvent estimates that lead
to the analyticity of the semigroup. Finally, in Section 4 we recall the idea of the proof of Theorem 1.7
and of Theorem 1.8 based on Theorem 1.1, by using a fixed point argument. Since this part of the analysis
is now classical and has already been done for instance in [13], we only give the idea and postpone some
technical details in the appendix. The time analyticity of the solutions, stated in Corollary 1.11, is proved
in Section 5.

2 Change of variables and linearization

2.1 The system written in a fixed domain

In order to transform system (1.3) into a system with a fixed spatial fluid domain, we construct a change
of variables. This change of variables is different from our previous articles [3, 4] and is similar to the one
already considered in [13]. With our previous change of variables, we would be able to obtain the local in time
existence, but we would not manage to obtain the criterion for the global existence stated in Theorem 1.7.

There exists a linear map R such that for any α > 0,

R : Hα(I)→
{
w ∈ Hα+1/2(F0) ; w = 0 on Γ−1

}
, η 7→ Rη (2.1)

is continuous and satisfies (Rη)|Γ0
= η. Note that, in this article, we will use the above mapping for α = 1,

α = 3/2, α = 5/4, and α = 7/4.
We consider the change of variables

Xη∗,η : Fη∗ → Fη, (y1, y2) 7→
(
y1, y2 +Rη−η∗

(
y1,

y2

1 + η∗(y1)

))
. (2.2)

Using the continuous embedding H9/4(F0) ↪→ W 1,∞(F0), and (2.1) for α = 7/4, one can check that if
η∗ ∈ H2(I), if η∗ > −1 in I and if

‖η∗‖H2(I) +

∥∥∥∥ 1

1 + η∗

∥∥∥∥
L∞(I)

6 C∗

then there exists C = C(C∗) such that

‖∇Xη∗,η − I2‖L∞(Fη∗ ) 6 C ‖η − η∗‖H7/4(I) .

In particular, there exists κ = κ(C∗) > 0 such that if

‖η − η∗‖H7/4(I) 6 κ (2.3)

then Xη∗,η is a C1-diffeomorphism.
In what follows, we assume that our deformation η depends on t, that η(t) satisfies (2.3) for all t with

η∗ given by (1.36), and we use the simplified notation:

F def
= Fη∗ . (2.4)

If no confusion can arise, we write

X(t, ·) def
= Xη∗,η(t), Y (t, ·) def

= X(t, ·)−1 (2.5)
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so that X(t, ·) transforms F onto Fη(t). Then, we write

w(t, y)
def
= v(t,X(t, y)) and q(t, y)

def
= p(t,X(t, y)), (2.6)

so that
v(t, x) = w(t, Y (t, x)) and p(t, x) = q(t, Y (t, x)). (2.7)

After some calculation (see Appendix A), system (1.3), (1.4) rewrites,
∂tw − divT(w, q) = F̂ (η, w, q) in (0,∞)×F ,

divw = Ĝ(η, w) in (0,∞)×F ,
w(t, s, 1 + η∗(s)) = (∂tη)(t, s)e2, t > 0, s ∈ I,

w = 0, t > 0, y ∈ Γ−1,

∂ttη +A1η = −Hη∗(w, q) + Ĥ(η, w), t > 0,

(2.8)

with the initial conditions

η(0, ·) = η0
1 , ∂tη(0, ·) = η0

2 and w(0, ·) = w0 def
= v0(X(0, ·)) in F , (2.9)

where
F̂ (η, w, q) = F̂1(η, w) + F̂2(η, w, q), (2.10)

F̂1(η, w)i
def
= −

∑
j

∂wi
∂yj

∂Yj
∂t

(X)−
∑
j,k

wj
∂wi
∂yk

∂Yk
∂xj

(X),

F̂2(η, w, q)i
def
= ν

∑
k,j

∂2wj
∂yk∂yi

(
∂Yk
∂xj

(X)− δk,j
)

+ ν
∑
k,j,`

∂wj
∂yk

∂2Yk
∂xj∂x`

(X)
∂X`
∂yi

+ ν
∑
j,k,`

∂2wi
∂yk∂y`

(
∂Yk
∂xj

(X)
∂Y`
∂xj

(X)− δk,jδ`,j
)

+ ν
∑
j,k

∂wi
∂yk

∂2Yk
∂x2

j

(X)

−
∑
k

∂q

∂yk

(
∂Yk
∂xi

(X)− δk,i
)
, (2.11)

Ĝ(η, w)
def
= div((I2 − Cof(∇X)∗)w) = ∇w : (I2 − Cof(∇X)), (2.12)

and

Ĥ(η, w)(t, s) = M

[
ν(∂sη

∗ − ∂sη)

(
∂w1

∂y2
+
∂w2

∂y1

)
(t, s, 1 + η∗(s))

− ν(∂sη)
∑
k

(
∂w1

∂yk

(
∂Yk
∂x2

(X)− δk,2
)

+
∂w2

∂yk

(
∂Yk
∂x1

(X)− δk,1
))

(t, s, 1 + η∗(s))

+ 2ν
∑
k

(
∂w2

∂yk

(
∂Yk
∂x2

(X)− δk,2
))

(t, s, 1 + η∗(s))

]
. (2.13)

In the above statements Cof(∇X) is the matrix of the cofactors of ∇X. Using the above change of
variables, we can rewrite Theorem 1.7 and Theorem 1.8. The definitions of strong solutions are deduced
from Definition 1.5:

Definition 2.1. For T ∈ (0,∞) we say that (w, q, η) is a strong solution of (2.8)-(2.13) on [0, T ] if (1.29)
holds, if (w, q, η) ∈WT (F), if the first four equations of (2.8) are satisfied almost everywhere or in the trace

sense, the last equation in (2.8) holds in L2(0, T ;H1/2(I)) and (2.9) holds true.
For T ∈ (0,∞], we say that (w, q, η) is a strong solution of (2.8)-(2.13) on [0, T ) if for all T ′ ∈ (0, T ),

(w, q, η) is a strong solution of (2.8)-(2.13) on [0, T ′].
We say that (w, q, η) is a stable strong solution of (2.8)-(2.13) on (0,∞) if (w, q, η) is a strong solution

of (2.8)-(2.13) on [0,∞) and (w, q, η) ∈W∞(F).
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The hypotheses (1.32)-(1.33) on the initial conditions are transformed into

η0
1 ∈ H2

#(I), η0
2 ∈ H1

#(I), η0
1 > −1 in I, w0 ∈ H1(F), (2.14)

div
(
Cof(∇X(0, ·))∗w0) = 0 in F , w0(s, 1 + η∗(s)) = η0

2(s)e2 s ∈ I, w0 = 0 on Γ−1. (2.15)

With the above notations and definitions, the statements of Theorem 1.7 and Theorem 1.8 are transformed
into the following theorems:

Theorem 2.2. Let (w0, η0
1 , η

0
2) satisfying (2.14)–(2.15), there exists a unique maximal strong solution

(w, q, η) of (2.8)-(2.13) on [0, Tmax) with Tmax ∈ (0,∞] and with the following alternatives:

• Tmax =∞,
• Tmax <∞ and

lim sup
t→Tmax

‖(w(t, ·), η(t, ·), ∂tη(t, ·))‖H1(F)×H2(I)×H1(I) +

∥∥∥∥ 1

1 + η(t, ·)

∥∥∥∥
L∞(I)

=∞. (2.16)

Theorem 2.3. There exists c1 > 0 such that for any (w0, η0
1 , η

0
2) satisfying (2.14)–(2.15), and

‖η0
1‖H2(I) + ‖η0

2‖H1(I) + ‖w0‖H1(F) 6 c1 (2.17)

there exists a unique stable strong solution (w, q, η) of (2.8)-(2.13) on [0,∞).

2.2 The linear system and the operator A0

From the previous section, and in particular from system (2.8)-(2.9), we are led to consider the linear system
(1.15)-(1.16) written in the fixed domain F (defined by (2.4)). We introduce the notation

C+ def
= {λ ∈ C ; Re(λ) > 0} , (2.18)

C+
α

def
=
{
λ ∈ C+ ; |λ| > α

}
. (2.19)

Let us consider the following functional spaces

V0
n(F)

def
=
{
f ∈ L2(F) ; div f = 0 in F , f · n = 0 on ∂F

}
,

V1
0(F)

def
=
{
f ∈ H1(F) ; div f = 0 in F , f = 0 on ∂F

}
,

Vθ(∂F)
def
=

{
f ∈ Hθ(∂F) ;

∫
∂F

f · n dγ = 0

}
(θ > 0). (2.20)

We introduce the operator Λ : L2(I)→ L2(∂F) defined by

(Λη)(y) = (Mη(s)) e2 if y = (s, 1 + η∗(s)) ∈ Γη∗ ,

(Λη)(y) = 0 if y ∈ Γ−1.
(2.21)

The adjoint Λ∗ : L2(∂F)→ L2(I) of Λ is given by

(Λ∗v)(s) = M
(

(1 + |∂sη∗(s)|2)1/2v(s, 1 + η∗(s)) · e2

)
. (2.22)

We observe that Λ(L2(I)) ⊂ V0(∂F), and since η∗ ∈ H2(I), then for any θ ∈ [0, 1],

Λ(Hθ(I)) ⊂ Vθ(∂F), (2.23)

Λ∗(Hθ(∂F)) ⊂ D(A
θ/2
1 ) (2.24)

and
‖Λη‖Hθ(∂F) > c(θ)‖Aθ/21 η‖HS (η ∈ D(A

θ/2
1 )). (2.25)

Using (2.23) for θ = 1/2 and recalling (1.14), we deduce Λ(D(A
1/4
1 )) ⊂ H1/2(∂F) so that

Λ∗(H−1/2(∂F)) ⊂ D(A
1/4
1 )′. (2.26)
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We consider the space L2(F)×D(A
3/4
1 )×D(A

1/4
1 ) equipped with the scalar product:〈[

w(1), η
(1)
1 , η

(1)
2

]
,
[
w(2), η

(2)
1 , η

(2)
2

]〉
=

∫
F
w(1) ·w(2) dy+

(
A

3/4
1 η

(1)
1 , A

3/4
1 η

(2)
1

)
HS

+
(
A

1/4
1 η

(1)
2 , A

1/4
1 η

(2)
2

)
HS
,

(where HS
def
= L2

#(I), see (1.11)) and we introduce the following spaces:

H def
=
{

[w, η1, η2] ∈ L2(F)×D(A
3/4
1 )×D(A

1/4
1 ) ; w · n = (Λη2) · n on ∂F , divw = 0 in F

}
. (2.27)

We also consider the space L2(F)×D(A
1/2
1 )×HS equipped with the scalar product:〈[

w(1), η
(1)
1 , η

(1)
2

]
,
[
w(2), η

(2)
1 , η

(2)
2

]〉
0

=

∫
F
w(1) · w(2) dy +

(
A

1/2
1 η

(1)
1 , A

1/2
1 η

(2)
1

)
HS

+
(
η

(1)
2 , η

(2)
2

)
HS
,

and we introduce the following space:

H0
def
=
{

[w, η1, η2] ∈ L2(F)×D(A
1/2
1 )×HS ; w · n = (Λη2) · n on ∂F , divw = 0 in F

}
. (2.28)

Lemma 2.4. The orthogonal projection P0 from L2(F)×D(A
1/2
1 )×HS onto H0 satisfies

P0 ∈ L(L2(F)×D(A
3/4
1 )×D(A

1/4
1 ),H). (2.29)

Proof. We have proven in [2, Proposition 3.1 and Proposition 3.2] that for any [w, η1, η2] ∈ L2(F)×D(A
1/2
1 )×

HS ,

P0

wη1

η2

 =

 w −∇p
η1

η2 + Λ∗(pn)


where p ∈ H1(F). Hence, from the trace theorem and (2.24) with θ = 1/2 we have −∇p0

Λ∗(pn)

 ∈ L2(F)×D(A
3/4
1 )×D(A

1/4
1 )

and we deduce the result.

We now define the linear operator A0 : D(A0) ⊂ H → H:

D(A0)
def
=
{

[w, η1, η2] ∈ H2(F)×D(A
5/4
1 )×D(A

3/4
1 ) ; w = Λη2 on ∂F , divw = 0 in F

}
, (2.30)

and for
[
w, η1, η2

]
∈ D(A0), we set

Ã0

wη1

η2

 def
=


∆w

η2

−A1η1 − Λ∗(2D(w)n)

 (2.31)

and
A0

def
= P0Ã0. (2.32)

Note that A0 is well-defined due to Lemma 2.4.
By using the above operators, we can rewrite the linear system (1.15) for G = 0, as follows

d

dt

 wη
∂tη

 = A0

 wη
∂tη

+ P0

F0
H

 ,
 wη
∂tη

 (0) =

w0

ζ0
1

ζ0
2

 . (2.33)

One of the main goals of this article is to show the following result:
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Theorem 2.5. The operator A0 defined by (2.30)–(2.32) has compact resolvents, it is the infinitesimal
generator of an analytic and exponentially stable semigroup on H. In particular, there exists C0 > 0 such
that for all λ ∈ C+,

|λ|
∥∥(λI −A0)−1

∥∥
L(H)

6 C0. (2.34)

The proof of Theorem 2.5 is a consequence of Lemma 2.6 and Proposition 2.7. Indeed these results imply
that C+ ⊂ ρ(A0) and that (2.34) holds for all λ ∈ C+. It is standard that (2.34) for all λ ∈ C+ and 0 ∈ ρ(A0)
imply that the semigroup generated by A0 is analytic and exponentially stable. Let us recall how this can
be done: proceeding as in the proof of Lemma 3.10 in [2], we write

(λI −A0) = (ı Imλ I −A0)(I + Reλ(ı Imλ I −A0)−1)

and we deduce that there exists c0 such that

{λ ∈ C ; |Reλ| 6 c0| Imλ|} ⊂ ρ(A0) (2.35)

and that |λ|
∥∥(λI −A0)−1

∥∥
L(H)

is bounded in this set. Then using [6, Theorem 2.10, p.109], we deduce that

A0 is the infinitesimal generator of an analytic semigroup on H.
Finally, using that 0 ∈ ρ(A0) (and that ρ(A0) is an open set) and (2.35), we deduce that

{λ ∈ C ; Reλ > −ε} ⊂ ρ(A0)

for some ε > 0. According to [6, Proposition 2.9, p.120] the semigroup (eA0t)t>0 is exponentially stable.

