
HAL Id: hal-03323024
https://hal.science/hal-03323024

Submitted on 26 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep multi-task mining Calabi-Yau four-folds
Harold Erbin, Riccardo Finotello, Robin Schneider, Mohamed Tamaazousti

To cite this version:
Harold Erbin, Riccardo Finotello, Robin Schneider, Mohamed Tamaazousti. Deep multi-task mining
Calabi-Yau four-folds. Mach.Learn.Sci.Tech., 2022, 3 (1), pp.015006. �10.1088/2632-2153/ac37f7�.
�hal-03323024�

https://hal.science/hal-03323024
https://hal.archives-ouvertes.fr

MIT-CTP/5319
UUITP-36/21

Deep multi-task mining Calabi-Yau four-folds

Harold Erbin∗1,2,3, Riccardo Finotello†3,4, Robin Schneider‡5, and Mohamed Tamaazousti§3

1Center for Theoretical Physics, Massachusetts Institute of Technology
Cambridge, MA 02139, Usa

2Nsf Ai Institute for Artificial Intelligence and Fundamental Interactions
3Université Paris Saclay, Cea, List

Palaiseau, F-91120, France
4Université Paris Saclay, Cea, Service d’Études Analytiques et de Réactivité des Surfaces (SEARS)

Gif-sur-Yvette, F-91191, France
5Department of Physics and Astronomy, Uppsala University

SE-751 20 Uppsala, Sweden

November 16, 2021

Abstract

We continue earlier efforts in computing the dimensions of tangent space cohomologies of Calabi-Yau
manifolds using deep learning. In this paper, we consider the dataset of all Calabi-Yau four-folds con-
structed as complete intersections in products of projective spaces. Employing neural networks inspired
by state-of-the-art computer vision architectures, we improve earlier benchmarks and demonstrate that
all four non-trivial Hodge numbers can be learned at the same time using a multi-task architecture.
With 30 % (80 %) training ratio, we reach an accuracy of 100 % for h(1,1) and 97 % for h(2,1) (100 % for
both), 81 % (96 %) for h(3,1), and 49 % (83 %) for h(2,2). Assuming that the Euler number is known, as
it is easy to compute, and taking into account the linear constraint arising from index computations,
we get 100 % total accuracy.

Contents

1 Introduction 1

2 Related works 3

3 Exploring the dataset 3
3.1 CICY four-folds 3
3.2 Classifying Hodge numbers 4

4 CICYMiner 7
4.1 Preprocessing and Evaluation

Strategy 8
4.2 Training 9
4.3 Results 9
4.4 Ablation study 9
∗erbin@mit.edu
†riccardo.finotello@cea.fr
‡robin.schneider@physics.uu.se
§mohamed.tamaazousti@cea.fr

5 Conclusion 11

References 13

1 Introduction
There is a growing body of research that applies
modern techniques from data science to problems
in string theory [1]. The reasons for that are two-
fold. On the one hand, standard computations
in string theory are hard, in particular they can
be NP-hard or even undecidable [1–3]. Due to
double exponential scaling laws in terms of com-
putational resources with respect to the input pa-
rameters, string theory calculations often fail to
finish in a reasonable amount of time even on
modern machines. On the other hand, there are
too many configurations to consider. The largest
estimates put a bound of O(10272 000) when con-
sidering F-theory compactified on a Calabi-Yau
four-fold [4]. Parsing that many configurations

ar
X

iv
:2

10
8.

02
22

1v
2

 [
he

p-
th

]
 1

5
N

ov
 2

02
1

mailto:erbin@mit.edu
mailto:riccardo.finotello@cea.fr
mailto:robin.schneider@physics.uu.se
mailto:mohamed.tamaazousti@cea.fr

is impossible, thus computational smart ways are
needed to select potentially interesting vacuum
configurations [5, 6].
An important key component in realistic string

theory compactifications are Calabi-Yau mani-
folds. These manifolds have been studied exten-
sively in the past, and thus they comprise some
of the best datasets within the string theory com-
munity [7]:

1. The first widely used dataset are the 7890
complete intersection Calabi-Yau, in short
CICY, manifolds in three complex dimen-
sions by Candelas et al. [8–10].

