
HAL Id: hal-03323055
https://hal.science/hal-03323055

Submitted on 20 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Causal Inference Techniques for Microservice
Performance Diagnosis: Evaluation and Guiding

Recommendations
Li Wu, Johan Tordsson, Erik Elmroth, Odej Kao

To cite this version:
Li Wu, Johan Tordsson, Erik Elmroth, Odej Kao. Causal Inference Techniques for Microservice Perfor-
mance Diagnosis: Evaluation and Guiding Recommendations. ACSOS 2021 - 2nd IEEE International
Conference on Autonomic Computing and Self-Organizing Systems, Sep 2021, Washington DC, United
States. �hal-03323055�

https://hal.science/hal-03323055
https://hal.archives-ouvertes.fr

Causal Inference Techniques for Microservice
Performance Diagnosis: Evaluation and Guiding

Recommendations
Li Wu∗†, Johan Tordsson∗‡, Erik Elmroth‡, Odej Kao†

∗Elastisys AB, Umeå, Sweden, Email: {li.wu, johan.tordsson, erik.elmroth}@elastisys.com
†Distributed and Operating Systems Group, TU Berlin, Berlin, Germany, Email: odej.kao@tu-berlin.de

‡Department of Computing Science, Umeå University, Umeå, Sweden

Abstract—Causal inference (CI) is one of the popular per-
formance diagnosis methods, which infers the anomaly prop-
agation from the observed data for locating the root causes.
Although some specific CI methods have been employed in the
literature, the overall performance of this class of methods on
microservice performance diagnosis is not well understood. To
this end, we select six representative CI methods from three
categories and evaluate their performance against the challenges
of microservice operations, including the large-scale observable
data, heterogeneous anomaly symptoms, and a wide range of
root causes. Our experimental results show that 1) CI techniques
must be integrated with anomaly detection or anomaly scores to
differentiate the causality in normal and abnormal data; 2) CI
techniques are more robust to false positives in anomaly detection
than knowledge-based non-CI method; 3) To get the fine-grained
root causes, an effective way with CI techniques is to identify the
faulty service first and infer the detailed explanation of the service
abnormality. Overall, this work broadens the understanding of
how CI methods perform on microservice performance diagnosis
and provides recommendations for an efficient application of CI
methods.

Index Terms—Performance diagnosis, Microservices, Causal
inference, Experimental evaluation, Self-healing

I. INTRODUCTION

Microservice architecture is a popular paradigm for de-
signing large-scale applications because of its benefit of
accelerated delivery time, resilience to failures, and flexi-
ble development and deployment [1]. A microservice-based
application is composed of loosely-coupled services, which
can be developed with heterogeneous technology stacks and
communicate through lightweight protocols [2]. However, per-
formance issues are inevitable in mcroservice due to its large-
scale services, complex dependencies, and frequent updates.

With the aid of monitoring tools and anomaly detection
in microservices, a large number of measurements can be
observed and unexpected behaviors can be detected. However,
automatic diagnosis of root causes from the observed data for
is difficult for the following challenges. 1) A large volume
of anomalous metrics: a performance issue is likely to
result in a large number of components emitting anomalous
metrics, as the anomaly tends to propagate horizontally across
inter-dependent services or resources as well as vertically
across multiple layers. To illustrate the phenomena, Figure 1
shows that metrics from multiple data resources (microservice

0

1

M
S

request_rate duration_99th tcp_received_bytes

0

1

Co
nt

ai
ne

r

ctn_cpu_utilization ctn_memory_utilization ctn_network_transmit_packets

0 20 40 60
0

1
OS

svr_cpu_utilization

0 20 40 60
Time

svr_memory_utilization

0 20 40 60

svr_network_transmit_packets

Figure 1: Multiple metrics become abnormal due to the
anomaly propagation from a CPU hog issue. Moreover,
anomaly patterns are different in metrics due to the hetero-
geneity and dynamics in microservices and also the control
mechanisms in the system.

(MS), container, and operating system (OS)) become abnormal
when a service exhausts the allocated CPU resource. To
complicate further, the number of services can be very large
in microservices (e.g., Uber reports 4000 services deployed
[3]), amplifying the volume of anomalous metrics. 2) Het-
erogeneous anomaly symptoms: a performance issue tends
to manifest heterogeneous anomaly patterns, due to different
types of metrics, frequently updated and polyglot services, and
the control mechanisms in the system (e.g., load-balancing,
auto-scaling, restart, etc). As shown in Figure 1, a CPU
hog issue has different anomaly patterns in the metrics of
duration, request rate, and resources. 3) A wide range of root
causes: root causes of a service performance degradation
can be external (e.g., hardware failures) or internal issues
(e.g., software bugs), and the causes keep evolving with the
frequent updates of microservices. Therefore, historical failure
data is unable to contain instances of all root causes, failing
the historical data based diagnosis methods.

A variety of approaches have been proposed in the literature
to locate performance issues in microservice systems (briefly
discussed in Section V). One of the dominant approaches
is to formulate performance diagnosis as a causal inference
problem, which constructs an anomaly propagation graph
based on causal inference for locating the root causes. For

example, Microscope [3] applies the PC algorithm (named
after its authors, Peter and Clark) and Loud [4] uses Granger
causality to obtain the graphs. However, only few CI methods
are studied in the existing approaches, and their performance
against the challenges lying in microservice performance di-
agnosis is not well understood.

To this end, we select six representative CI methods from
three categories including Granger causality, causal network
learning algorithms, and structural equation models (SCM),
and evaluate their performance on locating root causes against
several dimensions of the challenges in microservice per-
formance diagnosis (the background of CI techniques is in-
troduced in Section II). The root cause diagnosis is based
on observable metrics collected from a set of fault injection
experiments, where three types of anomalies are injected into
multiple different services of two widely used microservice
benchmarks. For comparison, we developed a non-CI method
that leverages the domain-knowledge of service dependencies.
To the best of our knowledge, this work is the first such com-
prehensive study to be reported on evaluating CI techniques
for microservice performance diagnosis. The empirical results
presented in this work are useful to understand how well CI
methods perform for root cause analysis so as to make a proper
decision.

