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Proof of Polignac's conjecture for gap equal to six (Proof that exist infinitely many sexy primes)

In this paper proof of the Polignac's Conjecture for gap equal to six is going to be presented. Consecutive primes with the gap six are known as sexy primes. The proof represents an extension of the recently proposed proof of the twin prime conjecture. It will be shown that sexy primes could be obtained through two stage sieve process, and that will be used to prove that infinitely many sexy primes exist.

Here it is going to be proved that m in (2) is represented by threads defined by odd prime numbers. Now, the form of (2) for some values of i will be checked. Case i = 1: m = 3j + 1, Case i = 2: m = 5j + 2, Case i = 3: m = 7j + 3, Case i = 4: m = 9j + 4 = 3(3j + 1) + 1, Case i = 5: m = 11j + 5, Case i = 6: m = 13j + 6 , Case i = 7: m = 15y + 7 = 5(3j + 1) + 2, Case i = 8: m = 17j + 8,

Introduction

In number theory, Polignac's conjecture states: For any positive even number g, there are infinitely many prime gaps of size g. In other words: there are infinitely many cases of two consecutive prime numbers with the difference g [START_REF] De Polignac | Recherches nouvelles sur les nombres premiers[END_REF].

In [START_REF] Polymath | Variants of the Selberg sieve and bounded intervals containing many primes[END_REF] it has been shown that exists infinitely many consecutive prime numbers that have gaps that are not bigger than 246. Recently, the Polignac's conjecture was proved for gaps of the size 2 and 4 [START_REF] Jankovic | A Proof of the Twin Prime Conjecture (together with the Proof of Polignac's Conjecture for Cousin Primes)[END_REF]. The problem was addressed in generative space, which means that prime numbers were not analyzed directly, but rather their representatives that are used to produce them. This paper represents an extension of the previous work [START_REF] Jankovic | A Proof of the Twin Prime Conjecture (together with the Proof of Polignac's Conjecture for Cousin Primes)[END_REF]. Here, the gap equal to six is going to be analyzed.

It will be shown that exist an infinite number of primes with the gaps of size 6 (also known as sexy primes). It will be shown that sexy primes could be generated by two stage recursion type sieve process. This process will be compared to the other two stage recursion sieve process that leaves infinitely many numbers. Fact that sieve process that generate sexy primes leaves more numbers than the other sieve process will be used to prove that infinitely many sexy primes exist. Using very similar line of reasoning, it can be shown that Polignac's conjecture for gaps equal to 8 holds, too.

Remark 1: In this paper any infinite series in the form c 1 •l ± c 2 is going to be called a thread defined by number c 1 (in literature these forms are known as linear factors -however, it seems that the term thread is probably better choice in this context). Here c 1 and c 2 are numbers that belong to the set of natural numbers (c 2 can also be zero and usually is smaller than c 1 ) and l represents an infinite series of consecutive natural numbers in the form (1, 2, 3, …).

Proof of the sexy prime conjecture

It is well known that all prime numbers bigger than 3 can be expressed by one of the following forms

ps k = 6k -1 pl k = 6k + 1, k ϵ N.
We will call numbers ps k -numbers in mps form and numbers pl k -numbers in mpl form.

If two consecutive prime numbers have the gap of the size 6 it is clear that both of those numbers have to be in mps form or both have to be in mpl form. In this paper we will analyze the case of sexy primes in mps form. The case of sexy primes in mpl form can be analyzed analogously.

Here, we are going to present a two stage process that can be used for generation of sexy primes in mps form. In the first stage prime numbers are going to be produced by removal of all composite numbers from the set of natural numbers. In the second stage, we are going to remove, number 2, all twin primes (since the prime numbers in mps form that have twin prime cannot have sexy pair from obvious reason), all prime numbers in mpl form that are left, and all prime numbers in mps form that have a bigger sexy odd neighbor (odd number that that is for 6 bigger than the prime of interest) that is a composite number. At the end, only the prime numbers in the mps form, that represent the smaller number of a sexy prime pair, are going to stay. Their number is equal to the half of the number of sexy primes in mps form, or approximately one quarter of all sexy primes (although a little bit bigger due to existence of sexy triplets and quadruplets -in these cases only the last number in the series is going to be removed from the set; here, it is considered that number of triplets and quadruplets sexy primes is very small, comparing to the number of sexy primes). It is going to be shown that that number is infinite. Second half of the sexy primes can be generated with a similar procedure that takes care about sexy primes in mpl form.