Lemma 2.6. The operator A0 defined by (2.30)–(2.32) satisfies C+ ⊂ ρ(A0).

Proof. For that, assume F = [f, g, h] ∈ H and let us prove the existence and uniqueness of [v, η1, η2] ∈ D(A0)
solution of (λI −A0)[v, η1, η2] = F , that rewrites

λv − divT(v, p) = f in F ,
div v = 0 in F ,
v = Λη2 on ∂F ,
λη1 − η2 = g,

λη2 +A1η1 = −Λ∗
{
T(v, p)n|∂F

}
+ h.

(2.36)

Let us first assume λ ∈ C+\{0} and consider a variational formulation associated with (2.36): find

[v, η2] ∈ V def
=
{

[v, η2] ∈ H1(F)×D(A
1/2
1 ) ; div v = 0 in F , v = Λη2 on ∂F

}
, (2.37)

such that for any [ϕ, ζ2] ∈ V,

λ

(∫
F
v · ϕdy +

(
η2, ζ2

)
HS

)
+ 2ν

∫
F
Dv : Dϕ dy +

1

λ

(
A

1/2
1 η2, A

1/2
1 ζ2

)
HS

=

∫
F
f · ϕ dy +

(
h, ζ2

)
HS
− 1

λ

(
A

1/2
1 g,A

1/2
1 ζ2

)
HS
. (2.38)

Using the Korn and the Poincaré inequalities, a trace inequality, (2.25) with θ = 1/2 and the fact that
Re(λ) > 0, we can apply the Lax-Milgram theorem and we deduce the existence and uniqueness of [v, η2] ∈ V
satisfying (2.38) for any [ϕ, ζ2] ∈ V. Taking ζ2 = 0 in (2.38) and using the De Rham theorem, we obtain the
existence of q such that (w, q) is the weak solution of the Stokes system (the three first equations of (2.36)).

From f ∈ L2(F), we deduce divT(v, p) ∈ L2(F). Hence, we have T(v, p)n|∂F ∈ H−1/2(∂F) and from (2.26)

we deduce Λ∗
{
T(v, p)n|∂F

}
∈ D(A

1/4
1 )′.

Writing η1 = λ−1(η2 + g) and using that (w, q) satisfies the three first equations of (2.36), we obtain
from (2.38) the last equation of (2.36):

λη2 +A1η1 = −Λ∗
{
T(v, p)n|∂F

}
+ h in D(A

1/4
1 )′. (2.39)

We deduce from the above system that η1 ∈ D(A
3/4
1 ) and thus η2 = λη1 − g ∈ D(A

3/4
1 ). Since f ∈ L2(F),

from regularity results for the Stokes system with H2-boundary (see [12, Lemma 1]) we obtain v ∈ H2(F)
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and p ∈ H1(F). In particular, from trace results and (2.24), we obtain Λ∗ {T(v, p)n} ∈ D(A
1/4
1 ). Then from

(2.39) we get η1 ∈ D(A
5/4
1 ). Finally, we have proved that [w, η1, η2] ∈ D(A0), and thus, that C+\{0} ⊂ ρ(A0).

Consider now the case λ = 0. The system (2.36) rewrites
−divT(v, p) = f in F ,

div v = 0 in F ,
v = −Λg on ∂F ,

η2 = −g
A1η1 = −Λ∗

{
T(v, p)n|∂F

}
+ h.

(2.40)

We observe that in that case, the Stokes system can be solved independently from the structure equation.
Hence, from regularity results for the Stokes system with H2-boundary (see [12, Lemma 1]), we obtain the
existence and uniqueness of w ∈ H2(F) and q ∈ H1(F) satisfying the first three equality in (2.40). Next,

from T(w, q)n ∈ H1/2(∂F) and (2.24) we get Λ∗ (T(w, q)n) ∈ D(A
1/4
1 ) and the last equality in (2.40) admits

a unique solution η1 ∈ D(A
5/4
1 ). Finally, η2 = −g ∈ D(A

3/4
1 ) and we have prove the existence and uniqueness

of [w, η1, η2] ∈ D(A0) satisfying (2.40).

In particular, we deduce from Lemma 2.6 and from the properties of the resolvent, that for any α > 0
we have

sup
λ∈C+,|λ|6α

|λ|‖(λ−A0)−1‖L(H) <∞. (2.41)

Proposition 2.7. There exists α > 0 such that

sup
λ∈C+

α

|λ|‖(λ−A0)−1‖L(H) <∞. (2.42)

The proof of this result is the core of the article and is done in Section 3.3. The proof of the following
proposition is standard but for sake of completeness we give it in the next section after the introduction of
some notation.

Proposition 2.8. The operator A0 defined by (2.30)-(2.32) satisfies

[H,D(A0)]1/2 =
{

[w, η1, η2] ∈ H1(F)×D(A1)×D(A
1/2
1 ) ; w = Λη2 on ∂F , divw = 0 in F

}
. (2.43)

2.3 Proofs of Theorem 1.1

We are now in a position to prove Theorem 1.1:

Proof of Theorem 1.1. First, we introduce the lifting operator R defined by R(g) = z where z is the solution
of 

−∆z +∇χ = 0 in F ,
div z = g in F ,
z = 0 on ∂F .

According to [18, Lemma 8.1 and Lemma 8.2] we have

R ∈ L(H−1
# (F),L2(F)) ∩ L(H1

#(F),H2(F)). (2.44)

Then we consider w̃ = w −R(G) so that (1.15), (1.16) becomes
∂tw̃ − divT(w̃, q) = F̃ , t > 0, y ∈ F ,

div w̃ = 0, t > 0, y ∈ F ,
w̃(t, s, 1 + η∗(s)) = (∂tη)(t, s)e2, t > 0, s ∈ I,

w̃ = 0, t > 0, y ∈ Γ−1,

∂ttη +A1η = −Λ∗
{
T(w̃, q)n|∂F

}
+ H̃, t > 0, s ∈ I,

(2.45)

with the initial conditions
w̃(0, ·) = w̃0, η(0, ·) = ζ0

1 , ∂tη(0, ·) = ζ0
2 (2.46)

and where
F̃

def
= F −R(∂tG) + 2ν divD(R(G)),
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H̃
def
= H −M

{
(1 + |∂sη∗|2)1/2 [2νD(R(G))n] (t, s, 1 + η∗(s)) · e2

}
,

w̃0 = w0 −R(G(0, ·)).
From (2.44), we have

R(G) ∈ L2(0,∞; H2(F)) ∩H1(0,∞; L2(F)) ↪→ C0([0,∞); H1(F)),

so that from (1.21),

F̃ ∈ L2(0,∞; L2(F)), H̃ ∈ L2(0,∞;D(A
1/4
1 )),

and from (1.22), (1.23), Proposition 2.8 and Lemma 2.4,w̃0

ζ0
1

ζ0
2

 ∈ [H,D(A0)]1/2, P0

F̃0
H̃

 ∈ L2(0,∞;H).

The linear system (2.45), (2.46) rewrites as (2.33), and maximal regularity results for analytic semigroups
(see e.g. [6, Theorem 3.1, p. 143]) ensure that w̃η

∂tη

 ∈ L2(0,∞;D(A0)) ∩H1(0,∞;H), (2.47)

with ∥∥∥∥∥∥
 w̃η
∂tη

∥∥∥∥∥∥
L2(0,∞;D(A0))∩H1(0,∞;H)

6 C


∥∥∥∥∥∥
w̃0

ζ0
1

ζ0
2

∥∥∥∥∥∥
[H,D(A0)]1/2

+

∥∥∥∥∥∥P0

F̃0
H̃

∥∥∥∥∥∥
L2(0,∞;H)

 , (2.48)

and using the above formula on w̃, F̃ and H̃, we deduce (1.25). This concludes the proof of Theorem 1.1.

2.4 Proof of Proposition 1.2 and Corollary 1.3

Proof of Proposition 1.2. Assume R > 0 and η∗ ∈ BR. We show the existence of κ∗ > 0 and C > 0,
depending only on R such that for any η̃ ∈ BR

‖η̃ − η∗‖H7/4(I) < κ∗ =⇒ ĈL(η̃) 6 CĈL(η∗). (2.49)

If the above implication holds true, one can end the proof of Proposition 1.2: assume (η̃n) is a sequence of
BR such that

sup
n
ĈL(η̃n) =∞. (2.50)

Using standard compactness results and the embedding H
7/4
# (I) ↪→ L∞(I), there exists η∗ ∈ BR such that,

up to a subsequence,

η̃n ⇀ η∗ weakly in H2
#(I), η̃n → η∗ strongly in H

7/4
# (I).

Then relation (2.49) contradicts (2.50).
It thus remains to show (2.49) to conclude the proof of Proposition 1.2. We thus assume that η̃ ∈ BR

satisfies
‖η̃ − η∗‖H7/4(I) < κ∗. (2.51)

Taking κ∗ 6 κ (see (2.3)), we can consider the change of variable Xη∗,η̃ : Fη∗ → Fη̃ defined by (2.2). For
sake of simplicity, in what follows we use the notations

F def
= Fη∗ , X

def
= Xη∗,η̃, Y

def
= X−1. (2.52)

Let us consider
(F̃ , G̃,H) ∈ F∞(Fη̃), (2.53)
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and
ζ0
1 ∈ H2

#(I), ζ0
2 ∈ H1

#(I), w̃0 ∈ H1(Fη̃), (2.54)

such that
div w̃0 = G̃(0, ·) in Fη̃, w̃0(s, 1 + η̃(s)) = ζ0

2 (s)e2 s ∈ I, w̃0 = 0 on Γ−1. (2.55)

Let us consider the solution
(w̃, q̃, η) ∈W∞(Fη̃) (2.56)

of (1.15)-(1.16) given by Theorem 1.1 (with η∗ replaced by η̃).
Thus, we set

w(t, y)
def
= w̃(t,X(y)), q(t, y)

def
= q̃(t,X(y)),

F (t, y)
def
= F̃ (t,X(y)), G(t, y)

def
= det(∇X(y))G̃(t,X(y)), w0(y)

def
= w̃0(X(y)), (2.57)

and we verify that (w, q, η) is solution to the system
∂tw − divT(w, q) = F̂2(η̃, w, q) + F in (0,∞)×F ,

divw = Ĝ(η̃, w) +G in (0,∞)×F ,
w(t, s, 1 + η∗(s)) = (∂tη)(t, s)e2, t > 0, s ∈ I,

w = 0, t > 0, y ∈ Γ−1,

∂ttη +A1η = −Hη∗(w, q) + Ĥ(η̃, w) +H, t > 0,

(2.58)

with the initial conditions

η(0, ·) = ζ0
1 , ∂tη(0, ·) = ζ0

2 and w(0, ·) = w0 in F , (2.59)

where the mappings F̂2(η̃, w, q), Ĝ(η̃, w) and Ĥ(η̃, w) are given by (2.11), (2.12) and (2.13). In Appendix B.3
we prove that ∥∥∥(F̂2(η̃, w, q), Ĝ(η̃, w), Ĥ(η̃, w)

)∥∥∥
F∞(F)

6 C‖η̃ − η∗‖H7/4(I)‖(w, q, η)‖W∞(F), (2.60)

where C = C(R) > 0. The above estimate and the definition of ĈL(η∗) yield

‖(w, q, η)‖W∞(F) 6 ĈL(η∗)
[
‖(w0, ζ0

1 , ζ
0
2 )‖H1(F)×H2

#
(I)×H1

#
(I) + ‖(F,G,H)‖F∞(F)

]
+ CĈL(η∗)‖η̃ − η∗‖

H
7/4
#

(I)
‖(w, q, η)‖W∞(F),

and for κ∗ = κ∗(R) small enough in (2.51) we obtain

‖(w, q, η)‖W∞(F) 6 2ĈL(η∗)
(
‖(w0, ζ0

1 , ζ
0
2 )‖H1(F)×H2

#
(I)×H1

#
(I) + ‖(F,G,H)‖F∞(F)

)
.

Moreover, we prove in Appendix B.3 that there exists a constant C = C(R) such that

‖(w̃, q̃, η)‖W∞(Fη̃) 6 C‖(w, q, η)‖W∞(F), ‖w0‖H1(F) 6 C‖w̃0‖H1(Fη̃) (2.61)

and
‖(F,G,H)‖F∞(F) 6 C‖(F̃ , G̃,H)‖F∞(Fη̃). (2.62)

Thus we deduce that

‖(w̃, q̃, η)‖W∞(Fη̃) 6 CĈL(η∗)
(
‖(w̃0, ζ0

1 , ζ
0
2 )‖H1(Fη̃)×H2

#
(I)×H1

#
(I) + ‖(F̃ , G̃,H)‖F∞(Fη̃)

)
,

for some constant C = C(R). Then (2.49) follows.