To sum up, our contributions are following threefold:
1) A method for evaluating the performance of CI tech-

niques on microservice performance diagnosis. In this
method, we formulate three research questions and im-
plement multiple anomaly scenarios to showcase several
dimensions of the challenges, including the large number
of metrics, heterogeneous anomaly patterns, and a wide
range of root causes (Section III).

2) A comprehensive comparison of six representative CI
methods on microservice performance diagnosis, in-
cluding the accuracy of coarse-grained and fine-grained
causes localization, computation overhead, and scala-
bility. We also compare CI methods against a non-CI
method based on domain-knowledge (Section IV).

3) Our evaluation shows that CI methods need to incorpo-
rate anomaly symptoms for performance diagnosis, and
the heterogeneity of anomaly symptoms decreases the
performance of CI methods. Based on the observations,
several research directions are proposed (Section VI).
In conclusion, this work not only deepens the under-
standing of CI methods against the challenges lying
in microservice performance diagnosis but also enables
new research directions, like performance diagnosis with
SCM models.

II. BACKGROUND

A. Coarse-grained and fine-grained diagnosis

Given a collection of services S and their performance
metrics M in a microservice system, we use M (s) to denote
metrics for service s, and m

(s)
i for an individual metric

(e.g., duration, container CPU utilization, server filesystem

utilization, etc) for service s. Then, a performance diagnosis
problem can be formulated as: giving a set of k metrics
M = {m(s1)

1 ,m
(s1)
2 ,m

(s2)
1 , ...,m

(sn)
k } in a system with n

services, once a service performance degradation is detected,
how can we pinpoint the root cause m(src)

rc that first identifies
the anomaly? We define a coarse-grained diagnosis as when
metrics are from service-level (e.g., duration) and only faulty
service src can be identified, and a fine-grained diagnosis
as when metrics from multiple data resources (e.g., service,
container, and server) and the detailed explanation of service’s
abnormality m(src)

rc can be identified.
The main objective of applying CI methods to performance

diagnosis is to identify the causal graph with giving (anoma-
lous) metrics, showing the anomaly propagation paths. For
example, Figure 2(a) shows four metrics (m1−m4) collected
from a microservices system, and Figure 2(b) shows a potential
causal graph, where m1 is the source of the anomaly.

B. Overview of causal inference methods

There is an extensive study on inferring causal relations
from observational data with CI methods in [5]. Here we
give a brief introduction of causal inference techniques.

Granger causality: Granger causality (GC) is one of the
most common methods for inferring the causal relationship
between time-series based on temporal precedence. A time
series X = {x1, x2, ..., xt, ...} is said to Granger-cause another
time series Y if including information about the past of X
significantly increases the prediction accuracy of the current
value yt of Y in comparison to predicting it based on the past
values of Y alone. For example, metric m1 is said to G-cause
m2 in Figure 2(c) if lag1 is detected between them.

GC [6] was initially formalized as a prediction model using
vector AutoRegressive (VAR). However, the used regression
model assumes linearity and stationarity, and the accuracy of
the causal inference is highly affected by predefined model
order (which specifies how many previous time points are
taken into account in the regression). There are some exten-
sions of the basic GC concept, such as modeling nonlinear
dependencies with transfer entropy, including multi-variable
in GC, etc. Nevertheless, GC is limited to lagged causal
dependencies and has known deficiencies in contemporaneous
effects in sub-sampled time series [7].

Causal network learning algorithms: One of the most
advanced theories with widespread recognition in discovering
causality is the Causal Bayesian Network (CBN), which uses
a Directed Acyclic Graph (DAG) to represent the causal
relationships. There are two main approaches for learning
a DAG: score-based approaches and constraint-based ap-
proaches. GES [8] is one score-based approach. It starts with
an empty graph, then greedily searches a Markov equivalent
class that maximizes a score function. The PC algorithm [9] is
one of the state-of-the-art constraint-based approaches. It starts
with a complete, undirected graph and recursively deletes
edges based on conditional independence tests. For example,
In Figure 2(d), the edge between metric m1 and m4 is
deleted as m4 ⊥ m1|m3. Once the skeleton is obtained with

m
1

m
3

m
2

m
4

m
1

m
2

m
4

m
3

m
1

m
2

m
4

m
3

m
1

m
2

m
4

m
3

m4⊥m1∣m3

m
1

m
2

m
4

m
3

m2=βm1+N m2

(a) Observational metrics (b) Causal graph (c) Granger causality (d) PC algorithm (e) Structural causal model

x

lag1

Figure 2: Overview of causal inference techniques.

conditional independence tests, edges are oriented with D-
separation.

Learning a DAG from data is highly challenging and
complex as the number of possible DAGs is super-exponential
to the number of nodes. When applied to a high dimensional
dataset, the runtime of the PC algorithm is exponential to the
number of nodes in the worst case. But if the true underlying
DAG is sparse, which is often a reasonable assumption, the
runtime is reduced to polynomial run. There are some other
methods, like FCI [9], which accounts for unobserved direct
common causes and can still partially identify which links
must be causal. PCMCI [10] incorporates time-order as a
constraint (causes precede effects) and utilizes a set of causal
orientation rules to identify causal directions.

Structural causal model (SCM): The key idea of SCM is
to use the invariance of structural equations without commit-
ting to a specific functional form [11]. It assumes that the value
of each variable is a deterministic function of its direct causes
in the graph and some independent factors, like unmeasured
disturbances. A general SCM is defined as Equation 1, where
Y is the effect, X is the direct cause of Y, Ny is an independent
factor, fy is a function which links a variable to its direct
causes can be any whatsoever.

Y = fy(X,Ny). (1)
Based on the concept of structural causal models, a set of

variants are proposed to capture the underlying cause-effect
relations. LiNGAM [12] assumes a linear function as: Y =
βX + Ny , where X is independent non-Gaussian noise Ny .
LiNGAM learns β such that X and Y − βX are independent
by applying independent component analysis (ICA). In our
example Figure 2(e), the effect metric m2 can be defined as
a function of causal metric m1 with an Non-Gaussian noise
Nm2. ANM [13] extends the LiNGAM model and assumes
that effect is a function of cause: Y = fy(X) + Ny , where
X ⊥⊥ Ny . The function is trained to map between m2 and
m1, then it tests whether X and Y − fy(X) are independent
using kernel independence tests.