2. The largest dataset, the Kreuzer-Skarke list,
contains 473 million reflexive polytopes in
four dimensions. These encode a toric am-
bient space, from which one obtains Calabi-
Yau three-folds by considering the hypersur-
face defined by the canonical bundle [11].

3. CICY four-folds have also been classified and
amount to 921 497 distinct configuration ma-
trices [12, 13].

The incredible progress in data science, in par-
ticular image recognition, over the past decade
can in part be attributed to large and clean
datasets [14]. They allowed researchers to bench-
mark their algorithms and let the best ones com-
pete against each other, which in turn resulted
in rapid development and ever improving neural
network architectures [15–19]. We will proceed in
a similar vein in this paper. The number of inde-
pendent Kähler moduli of CICY three-folds has
been successfully analyzed using neural networks
in the past. These benchmarks were initiated by
He, who proposed to treat their configuration ma-
trices as a simple two-dimensional image [20].
In previous works [21, 22], two of the authors

have shown that learning h(1,1) is possible to great
accuracy, but the limited training data is not
sufficient to generalize the learning to the num-
ber of complex structure moduli h(2,1). Com-
puting Hodge numbers of Calabi-Yau manifolds
is of great importance, since cohomology com-
putations are an integral part of string theory
compactifications. They for example determine
the number of massless fermion generations in
string theory compactifications. Thus, the goal is
to identify performant algorithms in these well-
studied datasets of tangent bundle cohomologies,
which can then generalize to more complicated
vector bundles.

In the rest of this paper, we will present two
different approaches for learning Hodge numbers
of CICY four-folds. First, we will treat the prob-
lem as a standard image classification task where
the Hodge numbers are the image labels. For this
purpose, we employ an Inception module based
architecture [16–18, 21, 22] and show that a sin-
gle set of hyperparameters generalizes well to all
four Hodge numbers, yielding a mean accuracy
over all Hodge numbers of 85 %. This suggests
that we could scale the approach to a multi-task
learning problem.
Subsequently, we show that all Hodge num-

bers can be learned simultaneously by utiliz-
ing a branched network with hard parameter
sharing [23, 24] between the task specific sub-
structures, which ultimately are responsible for
learning the distributions of the Hodge numbers.
The multi-task approach has several advantages,
with respect to single-task architectures. From a
technical side, multi-task learning has been shown
to improve the overall performance of the mod-
els [23]. From a physics and algebraic geome-
try perspective, a single model hints towards the
definition of a unified framework from which it
may be possible to extract meaningful theoret-
ical information, such as closed form formulas.
The model we developed is capable of learning
at the same time, and without rescaling, the four
dimensions of the tangent space cohomologies of
CICYs, accounting for the heavy class imbalance
present in the dataset. This multi-task Ansatz
leads to perfect performance on two of the four
Hodge numbers and accuracy of 96 % and 83 %
for h(3,1) and h(2,2) respectively, with a training
ratio of 80 %.
The outline of this paper is as follows. In Sec-

tion 2, we discuss related works of learning coho-
mologies and earlier results on Calabi-Yau three-
folds. Section 3 explores the dataset of CICY
four-folds and presents the results of our clas-
sification experiments. This is followed by our
main results in Section 4 in which we introduce
our deep learning model CICYMiner, a multi-
task regression model based on chained Inception
modules that predicts all four Hodge numbers at
once. We conclude in Section 5 with some out-
looks. Python codes for this paper can be found
at:

• https://github.com/robin-schneider/
cicy-fourfolds

• https://github.com/thesfinox/
ml-cicy-4folds

2

https://github.com/robin-schneider/cicy-fourfolds
https://github.com/robin-schneider/cicy-fourfolds
https://github.com/thesfinox/ml-cicy-4folds
https://github.com/thesfinox/ml-cicy-4folds

The list of packages used throughout the
development comprises pandas [25, 26] and
numpy [27] for data operations, matplotlib [28]
and seaborn [29] for visualisation, and
tensorflow [30] for the deep learning algo-
rithms.