Proof of Corollary 1.3. Using Theorem 1.1 and Proposition 1.2, we only need to extend (F,G,H) ∈ FT (Fη∗)
in functions defined on (0,∞) with a control on the norm of the extensions. For F and H we simply extend
them by 0 in (T,∞). For G we first use the surjectivity of the map defined by (1.19). Using the open
mapping theorem, there exists

G(1) ∈ L2(0,∞;H1
#(Fη∗)) ∩H1(0,∞;H−1

# (Fη∗))
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such that

G(1)(0, ·) = G(0, ·), ‖G(1)‖
L2(0,∞;H1

#
(Fη∗ ))∩H1(0,∞;H−1

#
(Fη∗ ))

6 C‖G(0, ·)‖L2
#

(Fη∗ ) 6 C‖w0‖H1(Fη∗ ).

Then we set
G(2) def

= G−G(1) ∈ L2(0, T ;H1
#(Fη∗)) ∩H1(0, T ;H−1

# (Fη∗))

and we have G(2)(0, ·) = 0. We extend G(2) in (T, 2T ) by setting G(2)(t) = G(2)(2T − t) so that

G(2) ∈ L2(0, 2T ;H1
#(Fη∗)) ∩H1

0 (0, 2T ;H−1
# (Fη∗))

and then we extend G(2) by 0 in (2T,∞). This gives us an extension of (F,G,H) such that (F,G,H) ∈
F∞(Fη∗) and

‖(F,G,H)‖F∞(Fη∗ ) 6 C‖(F,G,H)‖FT (Fη∗ )

for some constant C independent of (F,G,H) and of T .

3 Resolvent estimates of A0

This section is devoted to the proof of Proposition 2.7 that allows us to obtain Theorem 2.5, that is the
analyticity and the exponential stability of the semigroup generated by A0.

3.1 Definition and properties of some operators

We define the Stokes operator

D(A)
def
= V1

0(F) ∩H2(F), A def
= νP∆ : D(A)→ V0

n(F), (3.1)

where P : L2(F)→ V0
n(F) is the Leray projection operator.

Let us consider vλ,f
def
= (λI − A)−1Pf , that is the solution of

λv̂λ,f − divT(v̂λ,f , p̂λ,f ) = f in F ,
div v̂λ,f = 0 in F ,

v̂λ,f = 0 on ∂F .
(3.2)

We can define the following operator (see (2.22))

Tλ ∈ L(L2(F),D(A
1/4
1 )), Tλf

def
= −Λ∗

{
T(v̂λ,f , p̂λ,f )n|∂F

}
. (3.3)

Using a trace theorem, regularity results for Stokes system with H2-boundary (see [12, Lemma 1]) and
resolvent estimates for the Stokes operator A (defined by (3.1)), we have that

sup
λ∈C+

‖Tλ‖L(L2(F),D(A
1/4
1 ))

<∞. (3.4)

Let us consider the following system for λ ∈ C+:
λwλ,η − divT(wλ,η, qλ,η) = 0 in F ,

divwλ,η = 0 in F ,
wλ,η = Λη on ∂F ,

(3.5)

where Λ is defined by (2.21). Since η∗ ∈ H2(I) we can apply [12, Lemma 1]: for any η ∈ D(A
3/4
1 ), the above

system admits a unique solution (wλ,η, qλ,η) ∈ H2(F)×H1
#(F). We can thus define the operators

Wλ ∈ L(D(A
3/4
1 ),H2(F)), Qλ ∈ L(D(A

3/4
1 ), H1

#(F)), Lλ ∈ L(D(A
3/4
1 ),D(A

1/4
1 )) (3.6)

as
Wλη

def
= wλ,η, Qλη

def
= qλ,η, Lλη

def
= Λ∗

{
T(wλ,η, qλ,η)n|∂F

}
. (3.7)

Note that we have
Wλ ∈ L(D(A

1/4
1 ),H1(F)) ∩ L(D(A

1/4
1 )′,L2(F)), (3.8)
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and the following estimate

‖Wλη‖L2(F) 6 C‖A−1/4
1 η‖HS (η ∈ D(A

1/4
1 )′), (3.9)

where the constant C does not depend on λ (see [4]).
We can now prove Proposition 2.8:

Proof of Proposition 2.8. With the above notation, we see that

D(A0) =
{

[w, η1, η2] ∈ H2(F)×D(A
5/4
1 )×D(A

3/4
1 ) ; w −W0η2 ∈ D(A)

}
and

H =
{

[w, η1, η2] ∈ L2(F)×D(A
3/4
1 )×D(A

1/4
1 ) ; w −W0η2 ∈ V0

n(F)
}
.

We deduce by interpolation that:

[D(A0),H]1/2 =
{

[w, η1, η2] ∈ H ; (η1, η2) ∈ D(A1)×D(A
1/2
1 ), w −W0η2 ∈ [D(A),V0

n(F)]1/2

}
.

Then from [10, Theorem 1.1] (which remains true for nonsmooth boundary provided H2-regularity for Stokes
system holds) and [14] we deduce

[D(A),V0
n(F)]1/2 = [H2(F) ∩H1

0(F),L2(F)]1/2 ∩V0
n(F) = V1

0(F).

In system (3.5), we can write

(wλ,η, qλ,η) = (w0,η, q0,η) + λ(zλ,η, πλ,η) (3.10)

where 
λzλ,η − divT(zλ,η, πλ,η) = −w0,η in F ,

div zλ,η = 0 in F ,
zλ,η = 0 on ∂F .

(3.11)

From (3.5) and (3.7), we have the following relations

〈Lλη, ζ〉 = λ

∫
F
wλ,η · wλ,ζ dy + 2ν

∫
F
D(wλ,η) : D(wλ,ζ) dy (3.12)

and

2ν

∫
F
D(w0,η) : D(zλ,ζ) dy = 2ν

∫
F
D(zλ,η) : D(w0,ζ) dy = 0.

Combining the above relations, we deduce the following decomposition

Lλ = L0 + λK
(1)
λ + |λ|2K(2)

λ = L0 + λKλ, Kλ
def
= K

(1)
λ + λK

(2)
λ , (3.13)

where

〈K(1)
λ η, ζ〉 def

=

∫
F
wλ,η · wλ,ζ dy and 〈K(2)

λ η, ζ〉 def
= 2ν

∫
F
D(zλ,η) : D(zλ,ζ) dy. (3.14)

We have the following properties on these operators:

Proposition 3.1. The operator L0 can be extended as a self-adjoint positive operator

L0 ∈ L(D(A
1/4
1 ),D(A

1/4
1 )′)

and satisfies
ρ1‖A1/4

1 η‖2HS 6 〈L0η, η〉D(A
1/4
1 )′,D(A

1/4
1 )

6 ρ2‖A1/4
1 η‖2HS (η ∈ D(A

1/4
1 )), (3.15)

for some constants ρ1, ρ2 > 0.
The operators

K
(1)
λ ∈ L(D(A

1/4
1 )′,D(A

1/4
1 )) and K

(2)
λ ∈ L(D(A

1/4
1 )′,D(A

1/4
1 ))

are positive and self-adjoint and there exists ρ3 > 0 such that for any λ such that Reλ > 0, we have

0 6 〈K(1)
λ η, η〉HS 6 ρ3‖A−1/4

1 η‖2HS (η ∈ (D(A
1/4
1 ))′), (3.16)

0 6 〈K(2)
λ η, η〉HS 6

ρ3

|λ| ‖A
−1/4
1 η‖2HS (η ∈ (D(A

1/4
1 ))′). (3.17)
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Proof. The first part of the proposition comes from (3.12), from (3.8) and from Korn’s inequality with a

trace theorem. The properties of K
(1)
λ are a consequence of (3.9). The properties of K

(2)
λ are a consequence

of (3.9) with the estimate (see [4, Proposition 3.2, (3.15)]):

‖zλ,η‖H1(F) 6 C|λ|−1/2‖w0,η‖L2(F).

Next, we define the operator

Vλ = λ2I + λLλ +A1 = λ2(I +Kλ) + λL0 +A1, (3.18)

and an “approximation” of Vλ:

Ṽλ
def
= λ2(I +Kλ) + 2ρλA

1/2
1 +A1, (3.19)

where ρ > 0 is a constant to be fixed later.
The operator Vλ is crucial is the forthcoming analysis to prove Theorem 2.5. It appears naturally when we

consider the equation (λI −A0)[v, η1, η2] = [f, g, h]. Indeed, if f = 0 and g = 0, this equation is transformed
into

v = Wλη2, η2 = λη1, Vλη1 = h. (3.20)

We thus need to study the inverse of Vλ. In particular from the second step of Theorem 2.5 that we already
did, we know that Vλ : D(A

5/4
1 )→ D(A

1/4
1 ) is invertible.

We have the following properties on Kλ:

Lemma 3.2. The operator Kλ defined by (3.13) satisfies for any λ ∈ C+
0 :

‖(I +Kλ)η‖HS > ‖η‖HS (η ∈ HS), (3.21)

‖A1/4
1 Kλη‖HS 6 C‖A−1/4

1 η‖HS (η ∈ (D(A
1/4
1 ))′), (3.22)

‖A1/4
1 η‖HS 6 C‖A1/4

1 (I +Kλ)η‖HS (η ∈ (D(A
1/4
1 ))), (3.23)

where the constant C does not depend on η or on λ.

Proof. First, from (3.16)-(3.17) we deduce that Re〈Kλη, η〉HS > 0 if Re(λ) > 0, which yields (3.21).
Second, multiplying the first equation of (3.11) by wλ,ζ and integrating by parts, we find that

Kλη = Λ∗
{
T(zλ,η, πλ,η)n|∂F

}
. (3.24)

Thus, using the trace inequality, classical resolvent estimates for the Stokes operator and (3.9), we obtain∥∥∥A1/4
1 Kλη

∥∥∥
HS

6 C ‖T(zλ,η, πλ,η)n‖H1/2(∂F) 6 C ‖(zλ,η, πλ,η)‖H2(F)×H1
#

(F)

6 C‖w0,λ‖L2(F) 6 C‖A−1/4
1 η‖HS .

Finally, for the last relation, we use (3.21) and (3.22):∥∥∥A1/4
1 η

∥∥∥
HS

6
∥∥∥A1/4

1 (I +Kλ)η
∥∥∥
HS

+
∥∥∥A1/4

1 Kλη
∥∥∥
HS

6
∥∥∥A1/4

1 (I +Kλ)η
∥∥∥
HS

+ C ‖η‖HS

6
∥∥∥A1/4

1 (I +Kλ)η
∥∥∥
HS

+ C ‖(I +Kλ)η‖HS 6 C
∥∥∥A1/4

1 (I +Kλ)η
∥∥∥
HS

.

We have the same properties for the adjoint of Kλ:

Lemma 3.3. The operator Kλ defined by (3.13) satisfies for any λ ∈ C+
0 :

‖(I +K∗λ)η‖HS > ‖η‖HS (η ∈ HS), (3.25)

‖A1/4
1 K∗λη‖HS 6 C‖A−1/4

1 η‖HS (η ∈ (D(A
1/4
1 ))′), (3.26)

‖A1/4
1 η‖HS 6 C‖A1/4

1 (I +K∗λ)η‖HS (η ∈ (D(A
1/4
1 ))), (3.27)

where the constant C does not depend on η or on λ.

Proof. We note that (3.13) yields

K∗λ = K
(1)
λ + λK

(2)
λ ,

and thus Re〈K∗λη, η〉HS > 0 if Re(λ) > 0, which yields (3.25). Relation (3.26) is a direct consequence of
(3.22) Finally, the proof of (3.27) is the same as the proof of (3.23).
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3.2 Estimation of Ṽ −1
λ

The aim of this section is to estimate the inverse of Ṽλ defined by (3.19). We recall that the notation C+
α is

introduced in (2.19). First we show the following result on an “approximation” of Ṽλ:

Lemma 3.4. There exists a constant C1 such that for all λ ∈ C+,∥∥∥(λ2I + 2ρλA
1/2
1 +A1)η

∥∥∥
HS

> C1

(
|λ|2‖η‖HS + ‖A1η‖HS

)
(η ∈ D(A1)). (3.28)

Proof. We write∥∥∥(λ2I + 2ρλA
1/2
1 +A1)η

∥∥∥2

HS
= |λ|4 ‖η‖2HS + 4ρ2|λ|2

∥∥∥A1/2
1 η

∥∥∥2

HS
+ ‖A1η‖2HS

+ 4ρReλ

(∥∥∥λA1/4
1 η

∥∥∥2

HS
+
∥∥∥A3/4

1 η
∥∥∥2

HS

)
+ 2 Reλ2

∥∥∥A1/2
1 η

∥∥∥2

HS

> |λ|4 ‖η‖2HS + 2(2ρ2 − 1)|λ|2
∥∥∥A1/2

1 η
∥∥∥2

HS
+ ‖A1η‖2HS . (3.29)

If 2ρ2 − 1 > 0, then we deduce∥∥∥(λ2I + 2ρλA
1/2
1 +A1)η

∥∥∥2

HS
> |λ|4 ‖η‖2HS + ‖A1η‖2HS .