III. METHODOLOGY

In this section, we introduce our experiment design which
includes three research questions (Section III-A), CI-based
performance diagnosis framework (Section III-B), selected
CI methods (Section III-C), and fault injection experiments
(Section III-D).

A. Experimental Design

To understand the performance of CI techniques on locating
root causes in microservices, we first formulate three re-
search questions, which demonstrate several dimensions of the
challenges (i.e, numerous metrics and heterogeneous anomaly
patterns) in microservice performance diagnosis; To cover the
challenge of a wide range of root causes, we conduct a set of
experiments by injecting three types of anomalies into multiple
different services. Next, we evaluate the performance of CI
methods according to the three research questions based on the
metrics data collected from microservice benchmarks. Lastly,
we study the computation overhead and scalability of selected
CI methods. The details of our experiment design are shown
in Table I. The three research questions are formulated as
follows:

RQ1: How do CI techniques perform on pinpointing the
faulty service that initiates the performance issue (coarse-
grained diagnosis)?

To get localize the faulty service that initiates the perfor-
mance issue, we apply CI methods on response times of all
services to construct the anomaly propagation among services.
The number of metrics is the same as the number of services,
and the heterogeneity of anomaly patterns in response times
is relatively low. In order to understand the performance of CI
methods against different numbers of metrics in a low-level
heterogeneity, we compare the performance of CI methods
under three types of feature reduction, including no feature
reduction, feature reduction, and ideal feature reduction. More-
over, we compare CI methods to a non-CI method which uses
the domain knowledge of service dependency graph.

RQ2: How do CI techniques perform on locating the culprit
metric that contributes to the faulty service’s abnormality with
giving the faulty service (fine-grained diagnosis with giving
the coarse-grained cause)?

We assume the faulty service is known, which can be
satisfied with our previous work [14] and other faulty service
localization methods [3], [15], then apply CI methods on
metrics exposed by the faulty service to identify the culprit
metric that leads to the service’s abnormality. The number of
metrics is relatively low, but the heterogeneity among them
increases as different types of metrics are likely to have
different anomaly patterns.

Table I: Research questions, metrics, benchmarks, feature reduction, non-CI comparison, and results

Research question Metrics Benchmark Feature reduction Non-CI comparison Results
RQ1 response times of all services sock-shop N Y Section IV-B

Y
Ideal

RQ2 metrics of the faulty service sock-shop N N Section IV-C

RQ3 metrics of all services sock-shop N N Section IV-D
Y

Overhead metrics of RQ3 sock-shop Y N Section IV-E1

Scalability metrics of RQ1 train-ticket Y Y Section IV-E2
metrics of RQ3 N

RQ3: How do CI techniques perform on locating the culprit
metric from all available metrics (fine-grained diagnosis)?

We use all observable metrics to pinpoint the culprit metric
that initiates the anomaly. The number of metrics is n times
larger than the number of metrics in RQ2, where n is the
number of services. Meanwhile, the heterogeneity of metrics
is in a high level as diverse anomaly patterns exist not
only in different types of metrics but also in heterogeneous
services. With a high-level heterogeneity, we also compare
the performance of CI methods against feature reduction.

B. Performance Diagnosis Framework

Figure 3 shows the framework for performance diagnosis
with CI techniques. The input of the framework is metrics
corresponding to the research questions (metrics for research
questions are listed in Table I) with an optional feature
reduction. Next, each CI method is employed to construct
an anomaly propagation graph. Finally, it ranks the nodes in
the graph and outputs a ranked list of potential root causes,
where the top items have the highest probability to be the root
causes. Based on the input metrics, the output root causes can
be coarse-grained and fine-grained.

CI
Technique

Metrics
Ranking

Root
Causes

Anomaly
propagation

graph

Feature
ReductionMetrics

Figure 3: Performance diagnosis framework with CI tech-
niques.

In our evaluation, we implement feature reduction with
an unsupervised machine learning algorithm called Birch
clustering [16] for identifying abnormal metrics, and utilize
the PageRank graph centrality algorithm, which is commonly
used in the state-of-the-art performance diagnosis approaches,
to rank the root causes. Notably, we evaluate CI techniques
with a basic ranking method as our focus is on comparing the
CI techniques. For the actual application of such techniques,
the performance can be improved with advanced ranking
methods [14], [17].

C. Causal Inference Techniques

The objective of this work is to understand the performance
of the class of CI techniques on microservice performance
diagnosis. To achieve this goal, we select six representative
CI methods from three categories, namely Granger causality,
causal network learning algorithms, and structural equation
models (SCM), based on their popularity, assumptions, and
availability of implementations. Notably, we use the pure form
of these methods rather than the tailed ones used in existing
approaches [15], [17] as we aim to understand the performance
of different types of CI methods on microservice performance
diagnosis in a general way, rather than to achieve a high
accuracy of diagnosis. The chosen CI methods are as follows:

• Granger causality (GC): GC [6] is a popular CI method
that has been adopted by many performance diagnosis
systems [4], [18] to build the causal graph. We use χ2 as
the Granger causality test.

• PC algorithm with partial correlation (PC-corr): PC-
corr is a version based on PC algorithm [19] that uses
Fisher’s z-transformation of the partial correlation to test
the (conditional) independence.

• PC algorithm with kernel (PC-kernel): PC-kernel is a ver-
sion of PC algorithm that uses kernel-based independence
criteria [20] which can deal with non-linear causal-effect
relationships and non-Gaussian noise. We use the Hilbert-
Schmidt independence criterion to test independence.

• Greedy Equivalence Search (GES): GES [8] is a score-
based CI method. We use "obs" which is an `0-penalized
Gaussian maximum likelihood estimator based on BIC
score in the implementation.

• Causal Additive models (CAM): CAM [21] is an SCM
method which identifies causal relations by fitting an
additive SEM with Gaussian error, where the causal-
effect relationships can be non-linear.

• Linear Non-Gaussian Acyclic Model (LiNGAM):
LiNGAM [12] is an SCM method that assumes linear
causal relationships but with non-Gaussian disturbance.

We conclude the chosen CI methods and their hyperparam-
eters in Table II. In addition, we implement a non-CI method
named Corr for comparisons, which uses the service depen-
dency graph directly and incorporates the anomaly symptoms
by setting weights with correlation coefficients.