2 Related works

The first paper utilizing machine learning algo-
rithm to predict various different cohomology di-
mensions was written by He [20]. The author
tackled the problem of predicting Hodge num-
bers of CICY three- and four-folds, but also line
bundles over these manifolds [20]. These stud-
ies have later been extended to systematically in-
vestigate CICY three-folds with linear regression,
support vector machines, and dense neural net-
works achieving accuracies ranging from 37 % to
85 % [31, 32] when using 70 % training data. The
benchmarks have subsequently been improved by
using an Inception-based architecture to accu-
rately predict 97 % of the test data using only
30 % training data, essentially solving the prob-
lem of predicting h(1,1) [21, 22]. This work was
supplemented by more methodological studies in
which the dataset was augmented with various
other (topological) quantities. Other works on
CICY three-folds include [33, 34].

An initial exploration of CICY four-folds has
been started by He and Lukas [20, 35]. The au-
thors used a simple dense neural network and
were able to predict h(1,1) with an accuracy of
96 %. This promising early result showed that the
increased size of the dataset improves the perfor-
mance significantly. However, in line with previ-
ous studies of h(2,1) on CICY three-folds, the au-
thors were unable to accurately predict the value
of the other Hodge numbers, reaching an accuracy
of only 27 % for h(3,1). They were successful in im-
proving this accuracy for a subset of the dataset
by considering all configuration matrices of shape
(4, 4) and using feature enhancement. This feat
was achieved by supplementing the training sam-
ples with all up to degree four monomials of the
defining polynomials and pushed the accuracy to
95 %.

The Kreuzer-Skarke list has also been the tar-
get of deep learning algorithms. In order to iden-
tify equivalent Calabi-Yau manifolds coming from
different triangulations, Demirtas et al. trained
residual neural networks to learn the triple inter-
section numbers [36]. They reached an almost

perfect performance, which allowed them to cut
down the computation time from seconds to mi-
croseconds. This in turn made it possible to de-
rive an upper bound on the number of distinct
Calabi-Yau manifolds arising from the polytope
with the most triangulations, setting it to 10428.

There are several ongoing projects in learn-
ing Hodge numbers of line bundle cohomologies.
These can be separated into two different ap-
proaches. First, learning the cohomology di-
mensions directly, for example on del Pezzo sur-
faces [37] and on CICY three-folds [6, 20, 38,
39]. Second, neural networks have been used to
classify cones in the cohomology-dimension land-
scape [40–42]. The Hodge numbers belonging to
these cones can all be described by the same an-
alytic equations [43].

3 Exploring the dataset

In this section, we will introduce and explore com-
plete intersection Calabi-Yau four-folds. We then
proceed to learn the four non-trivial Hodge num-
bers independently using neural networks with an
Inception inspired architecture [16–18].

3.1 CICY four-folds

A complete intersection Calabi-Yau manifold is
fully defined by its configuration matrix. This
matrix encodes the polynomial degrees and am-
bient space factors in the following way:

M =

 n0 p0
1 · · · p0

K
...