Else, we have 2ρ2 − 1 < 0 and we deduce from (3.29) that∥∥∥(λ2I + 2ρλA
1/2
1 +A1)η

∥∥∥2

HS
> |λ|4 ‖η‖2HS + 2(2ρ2 − 1)|λ|2 ‖η‖HS ‖A1η‖HS + ‖A1η‖2HS

= (1− 2ρ2)(|λ|2 ‖η‖HS − ‖A1η‖HS )2 + 2ρ2
(
|λ|4 ‖η‖2HS + ‖A1η‖2HS

)
. (3.30)

Theorem 3.5. There exists α > 0 such that for all λ ∈ C+
α the operator Ṽλ : D(A

5/4
1 ) → D(A

1/4
1 ) is an

isomorphism and for (θ, β) ∈ [−1/4, 5/4]2 such that 0 6 θ + β 6 1, the following estimate holds

sup
λ∈C+

α

|λ|2−2θ−2β‖Aθ1Ṽ −1
λ Aβ1‖L(HS) < +∞, (3.31)

sup
λ∈C+

α

|λ|2−2θ−2β‖Aθ1(Ṽ ∗λ )−1Aβ1‖L(HS) < +∞. (3.32)

Proof. We combine (3.19) with Lemma 3.2∥∥∥A1/4
1 Ṽλη

∥∥∥
HS

>
∥∥∥A1/4

1 (I +Kλ)
[
λ2η + 2ρλA

1/2
1 η +A1η

]∥∥∥
HS
−
∥∥∥A1/4

1 Kλ

[
2ρλA

1/2
1 η +A1η

]∥∥∥
HS

>
∥∥∥λ2A

1/4
1 η + 2ρλA

3/4
1 η +A

5/4
1 η

∥∥∥
HS
− C

(
|λ|
∥∥∥A1/4

1 η
∥∥∥
HS

+
∥∥∥A3/4

1 η
∥∥∥
HS

)
. (3.33)

Applying Lemma 3.4, we deduce∥∥∥A1/4
1 Ṽλη

∥∥∥
HS

> C1

(
|λ|2‖A1/4

1 η‖HS + ‖A5/4
1 η‖HS

)
− C

(
|λ|
∥∥∥A1/4

1 η
∥∥∥
HS

+
∥∥∥A3/4

1 η
∥∥∥
HS

)
. (3.34)

On the other hand, from an interpolation inequality and the Young inequality we have∥∥∥A3/4
1 η

∥∥∥
HS

6 C|λ|−1|λ|
∥∥∥A1/4

1 η
∥∥∥1/2

HS

∥∥∥A5/4
1 η

∥∥∥1/2

HS
6 C|λ|−1

(
|λ|2‖A1/4

1 η‖HS + ‖A5/4
1 η‖HS

)
. (3.35)

Combining the above inequality with (3.34), we deduce that for α large enough, and for λ ∈ C+
α ,∥∥∥A1/4

1 Ṽλη
∥∥∥
HS

> C
(
|λ|2‖A1/4

1 η‖HS + ‖A5/4
1 η‖HS

)
. (3.36)
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Since
Ṽ ∗λ = λ

2
(I +K∗λ) + 2ρλA

1/2
1 +A1,

and since K∗λ satisfies the same properties as Kλ (see Lemma 3.3), we also deduce that for α large enough,
and for λ ∈ C+

α , ∥∥∥A1/4
1 Ṽ ∗λ η

∥∥∥
HS

> C
(
|λ|2‖A1/4

1 η‖HS + ‖A5/4
1 η‖HS

)
. (3.37)

From (3.36) and (3.37), we deduce that Ṽλ : D(A
5/4
1 ) → D(A

1/4
1 ) is a closed operator (since A1 is a closed

operator) and has a closed range. Applying [7, Corollary II.17, p.28], we deduce that Ṽλ is invertible.
Moreover (3.36) and (3.37) yield (3.31) and (3.32) for (θ, β) = (1/4,−1/4) and (θ, β) = (5/4,−1/4). By
a duality argument, this implies (3.31) and (3.32) for (θ, β) = (−1/4, 1/4) and (θ, β) = (−1/4, 5/4). We
deduce the result by an interpolation argument.

3.3 Estimation of V −1
λ

In order to show the resolvent estimate for the operator A0 defined by (2.31)–(2.32), assume λ ∈ C+
α for

α > 0 given in Theorem 3.5 and [f, g, h] ∈ H. We have that [v, η1, η2]
def
= (λI −A0)−1[f, g, h] satisfies

λv − divT(v, p) = f in F ,
div v = 0 in F ,
v = Λη2 on ∂F ,
λη1 − η2 = g

λη2 +A1η1 = −Λ∗
{
T(v, p)n|∂F

}
+ h,

(3.38)

for some pressure function p.
First we decompose the fluid velocity of the above system by using Wλ and A introduced in (3.7) and

(3.1):
v = Wλη2 + (λI − A)−1Pf.

This allows us to rewrite the system (3.38) as{
λη1 − η2 = g

λη2 +A1η1 + Lλη2 = Tλf + h,
(3.39)

where Lλ ∈ L(D(A
3/4
1 ),D(A

1/4
1 )) and Tλ ∈ L(L2(F),D(A

1/4
1 )) are defined by (3.7) and (3.3). Then, we

define

Aλ
def
=

[
0 −I
A1 Lλ

]
, (3.40)

and we can write (3.39) as follows:

(λI +Aλ)

[
η1

η2

]
=

[
g

Tλf + h

]
. (3.41)

We recall that since C+ ⊂ ρ(A0), we know that Vλ defined in (3.18) is invertible and some calculation
yields the following formulas for the inverse of λI +Aλ and of λI −A0:

(λI +Aλ)−1 =

I − V −1
λ A1

λ
V −1
λ

−V −1
λ A1 λV −1

λ

 , (3.42)

and

(λI −A0)−1 =


(λI − A)−1P + λWλV

−1
λ Tλ −WλV

−1
λ A1 λWλV

−1
λ

V −1
λ Tλ

I − V −1
λ A1

λ
V −1
λ

λV −1
λ Tλ −V −1

λ A1 λV −1
λ

 . (3.43)

Here, we estimate the inverse of the operator Vλ defined in (3.18) for λ ∈ C+
α and α > 0 given in

Theorem 3.5. From now on, we fix ρ < ρ1/4 where ρ1 is defined in Proposition 3.1. The main result of this
section is the following:
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Theorem 3.6. There exists α > 0 such that, for (θ, β) ∈ [−1/4, 3/4]2, such that 0 6 θ+β 6 1, the following
estimate holds

sup
λ∈C+

α

|λ|2−2θ−2β‖Aθ1V −1
λ Aβ1‖L(HS) < +∞. (3.44)

Proof. Comparing (3.18) and (3.19), we see that

Vλ − Ṽλ = λS, S
def
= L0 − 2ρA

1/2
1

and thus
Ṽ −1
λ = [I + λṼ −1

λ S]V −1
λ . (3.45)

In the above relation, note that from (3.6), S : D(A
3/4
1 )→ D(A

1/4
1 ) so that Ṽ −1

λ SV −1
λ : D(A

1/4
1 )→ D(A

5/4
1 ).

Moreover, from Proposition 3.1 and in particular (3.15), we have with our choice of ρ that S : D(A
1/4
1 ) →

D(A
1/4
1 )′ is a positive self-adjoint operator satisfying

∀η ∈ HS , ‖S1/2A
−1/4
1 η‖HS 6 C‖η‖HS . (3.46)

Moreover, (3.46) with a duality argument yields

∀η ∈ HS , ‖A−1/4
1 S1/2η‖HS 6 C‖η‖HS . (3.47)

Combining the above inequalities with (3.31) we obtain for β ∈ [−1/4, 3/4],

∀η ∈ HS , ‖S1/2Ṽ −1
λ Aβ1η‖HS 6 C|λ|−3/2+2β‖η‖HS , (3.48)

and for θ ∈ [−1/4, 3/4],

∀η ∈ HS , ‖Aθ1Ṽ −1
λ S1/2η‖HS 6 C|λ|−3/2+2θ‖η‖HS . (3.49)

Let us multiply (3.45) by SV −1
λ η with η ∈ HS :〈

S1/2Ṽ −1
λ η, S1/2V −1

λ η
〉
HS

=
∥∥∥S1/2V −1

λ η
∥∥∥2

HS
+
〈
λṼ −1

λ SV −1
λ η, SV −1

λ η
〉
HS

. (3.50)

On the other hand, from (3.19), (3.13), (3.16) and (3.17), we deduce for any λ ∈ C+ and for any ζ ∈ D(A1),

Re〈λζ, Ṽλζ〉HS = Re(λ)‖λζ‖2HS + |λ|2 Re(λ)〈K(1)
λ ζ, ζ〉HS + |λ|4〈K(2)

λ ζ, ζ〉HS
+ 2ρ|λ|2‖A1/4

1 ζ‖2HS + Re(λ)‖A1/2
1 ζ‖2HS > 0. (3.51)

Using ζ = Ṽ −1
λ SV −1

λ η in the above relation and combining it with (3.50), we deduce

∀η ∈ HS , ‖S1/2V −1
λ η‖HS 6 ‖S1/2Ṽ −1

λ η‖HS .

Thus, coming back to equality (3.45) we deduce that for η ∈ HS , and for (θ, β) ∈ [−1/4, 3/4]2 such that
0 6 θ + β 6 1,

‖Aθ1V −1
λ Aβ1η‖HS 6 ‖Aθ1Ṽ −1

λ Aβ1η‖HS + |λ|‖Aθ1Ṽ −1
λ SV −1

λ Aβ1η‖HS
6 ‖Aθ1Ṽ −1

λ Aβ1η‖HS + |λ|‖Aθ1Ṽ −1
λ S1/2‖L(HS)‖S1/2V −1

λ Aβ1η‖HS
6 ‖Aθ1Ṽ −1

λ Aβ1η‖HS + |λ|‖Aθ1Ṽ −1
λ S1/2‖L(HS)‖S1/2Ṽ −1

λ Aβ1η‖HS .

Then using estimates (3.31), (3.48), (3.49) and a density argument yields (3.44).

21



3.4 Proof of Proposition 2.7

We are now in position to prove Proposition 2.7 and thus completes the proof of Theorem 2.5.

Proof of Proposition 2.7. Let us consider α > 0 given by Theorem 3.6 and let us assume λ ∈ C+
α (see (2.19)).

From (3.43) and (2.27), we have∥∥∥∥∥∥λ(λI −A0)−1

fg
h

∥∥∥∥∥∥
2

H

=
∥∥λ(λI − A)−1Pf + λ2WλV

−1
λ Tλf − λWλV

−1
λ A1g + λ2WλV

−1
λ h

∥∥2

L2(F)

+
∥∥∥λA3/4

1 V −1
λ Tλf +A

3/4
1

(
I − V −1

λ A1

)
g + λA

3/4
1 V −1

λ h
∥∥∥2

HS

+
∥∥∥λ2A

1/4
1 V −1

λ Tλf − λA
1/4
1 V −1

λ A1g + λ2A
1/4
1 V −1

λ h
∥∥∥2

HS
(3.52)

Using that A is the generator of an analytic semigroup, we have

|λ|‖(λ− A)−1Pf‖L2(F) 6 C‖f‖L2(F). (3.53)

From (3.9), (3.44) with (θ, β) = (0, 0) and (3.4),

|λ|2‖WλV
−1
λ Tλf‖L2(F) 6 C‖Tλf‖HS 6 C‖f‖L2(F). (3.54)

From (3.44) with (θ, β) = (3/4,−1/4) and (3.4),

|λ|‖A3/4
1 V −1

λ Tλf‖HS 6 C‖f‖L2(F). (3.55)

From (3.44) with (θ, β) = (1/4,−1/4) and (3.4),

|λ|2‖A1/4
1 V −1

λ Tλf‖HS 6 C‖f‖L2(F). (3.56)

From (3.9) and (3.44) with (θ, β) = (1/4, 1/4)

|λ|‖WλV
−1
λ A1g‖L2(F) 6 C‖A3/4

1 g‖HS . (3.57)

From (3.44) with (θ, β) = (3/4, 1/4)∥∥∥A3/4
1 (I − V −1

λ A1)g
∥∥∥
HS

6 C‖A3/4
1 g‖HS . (3.58)

From (3.44) with (θ, β) = (1/4, 1/4)

|λ|
∥∥∥A1/4

1 V −1
λ A1g

∥∥∥
HS

6 C‖A3/4
1 g‖HS . (3.59)

From (3.9) and (3.44) with (θ, β) = (0, 0)

|λ|2‖WλV
−1
λ h‖L2(F) 6 C‖A1/4

1 h‖HS . (3.60)

From (3.44) with (θ, β) = (3/4,−1/4)

|λ|
∥∥∥A3/4

1 V −1
λ h

∥∥∥
HS

6 C‖A1/4
1 h‖HS . (3.61)

From (3.44) with (θ, β) = (1/4,−1/4)

|λ|2
∥∥∥A1/4

1 V −1
λ h

∥∥∥
HS

6 C‖A1/4
1 h‖HS . (3.62)

Combining the above estimates, we deduce (2.42).

4 Strong solutions for (1.3)-(1.4)

In this section, we recall the main steps to obtain the existence and uniqueness results for the nonlinear
system (1.3)-(1.4), or equivalently for the system (2.8)-(2.13).
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4.1 Proof of Theorem 1.7

This section is devoted to the proof of Theorem 1.7 (or equivalently Theorem 2.2).