Table II: The chosen causal inference methods and their hyperparameters

Method Category Assumptions Hyperparameters References
GC Time-lag Linearity AIC criteria for lag selection;

maxlag = 30s; χ2 test for granger
causality; p-value = 0.05.

package statsmodels [22]

PC-corr Constraint-based Gaussianity; Linearity CItest = gaussian, alpha=0.01 Causal discovery toolbox [23]

PC-kernel Constraint-based Non-Gaussianity; Non-linearity CItest = hsic_gamma, alpha=0.01 Causal discovery toolbox [23]

GES Score-based Gaussian; Linearity score=obs Causal discovery toolbox [23]

CAM SCM Gaussianity; Non-linearity score=nonlinear, cutoff=0.001, sel-
method=gamboost, pruning=False,
prunmethod=gam

Causal discovery toolbox

LiNGAM SCM Non-Gaussianity; Linearity nonparametric; max_iter=1000 ICALiNGAM in python
package lingam [24]

D. Benchmarks, Injected Faults, and Evaluation Metrics

The evaluation is based on metrics data collected from fault
injection experiments on microservice benchmarks.

Benchmarks: We select two representative microservice
benchmarks named sock-shop1 and train-ticket2 (one of
the largest microservice benchmarks), which simulate an e-
commerce website for selling socks and a train ticket booking
system, respectively. Sock-shop consists of thirteen microser-
vices and train-ticket has forty-one microservices. Both of
them are polyglot (e.g., Java, golang, Node.js, etc) and in-
tercommunicate using REST over HTTP. Comparing to sock-
shop, train-ticket has longer propagation paths and exposes a
larger number of metrics.

Injected Faults: We inject three types of faults that are
commonly used in the evaluation of the state-of-the-art perfor-
mance diagnosis approaches [3], [4] to different microservices
in the benchmarks: (1) Latency, we use a traffic control tool
named tc3 to delay the network packets; In our experiment,
we inject 200 milliseconds delay to each microservice; (2)
CPU hog, we use stress-ng4, a tool to load and stress compute
system, to exhaust CPU resources. For non-compute intensive
microservices, like payment in sock-shop, we exhaust its CPU
heavily with 99% usage and 95% for other microservices; (3)
Memory leak: we use stress-ng to allocate memory contin-
uously. For memory-intensive microservices, like carts and
orders in sock-shop, a high memory usage introduces a high
CPU usage, therefore we only provision 1VM to exhaust
memory resource, and 2 VMs for other microservices.

In order to inject the performance issues to microservices,
we update the existing Docker images by deploying the above
faults injection tools and trigger the anomalies by running the
corresponding commands inside the container. Each anomaly
lasts 1 minute and the system has 5 minutes to cold down
before another injection. To increase the generality, we repeat
the injection process 3-5 times for each fault and service.

Evaluation Metrics: We quantify the performance of CI
methods on diagnosing the root cause with two metrics:
precision at top k (PR@k) and average precision at top k
(AP@k). These two evaluation metrics are defined as follows:

1Sock-shop - https://microservices-demo.github.io/
2Train-ticket - https://github.com/FudanSELab/train-ticket
3tc - https://linux.die.net/man/8/tc
4stress-ng - https://kernel.ubuntu.com/ cking/stress-ng/

• Precision at top k denotes the probability that the top k
results given by an algorithm include the real root cause,
denoted as PR@k. A higher PR@k score, especially
for small values of k, represents the algorithm correctly
identifies the root cause. Let R[i] be the rank of each
cause and vrc be the set of root causes. We now define
PR@k for a set of given anomalies A as:

PR@k =
1

|A|
∑
a∈A

∑
i<k(R[i] ∈ vrc)
(min(k, |vrc|))

(2)

• Average Precision at k (AP@k) quantifies the overall
performance of an algorithm with an average of PR@k:

AP@k =
1

k

∑
1≤j≤k

PR@j. (3)

IV. EXPERIMENT RESULTS

In this section, we present the fault injection experiments
setup, the results of the three research questions, and the
discussion about the computation overhead and scalability of
the selected CI techniques.

Faults Injector

Load Generator

Microservice system

host

service

legends:

Microservice
Benchmark

Kubernetes

Monitoring:
- Prometheus
- Istio
- Cadvisor
- Node-exporter

Figure 4: An overview of our experimental testbed.

A. Testbed

We create a testbed using Kubernetes where we deploy
a microservice benchmark and a set of monitoring tools, as
shown in Figure 4. In our Kubernetes cluster, there is one
master node and multiple worker nodes (4 for sock-shop and
6 for train-ticket), including one worker node is dedicated for
data collection and the rest for the microservices. Each worker
node in the cluster consists of 4 vCPU and 15 GB memory. In
addition, one virtual machine (6 vCPU and 12 GB memory)
outside the cluster runs the load generator. In our deployment,
we limit the CPU resource to 1 vCPU and memory to 1 GB

Corr GC PC-corr
PC-kernelGES CAM LiNGAM

0.0

0.2

0.4

0.6

0.8

1.0
PR@1 PR@3 AP@5

(a) No feature reduction

Corr GC PC-corr
PC-kernelGES CAM LiNGAM

0.0

0.2

0.4

0.6

0.8

1.0
PR@1 PR@3 AP@5

(b) Feature reduction

Corr GC PC-corr
PC-kernelGES CAM LiNGAM

0.0

0.2

0.4

0.6

0.8

1.0
PR@1 PR@3 AP@5

(c) Ideal feature reduction

Figure 5: The results of PR@1, PR@3, and AP@5 for coarse-grained diagnosis against feature selections.

and set the replication factor to 1 for the microservice where
faults are injected.

Load Generator: We develop a closed-loop load generator
using Locust5, a distributed, open-source load testing tool
that simulates concurrent users in an application for each
benchmark. We customize the workload to reflect the behavior
of real users. For example, in sock-shop, more requests are
sent to the entry points front-end and catalogue, and fewer to
service shopping, carts, user and orders. In total, we provision
450-600 queries per second to both benchmarks.

Data Collection: We collect metrics from multiple layers
of the testbed with a set of monitoring tools, including service
mesh Istio6 for microservices, Cadvisor7 for containers, and
node-exporter8 for server nodes. Meanwhile, Prometheus9 is
deployed to collect metrics from above tools and is configured
to scrape metrics every 5 seconds, which is the highest
monitoring frequency feasible in our testbed with the existing
versions of the used tools.

