
HAL Id: hal-03323076
https://hal.science/hal-03323076

Submitted on 20 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Lustre to Simulink: reverse compilation for
verifying Embedded Systems Applications

Hamza Bourbouh, Pierre-Loïc Garoche, Christophe Garion, Xavier Thirioux

To cite this version:
Hamza Bourbouh, Pierre-Loïc Garoche, Christophe Garion, Xavier Thirioux. From Lustre to
Simulink: reverse compilation for verifying Embedded Systems Applications. ACM Transactions
on Cyber-Physical Systems, 2021, 5 (3), pp.1-20. �10.1145/3461668�. �hal-03323076�

https://hal.science/hal-03323076
https://hal.archives-ouvertes.fr

�

���������	
�����������������
����	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	��
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	���
��

�

�

�

�

������������ ���

an author's https://oatao.univ-toulouse.fr/28174

https://doi.org/10.1145/3461668

Bourbouh, Hamza and Garoche, Pierre-Loïc and Garion, Christophe and Thirioux, Xavier From Lustre to Simulink:

reverse compilation for verifying Embedded Systems Applications. (2021) ACM Transactions on Cyber-Physical

Systems, 5 (3). 1-20. ISSN 2378-962X

From Lustre to Simulink: Reverse Compilation for

Embedded Systems Applications

HAMZA BOURBOUH, KBR/NASA Ames Research Center

PIERRE-LOÏC GAROCHE, KBR/NASA Ames Research Center/ENAC, Université de Toulouse

CHRISTOPHE GARION and XAVIER THIRIOUX, ISAE-SUPAERO, Université de Toulouse

Model-based design is now unavoidable when building embedded systems and, more specifically, controllers.
Among the available model languages, the synchronous dataflow paradigm, as implemented in languages
such as MATLAB Simulink or ANSYS SCADE, has become predominant in critical embedded system indus-
tries. Both of these frameworks are used to design the controller itself but also provide code generation means,
enabling faster deployment to target and easier V&V activities performed earlier in the design process, at the
model level. Synchronous models also ease the definition of formal specification through the use of synchro-
nous observers, attaching requirements to the model in the very same language, mastered by engineers and
tooled with simulation means or code generation.

However, few works address the automatic synthesis of MATLAB Simulink annotations from lower-level
models or code. This article presents a compilation process from Lustre models to genuine MATLAB Simulink,
without the need to rely on external C functions or MATLAB functions. This translation is based on the
modular compilation of Lustre to imperative code and preserves the hierarchy of the input Lustre model
within the generated Simulink one. We implemented the approach and used it to validate a compilation
toolchain, mapping Simulink to Lustre and then C, thanks to equivalence testing and checking. This backward
compilation from Lustre to Simulink also provides the ability to produce automatically Simulink components
modeling specification, proof arguments, or test cases coverage criteria.

CCS Concepts: • Computer systems organization → Real-time system specification; Embedded soft-

ware; • Software and its engineering → Model-driven software engineering; Data flow languages;

Additional Key Words and Phrases: Model-based design, formal verification, translation validation, equiva-

lence checking, Simulink

This work was partially supported by grant ANR JCJC FEANICSES ANR-17-CE25-0018.
Authors’ addresses: H. Bourbouh, KBR/NASA Ames Research Center, Mountain View, CA; email: hamza.bourbouh@
nasa.gov; P.-L. Garoche, KBR/NASA Ames Research Center/ENAC, Université de Toulouse, Toulouse, France; email: Pierre-
Loic.Garoche@enac.fr; C. Garion and X. Thirioux, ISAE-SUPAERO, Université de Toulouse, Toulouse, France; emails:
{christophe.garion, xavier.thirioux}@isae-supaero.fr.

https://doi.org/10.1145/3461668

https://doi.org/10.1145/3461668
https://doi.org/10.1145/3461668

1 INTRODUCTION

When developing safety-critical software and systems like aircraft controllers, system design-
ers and engineers are now using Model-Based System Engineering (MBSE). MBSE provides
early stage prototyping and often tools enabling simulation or even code generation. Among the
standard modeling languages used, we shall mention MATLAB Simulink and ANSYS SCADE as
industry-grade model languages used in multiple contexts from aerospace systems to healthcare
devices or nuclear plants.

Let us focus on safety-critical controller software and systems. In most cases, such systems
are designed and implemented as the composition of several reactive components, each perform-
ing a specific and relatively simple function. In the aerospace domain, the certification regulation
DO178C [1] specifies the different steps of software development and emphasizes the need to spec-

ify requirements and to verify the validity of intermediate models or code with respect to their
requirements. A first question that naturally arises is the following: in a MBSE context, how can
system designers specify these requirements and verify the validity of their models?

In addition to models, a leading methodology to develop component-based software is contract-
based design. In this paradigm, each component is associated with a contract specifying its input-
output behavior in terms of guarantees provided by the component when its environment satisfies
certain given assumptions. These assume/guarantee pairs can thus be used to specify requirements

at the component level. This approach was first proposed by Hoare [27] to specify axiomatic se-
mantics of imperative programs; however, it was later lifted to reactive systems through the notion
of synchronous observers [12, 16, 25, 26, 35]. When contracts are specified formally for individual
components, they can facilitate several development activities, such as compositional reasoning
during static analysis, step-wise refinement, systematic component reuse, and component-level
and integration-level test case generation.

At the model level, writing requirements with synchronous observers can usually be performed
in the same language as the model, easing its deployment and the adoption of the approach by en-
gineers. These requirements may be verified on the model by simulation or other techniques, such
as model checking. Notice that contracts or synchronous observers attached to model components
can also be used to specify additional knowledge such as invariants computed by a first analysis.

At a research level, the topics of certified compilation, test-case generation, or formal analysis of
dataflow languages are very active. Yet the integration of research ideas from academia into com-
mercial frameworks such as Simulink is quite difficult. The main reason is the lack of formally pub-
licly available semantics of the Simulink language. It is more common to develop methods and tools
on well-defined and publicly available languages such as Lustre [7, 8, 36]. For instance, approaches
such as FRET [23] or Dassault Systèmes STIMULUS1 ease the formalization of requirements but can
hardly be directly linked to Simulink models to provide genuine Simulink components represent-
ing the specification. However, the FRET tool can generate these requirements in the CoCoSpec
specification language [12], an extension of the Lustre language to support assume-guarantees
contracts. Formal analysis of Simulink models is also addressed by first providing a formal seman-
tic of the model allowing either executable embedded code or a model for analysis by formal tools.
CoCoSim [6] supports the analysis of a discrete subset of Simulink/Stateflow models by generating
an equivalent Lustre model for which contracts are expressed using the CoCoSpec specification
language and verified using model-checking techniques with tools such as Kind2 [12, 28].