Local in time existence. First, for (w0, η0
1 , η

0
2) satisfying (2.14)–(2.15) we show the existence of a local

in time solution for (2.8)-(2.13) by a fixed point argument. We recall that in that case η∗ = η0
1 . In particular,

Cof(∇X(0, ·)) = I2 and the divergence condition in (2.15) rewrites divw0 = 0 in F .
For R > 0 and T > 0 we consider the closed subset of FT (F) (see (1.17)):

BR,T
def
=
{

(F,G,H) ∈ FT (F) ; G(0, ·) = 0 in F , ‖(F,G,H)‖FT (F) 6 R
}
. (4.1)

To simplify, we assume here that T 6 1. For any (F,G,H) ∈ BR,T , we consider the solution (w, η, q) of
(1.15)-(1.16) given by Corollary 1.3 with (ζ0

1 , ζ
0
2 ) = (η0

1 , η
0
2). In particular, using (2.14), we can take R large

enough such that
R > 1 + ‖[w0, η0

1 , η
0
2 ]‖H1(F)×H2(I)×H1(I), inf

I
η0

1 + 1 > 1/R, (4.2)

and then there exists a constant C = C(R) such that

‖(w, q, η)‖WT (F) 6 C. (4.3)

First we notice that by interpolation, there exists a constant C = C(R) such that

‖η‖H3/4(0,T ;H7/4(I)) + ‖∂tη‖L4(0,T ;H5/4(I)) + ‖w‖L8(0,T ;H5/4(F)) 6 C. (4.4)

Using Proposition A.1 in [3] we deduce

‖η − η0
1‖L∞(0,T ;H7/4(I)) 6 CT 1/6‖η − η0

1‖H3/4(0,T ;H7/4(I)) 6 CT 1/6 (4.5)

for some constants C = C(R).
From the above estimate, we see that for T small enough, (2.3) holds and we can construct the change

of variables X and Y defined by (2.5) (with η∗ = η0
1). In the appendix, we express X and Y , and their

derivatives (see (A.12)–(A.17)). We can then consider the mapping

Z : (F,G,H) 7→ (F̂ (η, w, q), Ĝ(η, w), Ĥ(η, w)) (4.6)

where the maps F̂ , Ĝ and Ĥ are defined by (2.10), (2.12) and (2.13), and (w, q, η) defined as above. The

estimations of F̂ , Ĝ and Ĥ follow from standard arguments and we postpone them in Appendix B. Using
(B.27), (B.34) and (B.36), we deduce that for T 6 1, Z is well-defined from BR,T into FT (F) and satisfies

‖Z(F,G,H)‖FT (F) 6 CT 1/6, (4.7)

for some constant C = C(R). From (4.7), for all T > 0 small enough, we deduce

Z(F,G,H) ∈ BR,T .

With estimates similar to (B.27), (B.34) and (B.36), one can also show that, taking T possibly smaller,
Z is a strict contraction on BR,T and using the Banach fixed point theorem, we deduce the existence and
uniqueness of (F,G,H) ∈ BR,T such that

Z((F,G,H)) = (F,G,H).

The corresponding solution (w, q, η) of system (1.15)-(1.16) is a solution of (2.8)-(2.13).
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Uniqueness. Assume that (v(i), p(i), η(i)), i = 1, 2 are strong solutions of (1.3)-(1.4) on [0, T (i)), T (i) > 0,
associated with (v0, η0

1 , η
0
2) (satisfying (1.32)-(1.33)).

Assume that t0 ∈ [0,min(T (1), T (2))) is such that

(η(1)(t0, ·), ∂tη(1)(t0, ·), v(1)(t0, ·)) = (η(2)(t0, ·), ∂tη(2)(t0, ·), v(2)(t0, ·)).

Then we show below that there exists T > 0 such that,

(v(1), p(1), η(1)) = (v(2), p(2), η(2)) in [t0, t0 + T ]. (4.8)

To prove the above implication, we can assume t0 = 0, the general case follows by changing t to t − t0.
First using an estimate of the type (4.5), there exists T̂ > 0 depending on η(1) and on η(2) such that∥∥∥ηi(t, ·)− ηi(0, ·)∥∥∥

H7/4(I)
6 κ (t ∈ [0, T̂ ], i = 1, 2).

In particular, (see (2.3)), we can construct the change of variables X and Y defined by (2.5) with η∗ =

η(1)(0, ·) and transform (v(i), p(i)) into (w(i), q(i)) so that (w(i), q(i), η(i)) is a strong solution of (2.8)–(2.13)

on [0, T ], for T ∈ (0, T̂ ]. Let us write, for i = 1, 2,

(F (i), G(i), H(i))
def
= (F̂ (η(i), w(i), q(i)), Ĝ(η(i), w(i)), Ĥ(η(i), w(i)))

where the maps F̂ , Ĝ and Ĥ are defined by (2.10), (2.12) and (2.13). There exists R large enough such that

for any T ∈ (0, T̂ ],

(F (i), G(i), H(i)) ∈ BR,T , (i = 1, 2),

where BR,T is defined by (4.1) and such that the analogue of (4.2) holds true. They are both fixed points of
Z defined by (4.6), and from the above proof, Z admits a unique fixed point on BR,T for T small enough.
We thus deduce (4.8).

Now, let us consider

T0 = sup
{
T ∈ [0,min(T (1), T (2))) ;

(η(1)(t, ·), ∂tη(1)(t, ·), v(1)(t, ·)) = (η(2)(t, ·), ∂tη(2)(t, ·), v(2)(t, ·)) ∀t ∈ [0, T ]
}
. (4.9)

Using the above property for t0 = 0, the above supremum is well-defined and by continuity of the solutions,
if T0 < min(T (1), T (2)) then, we have

(η(1)(T0, ·), ∂tη(1)(T0, ·), v(1)(T0, ·)) = (η(2)(T0, ·), ∂tη(2)(T0, ·), v(2)(T0, ·))

so that the above argument with t0 = T0 contradicts that T0 satisfies (4.9). We thus deduce the uniqueness.

Criterion for global existence. Assume that (v, p, η) is the maximal strong solution on [0, Tmax) of
(1.3)-(1.4), associated with (v0, η0

1 , η
0
2) (satisfying (1.32)-(1.33)). Let us assume that

Tmax <∞, sup
t∈(0,Tmax)

‖(v(t, ·), η(t, ·), ∂tη(t, ·))‖H1(Fη)×H2(I)×H1(I) +

∥∥∥∥ 1

1 + η(t, ·)

∥∥∥∥
L∞(I)

<∞. (4.10)

Then, there exists R > 0 such that for any t ∈ [0, Tmax)

R > 1 + ‖[v(t, ·), η(t, ·), ∂tη(t, ·)]‖H1(Fη)×H2(I)×H1(I), inf
I
η(t, ·) + 1 > 1/R. (4.11)

In particular, from the first part of the proof (local in time existence), there exists T > 0 depending only on R
such that we can construct a strong solution of (1.3) on [t, t+T ], with initial conditions (v(t, ·), η(t, ·), ∂tη(t, ·)).
This shows that we can go beyond Tmax and leads to a contradiction with the fact that (v, p, η) is a maximal
solution.
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4.2 Proof of Theorem 1.8

The proof of Theorem 1.8 (or equivalently Theorem 2.3) is similar to the proof of Theorem 1.7. We use
again a fixed point argument to show the global in time existence of strong solutions for (2.8)-(2.13). We
recall that in that case η∗ = 0.

For R > 0, we consider the closed subset of F∞(F) (see (1.17)):

BR
def
=
{

(F,G,H) ∈ F∞(F) ; G(0, ·) = divw0, ‖(F,G,H)‖F∞(F) 6 R
}
.

Note that using (2.14)–(2.15), we can check that divw0 ∈ L2
#(F) =

[
H1

#(F), H−1
# (F)

]
1/2

. Thus using the

trace theorems, there exists a constant c such that if

R > c‖[w0, η0
1 , η

0
2 ]‖H1(F)×H2(I)×H1(I), (4.12)

then BR is nonempty.
For any (F,G,H) ∈ BR, we consider the solution (w, q, η) ∈ W∞(F) of (1.15)-(1.16) given by Theo-

rem 1.1. In particular (1.25) and (4.12) imply

‖(w, q, η)‖W∞(F) 6 CR (4.13)

for some constant C independent of R.
In particular, for R small enough (that is, with (4.12), for initial conditions small enough) the condition

(2.3) holds with η∗ = 0. Then we can consider our change of variables X and Y defined by (2.5) with η∗ = 0,
and the mapping Z introduced in (4.6) is well-defined.

Moreover, we notice that by interpolation, (4.13) yields

‖w‖L8(0,∞;H5/4(F)) + ‖w‖L8/3(0,∞;H7/4(F)) 6 CR, (4.14)

and using the estimates (B.44), (B.45), (B.46) and (B.47), we deduce that for R small enough, Z is well-
defined from BR into F∞(F) and satisfies

‖Z(F,G,H)‖F∞(F) 6 CR2. (4.15)

From (4.15), for all R > 0 small enough, we deduce

Z(F,G,H) ∈ BR.

Similarly, taking R possibly smaller, we can also show that Z is a strict contraction on BR and using
the Banach fixed point theorem, we deduce the existence and uniqueness of (F,G,H) ∈ BR such that

Z((F,G,H)) = (F,G,H).

The corresponding solution (w, q, η) of system (1.15)-(1.16) is a solution of (2.8)-(2.13).

5 Time analyticity of the solutions of (1.3)

In this section we prove Corollary 1.11. We first start with some general results for the time analyticity of
the solutions of parabolic systems.

5.1 General results

Let us consider H and V two Banach spaces such that V ⊂ H, and for any T ∈ (0,+∞] and θ ∈ (0, π/2) let
us consider the sector

ST,θ
def
= {z ∈ C ; 0 < |z| < T, | arg(z)| < θ}.

We denote by Hol(ST,θ;H) the space of functions holomorphic in ST,θ with values in H. Let us consider
the following norms

‖f‖L2(ST,θ ;H)
def
= sup
|φ|<θ

(∫ T

0

‖f(eıφt)‖2Hdt
)1/2

, ‖f‖W2(ST,θ ;V,H)
def
= ‖f‖L2(ST,θ ;V) + ‖f ′‖L2(ST,θ ;H)
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and the following subspaces of Hol(ST,θ;H):

L2(ST,θ;H)
def
=
{
f ∈ Hol(ST,θ;H) ; ‖f‖L2(ST,θ ;H) < +∞

}
,

W2(ST,θ;V,H)
def
=
{
f ∈ Hol(ST,θ;V) ; ‖f‖W2(ST,θ ;V,H) < +∞

}
.

Theorem 5.1. The spaces L2(ST,θ;H) and W2(ST,θ;V,H) are Banach spaces.

Proof. We only give the proof for L2(ST,θ;H), the proof is similar for the other space. Suppose that (fn)
is a Cauchy sequence of L2(ST,θ;H). Then the sequence (f̃n) defined by f̃n(s, φ) = fn(seıφ) is a Cauchy
sequence of the Banach space L2(−θ, θ;L2(0, T )), and thus converges to some f̃ ∈ L2(−θ, θ;L2(0, T )). Then
the function f : ST,θ → H defined by f(seıφ) = f̃(s, φ) satisfies ‖f‖L2(ST,θ ;H) <∞ and

lim
n→+∞

‖fn − f‖L2(ST,θ ;H) = 0.

It remains to show that f ∈ Hol(ST,θ;H). For that we define the analytic functions:

∀z ∈ ST,θ, Fn(z) =

∫
[0,z]

fn(ξ)dξ.

By the Cauchy-Schwarz inequality, for any T0 < T 6∞,

‖Fn − Fm‖L∞(ST0,θ ;H) 6 T
1/2
0 ‖fn − fm‖L2(ST,θ ;H),

from which we deduce that (Fn) converges to some F ∈ L∞(ST0,θ;X), with F analytic in ST0,θ. Thus f = F ′

and we obtain that f is analytic in ST0,θ for any T0 < T and thus analytic in ST,θ.

Theorem 5.2. Assume that A : D(A) → H is the infinitesimal generator of an exponentially stable semi-
group (etA)t>0 on H that is analytic in the sector S∞,θ′ . Assume T ∈ (0,+∞] and θ ∈ (0, θ′). Then for any
y0 ∈ [D(A),H]1/2 and f ∈ L2(ST,θ;H), there exists a unique solution y ∈ W2(ST,θ;D(A),H) of

y′ = Ay + f, y(0) = y0. (5.1)

Moreover, there exists C > 0 independent of T such that

‖y‖W2(ST,θ ;D(A),H) 6 C
(
‖y0‖[D(A),H]1/2

+ ‖f‖L2(ST,θ ;H)

)
. (5.2)

Proof. First, we note that since z 7→ ezA and t 7→ AezA are analytic in S∞,θ′ , then

d

dz
ezA = AezA (z ∈ S∞,θ).

From the Duhamel formula,

y(z) = ezAy0 +

∫
[0,z]

e(z−s)Af(s) ds (z ∈ ST,θ).

Let us consider a closed disc D(z0, r) ⊂ ST,θ with r > 0. Since ST,θ is an open set, there exists ε ∈ (0, T )
(small enough) such that D(z0, r)− ε ⊂ ST,θ. In particular, for any z ∈ D(z0, r), z− ε ∈ ST,θ. Let us denote
by K the compact set defined by

K def
= {[ε, z] ; z ∈ D(z0, r)} ⊂ ST,θ.

Since z 7→ ezA and f are analytic in ST,θ, there exists C1 > 0,

∀z ∈ K, ∀k > 0,

∥∥∥∥dkezAdzk

∥∥∥∥
L(H)

+ ‖f (k)(z)‖H 6 Ck1 (k!). (5.3)

We can write

y(z) = e(z−ε)Ay(ε) +

∫
[ε,z]

e(z−s)Af(s) ds (z ∈ D(z0, r)).
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We already know that z 7→ e(z−ε)Ay(ε) ∈ Hol(D(z0, r);H). We show that y1 defined by

y1(z) =

∫
[ε,z]

e(z−s)Af(s) ds =

∫
[0,z−ε]

esAf(z − s) ds

satisfies y1 ∈ Hol(D(z0, r);H). We have

dn

dzn
y1(z) =

n−1∑
k=0

dn−1−k

dzn−1−k e
(z−ε)A dk

dtk
f(ε) +

∫
[0,z−ε]

esA
dn

dzn
f(z − s) ds.