...
nr pr1 · · · prK

χ

. (3.1)

Each pij ∈ N is the degree of the j-th polyno-
mial in the homogeneous coordinates of the i-th
complex projective space with dimension ni. The
Calabi-Yau condition is translated in the config-
uration matrix by requiring that

ni + 1 =
K∑
j=1

pij . (3.2)

The Euler number χ is given in the subscript
and can be directly computed by integrating the
fourth Chern class or from the four non-trivial
Hodge numbers as

χ = 4 + 2h(1,1) − 4h(2,1) + 2h(3,1) + h(2,2). (3.3)

3

0 5 10 15 20 25
h(1, 1)

101

102

103

104

105
co

un
t

0 50 100 150 200 250 300 350 400
h(3, 1)

100

101

102

103

104

105

co
un

t

0 5 10 15 20 25 30
h(2, 1)

101

102

103

104

105

106

co
un

t

200 400 600 800 1000 1200 1400 1600 1800
h(2, 2)

100

101

102

103

104

105

co
un

t

Figure 1: The plots show the histograms with logarithmic y-axis of the four non-trivial Hodge numbers.
In the first row we have on the left the distribution of h(1,1), to the right of h(2,1). In the bottom row
h(3,1) is presented to the left and h(2,2) to the right.

A second linear relationship between the Hodge
numbers can be derived by combining the indices
χq = χ(M,∧qTM∗) [13] leading to

44 = −4h(1,1) + 2h(2,1) − 4h(3,1) + h(2,2). (3.4)

The configuration matrices have been generated
from an initial set of matrices and subsequently
applying the splitting procedure [8, 12], finding
new manifolds and discarding equivalent descrip-
tions. In this way, a total of 921 497 topologi-
cal distinct types of CICY manifolds were found,
with 905 684 of them not being direct products of
lower dimensional manifolds.
The Hodge number distributions are presented

in Figure 1. The mean, maximum and minimum
values are

〈h(1,1)〉 = 10.124
1 , 〈h(2,1)〉 = 0.81733

0 ,

〈h(3,1)〉 = 39.6426
20 , 〈h(2,2)〉 = 2411752

204 . (3.5)

Notice that the distributions of the Hodge num-
bers are, in general, imbalanced: for instance,
h(2,1) vanishes for 70 % of the configuration ma-
trices in the dataset. We find that 54.5 % are
favourable (i.e. h(1,1) is equal to the number of
projective spaces), less than the 61.9 % for CICY

three-folds.1 Hence, for slightly more than half
of the cases we have h(1,1) = r, the number of
projective ambient space factors. This number is
important as it should be the baseline to compare
any algorithm against.

3.2 Classifying Hodge numbers

Problems in image recognition are usually formu-
lated as classification tasks. Take the ImageNet
dataset which consists of 14× 106 data points
with over 21 000 classes. That is about one order
of magnitude larger, both in samples and classes,
than predicting h(2,2). In this section, we will
train one neural network to classify each of the
four non-trivial Hodge numbers independently.
We will use an architecture based on Inception
modules [16–18] as was done for the best per-
forming predictors of the CICY three-fold Hodge
numbers [21, 22]. This specific architecture has
been shown to lead to the best performance on the

1There exists another dataset of CICY three-folds in
which 99.1 % are favourable [10], but no such feature en-
hanced data is available for the four-folds. However, the
results from [21, 22] show that using favourable matrices
helps mostly in computing h(1,1).

4

input feature

H

W

F

kernel

W x 1 x F

kernel
1 x H x F

W

W

H

H

F'

F' C

H

W

2 F'
H

W

2 F'

BN

output feature

Figure 2: An Inception module can be decomposed into the different convolutional kernels scanning over
the width (W) and height (H) with filters (F). They are subsequently concatenated (C) and followed
by a batch normalization (BN) layer. The Inception module is the main building block of both the
CICYMiner and the classification architectures.

configuration matrices when using 1d kernels of
maximal size. This partially reflects the fact that
scanning coordinates in each projective space and
a single variable over all projective spaces helps in
better learning the connections between the dif-
ferent hypersurfaces of the CICYs (see Figure 2).
The choice of maximal 1d kernel is, in fact, mo-
tivated by the mathematical machinery required
to compute Hodge numbers. There, one has to
compute the dimension of ambient space coho-
mology group representations, which are stacked
for each projective space. These ambient space
representations arise after splitting up the Koszul
resolution