Although translating Simulink models into formal languages such as Lustre allows to formally
analyze such models, bringing back analysis artifacts generated from Lustre in the Simulink model

1https://www.3ds.com/products-services/catia/products/stimulus/.

https://www.3ds.com/products-services/catia/products/stimulus/

From Lustre to Simulink: Reverse Compilation for Embedded Systems Applications

is currently not done and needs a translation of Lustre code to Simulink. These artifacts can include
invariants generated from SMT solvers that can be used to infer contracts for subcomponents,
Lustre annotations such as test-case coverage conditions, and auto-generated CoCoSpec contracts
from formalized requirements using FRET for instance. Connecting Lustre artifacts back to the
Simulink model makes it simpler for engineers using Simulink to adopt the use of formal tools,
and no knowledge of formal languages such as Lustre is required.

Contributions. The main contribution of this work is a compilation process from Lustre models
to Simulink models allowing closer connection to formal analysis tools of Simulink models (e.g.,
CoCoSim). More specifically:

• We based this new compilation on the existing modular compilation of synchronous dataflow
languages [5, 22], providing a sound compilation scheme, preserving the semantics.

• Connected to the FRET [23] tool, we automatically produce Simulink contracts from English
language specifications, generating an intermediate Lustre encoding.

• The compilation proposed is also used to provide runnable evidence at the model level,
soundly translating analysis results from a model checker.

• The Simulink model can be annotated with test-case coverage conditions.
• The approach has been applied to large benchmarks, showing the applicability on a large

set of components and requirements.
• Last, all of the presented approaches are implemented and available in the open source Co-

CoSim toolbox [6].

Related works. Programming languages could be fitted with specification languages, such as
ACSL [3] for C or SPARK [2]. In the case of synchronous languages and models, multiple works [14,
31, 39] advocate for the use of component-attached requirements. Notice that the actual definition
of such contracts or reasoning on them is still a challenge. Formalized contracts can be used for
a large set of applications: test oracles, test synthesis, reactive synthesis [29, 30], compositional
reasoning, or validation of individual contracts. CoCoSpec [12, 13] is a specification language for
Lustre [24] and has been extended to Simulink models.

Regarding the compilation of Lustre models as Simulink components, an interesting approach is
the Assume Guarantee Reasoning Environment (AGREE) framework [31]. In AGREE, AADL
components are associated to Lustre contracts. Validation of the composition of components is
performed thanks to the combination of these contracts by Lustre-based tools such as JKind [19].
In the case of AADL components defined by Simulink models, the Lustre contract is also checked
against the Simulink model using Simulink Design Verifier. The method proposed by Liu et al. [31]
provides an encoding of the Lustre contract as a piece of MATLAB code—that is, an imperative
program embedded within a MATLAB S-function Simulink component. This approach enables the
analysis of the model with the Simulink Design Verifier but is restricted to MATLAB-based tools
since few external approaches are capable of analyzing or compiling MATLAB code.

Outline. The article is structured as follows. Section 2 presents the CoCoSim framework, as
well as the Lustre language and the associated CocoSpec contracts used within the framework as
intermediate models. Section 3 develops the compilation process from Lustre nodes to Simulink
subsystems. Section 4 presents experimental results, and Section 5 presents various uses such as
synthesis of contracts as runnable evidence or test oracles.

2 BACKGROUND

In this section, we present CoCoSim, a Simulink analysis framework, as well as the syntax and
semantics of Lustre [24] and associated contracts.

Fig. 1. Stopwatch example in Simulink.

2.1 Simulink

Simulink [32], developed by MathWorks, is a graphical programming language for modeling dy-
namical systems, including discrete time ones (i.e., synchronous dataflow systems). Simulink has
gained popularity in critical embedded systems development. It supports the design and simulation
of complex systems before automatically generating embedded C code. A Simulink model consists
of a set of blocks connected by signals that can be organized as hierarchical models. Figure 1 illus-
trates a stopwatch example that measures the amount of time elapsed between its activation and
deactivation. The stopwatch is controlled by two external signals: a toggle signal to toggle the
activation of the stopwatch and a reset signal to reset the counter.

Simulink has a rich library of blocks and also supports both continuous and discrete solvers in its
simulation engine. Blocks can run on different sample times (multi-periodic) or on one global sam-
ple time (mono-periodic). However, Simulink is lacking a formally published reference semantics
for its library of blocks, which makes formal analysis of such models difficult.

2.2 CoCoSim

CoCoSim [6] is an open source toolbox for verifying Simulink/Stateflow models. It is integrated
within MATLAB as a toolbox and provides easy access to a set of tools. Specification-wise, Co-
CoSim allows attaching contracts, such as synchronous observers, to Simulink subsystems. Con-
tracts are dedicated subsystems relying on Boolean dataflows to denote elements of the contract
(e.g., assumptions and guarantees). CoCoSim is structured as a compiler and follows a simple
schema initially developed for the discrete subset of Simulink [38]. Using the MATLAB API, it
iterates over blocks and produces their equivalent version as Lustre nodes.

Figure 2 presents the CoCoSim architecture. In practice, a first preprocessing phase performs
model-to-model transformation and replaces some blocks by equivalent but simpler versions. The
second phase consists of compiling this simpler version of the Simulink model to Lustre (cf. Sec-
tion 2.3). This compilation is modular and produces a Lustre node for each Simulink subsystem.
Once the Lustre model is obtained, it can be either compiled to C code with the LustreC com-
piler [16] or submitted to Lustre model checkers such as Kind2 [12, 28] or Zustre [21].

CoCoSim carefully addresses traceability issues by manipulating a model along its processing
chain. This enables the expression of feedback from model checkers to Simulink models. For ex-
ample, a counterexample can be replayed at the Simulink level using its simulation engine.

2.3 Lustre

Lustre [11] is a synchronous language for modeling systems of synchronous reactive components.
A Lustre program L is a collection of nodes N0,N1, . . . ,Nm . The nodes satisfy the grammar

described in Figure 3 in which td denotes type constructors, including enumerated types, and

From Lustre to Simulink: Reverse Compilation for Embedded Systems Applications

Fig. 2. The overall architecture of CoCoSim.

value v denotes either constants of enumerated types C or primitive constants such as integers i
or reals r . Each node is declared by the grammar construct d of Figure 3 and is represented by the
following tuple:

Ni = (IN
i ,O

N
i ,Li ,Eqsi),

where IN
i ,O

N
i , and Li are sets of typed input, output, and local variables. Eqsi represents the set

of stream definitions defined as

Eqsi =
{
(v j

i)1≤j≤nbi
= expri

}
i ∈{0, ..., |Eqsi |−1}

,

where nbi ∈ N∗ denotes the number of output variables defined by the expression expri , v
j
i ∈

ON
i ∪ Li and expri is an expression where Vars(expri) ⊆ ON

i ∪ IN
i ∪ Li . Vars(expri) is the set of

variables in expri , and expressions expri are arbitrary Lustre expression, as presented in Figure 3
by constructor e , including node calls Nj (u1, . . . ,un).

Lustre code consists of a set of nodes transforming streams of input values into streams of output
values. Lustre models are synchronous in the sense that the processing time of each component is
neglected and communication is assumed to be instantaneous [4]. A notion of symbolic “abstract”
universal clock is used to model system progress.