Thus, from (5.3) we deduce that for all z ∈ D(z0, r),∥∥∥∥ dndtn y1(z)

∥∥∥∥
H

6 CCn1 (n!).

This proves that y ∈ Hol(ST,θ;H) and using (5.1), we deduce that y ∈ Hol(ST,θ;D(A)).
Now, assume |φ| < θ and let us write

yφ(t)
def
= y(eıφt), fφ(t)

def
= f(eıφt) (t ∈ (0, T )).

We have
y′φ = eıφAyφ + eıφfφ, yφ(0) = y0. (5.4)

We extend fφ by 0 on (T,∞) and we consider the solution of (5.4) on (0,+∞) which is an extension of yφ
on (T,∞).

We first consider the case y0 = 0: we extend yφ, fφ by 0 on (−∞, 0) and we take the Fourier transform
of (5.4):

ŷφ(ξ) = (ıe−ıφξ −A)−1f̂φ(ξ) (ξ ∈ R).

By adapting, for instance the proof of (iii) ⇒ (i) of [6, Paragraph II.1, Theorem 2.11, p.112], we deduce
that for θ ∈ (0, θ′),

sup
λ∈S∞, π

2
+θ

{
‖A(λ−A)−1‖L(H) + |λ|‖(λ−A)−1‖L(H)

}
< +∞.

We thus deduce
‖Aŷφ‖L2(R;H) +

∥∥∥ŷ′φ∥∥∥
L2(R;H)

6 C‖f̂φ‖L2(R;H),

where the constant C is independent on φ. Hence, (5.2) follows in the case y0 = 0.
Now we consider the case f = 0: since [D(A),H]1/2 is the trace space of L2(0,∞;D(A)) ∩H1(0,∞;H),

there exists u ∈ L2(0,∞;D(A)) ∩H1(0,∞;H) such that u(0) = y0 and

‖u‖L2(0,∞;D(A)) + ‖u′‖L2(0,∞;H) 6 C‖y0‖[D(A),H]1/2
.

Hence, ỹφ
def
= yφ − u satisfies

ỹ′φ = eıφAỹφ + eıφAu− u′, ỹφ(0) = 0,

and we are reduced to the first case.

5.2 Proof of Corollary 1.11

We are now in position to prove Corollary 1.11. First we use Theorem 2.5 to obtain an angle θ > 0 such
that (ezA) on H is analytic in the sector S∞,θ.

For T ∈ (0,+∞] let us define the following spaces (see (1.17) and (1.18))

FθT (Fη∗)
def
= L2(ST,θ; L2(Fη∗))×W2(ST,θ;H1

#(Fη∗), H−1
# (Fη∗))× L2(ST,θ;H1/2

# (I)))

and

Wθ
T (Fη∗)

def
=

{
(w, q, η) ; w ∈ W2(ST,θ; H2(Fη∗),L2(Fη∗)), q ∈ L2(ST,θ;H1(Fη∗)/R),

η ∈ W2(ST,θ;H5/2
# (I), H

3/2
# (I)), η′ ∈ W2(ST,θ;H3/2

# (I), H
1/2
# (I))

}
.
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We endow these spaces with the norms

‖(F,G,H)‖Fθ
T

(Fη∗ )

def
= ‖F‖L2(ST,θ ;L2(Fη∗ )) + ‖G‖W2(ST,θ ;H1

#
(Fη∗ ),H−1

#
(Fη∗ ))

+ ‖H‖L2(ST,θ ;H
1/2
#

(I)))
(5.5)

and

‖(w, q, η)‖Wθ
T

(Fη∗ )

def
= ‖w‖W2(ST,θ ;H2(Fη∗ ),L2(Fη∗ )) + ‖q‖L2(ST,θ ;H1(Fη∗ )/R)

+ ‖η‖W2(ST,θ ;H
5/2
#

(I),H
3/2
#

(I)))
+ ‖η′‖W2(ST,θ ;H

3/2
#

(I),H
1/2
#

(I))
.

We deduce from Theorem 5.1 that the above spaces are Banach spaces.
Combining Theorem 2.5 and Theorem 5.2 we obtain the analogue of Theorem 1.1 that provides a unique

solution (w, q, η) of (1.15)-(1.16) in ST,θ with

‖(w, q, η)‖Wθ
T

(Fη∗ ) 6 C
(
‖w0‖H1(Fη∗ ) + ‖ζ0

1‖H2
#

(I) + ‖ζ0
2‖H1

#
(I) + ‖(F,G,H)‖Fθ

T
(Fη∗ )

)
. (5.6)

Moreover, following the proof of Proposition 1.2 and Corollary 1.3, we can choose the constant C independent
of T and so that its dependence on η∗ comes only from R provided η∗ ∈ BR (see (1.26)).

Then the proof of Corollary 1.11 follows the proofs in Section 4.1 and in Section 4.2. For instance, taking
η∗ = η0

1 and setting F = Fη∗ , we can define the following closed subset of FθT (F):

Bθ
R,T

def
=
{

(F,G,H) ∈ FθT (F) ; G(0, ·) = 0 in F , ‖(F,G,H)‖Fθ
T

(F) 6 R
}
.

Then taking R large enough such that (4.2) holds true, there exists a constant C = C(R) such that for any
(F,G,H) ∈ Bθ

R,T there exists a unique solution (w, q, η) of (1.15)-(1.16) with (ζ0
1 , ζ

0
2 ) = (η0

1 , η
0
2) in ST,θ with

‖(w, q, η)‖Wθ
T

(F) 6 C. (5.7)

Thus using the same proof as in Section 4.1, we deduce the existence of T = T (R) small enough such that
we have a solution of (2.8)-(2.13) in ST,θ. By uniqueness, this solution extends the solution that we obtained
in Section 4.1.

To complete the first point of Corollary 1.11, assume that we have a strong solution on [0, T0]. Then, by
continuity of η, there exists R > 0 such that η(t, ·) ∈ BR (see (1.26)) for t ∈ [0, T0]. From the above proof,
it implies that there exists a uniform T such that we can extend the solution of (2.8)-(2.13) in t + ST,θ for
all t ∈ [0, T0]. Then the domain of analyticity contains the union of t+ ST,θ, t ∈ [0, T0], and we deduce the
result by choosing θ0 ∈ [0, θ) small enough.

With similar arguments but adapting Section 4.2 instead of Section 4.1, we deduce the second point of
Corollary 1.11.

A Formula for the change of variables

Here we recall standard formula that allow us to obtain the expressions (2.10)-(2.13) and similar ones (see
Section 2.4).

Starting from
v(t, x) = w(t, Y (t, x)) and p(t, x) = q(t, Y (t, x)), (A.1)

we have

∂tvi(t,X(t, y)) = ∂twi(t, y) +
∑
j

∂wi
∂yj

(t, y)
∂Yj
∂t

(t,X(t, y)), (A.2)

((v · ∇)v)i (t,X(t, y)) =
∑
j,k

wj(t, y)
∂wi
∂yk

(t, y)
∂Yk
∂xj

(t,X(t, y)), (A.3)

∂vi
∂xj

(t,X(t, y)) =
∑
k

∂wi
∂yk

(t, y)
∂Yk
∂xj

(t,X(t, y)), (A.4)
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∂2vi
∂xj∂xm

(t,X(t, y)) =
∑
k,`

∂2wi
∂yk∂y`

(t, y)
∂Yk
∂xj

(t,X(t, y))
∂Y`
∂xm

(t,X(t, y))

+
∑
k

∂wi
∂yk

(t, y)
∂2Yk

∂xj∂xm
(t,X(t, y)), (A.5)

∂p

∂xi
(t,X(t, y)) =

∑
k

∂q

∂yk
(t, y)

∂Yk
∂xi

(t,X(t, y)), (A.6)

div v(t,X(t, y)) =
∑
k,j

∂wj
∂yk

(t, y)
∂Yk
∂xj

(t,X(t, y)). (A.7)

In particular
det(∇X) div v(X) = ∇w : Cof(∇X) = div(Cof(∇X)∗w). (A.8)

We have used here that div(Cof(∇X)) = 0.
From (1.6), we deduce

H̃η(v, p)(t, s) = −ν(∂sη)

(
∂v1

∂x2
+
∂v2

∂x1

)
(t, s, 1 + η(t, s)) + 2ν

∂v2

∂x2
(t, s, 1 + η(t, s))− p(t, s, 1 + η(t, s)). (A.9)

Thus

H̃η(v, p)(t, s) = H̃η∗(w, q)(t, s) + ν(∂sη
∗ − ∂sη)

(
∂w1

∂y2
+
∂w2

∂y1

)
(t, s, 1 + η∗(s))

− ν(∂sη)
∑
k

(
∂w1

∂yk

(
∂Yk
∂x2

(X)− δk,2
)

+
∂w2

∂yk

(
∂Yk
∂x1

(X)− δk,1
))

(t, s, 1 + η∗(s))

+ 2ν
∑
k

(
∂w2

∂yk

(
∂Yk
∂x2

(X)− δk,2
))

(t, s, 1 + η∗(s)). (A.10)

We can write our change of variables defined by (2.2) and (2.5) as

X(t, y1, y2) = (y1, y2 + ζ(t, y1, y2)) and ζ(t, y1, y2)
def
= Rη(t,·)−η∗

(
y1,

y2

1 + η∗(y1)

)
. (A.11)

Then we have the following formulas:

∇X = I2 +

[
0 0

∂y1ζ ∂y2ζ

]
, Cof(∇X) = I2 +

[
∂y2ζ −∂y1ζ

0 0

]
, (A.12)

det∇X = 1 + ∂y2ζ, ∇Y (X) = I2 −

 0 0
∂y1ζ

1 + ∂y2ζ

∂y2ζ

1 + ∂y2ζ

 , (A.13)

∂2Y1

∂xi∂xj
(X) = 0 (i, j ∈ {1, 2}), (A.14)

∂2Y2

∂x2
1

(X) = −
∂2
y1y1ζ

1 + ∂y2ζ
+

2(∂y1ζ)(∂
2
y1y2ζ)

(1 + ∂y2ζ)
2
−

(∂y1ζ)
2(∂2

y2y2ζ)

(1 + ∂y2ζ)
3

, (A.15)

∂2Y2

∂x1∂x2
(X) = −

∂2
y1y2ζ

(1 + ∂y2ζ)
2

+
(∂y1ζ)(∂

2
y2y2ζ)

(1 + ∂y2ζ)
3
,

∂2Y2

∂x2
2

(X) = −
∂2
y2y2ζ

(1 + ∂y2ζ)
3
, (A.16)

∂tY (X) =

 0

− ∂tζ

1 + ∂y2ζ

 , ∂t Cof(∇X) =

[
∂t,y2ζ −∂t,y1ζ

0 0

]
, (A.17)

∂y1ζ(t, y1, y2) = ∂x1Rη(t,·)−η∗

(
y1,

y2

1 + η∗(y1)

)
− y2∂y1η

∗(y1)

(1 + η∗(y1))2
∂x2Rη(t,·)−η∗

(
y1,

y2

1 + η∗(y1)

)
, (A.18)

∂y2ζ(t, y1, y2) =
1

1 + η∗(y1)
∂x2Rη(t,·)−η∗

(
y1,

y2

1 + η∗(y1)

)
, (A.19)

29



∂y1y1ζ(t, y1, y2) = ∂x1x1Rη(t,·)−η∗

(
y1,

y2

1 + η∗(y1)

)
− 2y2∂y1η

∗(y1)

(1 + η∗(y1))2
∂x1x2Rη(t,·)−η∗

(
y1,

y2

1 + η∗(y1)

)
− y2∂y1y1η

∗(y1)

(1 + η∗(y1))2
∂x2Rη(t,·)−η∗

(
y1,

y2

1 + η∗(y1)

)
+

2y2(∂y1η
∗(y1))2

(1 + η∗(y1))3
∂x2Rη(t,·)−η∗

(
y1,

y2

1 + η∗(y1)

)
+
y2

2(∂y1η
∗(y1))2

(1 + η∗(y1))4
∂x2x2Rη(t,·)−η∗

(
y1,

y2

1 + η∗(y1)

)
, (A.20)

∂y1y2ζ(t, y1, y2) =
1

1 + η∗(y1)
∂x1x2Rη(t,·)−η∗

(
y1,

y2

1 + η∗(y1)

)
− ∂y1η

∗(y1)

(1 + η∗(y1))2
∂x2Rη(t,·)−η∗

(
y1,

y2

1 + η∗(y1)

)
− y2∂y1η

∗(y1)

(1 + η∗(y1))3
∂x2x2Rη(t,·)−η∗

(
y1,

y2

1 + η∗(y1)

)
, (A.21)

∂y2y2ζ(t, y1, y2) =
1

(1 + η∗(y1))2
∂x2x2Rη(t,·)−η∗

(
y1,

y2

1 + η∗(y1)

)
, (A.22)

∂tζ(t, y1, y2) = R∂tη(t,·)

(
y1,

y2

1 + η∗(y1)

)
, (A.23)

∂t,y1ζ(t, y1, y2) = ∂x1R∂tη(t,·)

(
y1,

y2

1 + η∗(y1)

)
− y2∂y1η

∗(y1)

(1 + η∗(y1))2
∂x2R∂tη(t,·)

(
y1,

y2

1 + η∗(y1)

)
, (A.24)

∂t,y2ζ(t, y1, y2) =
1

1 + η∗(y1)
∂x2R∂tη(t,·)

(
y1,

y2

1 + η∗(y1)

)
. (A.25)

B Estimates of the nonlinear terms

This section is devoted to the proof of (4.7), (4.15), and (2.60)-(2.62). We assume

‖η∗‖H2(I) +

∥∥∥∥ 1

1 + η∗

∥∥∥∥
L∞(I)

6 C∗, (B.1)

and all the constants below depend only on C∗. For instance, using Sobolev embeddings, the above estimate
yields

‖η∗‖W1,∞(I) +

∥∥∥∥ 1

1 + η∗

∥∥∥∥
H2(I)

6 C. (B.2)

B.1 Preliminary results

In this section, we state and prove some preliminary results that allow us to deal with the fixed points of
this article. In order to do prove these results, we need to introduce a change of variables different from
(2.2) in order to transform F0 = I × (0, 1) into Fη∗ : for any η1, η2 satisfying (B.1), we write

X̃η1,η2 : Fη1 → Fη2 , (y1, y2) 7→
(
y1, y2

1 + η2(y1)

1 + η1(y1)

)
. (B.3)

One can check that X̃η1,η2 transforms Fη1 into Fη2 and its inverse is X̃η2,η1 .