STAGE 1

One way to separate prime numbers from natural numbers is explained in this section.

First, we remove all even numbers (except 2) from the set of natural numbers. Then, it is necessary to remove the composite odd numbers from the rest of the numbers. In order to do that, the formula for the composite odd numbers is going to be analyzed. It is well known that odd numbers bigger than 1, here denoted by a, can be represented by the following formula a = 2n +1, where n ϵ N. It is not difficult to prove that all composite odd numbers a c can be represented by the following formula a c =2 (2 i j+i+ j)+1=2((2 j+1)i+ j )+1.

(

) 1 
where i, j ϵ N. It is simple to conclude that all composite numbers could be represented by product (i + 1)(j + 1), where i, j ϵ N. If it is checked how that formula looks like for the odd numbers, after simple calculation, equation ( 1) is obtained. This calculation is presented here. The form 2m + 1, m ϵ N will represent odd numbers that are composite. Then the following equation holds

2 m+1=(i 1 +1)( j 1 +1) ,
where i 1 , j 1 ϵ N. Now, it is easy to see that the following equation holds

m= i 1 j 1 +i 1 + j 1 2 .
In order to have m ϵ N, it is easy to check that i 1 and j 1 have to be in the forms i 1 = 2i and j 1 = 2j, where i, j ϵ N. From that, it follows that m must be in the form

m = 2ij + i + j = (2i + 1) j + i. (2) 
When all numbers represented by m are removed from the set of odd natural numbers bigger than 1, only the numbers that represent odd prime numbers are going to stay. In other words, only odd numbers that cannot be represented by (1) will stay. This process is equivalent to the sieve of Sundaram [START_REF] Aiyar | Sundaram's Sieve for prime numbers[END_REF].

Let us denote the numbers used for the generation of odd prime numbers with m2 (here we ignore number 2). Those are the numbers that are left after the implementation of Sundaram sieve. The number of those numbers that are smaller than some natural number n, is equivalent to the number of prime numbers smaller than n. We denote with π(n) number of primes smaller than n, than the following equation holds [START_REF] Rosser | Approximate formulas for some functions of prime numbers[END_REF] π( n)≈ n ln (n)

.

From [START_REF] Rosser | Approximate formulas for some functions of prime numbers[END_REF] we know that the following holds

π( n)> n ln ( n) , n⩾ 17. (3) 

STAGE 2

What was left after the first stage are prime numbers. With the exception of number 2, all other prime numbers are odd numbers. All odd primes can be expressed in the form 2n + 1, n ϵ N. It is simple to understand that their bigger sexy odd neighbor must be in the form 2n + 7, n ϵ N. Now, we should implement a second stage in which we are going to remove:

A. Number 2 (since 2 cannot make a sexy pair);

B. All twin primes -so number of numbers that is going to be left is number of primes minus the number of twin primes (number 2 is ignored, and that has no impact on the analysis that follows).

C. The rest of mpl primes -it is trivial to see that it can be done by one thread that is defined by 3so in this step it is going to be removed one half of the numbers that are left after step B; D. All odd primes in the form 2m + 1 such that 2m + 7, m ϵ N represents a composite number (all primes whose bigger "sexy" neighbor is composite number). If we make the same analysis, like in the Stage 1, it is simple to understand that m must be in the form

m = 2ij + i + j -3 = (2i + 1) j + i -3. ( 4 
)
All numbers (in observational space) that are going to stay must be numbers in mps form and they represent a smaller primes of the sexy prime pairs in mps form. What has to be noticed is that thread in (4) that is defined by prime number 3 (for i = 1) is not going to remove any additional number from the numbers left, since it would remove same numbers as the thread defined by 3 used in Stage 1.

Let us mark the number of sexy primes with π G6

. Also, let us define the number of numbers that is left after two consecutive implementations of Sundaram sieve as pd6. The numbers obtained after recursive implementation of two Sundaram sieves (where the second Sundaram sieve is implemented on prime numbers from which number 2 and all twin primes are removed) are going to be called sexy double primes. The second stage sieve that is identical to the first stage sieve can be obtained if the prime numbers left after the first stage and removal off 2 and all twin primes, are lined up next to each other and then the numbers are removed from the exactly same positions like in the first stage (sieve is implemented on indexes of prime numbers left after removal of number 2 and twin primes). In that case it is easy to understand that the following equation would holds (n ϵ

N) pd6 (n)≈ π( n)-π G2 ( n) ln ( π(n)-π G2 (n) ) , (5) 
where pd6(n) represents the number of sexy double primes smaller than some natural number n.