0→ ∧KN ∗ → ...→ N ∗ → OA → OA|M → 0 .
(3.6)

which contains the antisymmetric products ∧sN ∗
of the defining hypersurfaces (N denotes the nor-
mal bundle, which contains the information about
the polynomial degrees pij). Moreover, using an
Inception based architecture lead to a perfor-
mance increase of misclassification rate on the Im-
ageNet dataset from 15.3 % for AlexNet [15] using
a standard convolutional architecture to 6.7 % for
the first version of GoogLeNet [16].
We proceed as in earlier studies [21, 22] by con-

sidering different train:val:test splits with respec-
tively 10 %, 30 %, 50 % and 80 % training and
10 % validation data. The architecture hyper-
parameters have been optimized using Bayesian
Optimization Hyperband [44, 45] on the problem
of predicting h(3,1). The same hyperparameters

have then been used to also classify the other
three Hodge numbers.
We opted to present the results of neural net-

works with a comparable number parameters
840 000 ± 10 000 to the number of configuration
matrices. This architecture comprises four In-
ception modules, with respectively 3 × 64 and
16 filters, utilizing batch normalization for better
gradient propagation into the earlier layers [16–
18, 46]. Figure 2 decomposes an Inception mod-
ule into its different ingredients. The convolu-
tional kernels scan over the configuration matrix
dimensions, i.e. the maximal number of possible
projective ambient spaces (16) and the maximal
number of polynomial constraints (20). The In-
ception modules are followed by three dense lay-
ers with 16 units, ReLU activation function and
dropout layers with a 0.2 rate to contrast overfit-
ting. Furthermore, we employ `1 (10−5) and `2
(10−6) regularization for all weights in the net-
work. The last layer contains a softmax activa-
tion function with {h(i,j)

min , . . . , h
(i,j)
max} classes. The

network is trained with Adam optimizer and an
initial learning rate of 4× 10−4 on a 32 mini-
batch size. This architecture is still trainable in
a reasonable amount of time on a desktop com-
puter with access to a GPU. In comparison to
earlier studies [21, 22], we found that leaving the
outliers inside the training data does not nega-
tively impact the results.
Figure 3 shows in the top row the training loss

and accuracy, and in the bottom row validation
accuracy tracked over the training process and

5

0 20 40 60 80 100
budget

10 1

100

lo
ss

training data

Hodge
h(1, 1)

h(2, 1)

h(3, 1)

h(2, 2)

0 20 40 60 80 100
budget

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

training data

Hodge
h(1, 1)

h(2, 1)

h(3, 1)

h(2, 2)

0 20 40 60 80 100
budget

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

validation data

Hodge
h(1, 1)

h(2, 1)

h(3, 1)

h(2, 2)

10 20 30 40 50 60 70 80
training percentage

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ac
cu

ra
cy

test data

Hodge
h(1, 1)

h(2, 1)

h(3, 1)

h(2, 2)

Figure 3: The first row shows training loss and accuracy plotted against the computation budget. The
error bars represent the upper and lower bounds for the four different training ratios. In the second
row, we plot on the left the validation accuracy and on the right the test accuracy of the best performing
models for the different training ratios.

test accuracy for the best-performing model. The
best-performing model is the one with the highest
validation accuracy, which one would get when
employing early stopping on that metric. It is
important to track the best performing models
as sometimes the loss starts increasing again as
visible from the h(2,1) curve. The error bars are
computed from the different training ratios and
the budget on the x-axis is given by

budget = number of epochs

× percentage of training data
80 . (3.7)

We observe that h(1,1) is predicted with almost
perfect accuracy for any training ratio, while the
accuracies of the other three Hodge numbers im-
prove with more training data. However, when
the training data contains more than 30 % of the
samples one has diminishing returns for the accu-
racy. This is in line with previous observations for
the CICY three-folds [21, 22]. Even though the
hyperparameters have been optimized to learn
h(3,1), it is the worst performing value. This is
interesting as Figure 1 shows that the distribu-

h(1,1) h(2,1) h(3,1) h(2,2)