Let us illustrate Lustre syntax on a possible model for the stopwatch example. The code is pre-
sented in Listing 1.

lst:stopwatch-clocks

Fig. 3. A subset of Lustre syntax.

Lines 1 through 4 of Listing 1 define a count node returning an integer stream representing the
sequence of natural numbers. Primitive types like bool, int, or real are available. Note that, in
general, a node may declare several output streams.

Line 6 declares a node named stopwatch that takes three Boolean streams as parameters, namely
tick, toggle, and reset, and declares a single integer stream as output, namely time.

In Lustre, a node is defined by a set of stream equations with possible local variables denoting
internal flows. Stream equations are defined between the let and tel keywords. For instance,
line 7 declares running as a local Boolean flow.

When defining equations, regular arithmetic and comparison operators are lifted to streams
and are evaluated at each timestep. For instance, line 9 of Listing 1 defines stream running as a
disjunction of the reset input stream and the result of comparing two Boolean streams: false
-> pre running, a Lustre expression, and toggle, one of the input streams of the node. The

temporal operator pre, for previous, enables a limited form of memory, allowing to read the value
of a stream at the previous instant. The arrow operator allows to build a stream c -> e as the
expression e while specifying the first value c. Therefore, the expression false -> pre running
denotes a Boolean stream whose first value is false and whose next values are the previous values
of the running stream.

A node that relies on these constructs is considered as stateful; its internal state is defined by the
values of the memories. Without these temporal operators, nodes act as mathematical functions.

Another specific construct of Lustre is the definition of clocks and clocked expressions. Clocks
are defined as enumerated types, the simplest ones being Boolean clocks. Expressions can then be
clocked for such clock values. For instance, let us consider the expression e when c where c is a
Boolean clock, then the expression e when c is not defined when variable c is false.

Let us now explain the expressions in lines 10 and 11:

• count(tick when running) is a call to node count with argument tick clocked on the
clock running. Therefore, there is no value for this expression when running is false. Notice
that the tick parameter of the node count is unused in the definition: it is only used for
clocking.

• count(tick when running) every reset is the previous call to node count completed
with a reset expression every reset. This specifies that if Boolean reset is true, then the
call to count reinitializes the node to its initial state and therefore the time stream to 0. The
local stream running is true whenever reset is true, and therefore the node count is always
executed when reset is true and the arrow operator will reset to its initial value 0.

lst:stopwatch-clocks
lst:stopwatch-clocks

From Lustre to Simulink: Reverse Compilation for Embedded Systems Applications

Table 1. Evolution of Expressions and Variables Using a Clock in the Stopwatch Example

toggle False True False False False False True False False
running False True True True True True False False False
count(tick 1 2 3 4 5
when running)
(0 -> pre(time)) 0 5 5 5
when not running
time 0 1 2 3 4 5 5 5 5

• (0 -> pre time) when not running is an integer stream. It starts with value 0 and then
uses the previous value of time. This expression is clocked on the negation of the running
clock. Notice that it is defined if and only if the previous expression is not defined.

• Lines 10 and 11 define a merge expression. It is used to create a flow clocked on a particular
clock using expressions clocked on subclocks of this particular clock. Here, this means the
following:
– time will be clocked on the base clock.
– When running is true, the expression count(tick when running) every reset is used

to define time. This expression must be clocked on running, which is trivially the case
here, but we may have used an external expression clocked on running for instance.

– When running is false, the expression (0 -> pre time) when not running is used to
define time and is also trivially clocked on the negation of running.

Table 1 presents an example of an evaluation of several streams from the stopwatch node: first
running is false, then becomes true when the toggle is true and becomes false when the
toggle is true again (simulating the operator pressing the toggle button of the stopwatch). The
reset parameter is considered always false in this example.

Finally, expressions associated with each clock case have to be clocked appropriately, and the
clocking phase of the compiler allows checking the consistency of clock definitions and uses, as
would do a typing compilation phase.

Nodes and calls form a hierarchy of nodes comparable to the notion of subsystems in Simulink.
Type and clock inferences guarantee at compile time that expressions and function calls respect
their type constraints and properly rely on previous values to build current ones. For example,
consider the following equations x = f(y); y = g(x);. These two equations create a causality
problem and produce an algebraic loop error. However, notice that the same definitions with either
f(pre y) or g(pre x)would be typable and accepted by the compiler. A more complete definition
including additional constructs such as automata or clocks based on enumerated types [15], as used
in our framework, can be found in the work of Garoche et al. [21]. Our approach handles those
constructs, but their definition is not required to present the contribution.

2.4 Synchronous Observers

The synchronous observer acts as a description of an axiomatic semantics for a synchronous model.
The observer is defined in the same language as the model itself and corresponds to a set of Boolean
streams. If the property is valid, the output flow encoding the property should remain true during
the execution of the program.

In CoCoSim, this is performed with a specific specification subsystem and implemented at Lustre
level by expressing these Boolean flows as comments in the code. Different syntaxes enable such

annotations, and CoCoSpec contracts [12] are one of them in which annotations specify assume-
guarantee contracts, a kind of Hoare triples extended to the synchronous setting [16].

For instance, a synchronous observer on the previous stopwatch example would be the assertion
that the stream time always has a non-negative value. Listing 2 illustrates a simple CoCoSpec
contract using the stopwatch node introduced earlier and specifying that the stream time always
has a non-negative value given the assumption that toggle and reset cannot be pressed at the
same time.

Our objective is then to be able, starting from a Lustre implementation and specification of a
system, to generate a Simulink design with the same behavior as the Lustre one with the Simulink
synchronous observers corresponding to the specification of the Lustre nodes.

3 COMPILING LUSTRE NODES AS SIMULINK BLOCKS

The compilation of Lustre nodes into Simulink subsystems is performed in two steps:

• The first step is to produce a simplified version of the input Lustre model, preserving the
hierarchical structure of nodes. This is done using a dedicated backend we implemented in
LustreC [16], an open source Lustre compiler.

• The second step is to submit the previously produced description to a dedicated backend
of CoCoSim that creates Simulink objects of the associated hierarchy of components and
connects the corresponding ports in the Simulink model.

Translating discrete Simulink to Lustre is algorithmically simple. Each connection between
blocks is associated with a fresh variable, and each block is mapped to a function call, a basic
operator, or another node in the case of Simulink subsystems. The challenge is more on defining
the semantic of each Simulink block. For instance, Simulink unit delays modeling memories are
mapped to expressions i -> pre e where i is the initial value specified in the unit delay block
and e is the input signal of the unit delay.

Going backward (i.e., translating Lustre to Simulink) is more challenging when dealing with a
complex Lustre AST and requires a simplified version of Lustre equations. For instance, although
a basic expression pre e could be associated with unit delay, its presence as an argument in a
complex expression or a node call is more difficult to tackle. Our idea is to use a Lustre compiler
to simplify expressions and produce appropriate constructs. We use LustreC, a Lustre compiler
implementing the synchronous dataflow languages hierarchical compilation scheme [5, 9]. The
LustreC compiler is implemented as a sequence of transformations and could eventually produce
an imperative version of the Lustre input model.