In this section, we thus use the change of variables X̃0,η∗ and for any f : Fη∗ → R, we set

f̃
def
= f ◦ X̃0,η∗ . (B.4)

Then we have the following result.

Lemma B.1. Assume (B.1). Assume p ∈ [1,∞] and α ∈ [0, 1]. Then there exist C1, C2 > 0 depending only
on C∗ and on p, α such that

C1‖f̃‖Lp(F0) 6 ‖f‖Lp(Fη∗ ) 6 C2‖f̃‖Lp(F0), (B.5)

C1‖f̃‖Hα(F0) 6 ‖f‖Hα(Fη∗ ) 6 C2‖f̃‖Hα(F0). (B.6)
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Proof. The proof of (B.5) follows from a change of variables in the integral. For (B.6), we can prove it for
α = 0 and α = 1 by standard calculation. For α ∈ (0, 1), we recall that

‖f̃‖2Hα(F0) = ‖f̃‖2L2(F0) +

∫
F0

∫
F0

∣∣∣f̃(y(1))− f̃(y(2))
∣∣∣2

|y(1) − y(2)|2α+2 dy(1)dy(2)

= ‖f̃‖2L2(F0) +

∫
Fη∗

∫
Fη∗

∣∣∣f(x(1))− f(x(2))
∣∣∣2∣∣∣X̃η∗,0(x(1))− X̃η∗,0(x(2))
∣∣∣2α+2

1

1 + η∗(x
(1)
1 )

1

1 + η∗(x
(2)
1 )

dx(1)dx(2). (B.7)

Using (B.2), we can check that ∣∣∣X̃η∗,0(x(1))− X̃η∗,0(x(2))
∣∣∣ > C

∣∣∣x(1) − x(2)
∣∣∣

and thus we deduce that ‖f̃‖Hα(F0) 6 C‖f‖Hα(Fη∗ ). The other estimate is obtained similarly.

Lemma B.2. Assume (B.1).

• If f ∈ Hα(Fη∗), α > 1/2 and if g ∈ L2(I), then fg ∈ L2(Fη∗) and there exists a constant C depending
on C∗ and on α such that

‖fg‖L2(Fη∗ ) 6 C‖g‖L2(I)‖f‖Hα(Fη∗ ). (B.8)

• If f ∈ Hα(Fη∗), α ∈ [0, 1], and if g ∈ H1(I), then fg ∈ Hα(Fη∗) and there exists a constant C
depending on C∗ and on α such that

‖fg‖Hα(Fη∗ ) 6 C‖g‖H1(I)‖f‖Hα(Fη∗ ). (B.9)

Proof. For both relations, we use (B.4) to work in F0. By interpolation we can check that

‖f̃‖L2(0,1;Hα(I)) 6 C‖f̃‖Hα(F0)

and thus by the Sobolev embedding, we deduce that if α > 1/2,

‖f̃‖L2(0,1;L∞(I)) 6 C‖f̃‖Hα(F0).

From the above estimates with (B.5), (B.6) we deduce (B.8).
For the second point, it is sufficient to prove it for α = 0 and α = 1. For α = 0, the relation comes from

the fact that g ∈ L∞(I). For α = 1, we use the first point of this lemma with

∂y1(f̃g) = (∂y1 f̃)g + f̃∂y1g ∈ L
2(F0), ∂y2(f̃g) = (∂y2 f̃)g ∈ L2(F0),

and we can conclude the proof of the second point of the lemma by interpolation.

Assume now α ∈ [1, 2] and f ∈ Hα(Fη∗), and let us consider f̃ defined by (B.4). Then using the above
lemma, we deduce that for some constants C1, C2 depending only on C∗ and on α,

C1‖∇f̃‖Hα−1(F0) 6 ‖∇f‖Hα−1(Fη∗ ) 6 C2‖∇f̃‖Hα−1(F0).

In particular, we deduce that (B.6) is valid for α ∈ [0, 2]:

Corollary B.3. Assume (B.1) and assume α ∈ [0, 2]. Then there exist C1, C2 > 0 depending only on C∗
and on α such that

C1‖f̃‖Hα(F0) 6 ‖f‖Hα(Fη∗ ) 6 C2‖f̃‖Hα(F0). (B.10)
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B.2 Estimates of X and Y

In this section T ∈ (0,∞] and X, Y are defined by (2.2), and either (2.5) or (2.52). We write below the
estimates in the case (2.5), to obtain them in the case (2.52), it is sufficient to replace η by η̃ that does not
depend on time (so that several estimates below are trivial in that case).

Using the continuous embedding H9/4(F0) ↪→W 1,∞(F0) and (A.18), (A.19), (B.1), we deduce that there
exists a constant C depending on C∗ such that

‖ζ‖L∞(0,T ;C1(F)) 6 C ‖Rη−η∗‖L∞(0,T ;C1(F0)) 6 C ‖η − η∗‖L∞(0,T ;H7/4(I)) . (B.11)

In particular, assuming that η satisfies (2.3) for all t with κ small enough, then there exists a constant C
depending only C∗ and κ such that ∥∥∥∥ 1

1 + ∂y2ζ

∥∥∥∥
L∞(0,T ;C0(F))

6 C. (B.12)

Combining (B.11), (B.12), (A.12), and (A.13), we deduce

‖∇X − I2‖L∞(0,T ;C0(F)) + ‖Cof(∇X)− I2‖L∞(0,T ;C0(F)) + ‖∇Y (X)− I2‖L∞(0,T ;C0(F))

6 C ‖η − η∗‖L∞(0,T ;H7/4(I)) (B.13)

and
‖det∇X‖L∞(0,T ;C0(F)) 6 1 + C ‖η − η∗‖L∞(0,T ;H7/4(I)) . (B.14)

From (A.23) and (2.1) for α = 1, we also deduce

‖∂tζ‖L∞(0,T ;C0(F)) 6 C ‖R∂tη‖L∞(0,T ;H3/2(F0)) 6 C ‖∂tη‖L∞(0,T ;H1(I)) . (B.15)

The above estimate, (A.17) and (B.12) yield

‖∂tY (X)‖L∞(0,T ;C0(F)) 6 C ‖∂tη‖L∞(0,T ;H1(I)) . (B.16)

Combining (B.15) with (A.24), (A.25) and (B.5), we also deduce that

‖∂t,yiζ‖L∞(0,T ;L2(F)) 6 C ‖∂tη‖L∞(0,T ;H1(I)) . (B.17)

The above estimate and (A.17) yield

‖∂t Cof(∇X)‖L∞(0,T ;L2(F)) 6 C ‖∂tη‖L∞(0,T ;H1(I)) . (B.18)

From (A.20)–(A.22), (B.1) and Sobolev embeddings, we deduce that

∂yiyj ζ = ∂y1y1η
∗Ξi,j1 + Ξi,j2 (B.19)

with
‖Ξi,j1 ‖L∞(0,T ;L∞(F)) + ‖Ξi,j2 ‖L∞(0,T ;L8/3(F)) 6 C ‖η − η∗‖L∞(0,T ;H7/4(I)) . (B.20)

This decomposition, (B.11), (B.12) and (A.14)–(A.16) yield that

∂2Yi
∂xj∂xk

(X) = ∂y1y1η
∗Ξi,j,k3 + Ξi,j,k4 (B.21)

with

‖Ξi,j,k3 ‖L∞(0,T ;L∞(F)) + ‖Ξi,j,k4 ‖L∞(0,T ;L8/3(F))

6 C
(

1 + ‖η − η∗‖L∞(0,T ;H7/4(I))

)2

‖η − η∗‖L∞(0,T ;H7/4(I)) . (B.22)

We can also use the decomposition (B.19), (B.20) and (A.12) to obtain

∂

∂yk
Cof(∇X)i,j = ∂y1y1η

∗Ξi,j,k5 + Ξi,j,k6 (B.23)

with
‖Ξi,j,k5 ‖L∞(0,T ;L∞(F)) + ‖Ξi,j,k6 ‖L∞(0,T ;L8/3(F)) 6 C ‖η − η∗‖L∞(0,T ;H7/4(I)) . (B.24)
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B.3 Estimates of F̂ , Ĝ and Ĥ

In this section, we estimate the nonlinearities F̂ , Ĝ and Ĥ defined by (2.10), (2.12) and (2.13). These
estimates are used in Section 4 for the proofs of Theorem 1.7 and of Theorem 1.8 (see (4.7) and (4.15)) and
in Section 2.4 for the proof of Proposition 1.2 (see (2.60), (2.61), (2.62)).

Proof of (4.7). We first prove (4.7) and in that case, we recall that we assume T 6 1, that η∗ = η0
1

satisfies (B.1) with C∗ = 2R (see (4.2)). In all this part, the constants C may depend on R and we already
have the estimates (4.3) and (4.4) on (w, q, η). Since η∗ = η0

1 , we can use Proposition A.1 in [3] and with
(4.4) we deduce

‖η − η∗‖L∞(0,T ;H7/4(I)) 6 CT 1/6‖η − η∗‖H3/4(0,T ;H7/4(I)) 6 CT 1/6. (B.25)

The above estimate and (B.13) yield

‖∇X − I2‖L∞(0,T ;C0(F)) + ‖Cof(∇X)− I2‖L∞(0,T ;C0(F)) + ‖∇Y (X)− I2‖L∞(0,T ;C0(F)) 6 CT 1/6. (B.26)

We first estimate the nonlinearity F̂ given by (2.10). Combining (4.3) and (B.16), we deduce∥∥∥∥∂wi∂yj

∂Yj
∂t

(X)

∥∥∥∥
L2(0,T ;L2(F))

6 CT 1/2‖∂tη‖L∞(0,T ;H1(I))‖w‖L∞(0,T ;H1(F)) 6 CT 1/2.

Combining (4.4) and (B.13), we deduce∥∥∥∥wj ∂wi∂yk

∂Yk
∂xj

(X)

∥∥∥∥
L2(0,T ;L2(F))

6 CT 1/4(1 + ‖η − η∗‖L∞(0,T ;H7/4(I)))‖w‖
2
L8(0,T ;H5/4(F)) 6 CT 1/4.

Combining (4.3) and (B.26), we deduce∥∥∥∥ ∂2wj
∂yk∂yi

(
∂Yk
∂xj

(X)− δk,j
)∥∥∥∥

L2(0,T ;L2(F))

+

∥∥∥∥ ∂2wi
∂yk∂y`

(
∂Yk
∂xj

(X)
∂Y`
∂xj

(X)− δk,jδ`,j
)∥∥∥∥

L2(0,T ;L2(F))

+

∥∥∥∥ ∂q∂yk
(
∂Yk
∂xi

(X)− δk,i
)∥∥∥∥

L2(0,T ;L2(F))

6 CT 1/6.

Combining (4.3), the embedding H1(F) ⊂ L8(F), (B.8) for α = 1, (B.21), (B.22), (B.13) and (B.25), we
deduce∥∥∥∥∂wi∂yk

∂2Yk
∂x2

j

(X)

∥∥∥∥
L2(0,T ;L2(F))

+

∥∥∥∥∂wj∂yk

∂2Yk
∂xj∂x`

(X)
∂X`
∂yi

∥∥∥∥
L2(0,T ;L2(F))

6 C(1 + ‖η − η∗‖L∞(0,T ;H7/4(I)))
3 ‖η − η∗‖L∞(0,T ;H7/4(I)) ‖w‖L2(0,T ;H2(F)) 6 CT 1/6,

The above estimates yields that ∥∥∥F̂ (η, w, q)
∥∥∥
L2(0,T ;L2(F))

6 CT 1/6. (B.27)

The estimate of Ĝ(η, w) defined by (2.12) in L2(0, T ;H1
#(F)) leads to estimate

∂2wi
∂yk∂yj

[δi,j − Cof(∇X)i,j ]−
∂wi
∂yj

∂

∂yk
[Cof(∇X)i,j ] (B.28)

in L2(0, T ;L2(F)). Combining (4.3), the embedding H1(F) ⊂ L8(F), (B.8) for α = 1, (B.23)–(B.24), (B.25),
and (B.26), we deduce ∥∥∥Ĝ(η, w)