B. RQ1: How do CI techniques perform on coarse-grained
diagnosis?

We evaluate the performance of CI techniques on locating
the faulty service that initiates the performance issues based on
the response times of all services. We first take all the metrics
without any feature reduction as the input of CI techniques,
and obtain the diagnosis result in terms of PR@1, PR@3, and
AP@5 shown in Figure 5(a). Overall, all the methods cannot
identify the faulty services well (with a maximum of 27%
in PR@1). This is because services are inter-dependent not
only in abnormal status but also normal status. These normal
dependencies in metrics introduce extra causal links in the
graph, which renders the graph centrality algorithm unable to
get the precise root cause.

Next, we apply a feature reduction which results in an
F1-score of 0.6 in anomaly detection. The diagnosis result
shown in Figure 5(b) shows that CI technique with feature
reduction improves on average 77.4% in PR@3, outperforming

5Locust - https://locust.io/
6Istio - https://istio.io/
7Cadvior - https://github.com/google/cadvisor
8Node-exporter - https://github.com/prometheus/nodeexporter
9Prometheus - https://prometheus.io/

this scenario with no feature reduction by 31.6%. In addition,
we can see that constraint-based methods achieve a higher
performance than non-CI method Corr, like PC-corr achieves
an improvement of 19% in terms of PR@1 over Corr. This
is because feature reduction with an F1-score of 0.6 includes
false positives, resulting spurious propagation paths in Corr.
In contrast, CI methods can eliminate parts of the spurious
paths, thus increasing the accuracy.

Finally, we evaluate the performance of CI methods with
an ideal feature reduction, where only the expected anomalies,
including the faulty service and its upstream services, are used
to construct the anomaly propagation graph. The performance
of all methods is shown in Figure 5(c). Overall, all the methods
achieve a higher performance when only true-positives are
detected as anomalies, on average, achieving 70.7% in PR@1,
improving 39% over feature selection with an F1-score of
0.6. Particularly, both Corr and PC-kernel achieves 100%
precision.

We note that the results reported here can be improved if
advance methods are applied according to the state-of-the-art
methods, like using metrics from multiple layers to score the
abnormality of services and assigning attributes to edges and
nodes before ranking that have been done in our previous work
MicroRCA [14].

Summary: Neither CI methods nor the non-CI method
based on service dependency graphs can identify the faulty
services well without feature reduction, as causal relations
exist among both normal and abnormal metrics. However,
their performance can be improved if feature selection can be
applied before causal inference. In particular, PC-kernel and
the non-CI method Corr achieve 100% in precision when only
true-positives are detected as anomalies. More importantly,
constraint-based CI methods, like PC-corr, are more robust
than knowledge-based non-CI method to false positives.

C. RQ2: How do CI techniques perform on fine-grained
diagnosis with giving the faulty service?

To address this research question, we apply CI methods
to the faulty service’s relevant metrics and evaluate their
performance on locating the culprit metrics that contributes
the service abnormality. Table III shows the performance of
each CI method on locating the culprit metric on different

Table III: The performance of CI methods on fine-grained
diagnosis with giving faulty service against different type of
anomaly.

Methods GC PC-corr PC-kernel GES CAM LiNGAM average
Latency

PR@1 0.24 0.15 0.15 0.21 0.09 0.21 0.175

PR@3 0.56 0.41 0.44 0.41 0.38 0.41 0.435

AP@5 0.55 0.45 0.49 0.44 0.36 0.44 0.455

CPU Hog

PR@1 0.23 0.63 0.73 0.17 0.2 0.17 0.355

PR@3 0.70 0.80 0.83 0.73 0.5 0.73 0.715

AP@5 0.66 0.85 0.87 0.63 0.45 0.63 0.68

Memory Leak

PR@1 0.32 0.11 0.11 0.18 0.21 0.18 0.19

PR@3 0.57 0.57 0.50 0.61 0.39 0.61 0.54

AP@5 0.56 0.51 0.49 0.54 0.46 0.54 0.517

types of anomalies in terms of PR@1, PR@3, and AP@5
when no feature reduction is applied. We can see that Granger
causality (GC) performs better than other methods on latency
issues. This is because latency anomalies propagate to other
resources through service performance degradation, which can
be reflected as time-lags among metrics, which satisfies the
assumption of GC.

Regarding CPU hog issues, most of the CI methods identify
the root cause with a higher performance except the CAM
method. This is because CPU issues reflect themselves as
strong correlations between cause and effect metrics and
weak correlations with non-causal metrics. Figure 6 shows
the maximum and minimum coefficient of determination r2

of linear regression (r_max, r_min) and Pearson correlation
coefficients (p_max, p_min) between the culprit metric and
other metrics. We can see that there is a significant difference
between the maximum and minimum values (95.7% of p_max
and 12% of p_min). Due to these obvious differences between
causal and non-causal metrics, it is easier to diagnose the root
cause. Meanwhile, due to this linearity between cause and
effect metrics in CPU hog issues, the CAM method performs
poorly for this type of anomalies as it models nonlinear causal
relations. Conversely, we can see that latency and memory leak
issues yield smaller differences between causal and non-causal
metrics, resulting in lower performance for those methods that
assume linearity.

For memory leak issues, we can see that LiNGAM and
GES perform better than other methods in terms of PR@3.

r_maxp_max r_min p_min
0.0

0.2

0.4

0.6

0.8

1.0

r2 /p
_c

oe
f

Latency

r_maxp_max r_min p_min

CPU Hog

r_maxp_max r_min p_min

Memory Leak

Figure 6: R-squared and Pearson correlation coefficient be-
tween culprit metric and other metrics of different types of
anomaly.

This is because memory leak issues manifest themselves in
multiple resource metrics (e.g., memory utilization and CPU
utilization), which introduces contemporaneous effects that
can be difficult to identify for other CI methods. LiNGAM is
a model that can capture such effects, thus it performs better
for memory leak issues.