3.1 From Lustre to Normalized Lustre

LustreC compilation is essentially structured in three main phases. LustreC takes as input Lustre
models composed of “classic” dataflow nodes, mixed with hierarchical state machines [7, 15, 21].
The first phase of the compiler, therefore, amounts to producing pure dataflow Lustre by

lst:stopwatchSpec

From Lustre to Simulink: Reverse Compilation for Embedded Systems Applications

Fig. 4. The normalized Lustre syntax.

introducing fresh variables for each automaton to represent its states and encoding transitions in
automata as clocked expressions and merges of them. The second phase performs normalization,
of which the updated version will be detailed in the following. The main idea of this normalization
phase in LustreC is to introduce fresh Lustre variables to encode intermediate values as in
classic three-address code. Finally, the last phase translates each normalized node into imperative
machine code.

Since the previously presented compilation scheme used by the compiler LustreC is reliable and
used to produce trustable C code [5, 22], we adapted it to perform our required simplifications on
the Lustre code by modifying the existing normalization stage to produce for each Lustre node
a normalized node that can be easily compiled into a Simulink construct, preserving the hierar-
chy of the initial Lustre nodes. Whereas the original normalization of the LustreC tool was the
direct implementation of Biernacki et al. [5], the updated normalization introduces extra variables
and associated definition for all operators or function calls, including primitive operators such as
arithmetic or logical operators.

The normalization process transforms a Lustre model defined into the grammar of Figure 3 into
one of Figure 4. It introduces an additional grammar element l denoting a leaf value (i.e., a variable
or a constant). Normalization of an expression returns a fresh typed and clocked variable along
with a set of newly bound stateful normalized equations and associated fresh variables. These
normalized equations, except for node calls, do not involve nested constructs and correspond to
three-address code for binary operators. The arguments of node calls are constants or variables,
except for a special case where they are all sampled on the same clock that optimized in Simulink
block generation as explained in the following section.

Let us illustrate the normalization of the stopwatch example presented in Listing 1. After nor-
malization, the Lustre code presented in Listing 3 is generated. The original Lustre expressions are
given in the comments.

Listing 3 follows the grammar described in Figure 4. The nodes count and stopwatch are norma-
lized in a classic three-address code so each complex expression is decomposed into simple ex-
pressions involving new fresh variables or constants. Each stateful node has a Boolean variable
is_init denoting its first timestep defined by true -> false. The arrow expression l1→l2 is

lst:stopwatch-clocks
lst:stopwatch-clocks-normalized
lst:stopwatch-clocks-normalized

replaced by a conditional statement if is_init then l1 else l2; see variable time in node
count and streams __stopwatch_7 and __stopwatch_2 in node stopwatch. Node stopwatch
contains clocked expressions using when and merge operators, and their semantics is explained
in Section 2.3. Stream __stopwatch_4 (respectively, __stopwatch_3) is clocked on running
(respectively, not running). The expression (count(tick when running)every reset) is not
further normalized since it respects the grammar rule f (l when C(x), . . . , l when C(x)) every l
described in Figure 4. The advantage of keeping it unnormalized is explained in the next section.

3.2 From Normalized Lustre to Simulink

A normalized node is translated to a Simulink subsystem. We first start translating leaf nodes and
then finish with the top nodes. All nodes are translated as subsystems and used as a library of

From Lustre to Simulink: Reverse Compilation for Embedded Systems Applications

Fig. 5. The Simulink model generated from the Lustre example of Listing 3.

nodes; if a node g calls a node f, then the subsystem that corresponds to node f is instantiated and
used inside the subsystem that corresponds to node g.

Each equation definition is mapped to Simulink components. Since both Simulink and Lustre are
synchronous dataflow languages, the order of equations is not important. When a Lustre variable
is defined, a Goto Simulink block is used with the same name as the variable. When the Lustre
variable is used in an equation, a From Simulink block is used to read from the signal associated
with the same variable. For each Lustre variable, there is one Goto Simulink block that stores the
value of the variable and many From Simulink blocks that read from the Goto Simulink block.

The generated Simulink model of the Lustre example of Listing 3 is illustrated in Figure 5. The
user has the choice to keep the Goto and From blocks or remove them and link signals with the
same tag to each other. For readability, we kept only the is_init and running Gotos. We note
that the generated Simulink models are sometimes difficult to read when the Lustre source is large.
We recommend that engineers always update the Lustre files and regenerate the Simulink blocks
rather than try to edit the generated model directly.

To explain the generated Simulink model of Figure 5, we will go over the grammar in Figure 4 of
the normalized Lustre code and define the equivalent Simulink components. Each case is illustrated
in Figures 6 through 8. We present the following:

(a) Rule x = l , local assignment of a variable or constant to another variable (e.g., out1 = x). The
equation is a simple alias between variables and is modeled in Figure 6(a). A From Simulink
block is used to read from the signal associated with the variable x specified in the tag. A Goto

Simulink block is used to write on the signal associated with the variable out1 specified in the
tag. In the case of an assignment of a constant x = C , a Constant Simulink block is used in
place of the From Simulink block.

(b) Rule x = pre l , state assignment—that is, a pre construct over a variable (e.g., pre_x = pre x).
Thanks to our modified normalization phase, each pre operator argument is aliased to a fresh
variable, here pre_x. In Figure 6(b), Unit Delay acts as a memory, but its initial value, usually
specified in Simulink, is left unused since, in a valid Lustre model, any pre is guarded by an
arrow construct, preventing its use at the first timestep or after a reset.

(c) Rule x = true → f alse , this is the only arrow construct in our normalized Lustre (e.g., is_init
= true→false) and is modeled in Figure 6(c). The Unit Delay block uses its initial condition

true at the first step and then the previous value of its input for the following steps. Since the
input of the Unit Delay in Figure 6(c) is the constant false, the Unit Delay will produce false
at all times except the initial step defined by true. The Unit Delay block could be reset to its
initial value by an external signal (see Reset block in Figure 9).

lst:stopwatch-clocks-normalized
lst:stopwatch-clocks-normalized

Fig. 6. Primitive and branching constructs.

Fig. 7. Node calls.

(d) Rule x = if l then l else l , conditional statements (e.g., y = if guard then x1 else x2).
Both x1 and x2 run on the same clock, and the equation is therefore mapped to a switch as
depicted in Figure 6(d). The Switch Simulink block uses its second input as a condition, and
in Figure 6(d), the condition should be different from zero. The output of the Switch Simulink
block is its first input if the condition is true; otherwise, it is the third input.

(e) Rule x = merge l (C → l)...(C → l), merging construct (e.g., time = merge running (
true→__stopwatch_5)(false→__stopwatch_4)). Since the Lustre equations are properly
clocked, we can soundly represent the merge as a similar branching construct like in Figure 6(d)
and assume that input expressions __stopwatch_5 and __stopwatch_4 are properly clocked
(see Listing 3).