10 % 0.99 0.87 0.59 0.62
30 % 1.00 0.91 0.67 0.73
50 % 1.00 0.94 0.68 0.75
80 % 1.00 0.95 0.70 0.75
mean 1.00 0.92 0.66 0.71

Table 1: Comparison of the test accuracy for dif-
ferent training ratios.

tion of h(2,2) spans a longer range, contains more
outliers and has a thicker tail. The plots show
that we avoid overfitting to the training data.
Table 1 collects the accuracy at different train-

ing ratios and the mean-value for the four differ-
ent training ratios of the best performing model.2
In the training process, we employed learning rate
decay with a factor of 0.4, when the validation ac-

2Using a five-fold increase in network weights (4 × 106)
one is able to improve the accuracy of h(3,1) and h(2,2) to
over 80 %. However, this comes at the cost of significant
more training time and we then enter the regime where
there are more weights than samples in the dataset.

6

con�iguration
matrix

16

20

In
ce

p
ti

o
n

 M
o

d
u

le

128

�ilters

128

�ilters

In
ce

p
ti

o
n

 M
o

d
u

le

In
ce

p
ti

o
n

 M
o

d
u

le

64

�ilters

In
ce

p
ti

o
n

 M
o

d
u

le

128

�ilters

In
ce

p
ti

o
n

 M
o

d
u

le

128

�ilters

In
ce

p
ti

o
n

 M
o

d
u

le

128

�ilters

16 �ilters

Inception

Module

32 �ilters

Inception

Module

h1,1

h1,1
aux

128 �ilters

Inception

Module

64 �ilters

Inception

Module

32 �ilters

Inception

Module

64 �ilters

Inception

Module

64 �ilters

Inception

Module

32 �ilters

Inception

Module

h2,1

h2,1
aux

Dense

Layer

4 units

BND

32 �ilters

Inception

Module

32 �ilters

Inception

Module

Inception

Module

Inception

Module

h3,1

h3,1
aux

64 �ilters 32 �ilters

Dense

Layer

4 units

128 �ilters

Inception

Module

32 �ilters

Inception

Module

Inception

Module

Inception

Module

h3,1

h3,1
aux

128 �ilters 32 �ilters

Dense

Layer

4 units

Inception

Module

64 �ilters

BN

BN

D

D

Figure 4: The basic building block of CICYMiner are Inception modules. The architecture is built to
enable the hard parameter sharing in the bottom layer, in order to construct a common representation
of the input. The task specific sub-structures then replicate the behaviour through an auxiliary branch,
which further uses dense layers, batch normalization (BN) and dropout (D) to control overfitting. The
final model predicts all Hodge numbers at once. The composition of the Inception modules are shown
in Figure 2.

curacy did not improve for epochs equivalent to
0.15 × budget. This is clearly visible from the
loss and accuracy plots in the top row and ac-
counts for the down- and up-stairs steps. Sum-
marizing the results, we find that the hyperpa-
rameters found for predicting the worst perform-
ing Hodge number h(3,1) also generalize well to
the other three Hodge numbers. This is a first
indication that the prediction of Hodge numbers
could benefit from multi-task learning.

4 CICYMiner

In the previous section, we showed that a classi-
fication task based on Inception modules is effec-
tive in learning the Hodge numbers. As the op-
timization was conducted for h(3,1), rather than
an ad hoc structure for each output, the good re-
sults motivate further study on learning several
Hodge numbers at the same time. In this sec-
tion, we focus on a regression model for two main

reasons. First, in general computations of vector
bundle cohomologies, the predictions may not be
bounded, thus an inference model has to be able
to adapt by learning an approximation function,
rather than classification probabilities. Second,
previous studies showed that regression models
on a similar task were more efficient than classi-
fication [21].