Since the mps sexy primes are obtained by implementation of the Sundaram sieve in the first stage and sieve that is similar to Sundaram sieve in the second stage, it can be intuitively concluded that numbers π G6 /4 (which is half of the sexy primes in mps form) and pd6 should have almost the same value. However, in the case of generation of mps sexy primes the second stage sieve defined by ( 4)

is not equivalent to the the first stage sieve since the second stage "Sundaram" sieve (defined by ( 4)) is applied on an incomplete set, that is depleted by previously implemented Sundaram sieve.

Here, it will be shown that number of sexy double primes pd6 is smaller than the number π G6 /4. In order to understand why it is so, we are going to analyze ( 2) and ( 4) in more detail.

It is not difficult to be seen that m in ( 2) and ( 4) is represented by the threads that are defined by odd prime numbers. For details see Appendix A. Now we are going to compare stages 2 for generation of sexy double primes and sexy primes in mps form, step by step, for a few initial steps (analysis can be easily extended to any number of steps). Starting point for the second stage is after removal of number 2 and all twin primes. Remove numbers defined by thread defined by 11 (obtained for i = 5) amount of numbers left is 9/10 of the numbers that are left after previous step 5

Remove numbers defined by thread defined by 11 (obtained for i = 5) amount of numbers left is 10/11 of the numbers that are left after previous step 5

Remove numbers defined by thread defined by 13 (obtained for i = 6) amount of numbers left is 11/12 of the numbers that are left after previous step It should be kept in mind that in the case of sexy double primes sieve is implemented on indexes of prime numbers that are left after removal of number 2 and all twin primes.

Values of the fractions presented in the Table 1 are asymptotically correct (in the finite case those values are only approximately correct -for details see [START_REF] Jankovic | A Proof of the Twin Prime Conjecture (together with the Proof of Polignac's Conjecture for Cousin Primes)[END_REF]). Here is important to understand that it is assumed, without proof, that Dirichlet's theorem on arithmetic progressions [START_REF] Dirichlet | Bewies des Satzes, dass jede unbregenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftluchen Factor sind, unendlich viele Primzahlen enthält[END_REF] holds on the subset of primes obtained from prime numbers after removal of all twin primes.

It can be noticed that threads defined by the same number in the first and the second column of Table 1 will not remove the same percentage of numbers. The reason is obvious -consider for instance the thread defined by 5: in the first column it will remove 1/5 of the numbers left, but in the second column it will remove 1/4 of the numbers left, since the thread defined by 5 in Stage 1 has already removed one fifth of the numbers (odd numbers divisible by 5 in observation space). So, only odd numbers (in observational space) that give residual 1, 2, 3 and 4 when they are divided by 5 are left, and there is approximately same number of numbers that give residuals 1, 2, 3 and 4, when the number is divided by 5 (the numbers of those numbers are asymptotically the same). The same way of reasoning can be applied for all other threads defined by the same prime in different columns (see [START_REF] Jankovic | A Proof of the Twin Prime Conjecture (together with the Proof of Polignac's Conjecture for Cousin Primes)[END_REF]).

From Table 1 can be seen that in every step, except step 1, threads in the second column will leave bigger percentage of numbers than the corresponding threads in the first column. This could be easily understood from the analysis that follows:

suppose that we have two natural numbers j, k such that j -1 ≥ k (j, k ϵ N ), then the following set of equations is trivially true

j+k-1⩾ 2k -j-k +1⩽ -2k jk-j-k +1⩽ jk-2k ( j -1)(k -1)⩽ ( j-2) k k-1 k ⩽ j-2 j-1
The equality sign holds only in the case j = k + 1. In the set of prime numbers there is only one case when j = k + 1 and that is in the case of primes of 2 and 3. In all other cases p(i) -p(i -1) > 1 , (i > 1, i ϵ N, p(i) is i-th prime number). So, in all cases i > 2

p(i-1)-1 p (i-1) < p (i)-2 p (i )-1 .
From Table 1 (or last equation) we can see that bigger number of numbers is left in every step of the second column then in the the first column (except 1 st step). From that, we can conclude that after every step bigger than 1, part of the numbers that is left in the second column is bigger than number of numbers left in the first column (that is also noticeable if we consider amount of numbers left after removal of all numbers generated by threads that are defined by all prime numbers smaller than some natural number). From previous analysis we can safely conclude that the following equation holds