(f) Rules x = op(l , . . . , l) or x = f (l , . . . , l) where op is a Lustre binary or unary operator and f
is a Lustre node running on the same base clock as its parent node (e.g., x = bar(in1, in2)).
This is modeled in Figure 7(a) where bar_call is an instantiation of subsystem bar associated
to some Lustre node called bar. In the case of an operator of the standard library, such as
x = in1 + in2, the subsystem bar_call would be a basic Simulink block, such as Add block,
or Gain with scalar −1 for unary minus.

Let us finish with two complex constructs: clocked expressions and resetting nodes.

lst:stopwatch-clocks-normalized

Fig. 8. Branching construct for clocked expressions.

Clocked expressions. Following Biernacki et al. [5], Lustre nodes are considered to be homoge-
neous in terms of clocks—that is, all input and output flows have to be clocked with the same base
clock. However, within the node content, internal flows may be clocked on other signal values,
either local signals or inputs. Let ck be the base clock of the node. Then, any local clock is defined
as a subclock of this base clock ck . Thus, any expression and equation, including those listed pre-
viously, are clocked, perhaps implicitly through the application of the clock calculus phase, and
subject to the transformations presented here. Clocked expressions are any right-hand side of an
equation where the defined variable is assigned a specific clock different from the base clock ck .
In the grammar of the normalized Lustre defined in Figure 4, the right-hand side expressions that
can be clocked are f (l , . . . , l) and f (l , . . . , l) every l if the arguments of node f are clocked
on a different clock than the base clock ck , expressions f (l when C(x), . . . , l when C(x)) and
f (l when C(x), . . . , l when C(x)) every l , and the expression l when C(x). Clocked expressions
can be modeled in Simulink with an If Action subsystem; it is a subsystem whose execution is en-
abled by an If block. The If block evaluates a logical expression and then, depending on the result
of the evaluation, outputs an action signal that enables the execution of the If Action subsystem

linked to it. When the latter is not activated, it is configured to either reset its memories (e.g.,
Unit Delays use the initial condition) or hold the previous value. We choose the Held feature to
ensure that the If Action subsystem maintains its state when not active. For instance, in the
expression count(tick when running), the node count holds the value of the counter when it
is not running.

The advantage of not further normalizing the equation y = f(x when true(c)) is illustrated
in Figure 8(c); the argument x does not need to be clocked twice, since node f is only executed
when condition c is positive. The equivalent normalized Lustre code is x2 = x when true(c);
y = f(x2);, where both expressions x when true(c) and f(x2) will be embedded inside two

different If Action Subsystems with the same condition. The first If Action Subsystem is shown
in Figure 8(a), and the second is shown in Figure 8(c). This special construction is also handled
since first it occurs frequently in our LustreC compilation chain and second it exempts us from
implementing a If Action subsystem factorization algorithm.

Fig. 9. Stateful Lustre node call is translated as a Simulink Resettable subsystem when the node foo is called
with every operator.

Fig. 10. Action Subsystem with Held feature might need to be reset when it is re-activated.

Note that the expression f(x) when true(c) is different since the call to f(x) is running on
the base clock and then its output is sampled on the clock c. In fact, the equation y = f(x)when
true(c) is normalized into x2 = f(x); y = x2 when true(c);, and the equivalent Simulink

blocks are shown in Figure 8(b).

Stateful nodes and reset. In Figure 9, the called node bar is stateful: either it contains an arrow
function, and typically pre expressions, or it calls other stateful nodes.

Since foo contains a stateful node, it is itself stateful. The definition of the node as a resettable
subsystem as suggested in Figure 7(b) will recursively reset each memory in the node and its
children, performing the expected behavior. This produces the Simulink diagram presented in
Figure 9.

There is, however, a case where this encoding is erroneous. Indeed, in Simulink, if a resettable
subsystem contains Action Subsystems with the Held feature, then the reset action is not propa-
gated within these Action Subsystems. The only place where we use these Action Subsystems
in our translation is in the treatment of clocked expressions explained earlier. Therefore, in the
case of a node conditionally reset with an every cond and containing subexpressions defined over
subclocks, then one needs to explicitly propagate the reset signal to these Action Subsystems.

The generation of subsystems associated with clocked node calls should then be explicitly
extended with reset inputs, adding memory to record the reset status of the node for clocked
substreams. The subsystem (that keeps track of the reset status is presented in Figure 10. Its
output is added as an input of the Action Subsystem and the isActive input is the condition
associated with the If Action Subsystem, whereas the reset input is the reset condition of
the parent subsystem. The output “to be reset” is positive when the reset input is positive or
the Action Subsystem is re-activated and “to be reset” was previously active. If the Action
Subsystem is not active, the previously “to be reset” value is kept. For instance, in Table 2,

From Lustre to Simulink: Reverse Compilation for Embedded Systems Applications

Table 2. A Simulation of the “Should Be Reset”
Subsystem of Figure 10

isActive False False False True True
reset False True False False False

to be reset False True True True False

we give an example of an execution of the subsystem presented in Figure 10. The If Action
Subsystem was inactive for the first three steps, and the reset signal was active for the second
timestep. The If Action Subsystem should be reset when it was re-activated at the fourth step,
and the “to be reset” signal is going to negative at the fifth step since the reset input was not
triggered. Thanks to the extensive validation we performed, we are confident that this encoding
faithfully addresses this specific case. The validation process is detailed in the following section.

4 EVALUATION

Our approach was evaluated on a set of case studies, from small benchmarks taken from our re-
gression test suite to industrial ones, using equivalence checking, which will be defined in the
following.

Let us denote by L and S the sets of Lustre and Simulink models. Model semantics is denoted
by �·�L for L ∈ L and �·�S for S ∈ S. Each function is a (possibly stateful) map from a set of n
typed input flows to m typed output flows (e.g., �L�L : T n → Tm).

The objective of equivalence checking is to verify that two models, in the same language, are
equivalent. For Lustre models L1,L2 ∈ L, we say that L1 is equivalent to L2, denoted by L1 ≡L L2

if and only if for any input flow i ∈ T n , �L1�L(i) = �L2�L(i). The property ≡S is defined similarly
on Simulink models. Behavioral equivalence can be evaluated either at the Simulink level with
Simulink Design Verifier or at the Lustre level with the Kind2 model checker [12, 28]. It can also
be evaluated through tests when formal tools cannot conclude.

One can consider the compilation process of the CoCoSim toolbox from Simulink to Lustre as a
map S2L : S → L. Similarly, the algorithm proposed in Section 3 characterizes a map L2S : L →

S. We assume that S2L is sound, and we target specifically the validation of L2S . Therefore, we
consider the following verification challenges:

For all model S ∈ S, S ≡S L2S ◦ S2L(S), (1)

For all model L ∈ L, L ≡L S2L ◦ L2S(L). (2)

Let us add that in both cases, there is a single call to L2S and that the function S2L, implemented
in the CoCoSim toolbox, shares no code or algorithm with the LustreC tool used to implement the
function L2S .