Figure 4 shows the schematic of the architec-
ture used in this section. The architecture en-
ables multi-task learning by hard parameter shar-
ing over an initial structure capable of learning a
shared representation of the input. This, in gen-
eral, has proven efficient at increasing the learn-
ing power of a single network, rather than dif-
ferentiating and optimizing several, and to re-
duce the risk of overfitting [23, 47]. The median
layers of the network replicate a similar multi-
tasked structure on the same learning objective:
in fact, one branch of the sub-structures learning
the Hodge numbers is an auxiliary architecture

7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
training ratio

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
ac

cu
ra

cy

h(1, 1)

h(2, 1)

h(3, 1)

h(2, 2)

0 50 100 150 200 250 300
epochs

100

101

lo
ss

 (m
ea

n
sq

ua
re

d
er

ro
r)

training
validation

Figure 5: On the left, we show the final test accuracy of CICYMiner for the four different training
ratios. On the right, we present the loss function at 80 % training ratio, smoothed with a running
average over 20 epochs.

used to reinforce the stability of the represen-
tation. No additional regularization was added
to the model, apart from a 0.2 dropout rate be-
fore the fully connected networks in the auxiliary
branches. Such an architecture is thus capable of
“mining” richer and more diverse features from a
shared representation of the input by using dif-
ferent layer combinations. The model is partly
inspired by a recently proposed DeepMiner [48]
model, used for people re-identification tasks, ca-
pable of learning more information by using dif-
ferent branched structures and layers. As such,
we refer to our model as CICYMiner : we leverage
the DeepMiner architecture with the advantages
of multi-task learning in order to learn a family
of related tasks, which however present compli-
cated and strongly diverse distribution functions
(see Figure 1). The role of the auxiliary branches
in CICYMiner (see Figure 4) is mainly related
to feature mining, that is the ability to extract
as much information as possible from intermedi-
ate representations, in order to guide the learn-
ing of the weights during learning. The auxiliary
branches have, in fact, slightly different architec-
tures with respect to the main branches, in order
to perform different transformation on the inputs.
An added value of the auxiliary branches is the
duplication of the outputs, which in this multi-
task context can improve overall performance,
with regard to outlier and overfit control.

4.1 Preprocessing and Evaluation
Strategy

We use the same dataset presented for the classi-
fication objective in the previous section. Given
the strong class imbalance, we select the training
set by using a stratified approach on h(2,1) in or-
der to preserve the distribution of the samples.
The validation set is then chosen totally at ran-
dom, using 10 % of the samples. The remaining
samples form the test set. We preprocess the in-
put data by simply rescaling the entries of the
configuration matrices in the training set to the
interval [0, 1]. Matrices in the validation and test
sets are rescaled accordingly, using the statistics
obtained from the training set.
The outputs of CICYMiner are, in fact, float-

ing point numbers h̃(i, j) ∈ R+, as it is typical
in regression tasks. They ultimately need to be
rounded to integers to be directly compared with
the true values and to compute the accuracy.
The distributions of the Hodge numbers have not
been rescaled as training led to lower accuracy
when this strategy was adopted. The specialised
branches of the network are, in fact, deep enough
to apply the proper scaling starting from a shared
representation and correctly learn the output dis-
tribution of the Hodge numbers.
In order to test the robustness and versatility of

the network, we choose to keep the outliers in the
training set. In multi-task learning architectures,
they may strongly affect the behavior of the net-
work and may need robust loss functions during
training [49]: this problem is directly addressed
in what follows. On the other hand, what repre-

8

sents an outlier for a certain task, can be valuable
information for another [50], hence the choice of
keeping the outliers in the training set. Empiri-
cally, we also experienced a decrease in accuracy
when trying to find a good outlier exclusion strat-
egy.