π G6 4 > pd6 = lim n → ∞ pd6 (n) .
From previous inequality it can be concluded that the following equation must hold

π G6 > pd6= lim n → ∞ pd6 (n) .
Having in mind (3) and ( 5), we can say that for some n big enough the following inequality holds

pd6 (n)> π(n)-π G2 (n) ln ( π(n)-π G2 ( n) ) . ( 6 
)
It can be realized that n that is big enough is n ≥ 211, since 211 is the 17 th prime left, when number 2 and all twin prime numbers are eliminated from the prime numbers set. It is not difficult to understand that the number of primes that are left when 2 and all twin primes are eliminated, is infinite. That follows in an elementary way from the fact that the sum of the reciprocal of prime numbers is infinite and Brun's theorem [8]. From the fact that sum of reciprocals of all primes is infinite and fact that the sum of reciprocal of twin primes is finite [8] (also reciprocal of 2 is 1/2), follows that the sum of reciprocals of primes that are not twin primes or 2, is infinite. Since all reciprocal of primes are smaller than 1, it is easy to conclude that the number of primes that are not twin primes and 2, has to be infinite. Another, much easier way to understand it is the fact the asymptotic value of relative density of twin primes and all primes is zero. Having that in mind it is easy to show that the following holds

lim n → ∞ π(n)-π G2 (n) ln ( π( n)-π G2 ( n) ) =∞ .
Then, the following equation holds

pd6 = lim n → ∞ pd6 ( n)=∞ .
Now, we can safely conclude that the number of sexy primes is infinite. That concludes the proof.

Here we will state the following conjecture: (for n big enough, and under assumption that number of sexy k-plets (triplets and quadruplets; the quintuplets are not possible since one of five consecutive numbers that are six apart must be divisible by 5, so it is not a prime number -number 5 is the only exception, and could potentially belong to a sexy quintuplet, but that is not the case from obvious reasons; from the same reason that were previously explained, k-plets, where k > 5, do not exist) is much smaller than the number of sexy primes (this can be proved by using a procedure similar to the one used in this paper)), number of sexy primes is given by the following equation

π G6 (n) ∼ 4C 2 ⋅ ( ( π(n)-π G2 (n) ) ln ( π(n)-π G2 (n) ) + ( π( n)-π G4 (n) ) ln ( π(n)-π G4 ( n) ) ) ,
where C 2 represents the twin prime constant [START_REF] Hardy | Some Problems of 'Partitio Numerorum.' III. On the Expression of a Number as a Sum of Primes[END_REF], and π G4 (n) is number of cousin primes smaller than n and comes from the analysis of sexy primes in mpl form. Why it is reasonable to make such conjecture is explained in Appendix B. Since π G2 (n) ≈ π G4 (n) we have

π G6 (n) ∼ 8C 2 ⋅ ( ( π( n)-π G2 ( n) ) ln ( π(n)-π G2 ( n) ) ) ,
If we mark the number of primes smaller than some natural number n with π(n) ≈ f (n), where function f (n) gives good estimation of the number of primes smaller than n, than π G6 (n), for n big enough, is given by the following equation (under assumption π G2 (n) ≈ π G4 (n))

π G6 (n) ∼ 8C 2 ⋅ ( f ( f (n)-4C 2 f ( f ( n)) )) .
It can be seen that m is represented by the threads that are defined by odd prime numbers. From examples (cases i = 4, i = 7), it can be seen that if (2i + 1) represent a composite number, m that is represented by thread defined by that number also has a representation by the the thread defined by one of the prime factors of that composite number. That can be proved easily in the general case, by direct calculation, using representations similar to [START_REF] Polymath | Variants of the Selberg sieve and bounded intervals containing many primes[END_REF]. Here, that is going to be analyzed. Assume that 2i + 1 is a composite number, the following holds

2i + 1 = (2l + 1)(2s + 1)
where (l, s ϵ N). That leads to i = 2ls + l + s. In the same way this can be proved for (4).