The results are presented in Table 3. The first three columns give metrics about the size of the
models. Simulink Design Verifier was applied to the top level of the system. Lustre equivalence
checking (cf. Equation (2)) using Kind2 has been used both on the main node and modularly, con-
sidering each subnode as a verification target.

Concerning the 89 Lustre benchmarks from our regression suite (see the first line of Table 3), 85
benchmarks contain only one large top node with 1,600 code lines and 465 variables on average.
Since there is a single top node in these benchmarks, applying compositional verification does not
improve the results. Table 3 shows that model checking using a global (top-level) encoding both in
Simulink Design Verifier and Lustre was able to prove 87 benchmarks but unable to prove the va-
lidity of two remaining benchmarks. We applied compositional verification on the two remaining
benchmarks that were hard to prove due to their complexity. For the first benchmark, 9 out of 16

Table 3. Experiments

Simulink
#loc #nodes #vars Design Lustre Model Checking

Verifier Monolithic Compositional
89 Benchmarks [L] 289,181 160 43,001 87 S + 2 U 87 S + 2 U 152 S + 8U

TCM [S] 2,040 91 1,239 U U 79 S + 12 U
ROSACE [S] 926 94 520 U U 87 S + 7 U

FADEC [S] 68 1 46 U S S
AOCS [S] 3,649 93 3,390 U S 79 S + 14 U

S, safe (proven valid); U, unknown (i.e., unable to conclude with model checkers; to be evaluated through tests). [L] use
cases were initially defined in Lustre and [S] in Simulink. Note the larger set of cases in the last column since it considers
all subnodes as intermediate challenges.

nodes were proved safe, and one node was proved safe by k-induction [28, 37]. Similar results were
obtained on the second benchmark. Nodes that were hard to validate were hierarchical state ma-
chines expressed in Lustre. Lustre automata are compiled into pure dataflow equations, encoding
transitions as clocked expressions, which explains that the final Lustre code is more complicated
than the original model. All unproved nodes were validated by equivalence testing.

The approach was also applied to four industrial Simulink benchmarks: the NASA Transport

Class Model (TCM) [10], the ROSACE use case [34], a Full Authority Digital Engine Control

(FADEC), and a CNES Attitude and Orbital Control System (AOCS). All of these benchmarks
were analyzed using Equation (1).

Table 3 shows the effectiveness of compositional verification compared to monolithic verifica-
tion. Simulink Design Verifier was unable to globally prove any model. This can be explained by
both the use of nonlinear arithmetic operators, which are hardly analyzed by solvers, and the size
of the model. Using model checking on the Lustre global encoding, we were able to prove two of
the four models. Compositional verification in Lustre shows better performance: more than 85%
of nodes are proved safe. Equivalence testing was applied to the unproved nodes. For the AOCS
case study, the fact that we were able to globally prove the system with Lustre but unable to prove
all of the corresponding nodes can be explained by the elimination of some behaviors difficult to
prove for particular nodes when considering the global system.

5 APPLICATIONS

Producing Simulink subsystems from Lustre models has several advantages. We mention a few of
them next.

5.1 Easing the Formalization of Requirements at the Model Level

An essential step when it comes to supporting the formalization of requirements is the capability
to add the specification to a model. Most of the tools handling formalized requirements use some
formal annotation and formal languages to express these requirements. For instance, the AGREE
framework [31] and FRET [23] formalization tool use Lustre and CoCoSpec, respectively, to express
requirements. We integrated our work in CoCoSim and connected it with FRET output, auto-
matically translating CoCoSpec contracts generated by FRET to contracts expressed in Simulink
and supported by CoCoSim. This work was applied to publicly available industry-provided
examples2 from Lockheed Martin Cyber-Physical Systems challenges [17, 18], which is a set of
aerospace-inspired examples provided as text documents specifying the requirements along with

2https://github.com/hbourbouh/lm_challenges.

https://github.com/hbourbouh/lm_challenges

From Lustre to Simulink: Reverse Compilation for Embedded Systems Applications

associated Simulink models. Examples range from a basic integrator to complex autopilots. The
complete case study and formalized requirements are presented in a detailed technical report [33].

5.2 Generation of Runnable Evidence at the Simulink Level

The initial motivation for this work came from the use of the property-directed reachability-based
tool Zustre [20] to analyze synchronous observers associated with Simulink models by translating
them to Lustre before analyzing them. The Zustre model checker can provide a counterexample
in case of failure and also returns a set of invariants in case of success. However, although trace-
ability information was sufficient to execute the counterexample on the initial Simulink model,
the expression of the produced invariant as runnable evidence was not possible. More specifically,
the hierarchy-preserving encoding of the Lustre model into the model checker provides, in case of
success, a set of local invariants that could be attached to Simulink subsystems. As an example, List-
ing 4 presents such a generated local invariant (can be read as (pre(time)>= 0 => time >= 0)).
The Lustre to Simulink translation allows attaching this property to a subsystem as a synchronous
observer.

5.3 Generation of Lustre Annotations at the Simulink Level

The LustreC compiler can generate the MC-DC coverage criterion as Lustre annotations in Lustre
code. In addition, these annotations are included in the compilation process described in Section 3.
These annotations could be attached to Simulink subsystems.

Listing 5 provides an example of generated local MC-DC coverage conditions. All MC-DC cov-
erage conditions can be added to a subsystem as a synchronous observer (cf. Figure 11(a)). We use
it to calculate the coverage of a given test suite by simulation. Figure 11 illustrates all 10 MC-DC
conditions of the expression out in Listing 5.

5.4 Transforming Simulink Models into Equivalent Simpler Models

As presented in Section 3, the set of generated constructs in Simulink is limited: basic operators,
logically executed subsystems with action blocks, and unit delays. However, the input language
accepted by the CoCoSim toolchain is much larger.

The combination of the CoCoSim compilation of a Simulink+Stateflow model to Lustre and its
translation back to simple Simulink provides an interesting feature. Addressing the analysis of the

fig:inv_lust
fig:mcdc_lust
fig:mcdc_lust

H. Bourbouh et al.

Fig. 11. (a) MC-DC observer attached to its subsystem. (b) MC-DC conditions subsystem from inside. Each
condition is colored green if it was covered during simulation and red otherwise.

Table 4. Number of Unique Block Types in the Original TCM Model vs.
the Simplified Version

Original Model Simplified Model
Model #blocks #unique block types #blocks #unique block types
TCM 570 27 7587 14

large set of constructs considered, such as Stateflow blocks or conditionally activated subsystems,
is then reduced to the minimal subset of basic constructs.

For instance, it could support the definition of new analysis tools that could concentrate the
effort on the handling of this restricted subset of Simulink constructs while addressing a much
larger set of input models. In Table 4, we give the example of the TCM model from Table 3. The
original model contains around 27 unique blocks. After simplification of the model, we get 14
unique blocks (Constant, Delay, From, Gain, Goto, Inport, Logic, Outport, Product, RelationalOperator,
Subsystem, Sum, Switch, Trigonometry) consisting of almost all of the basic blocks we use.