Summary: Anomaly symptoms in service relevant metrics
vary with the type of anomaly, which violate or satisfy the
assumptions of a specific CI method. To exemplify, Granger
causality performs well on latency issues, SCM method
LiNGAM performs well on instantaneous effects in memory
leak issues, and most of the CI methods, particularly the
PC-algorithm, perform well for correlated anomaly symptoms
caused by CPU hogging. On average, PC-algorithm has a
better performance on the three types of anomalies.

D. RQ3: How do CI techniques perform on fine-grained
diagnosis with all observational metrics?

We address this research question by evaluating the per-
formance of CI on identifying the culprit metrics from all
observed metrics. Figure 7(a) shows the performance of culprit
metric diagnosis of each CI method in terms of PR@1, PR@5,
PR@10, and AP@15, where no feature reduction is applied.
In this experiment, we use a larger k = {1, 5, 10, 15} in the
evaluation metrics comparing to RQ1 and RQ2 (k = {1, 3, 5}).
This is because the number of potential root causes is much
larger, and a small k cannot differentiate the performance of
CI methods well. We note that LiNGAM is not included when
the number of metrics exceeds the sample size, for which the
method is not defined.

GC PC-corr
PC-kernel GES CAM

0.0

0.2

0.4

0.6

0.8

1.0
PR@1
PR@5

PR@10
AP@15

(a) No feature reduction

GC PC-corr
PC-kernel GES CAM LiNGAM

0.0

0.2

0.4

0.6

0.8

1.0 PR@1
PR@5

PR@10
AP@15

(b) Feature reduction

Figure 7: The results of PR@1, PR@5, PR@10, and AP@15
for fine-grained diagnosis against feature reductions.

Table IV: The performance of CI methods on different ranges of metrics in terms of PR@3.

RQ Metrics GC PC-corr PC-kernel GES CAM LiNGAM Average
RQ1 response times of all services 0.47 0.62 0.47 0.25 0.41 0.25 0.45

RQ2 metrics of culprit service 0.61 0.59 0.59 0.58 0.42 0.58 0.56
RQ3 metrics of all services with filtering 0.45 0.4 0.43 0.23 0.15 0.26 0.32

10 15 20 25 30
Number of metrics

0

10

20

30

Co
m

pu
ta

tio
n

tim
e

(s
) GC

PC-corr
PC-kernel

GES
CAM
LiNGAM

(a) Computation overhead

10 15 20 25 30
Number of services

5

10

15

20

Ra
nk

Corr
GC
PC-corr
GES
LiNGAM

(b) Coarse-grained diagnosis

10 20 30 40 50 60
Number of metrics

0

10

20

30

Ra
nk

GC
PC-corr
GES
LiNGAM

(c) Fine-grained diagnosis

Figure 8: Computation overhead, the rank of root causes against the number of metrics or services.

We can see that most of the methods cannot locate the
culprit metric well, with an average of 5.6% in PR@1,
and 20.6% in PR@5. This is because (1) higher-dimensional
features exaggerate the difficulty to infer a precise anomaly
propagation graph; (2) anomalies propagate across services
and also their metrics, resulting in many instantaneous effects
that are difficult to discover; (3) due to the heterogeneity of
services, their anomalous metrics commonly manifest diverse
symptoms. It is hard to capture various causal relations with
one CI method; (4) normal patterns of metrics also introduce
unexpected inference.

Next, we evaluate the performance of CI methods with
the feature reduction. Figure 7(b) shows the performance of
CI methods on reduced metrics. Overall, all the CI meth-
ods achieve an improvement after the feature reduction with
achieving an average 5.4% in PR@1 and 29.1% in PR@5 more
than no feature selection. Particularly, GC, PC-corr, PC-kernel,
and LiNGAM achieve an average of 57% in terms of PR@5.
With the feature reduction, some unexpected and uncorrelated
patterns can be removed from metrics, thus reducing the
inference to causal graph learning. Additionaly, we notice
that LiNGAM achieves the highest rank in PR@5 with 60%,
which indicates that LiNGAM has a higher performance in
identifying fine-grained causes in microservice systems.

Lastly, we compare the performance of CI methods on
different groups of metrics corresponding to our three research
questions. Table IV shows the performance in terms of PR@3
of each CI method. We can see that the performance of CI
methods on dealing with metrics of all services (RQ3) is
lower than others, as metrics in RQ3 include diverse anomaly
patterns not only from service-relevant metrics but also from
heterogeneous services. In comparison, most CI methods
achieve a higher performance in identifying the culprit metric
from metrics exposed by faulty service.

Summary: It is difficult to identify fine-grained causes from
all metrics, which is a mixture of many normal and abnormal

metrics (20.6% in PR@5). The performance of CI methods can
be improved with the feature reduction, but it does not rank
the root cause in the top 5 of the list well (49.7% in PR@5).
Instead, a drill-down approach that identifies the faulty service
first, then pinpoints the culprit metric that attributes to the
faulty service, is more promising to obtain the fine-grained
causes.

E. Computation overhead and scalability

Lastly, we discuss the overhead of the selected CI methods
and their scalability to the number of microservices and
metrics, which are important to an online and scalable mi-
croservice performance diagnosis.

Overhead: We analyze the computation overhead of each
CI method, varying with the number of metrics it handles.
Figure 8(a) shows the computation time of the six evaluated
CI methods (running on the same Intel Core i7 version server
with 8-core CPU and 16 GB memory) against the number
of metrics (from 10 to 30, and with 5 minutes of data
gathered from each metric, in total of 60 data points). We
can see that the computation time of CAM and PC-kernel
increase dramatically with the number of features, and GC also
becomes slightly slower when the number of metrics increases.

Scalability: We evaluate the scalability of CI methods on
the one the largest benchmark, named train-ticket, which has
longer propagation paths and a larger number of metrics.

We conduct the same fault injection experiments on the
service station in benchmark train-ticket, which has the longest
propagation paths. Then we apply four computation efficient
CI methods, including GC, PC-corr, GES, and LiNGAM on
metrics corresponding to RQ1 and RQ3.