∥∥∥
L2(0,T ;H1

#
(F))

6 CT 1/6. (B.29)

Thus, from the boundary condition of (1.15) and (A.12) we deduce that (I2 − Cof(∇X)∗)w = 0 on ∂F .
Hence, from (2.12), if ϕ ∈ H1

#(F), then

〈Ĝ(η, w), ϕ〉
H−1

#
(F),H1

#
(F)

= −
∫
F
∇ϕ · ((I2 − Cof(∇X)∗)w) dy. (B.30)
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The above relation yield that ∥∥∥Ĝ(η, w)
∥∥∥
H−1

#
(F)

6 C ‖(I2 − Cof(∇X))w‖L2(F) (B.31)

and similarly, ∥∥∥∂tĜ(η, w)
∥∥∥
H−1

#
(F)

6 C
(
‖∂t Cof(∇X)w‖L2(F) + ‖(Cof(∇X)− I2)∂tw‖L2(F)

)
. (B.32)

The two above relations, combined with (4.3), (4.4), (B.18), (B.26) and (B.25), imply∥∥∥Ĝ(η, w)
∥∥∥
H1(0,T ;H−1

#
(F))

6 CT 3/8‖∂tη‖L∞(0,T ;H1(I))‖w‖L8(0,T ;H5/4(F))

+ CT 1/6‖w‖H1(0,T ;L2(F)) 6 CT 1/6. (B.33)

Gathering the above estimate and (B.29), we obtain∥∥∥Ĝ(η, w)
∥∥∥
L2(0,T ;H1

#
(F))

+
∥∥∥Ĝ(η, w)

∥∥∥
H1(0,T ;H−1

#
(F))

6 CT 1/6. (B.34)

Finally, to estimate Ĥ(η, w) given by (2.13) in L2(0, T ;H
1/2
# (I)), we can estimate

νζ̃

(
∂w1

∂y2
+
∂w2

∂y1

)
− νζ̂

∑
k

(
∂w1

∂yk

(
∂Yk
∂x2

(X)− δk,2
)

+
∂w2

∂yk

(
∂Yk
∂x1

(X)− δk,1
))

+ 2ν
∑
k

(
∂w2

∂yk

(
∂Yk
∂x2

(X)− δk,2
))

(B.35)

in L2(0, T ;H1(F)). Here

ζ̃(t, y1, y2)
def
= R∂sη∗−∂sη(t,·)

(
y1,

y2

1 + η∗(y1)

)
, ζ̂(t, y1, y2)

def
= R∂sη(t,·)

(
y1,

y2

1 + η∗(y1)

)
,

where we recall that R is the lifting defined by (2.1). In particular, using (B.10),∥∥∥ζ̃∥∥∥
L∞(0,T ;H5/4(F))

6 C ‖η − η∗‖L∞(0,T ;H7/4(I)) 6 CT 1/6,∥∥∥ζ̂∥∥∥
L∞(0,T ;H5/4(F))

6 C ‖η‖L∞(0,T ;H7/4(I)) 6 C.

The estimate of (B.35) in L2(0, T ;H1(F)) leads to the same kind of estimates as above so that∥∥∥Ĥ(η, w)
∥∥∥
L2(0,T ;H

1/2
#

(I))
6 CT 1/6. (B.36)

Gathering (B.27), (B.34), and (B.36) we deduce (4.7).

Proof of (2.60)-(2.62). The proofs of (2.60), (2.61) and (2.62) are quite similar. Here we recall that
T = ∞, that η∗, η̃ ∈ BR (see (1.26)), F = Fη∗ and that (2.51) holds. In particular, we use the estimates
in Appendix B.2 where the constants C may depend on R (see (B.1)). We can also assume that κ∗ 6 1 for
simplicity.

Let us estimate F̂2(η̃, w, q) given by (2.11). With (B.13), we first have∥∥∥∥ ∂wj
∂yk∂yi

(
∂Yk
∂xj

(X)− δk,j
)∥∥∥∥

L2(0,∞;L2(F))

+

∥∥∥∥ ∂2wi
∂yk∂y`

(
∂Yk
∂xj

(X)
∂Y`
∂xj

(X)− δk,jδ`,j
)∥∥∥∥

L2(0,∞;L2(F))

+

∥∥∥∥ ∂q∂yk
(
∂Yk
∂xi

(X)− δk,i
)∥∥∥∥

L2(0,∞;L2(F))

6 C‖η̃ − η∗‖H7/4(I)

(
‖w‖L2(0,∞;H2(F)) + ‖∇q‖L2(0,∞;L2(F))

)
.
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Combining (B.13), the embedding H1(F) ⊂ L8(F), (B.8) for α = 1 and (B.21)–(B.22), we deduce∥∥∥∥∂wj∂yk

∂2Yk
∂xj∂x`

(X)
∂X`
∂yi

∥∥∥∥
L2(0,∞;L2(F))

+

∥∥∥∥∂wi∂yk

∂2Yk
∂x2

j

(X)

∥∥∥∥
L2(0,∞;L2(F))

6 C‖η̃ − η∗‖H7/4(I)‖w‖L2(0,∞;H2(F)).

The above estimates yield that∥∥∥F̂2(η̃, w, q)
∥∥∥
L2(0,∞;L2(F))

6 C‖η̃ − η∗‖H7/4(I)

(
‖w‖L2(0,∞;H2(F)) + ‖∇q‖L2(0,∞;L2(F))

)
. (B.37)

The estimate of Ĝ(η̃, w) defined by (2.12) in L2(0,∞;H1
#(F)) leads to estimate (B.28) in L2(0,∞;L2(F)).

With the same argument leading to (B.29) we obtain∥∥∥Ĝ(η̃, w)
∥∥∥
L2(0,∞;H1

#
(F))

6 C‖η̃ − η∗‖H7/4(I)‖w‖L2(0,∞;H2(F)). (B.38)

Moreover, combining (B.31), (B.32), (B.13), (B.18) and (4.13) implies∥∥∥Ĝ(η̃, w)
∥∥∥
H1(0,∞;H−1

#
(F))

6 C ‖η̃ − η∗‖H7/4(I)

(
‖w‖H1(0,∞;L2(F)) + ‖w‖L2(0,T ;H2(F))

)
. (B.39)

Finally, to estimate Ĥ(η, w) in L2(0,∞;H
1/2
# (I)), we estimate (B.35) in L2(0,∞;H1(F)). This leads to

the same estimates as above so that∥∥∥Ĥ(η̃, w)
∥∥∥
L2(0,∞;H

1/2
#

(I))
6 C‖η̃ − η∗‖H7/4(I)‖w‖L2(0,∞;H2(F)). (B.40)

Gathering (B.37), (B.38), (B.39), (B.40) yields (2.60).
The proof of (2.61)-(2.62) follows the same approach. For instance, one can use (A.5) and the above

estimates for F̂2(η̃, w, q) to deduce∥∥∥∥ ∂2w̃i
∂xj∂xm

∥∥∥∥
L2(0,∞;L2(Fη̃))

6
∑
k,`

∥∥∥∥ ∂2wi
∂yk∂y`

∂Yk
∂xj

(X)
∂Y`
∂xm

(X)
√

det(∇X)

∥∥∥∥
L2(0,∞;L2(F))

+
∑
k

∥∥∥∥∂wi∂yk

∂2Yk
∂xj∂xm

(X)
√

det(∇X)

∥∥∥∥
L2(0,∞;L2(F))

6 C‖w‖L2(0,∞;H2(F)) (B.41)

and we obtain similarly ‖(w̃, q̃, η)‖W∞(Fη̃) 6 C‖(w, q, η)‖W∞(F). For the other estimates of (2.61)-(2.62), we
can give the ideas to prove

‖G‖
L2(0,∞;H1

#
(F))∩H1(0,∞;H−1

#
(F))

6 C‖G̃‖
L2(0,∞;H1

#
(Fη̃))∩H1(0,∞;H−1

#
(Fη̃))

the other relations are obtained in the same way. First, from (2.57) and (A.13) we can write

∂G

∂yi
= (∂yiy2ζ)G̃(X) + (1 + ∂y2ζ)

∑
k

∂G̃

∂xk
(X)

∂Xk
∂yi

.

Combining (B.11), (B.13), the embedding H1(F) ⊂ L8(F), (B.8) for α = 1 and (B.20)–(B.20), we deduce

‖G‖L2(0,∞;H1
#

(F)) 6 C‖G̃‖L2(0,∞;H1
#

(Fη̃)).

Then differentiating the relation for G in (2.57) with respect to time, we obtain

∂G

∂t
= det(∇X)

∂G̃

∂t
(X) (B.42)

and thus 〈
∂G

∂t
, ϕ

〉
H−1

#
(F),H1

#
(F)

=

〈
∂G̃

∂t
, ϕ(Y )

〉
H−1(Fη̃),H1(Fη̃)

. (B.43)

We notice that ‖ϕ(Y )‖H1(Fη̃) 6 C‖ϕ‖H1(F). This leads us to the estimate

‖G‖
H1(0,∞;H−1

#
(F))

6 C‖G̃‖
H1(0,∞;H−1

#
(Fη̃))

.
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Proof of (4.15). The proof is similar to the two previous ones. Here T = ∞, η∗ = 0 so that it satisfies
(B.1) with C∗ = 1. At the contrary to the two previous proofs, the constants C do not depend on R, and
we have assumed R 6 1 to simplify. We use the estimates in Appendix B.2 where the constants C do not
depend on R since here η∗ = 0. We have already the estimates (4.13) and (4.14) on (w, q, η).

First, let us estimate F̂ (η, w, q) defined by (2.10). With (B.13), we deduce∥∥∥∥ ∂wj
∂yk∂yi

(
∂Yk
∂xj

(X)− δk,j
)∥∥∥∥

L2(0,∞;L2(F))

+

∥∥∥∥ ∂2wi
∂yk∂y`

(
∂Yk
∂xj

(X)
∂Y`
∂xj

(X)− δk,jδ`,j
)∥∥∥∥

L2(0,∞;L2(F))

+

∥∥∥∥ ∂q∂yk
(
∂Yk
∂xi

(X)− δk,i
)∥∥∥∥

L2(0,∞;L2(F))

6 C(1 + ‖η‖L∞(0,∞;H7/4(I)))‖η‖L∞(0,∞;H7/4(I))

(
‖w‖L2(0,∞;H2(F)) + ‖∇q‖L2(0,∞;L2(F))

)
6 CR2.

Combining (B.13), the embedding H1(F) ⊂ L8(F) and (B.21)–(B.22), we deduce∥∥∥∥∂wj∂yk

∂2Yk
∂xj∂x`

(X)
∂X`
∂yi

∥∥∥∥
L2(0,∞;L2(F))

+

∥∥∥∥∂wi∂yk

∂2Yk
∂x2

j

(X)

∥∥∥∥
L2(0,∞;L2(F))

6 C(1 + ‖η‖L∞(0,∞;H7/4(I)))
3‖η‖L∞(0,∞;H7/4(I))‖w‖L2(0,∞;H2(F)) 6 CR2.

Moreover, combining (4.13) and (B.16), we deduce∥∥∥∥∂wi∂yj

∂Yj
∂t

(X)

∥∥∥∥
L2(0,∞;L2(F))

6 C‖∂tη‖L∞(0,∞;H1(I))‖w‖L2(0,∞;H2(F)) 6 CR2,

and combining (4.14) and (B.13), we deduce∥∥∥∥wj ∂wi∂yk

∂Yk
∂xj

(X)

∥∥∥∥
L2(0,∞;L2(F))

6 C(1 + ‖η‖L∞(0,∞;H7/4(I)))‖w‖L8(0,∞;H5/4(F))‖w‖L8/3(0,∞;H7/4(F)) 6 CR2.

The above estimates yield ∥∥∥F̂ (η, w, q)
∥∥∥
L2(0,∞;L2(F))

6 CR2. (B.44)

The estimate of Ĝ(η, w) defined by (2.12) in L2(0,∞;H1
#(F)) leads to estimate (B.28) in L2(0,∞;L2(F)).

With the same argument leading to (B.29) we obtain∥∥∥Ĝ(η, w)
∥∥∥
L2(0,∞;H1

#
(F))

6 C(1 + ‖η‖L∞(0,∞;H7/4(I)))
3‖η‖L∞(0,∞;H7/4(I))‖w‖L2(0,∞;H2(F)) 6 CR2. (B.45)

Moreover, combining (B.31), (B.32), (B.13), (B.18) and (4.13) implies∥∥∥Ĝ(η, w)
∥∥∥
H1(0,∞;H−1

#
(F))

6 C ‖η‖L∞(0,∞;H7/4(I)) ‖w‖H1(0,∞;L2(F))

+ C‖∂tη‖L∞(0,∞;H1(I))‖w‖L2(0,∞;H2(F)) 6 CR2. (B.46)

Finally, to estimate Ĥ(η, w) in L2(0,∞;H
1/2
# (I)), we estimate (B.35) in L2(0,∞;H1(F)). This leads to

the same estimates as above so that∥∥∥Ĥ(η, w)
∥∥∥
L2(0,∞;H

1/2
#

(I))
6 C(1+‖η‖L∞(0,∞;H7/4(I)))

2‖η‖L∞(0,∞;H7/4(I))‖w‖L2(0,∞;H2(F)) 6 CR2. (B.47)

Gathering (B.44), (B.45), (B.46) and (B.47), we deduce (4.15).
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[13] Céline Grandmont, Matthieu Hillairet, and Julien Lequeurre. Existence of local strong solutions to fluid-
beam and fluid-rod interaction systems. Ann. Inst. H. Poincaré Anal. Non Linéaire, 36(4):1105–1149,
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