6 CONCLUSION

The presented approach enables the translation of Lustre nodes to Simulink subsystems. The pro-
posed algorithm can be used to produce regular subsystems or to support the definition of contracts
at the Simulink level, using Boolean flows.

The added value of our approach to alternative approaches such as those of Liu et al. [31] is
the production of basic Simulink subsystems relying only on primitive blocks such as unit delays,
merge, and relational and arithmetic operators. It is also capable of addressing the complete in-
put language of the compiler we used. Particularly, we can handle clocks, hierarchical definition
through multiple Lustre nodes and Lustre automata. The implementation is however limited since
it does not yet handle machine-level types nor external C functions, although this could technically
be implemented since Simulink supports both constructs.

The approach has been validated on large use cases, demonstrating the behavioral equivalence
between some compiled models.

The applications are numerous, from validation of the framework to support of formal specifi-
cation or production of runnable proof evidence as synchronous observers. It is now integrated

From Lustre to Simulink: Reverse Compilation for Embedded Systems Applications

into the CoCoSim toolbox and is mature enough to be used automatically to provide feedback at
the model level.

Future work includes the extension of the input language to enable the use of externally
defined functions, such as C code, and the handling of machine data types (i.e., int8, uint8, int16,
uint16 ...).

REFERENCES

[1] RTCA. 2011. DO-178C. Software Considerations in Airborne Systems and Equipment Certification. RTCA.
[2] AdaCore and Altran UK Ltd. 2020. SPARK 2014 Reference Manual. Retrieved June 3, 2021 from http://docs.adacore.

com/spark2014-docs/html/lrm/.
[3] Patrick Baudin, Pascal Cuoq, Jean-Christophe Filliâtre, Claude Marché, Benjamin Monate, Yannick Moy, and Virgile

Prevosto. 2020. ACSL: ANSI/ISO C Specification Language, Version 1.16. Retrieved June 3, 2021 from https://www.
frama-c.com/download/acsl.pdf.

[4] Albert Benveniste and Gérard Berry. 1991. The Synchronous Approach to Reactive and Real-Time Systems. Research
Report RR-1445. INRIA. https://hal.inria.fr/inria-00075115.

[5] Dariusz Biernacki, Jean-Louis Colaço, Grégoire Hamon, and Marc Pouzet. 2008. Clock-directed modular code genera-
tion for synchronous data-flow languages. In Proceedings of the 2008 ACM SIGPLAN-SIGBED Conference on Languages,

Compilers, and Tools for Embedded Systems (LCTES’08). ACM, New York, NY, 121–130. https://doi.org/10.1145/1375657.
1375674

[6] Hamza Bourbouh. n.d. CoCoSim—Automated Analysis Framework for Simulink. Retrieved June 3, 2021 from https:
//github.com/NASA-SW-VnV/CoCoSim.

[7] Hamza Bourbouh, Pierre-Loïc Garoche, Christophe Garion, Arie Gurfinkel, Temesghen Kahsai, and Xavier Thirioux.
2017. Automated analysis of Stateflow models. In LPAR-21, 21st International Conference on Logic for Programming,

Artificial Intelligence and Reasoning, Maun, Botswana, May 7-12, 2017. EPiC Series in Computing, Thomas Eiter and
David Sands (Eds.), Vol. 46. EasyChair, 144–161. http://www.easychair.org/publications/paper/340361.

[8] Hamza Bourbouh, Pierre-Loïc Garoche, Thomas Loquen, Éric Noulard, and Claire Pagetti. 2020. CoCoSim, a code gen-
eration framework for control/command applications: An overview of CoCoSim for multi-periodic discrete Simulink
models. In Proceedings of the 10th European Congress on Embedded Real Time Software and Systems (ERTS’20).

[9] Timothy Bourke, Lélio Brun, Pierre-Evariste Dagand, Xavier Leroy, Marc Pouzet, and Lionel Rieg. 2017. A formally
verified compiler for Lustre. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI’17). ACM, New York, NY. https://hal.inria.fr/hal-01512286.
[10] Guillaume Brat, David H. Bushnell, Misty Davies, Dimitra Giannakopoulou, Falk Howar, and Temesghen Kahsai. 2015.

Verifying the safety of a flight-critical system. In FM 2015: Formal Methods. Lecture Notes in Computer Science, Vol.
9109. Springer, 308–324. https://doi.org/10.1007/978-3-319-19249-9_20

[11] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John Plaice. 1987. Lustre: A declarative language for programming
synchronous systems. In Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of Programming

Languages (POPL’87). 178–188.
[12] Adrien Champion, Arie Gurfinkel, Temesghen Kahsai, and Cesare Tinelli. 2016. CoCoSpec: A mode-aware contract

language for reactive systems. In Software Engineering and Formal Methods. Lecture Notes in Computer Science, Vol.
9763. Springer, 347–366. https://doi.org/10.1007/978-3-319-41591-8_24

[13] Adrien Champion, Alain Mebsout, Christoph Sticksel, and Cesare Tinelli. 2016. The Kind 2 model checker. In Computer

Aided Verification. Lecture Notes in Computer Science, Vol. 9780. Springer, 510–517. https://doi.org/10.1007/978-3-319-
41540-6_29

[14] Alessandro Cimatti and Stefano Tonetta. 2012. A property-based proof system for contract-based design. In Pro-

ceedings of the 2012 38th Euromicro Conference on Software Engineering and Advanced Applications (SEAA’12). 21–28.
https://doi.org/10.1109/SEAA.2012.68

[15] Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. 2005. A conservative extension of synchronous data-flow with
state machines. In Proceedings of the 5th ACM International Conference on Embedded Software (EMSOFT’05). 173–182.

[16] Arnaud Dieumegard, Pierre-Loïc Garoche, Temesghen Kahsai, Alice Taillar, and Xavier Thirioux. 2015. Compilation
of synchronous observers as code contracts. In Proceedings of the 30th Annual ACM Symposium on Applied Computing

(SAC’15). 1933–1939.
[17] Chris Elliott. 2016. An example set of cyber-physical V&V challenges for S5, Lockheed Martin Skunk works. In Pro-

ceedings of the 2016 Safe and Secure Systems and Software Symposium (S5’16). http://mys5.org/Proceedings/2016/Day_
2/2016-S5-Day2_0945_Elliott.pdf.