We evaluate the performance of each CI method by mea-
suring the rank of root cause against different number of
metrics, which are produced by changing the threshold of
the feature reduction. Figure 8(b) and (c) show the average
rank of root cause (lower is better) against a different number
of service-level metrics and metrics of all services. We can

see from Figure 8(b) that the performance of Corr with the
service dependency graph by far outperforms all CI methods.
This is because the service station has a high in-degree
(upstream services), which results in high ranking accuracy
in Corr’s graph centrality algorithm. Meanwhile, we can see
that LiNGAM identifies the culprit service in the top 5 often
as the number of metrics increases. However, from Figure 8(c)
we can see that all CI methods have increasing ranks of root
causes with the increasing number of metrics, which is due
to the same issue of diverse anomaly symptoms mentioned in
Section IV-D.

Summary: The computation overhead of some CI methods,
such as PC-kernel and GES, increases drastically with the
number of metrics. When metrics have similar patterns, like
service-level metrics, LiNGAM can identify the faulty service
well even when the number of microservices is high. However,
identifying the root causes from all metrics in the system is
difficult due to the high-level heterogeneity.

V. RELATED WORK

In recent years, many approaches have been proposed to
diagnose problems in computer network [25], clouds [26]
and microservices. Overall, these approaches employ machine
learning [27], [28], pattern recognition [29], graph-based [15]
methods with observability from the system, such as logs [30],
requests execution tracing data [31], and metrics [4], to
diagnose the root cause. Here we review the graph-based
approaches based on CI techniques as follows.

Graph-based approach can not only identify the root cause
but also provide visibility of the issue with a visualized graph.
This kind of approach identifies the root cause by constructing
a causal graph from observational data, then inferring and
ranking the causes based on the graph. Microscope [3] and Mi-
croRCA [14] pinpoint a coarse-grained root cause by modeling
the anomaly propagation through service dependency graph
and service co-location.Both leverage the ground truth of the
service invocation paths and service deployment by parsing
network information or metrics from multi-layer in MSA.

In addition, graph-based approaches are widely employed
to locate root cause at a fine granularity [4], [15], [17], [18],
[32] by using causal inference methods to construct the causal
graph. Sieve [18] and Loud [4] construct causal graphs among
key performance indicates (KPIs) with Granger causality tests.
However, Granger causality tests assume time-lag and linearity
or nonlinearity are embedded in the cause-effect metrics,
which is quite restrictive for observational metrics in microser-
vice systems. Causeinfer [15] and [32] discover the causal
graph with PC algorithm based on conditional independence
test. Even though Causeinfer uses a cross-entropy G-squared
independence test to overcome the limitations of strict as-
sumptions that other independence tests require, contemporary
effects are difficult to identify with CI tests. Moreover, the
causal-effect relations are not sparse among metrics which
would add more overhead to the PC algorithm. A variant of
the PC algorithm which considers the time-order of metrics
is used in MicroCause [17] to identify a causality graph of

metrics. However, it would inherit both the limitations of time-
lag based method, and the high computation burden of the PC
algorithm. To illustrate these issues and compare methods, we
in this paper provide a benchmark for different types of CI
techniques on identifying the root causes of different types
of anomalies. We note that our experiment results can give
some insights for improving the efficiency of CI methods on
performance diagnosis.

VI. CONCLUSIONS

In this paper, we evaluate the performance of CI techniques
for microservice performance diagnosis using six representa-
tive CI methods from three categories. Our evaluation based
on a set of fault injection experiments shows that 1) CI meth-
ods need to incorporate anomaly symptoms through anomaly
detection or anomaly score to achieve high performance. In
addition, constraint-based CI methods are more robust to false
positives in anomaly detection than the domain knowledge-
based non-CI method; 2) The heterogeneity in service relevant
metrics depends on the type of anomaly. This makes the
performance of CI techniques vary with the types of anoma-
lies, among which PC-algorithm performs well for correlated
anomaly symptoms. 3) To identify fine-grained root causes that
indicates both the faulty service and its abnormality, a drill-
down approach that identifies the faulty service first then looks
into the detailed information from its relevant metrics, is better
than inferring from all metrics. 4) With an increasing number
of services or metrics, the runtime of CI method GES and PC-
kernel tends to increase drastically, and the precision of fine-
grained diagnosis decreases. However, CI method LiNGAM
can still perform well in identifying the faulty service that
initiates the performance issue.

Based on our findings, we propose the following research
directions to improve the efficiency of the application of CI
techniques for microservice performance diagnosis:

1) Automatic search or online tuning of CI methods: It
is hard to cover all types of anomalies with one specific CI
method due to the heterogeneous anomaly pattens. Therefore,
an automatic selection or online tuning of CI methods based on
the characteristics of the observational data can help improve
the performance of locating root causes from a wide range.

2) Learning causal graph with soft intervention: The con-
structed causal graph can be improved with the data collected
from soft intervening on microservice systems, such as restart
or scale-out. However, before applying any interventions, a
risk estimation of the intervention is required.

3) Employing expert knowledge as much as possible:
Collaborating CI methods with expert knowledge or ground
truth, like service dependency, can eliminate inference from
irrelevant or duplicated features, thus increasing the accuracy
of causal graph learning and performance diagnosis.

ACKNOWLEDGMENT

This work is part of the FogGuru project which has received
funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant
agreement No 765452. The information and views set out in this
publication are those of the author(s) and do not necessarily reflect the
official opinion of the European Union. Neither the European Union
institutions and bodies nor any person acting on their behalf may be
held responsible for the use which may be made of the information
contained therein.

REFERENCES

[1] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices
architecture enables devops: Migration to a cloud-native ar-
chitecture,” Ieee Software, vol. 33, no. 3, pp. 42–52, 2016.

[2] S. Newman, Building microservices: designing fine-grained
systems. " O’Reilly Media, Inc.", 2015.

[3] J. Lin, P. Chen, and Z. Zheng, “Microscope: Pinpoint per-
formance issues with causal graphs in micro-service environ-
ments,” in Service-Oriented Computing, C. Pahl, M. Vukovic,
J. Yin, and Q. Yu, Eds., 2018, pp. 3–20.

[4] L. Mariani, C. Monni, M. Pezzé, O. Riganelli, and R. Xin,
“Localizing faults in cloud systems,” in ICST, 2018, pp. 262–
273.

[5] A. Nichols, “Causal inference with observational data,” The
Stata Journal, vol. 7, no. 4, pp. 507–541, 2007.

[6] C. W. Granger, “Investigating causal relations by econometric
models and cross-spectral methods,” Econometrica: journal of
the Econometric Society, pp. 424–438, 1969.