Note: It is not difficult to understand that after implementation of stage 1, the number of numbers in residual classes of some specific prime number are equal. In other words, after implementation of stage 1, for example, all numbers divisible by 3 (except 3, but it does not affect the analysis) are removed. However, the number of numbers in the forms 3k + 1 and 3k + 2 (alternatively, 3k -1) are equal. The reason is that the thread defined by any other prime number (bigger than 2) will remove the same number of numbers from the numbers in the form 3k + 1 and from the numbers in the form 3k + 2. It is simple to understand that, for instance, thread defined by number 5, is going to remove 1/5 of the numbers in form 3k + 1 and 1/5 of the numbers in form 3k + 2. This can be proved by elementary calculation. That will hold for all other primes and for all other residual classes.

APPENDIX B.

Here, it is going to be explained how we can estimate the number of numbers smaller than some natural number n, that are left after implementation of sieves presented in Table 1. In order to estimate the number of numbers left by the implementation of sieve presented in column 2 of Table 1, by using the known number of the numbers left by implementation of sieve defined in column 1 of Table1, the asymptotic value of the ratio of the densities of the numbers left by the sieves in column 1 and 2 of Table 1 has to be calculated. The Sundaram's sieve presented in Table 1 is going to be marked as S1, while the sieve presented in column 2 is going to be marked as S2. Here, S1 represents a slightly modified Sundaram's sieve in the sense that prime numbers that define sieves are removed with the thread, too.

After removal of all composite even numbers and first k steps of S1, density of numbers left is given by the following equation

c k = 1 2 ∏ j= 2 k +1 (1- 1 p( j ) ),
where p(j) is j-th prime number.

In the case of S2 the density of numbers left after the first k-steps is given by the following equation 

c2 k = ∏ j=2 k+1 ( 1-1 p ( j)-1 ) = ∏
( n)= c2 k c k = ∏ 2< p≤ √(n) ( p -2 p -1 ) ∏ p≤ √(n ) ( p -1 p ) =2 ∏ 2< p≤ √(n ) ( p -2 p -1 )( p p -1 ) ≈ 2C 2 .
For n that is not big, gp(n) should be defined as

gp( n)= f COR ( n)⋅ 2C 2 ⋅ π( n)-π G2 (n) ln ( π (n)-π G2 (n) )
, where f COR (n) represents correction factor that asymptotically tends toward 1 when n tends to infinity. Here, the number of numbers left after S1 is approximated by n/ln(n) (see equation ( 3)).

For details about the precision of that approximation see [START_REF] Jankovic | A Proof of the Twin Prime Conjecture (together with the Proof of Polignac's Conjecture for Cousin Primes)[END_REF].
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  The simple calculation leads to m = (2l +1) (2s + 1) j + 2ls + l + s = (2l + 1)(2s+1)j + s(2l + 1) + l or m = (2l+1)((2s+1)j + s) + l which means m = (2l + 1)f + l, and that represents the already exiting form of the representation of m for the factor (2l + 1), where f = (2s + 1)j + s.

  j=2 k+1 ( p( j)-2 p ( j)-1 ) .At the beginning of the second stage only the prime numbers are left. The number of prime numbers smaller than n is denoted as π(n). Implementation of the sieve in the second stage on some set of size π(n)-π G2(n) should result in the number of numbers gp(n) that are defined by the following equation (for some big enough n)gp( n)≈ r S2S1 (n)⋅ π(n)-π G2 (n) ln ( π(n)-π G2 (n) ), where r S2S1 (n) is defined by the following equation (k is the number of primes smaller or equal to √n) r S2S1

Table 1

 1 Comparison of the stages 2 for generation of sexy double primes and sexy primes -

	threads defined by a few smallest primes		
	Step	Stage 2 -sexy double primes	Step	Stage 2 -sexy primes
	1	Remove even numbers (except 2)	1	Remove the rest of mpl prime numbers
				(defined by thread defined by 3)
		amount of numbers left is 1/2		amount of numbers left is 1/2
	2	Remove numbers defined by thread	2	Remove numbers defined by thread
		defined by 3 (obtained for i = 1)		defined by 5 (obtained for i = 2)
		amount of numbers left is 2/3 of the		amount of numbers left is 3/4 of the
		numbers that are left after previous step		numbers that are left after previous step
	3	Remove numbers defined by thread	3	Remove numbers defined by thread
		defined by 5 (obtained for i = 2)		defined by 7 (obtained for i = 3)
		amount of numbers left is 4/5 of the		amount of numbers left is 5/6 of the
		numbers that are left after previous step		numbers that are left after previous step
	4	Remove numbers defined by thread		
		defined by 7 (obtained for i = 3)		
		amount of numbers left is 6/7 of the		
		numbers that are left after previous step