[18] Chris Elliott. 2015. On example models and challenges ahead for the evaluation of complex cyber-physical systems
with state of the art formal methods V&V, Lockheed Martin Skunk works. In Proceedings of the 2015 Safe and Secure

Systems and Software Symposium (S5’15). http://mys5.org/Proceedings/2015/Day_1/2015-S5-Day1_1405_Elliott.pdf.

http://docs.adacore.com/spark2014-docs/html/lrm/
https://www.frama-c.com/download/acsl.pdf
https://hal.inria.fr/inria-00075115
https://doi.org/10.1145/1375657.1375674
https://github.com/NASA-SW-VnV/CoCoSim
http://www.easychair.org/publications/paper/340361
https://hal.inria.fr/hal-01512286
https://doi.org/10.1007/978-3-319-19249-9_20
https://doi.org/10.1007/978-3-319-41591-8_24
https://doi.org/10.1007/978-3-319-41540-6_29
https://doi.org/10.1109/SEAA.2012.68
http://mys5.org/Proceedings/2016/Day_2/2016-S5-Day2_0945_Elliott.pdf
http://mys5.org/Proceedings/2015/Day_1/2015-S5-Day1_1405_Elliott.pdf

[19] Andrew Gacek, John Backes, Mike Whalen, Lucas G. Wagner, and Elaheh Ghassabani. 2018. The JKind model checker.
In Computer Aided Verification. Lecture Notes in Computer Science, Vol. 10982. Springer, 20–27. https://doi.org/10.
1007/978-3-319-96142-2_3

[20] Pierre-Loïc Garoche, Arie Gurfinkel, and Temesghen Kahsai. 2014. Synthesizing modular invariants for synchronous
code. In Proceedings of the 2014 Workshop on Horn Clauses for Verification and Synthesis (HCVS’14). https://doi.org/10.
4204/EPTCS.169.4

[21] Pierre-Loïc Garoche, Temesghen Kahsai, and Xavier Thirioux. 2016. Hierarchical state machines as modular horn
clauses. In Proceedings of the 2016 Workshop on Horn Clauses for Verification and Synthesis (HCVS’16). 15–28. https:
//doi.org/10.4204/EPTCS.219.2

[22] Pierre-Loïc Garoche, Falk Howar, Temesghen Kahsai, and Xavier Thirioux. 2014. Testing-based compiler validation
for synchronous languages. In Proceedings of the NASA Formal Methods Symposium. 246–251.

[23] Dimitra Giannakopoulou, Thomas Pressburger, Anastasia Mavridou, and Johann Schumann. 2020. Generation of for-
mal requirements from structured natural language. In Requirements Engineering: Foundation for Software Quality.
Lecture Notes in Computer Science, Vol. 12045. Springer, 19–35.

[24] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. 1991. The synchronous dataflow programming language LUSTRE.
Proceedings of the IEEE 79, 9 (1991), 1305–1320.

[25] Nicolas Halbwachs, Fabienne Lagnier, and Pascal Raymond. 1993. Synchronous observers and the verification of
reactive systems. In Algebraic Methodology and Software Technology (AMAST’93). Workshops in Computing. Springer,
83–96.

[26] Nicolas Halbwachs and Pascal Raymond. 1999. Validation of synchronous reactive systems: From formal verification
to automatic testing. In Advances in Computing Science—ASIAN’99. Lecture Notes in Computer Science, Vol. 1742.
Springer, 1–12. https://doi.org/10.1007/3-540-46674-6_1

[27] C. A. R. Hoare. 1969. An axiomatic basis for computer programming. Communications of the ACM 12, 10 (1969), 576–
580. https://doi.org/10.1145/363235.363259

[28] Temesghen Kahsai and Cesare Tinelli. 2011. PKind: A parallel k-induction based model checker. In Proceedings of the

10th International Workshop on Parallel and Distributed Methods in Verification (PDMC’11). 55–62. https://doi.org/10.
4204/EPTCS.72.6

[29] Andreas Katis, Grigory Fedyukovich, Andrew Gacek, John D. Backes, Arie Gurfinkel, and Michael W. Whalen. 2016.
Synthesis from assume-guarantee contracts using skolemized proofs of realizability. arXiv:1610.05867.

[30] Uri Klein and Amir Pnueli. 2010. Revisiting synthesis of GR(1) specifications. In Hardware and Software: Verification

and Testing. Lecture Notes in Computer Science, Vol. 6504. Springer, 161–181. https://doi.org/10.1007/978-3-642-19583-
9_16

[31] Jing Liu, John D. Backes, Darren Cofer, and Andrew Gacek. 2016. From design contracts to component requirements
verification. In NASA Formal Methods. Lecture Notes in Computer Science, Vol. 9690. Springer, 373–387. https://doi.
org/10.1007/978-3-319-40648-0_28

[32] Mathworks Inc. 2018. MATLAB Simulink (R2018b). Mathworks Inc., Natick, MA.
[33] Anastasia Mavridou, Hamza Bourbouh, Pierre-Loïc Garoche, and Mohammad Hejase. 2019. Evaluation of the FRET

and CoCoSim Tools on the Ten Lockheed Martin Cyber-Physical Challenge Problems. Technical Report NASA/TM-2019-
220374. NASA. http://www.garoche.net/publication/nasatm-2019-220374/nasatm-2019-220374.pdf.

[34] Claire Pagetti, David Saussié, Romain Gratia, Eric Noulard, and Pierre Siron. 2014. The ROSACE case study: From
Simulink specification to multi/many-core execution. In Proceedings of the 2014 IEEE 19th Real-Time and Embedded

Technology and Applications Symposium (RTAS’14). https://doi.org/10.1109/RTAS.2014.6926012
[35] John Rushby. 2014. The versatile synchronous observer. In Specification, Algebra, and Software. Lecture Notes in Com-

puter Science, Vol. 8373. Springer, 110–128.
[36] Norman Scaife, Christos Sofronis, Paul Caspi, Stavros Tripakis, and Florence Maraninchi. 2004. Defining and trans-

lating a “safe” subset of Simulink/Stateflow into Lustre. In Proceedings of the 4th ACM International Conference on

Embeeded Software (EMSOFT’04). 259–268.
[37] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. 2000. Checking safety properties using induction and a SAT-

solver. In Proceedings of the International Conference on Formal Methods in Computer-Aided Design (FMCAD’00). 127–
144. https://doi.org/10.1007/3-540-40922-X_8

[38] Stavros Tripakis, Christos Sofronis, Paul Caspi, and Adrian Curic. 2005. Translating discrete-time Simulink to Lustre.
ACM Transactions on Embedded Computing Systems 4, 4 (2005), 779–818. https://doi.org/10.1145/1113830.1113834

[39] M. W. Whalen, A. Gacek, D. Cofer, A. Murugesan, M. P. E. Heimdahl, and S. Rayadurgam. 2013. Your what is my how:
Iteration and hierarchy in system design. IEEE Software 30, 2 (March 2013), 54–60. https://doi.org/10.1109/MS.2012.173

https://doi.org/10.1007/978-3-319-96142-2_3
https://doi.org/10.4204/EPTCS.169.4
https://doi.org/10.4204/EPTCS.219.2
https://doi.org/10.1007/3-540-46674-6_1
https://doi.org/10.1145/363235.363259
https://doi.org/10.4204/EPTCS.72.6
https://doi.org/10.1007/978-3-642-19583-9_16
https://doi.org/10.1007/978-3-319-40648-0_28
http://www.garoche.net/publication/nasatm-2019-220374/nasatm-2019-220374.pdf
https://doi.org/10.1109/RTAS.2014.6926012
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1145/1113830.1113834
https://doi.org/10.1109/MS.2012.173