[7] P. Spirtes and K. Zhang, “Causal discovery and inference:
Concepts and recent methodological advances,” in Applied
informatics, Springer, vol. 3, 2016, p. 3.

[8] D. M. Chickering, “Optimal structure identification with
greedy search,” Journal of machine learning research, vol. 3,
no. Nov, pp. 507–554, 2002.

[9] P. Spirtes, C. N. Glymour, R. Scheines, and D. Heckerman,
Causation, prediction, and search. MIT press, 2000.

[10] J. Runge, P. Nowack, M. Kretschmer, S. Flaxman, and D.
Sejdinovic, “Detecting and quantifying causal associations in
large nonlinear time series datasets,” Science Advances, vol. 5,
no. 11, 2019.

[11] J. Pearl et al., “Causal inference in statistics: An overview,”
Statistics surveys, vol. 3, pp. 96–146, 2009.

[12] S. Shimizu, P. O. Hoyer, A. Hyvärinen, and A. Kerminen,
“A linear non-gaussian acyclic model for causal discovery,”
Journal of Machine Learning Research, vol. 7, no. Oct,
pp. 2003–2030, 2006.

[13] P. Hoyer, D. Janzing, J. M. Mooij, J. Peters, and B. Schölkopf,
“Nonlinear causal discovery with additive noise models,”
Advances in neural information processing systems, vol. 21,
pp. 689–696, 2008.

[14] L. Wu, J. Tordsson, E. Elmroth, and O. Kao, “MicroRCA:
Root cause localization of performance issues in microser-
vices,” in NOMS 2020-2020 IEEE/IFIP Network Operations
and Management Symposium, IEEE, 2020, pp. 1–9.

[15] P. Chen, Y. Qi, P. Zheng, and D. Hou, “Causeinfer: Auto-
matic and distributed performance diagnosis with hierarchical
causality graph in large distributed systems,” in IEEE INFO-
COM 2014 - IEEE Conference on Computer Communications,
2014, pp. 1887–1895.

[16] A. Gulenko, F. Schmidt, A. Acker, M. Wallschläger, O. Kao,
and F. Liu, “Detecting anomalous behavior of black-box ser-
vices modeled with distance-based online clustering,” in 2018
IEEE 11th International Conference on Cloud Computing
(CLOUD), 2018, pp. 912–915.

[17] Y. Meng, S. Zhang, Y. Sun, R. Zhang, Z. Hu, Y. Zhang, C. Jia,
Z. Wang, and D. Pei, “Localizing failure root causes in a
microservice through causality inference,” in 2020 IEEE/ACM
28th International Symposium on Quality of Service (IWQoS),
2020, pp. 1–10.

[18] J. Thalheim, A. Rodrigues, I. E. Akkus, P. Bhatotia, R. Chen,
B. Viswanath, L. Jiao, and C. Fetzer, “Sieve: Actionable
insights from monitored metrics in distributed systems,” in
Middleware ’17, 2017, pp. 14–27.

[19] M. Kalisch and P. Bühlmann, “Estimating high-dimensional
directed acyclic graphs with the pc-algorithm,” Journal of
Machine Learning Research, vol. 8, no. Mar, pp. 613–636,
2007.

[20] A. Gretton, R. Herbrich, A. Smola, O. Bousquet, and B.
Schölkopf, “Kernel methods for measuring independence,”
Journal of Machine Learning Research, vol. 6, no. Dec,
pp. 2075–2129, 2005.

[21] P. Bühlmann, J. Peters, J. Ernest, et al., “Cam: Causal additive
models, high-dimensional order search and penalized regres-
sion,” The Annals of Statistics, vol. 42, no. 6, pp. 2526–2556,
2014.

[22] Granger causality tests. [Online]. Available: https : / / www.
statsmodels . org / stable / generated / statsmodels . tsa . stattools .
grangercausalitytests.html, (accessed: 27.12.2020).

[23] D. Kalainathan, O. Goudet, and R. Dutta, “Causal discovery
toolbox: Uncovering causal relationships in python.,” Journal
of Machine Learning Research, vol. 21, no. 37, pp. 1–5, 2020.

[24] LiNGAM. [Online]. Available: https : / / github . com / cdt15 /
lingam, (accessed: 27.12.2020).

[25] M. łgorzata Steinder and A. S. Sethi, “A survey of fault
localization techniques in computer networks,” Science of
computer programming, vol. 53, no. 2, pp. 165–194, 2004.

[26] O. Ibidunmoye, F. Hernández-Rodriguez, and E. Elmroth,
“Performance anomaly detection and bottleneck identifica-
tion,” ACM Computing Surveys (CSUR), vol. 48, no. 1,
pp. 1–35, 2015.

[27] Y. Gan, Y. Zhang, K. Hu, D. Cheng, Y. He, M. Pancholi, and
C. Delimitrou, “Seer: Leveraging big data to navigate the com-
plexity of performance debugging in cloud microservices,” in
ASPLOS ’19, 2019, pp. 19–33.

[28] L. Wu, J. Bogatinovski, S. Nedelkoski, J. Tordsson, and O.
Kao, “Performance Diagnosis in Cloud Microservices using
Deep Learning,” in AIOPS 2020 - International Workshop on
Artificial Intelligence for IT Operations, 2020.

[29] Á. Brandón et al., “Graph-based root cause analysis for
service-oriented and microservice architectures,” Journal of
Systems and Software, vol. 159, p. 110 432, 2020.

[30] P. Zhou, Y. Wang, Z. Li, X. Wang, G. Tyson, and G. Xie,
“Logsayer: Log pattern-driven cloud component anomaly di-
agnosis with machine learning,” in 2020 IEEE/ACM 28th
International Symposium on Quality of Service (IWQoS),
2020, pp. 1–10.

[31] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, D. Liu, Q. Xiang,
and C. He, “Latent error prediction and fault localization for
microservice applications by learning from system trace logs,”
in ESEC/FSE 2019, New York, NY, USA, 2019, pp. 683–694.

[32] J. Qiu, Q. Du, K. Yin, S.-L. Zhang, and C. Qian, “A causality
mining and knowledge graph based method of root cause
diagnosis for performance anomaly in cloud applications,”
Applied Sciences, vol. 10, no. 6, p. 2166, 2020.