4.2 Training

In this case, training occurred over a fixed amount
of 300 epochs, due to time restrictions on the
cluster computing infrastructure. Training takes
approximately 5 days on a single NVIDIA V100
GPU. We use the Adam [51] stochastic gradient
descent with an initial learning rate of 10−3 and a
mini-batch size of 64 configuration matrices. Due
to the long training time, the optimization was
done using a grid search over a reasonable amount
of choices of hyperparameters. The network is
ultimately made of 107 trainable parameters, ac-
counting for both the shared representation and
the eight sub-networks learning Hodge numbers
and their auxiliary outputs. In terms of typical
computer vision multi-task learning, we still deal
with a small network: for instance, the original
Inception network by Google has 0.7× 107 pa-
rameters for a single classification task [16–18].
We already motivated the choice of keeping the

outliers in the training set. We address the arising
issues by employing a Huber loss function [52]:

H{k}δ (x) =

1
2

k∑
n=1

Nk∑
i=1

ωn
(
x(i))2

,
∣∣x(i)

∣∣ ≤ δ
δ

k∑
n=1

Nk∑
i=1

ωn

(∣∣x(i)∣∣− δ

2

)
,
∣∣x(i)

∣∣ > δ

(4.1)
where ωn for n = 1, 2, . . . , k are the loss weights
of the different branches of the CICYMiner, δ is a
hyperparameter of the model and x(i) is the resid-
ual error of the i-th sample. The choice of the loss
turns out to be extremely useful in this regression
task, as it behaves as a `2 loss for small residu-
als, and it is linear for larger errors. Robustness
is thus implemented as a continuous interpolation
between the quadratic and linear behaviour of the
loss function. This is a solution usually adopted
for classification [50] where combinations of `1, `2
and Frobenius norm are used for robustness.
In our best implementation, we used δ = 1.5,

and loss weights 0.05, 0.3, 0.25 and 0.35 for h(1,1),
h(2,1), h(3,1) and h(2,2), respectively (the auxil-
iary branches use the same values as the principal
ones). The learning rate is set to reduce by a fac-
tor of 0.3 after 75 epochs without improvements

in the total loss of the validation set (as a refer-
ence, at 80 % training ratio, this hard reduction
mechanism triggered only once between epochs
270 and 300).

4.3 Results

The final results are presented in Figure 5 and in
the last row of Table 2. As shown in the learn-
ing curve, h(1,1) reaches perfect accuracy with just
10 % of the training data, in alignment with previ-
ous attempts [35] and the classification results of
the previous section. h(2,2) is in general the most
difficult label to train and it is strongly depen-
dent on the training ratio. The network appears
to be underfitting the distributions of the Hodge
numbers, and validation loss is still decaying af-
ter 300 epochs: it would be interesting to run
training for longer time, in order to study the be-
haviour of the network. At a training ratio of 30 %
the network reaches perfect accuracy on h(1,1),
while h(2,1) gets to 97 %. h(3,1) remains at 81 %,
while h(2,2) reaches barely 49 %. Increasing the
number of training samples is, in general, benefi-
cial for all Hodge numbers: h(1,1) and h(2,1) reach
100 %, while the accuracy of h(3,1) and h(2,2) rises
to 96 % and 83 %, respectively, when the train-
ing ratio reaches 80 %. For the first three outputs
in Table 2, the regression metrics, Mean Squared
Error (MSE) and Mean Absolute Error (MAE),
show the ability to effectively learn the discrete-
ness of the Hodge numbers: both metrics show,
in fact, values which can be confidently rounded
to well defined integer results (i.e. MAE � 0.50
and MSE� 0.25).
The good performance of the first three Hodge

numbers suggests the possibility to use relations
such as the Euler characteristic (3.3), which can
be computed from combinatorics, and the linear
constraint (3.4). Using the latter to compute
h(2,2) leads to an accuracy of 96 % on the test
set, using the best results at 80 % training ratio.
Using (3.4) and (3.3) together, h(3,1) and h(2,2)

can reach perfect accuracy at 80 % training ra-
tio. Using CICYMiner it is therefore possible to
compute all four Hodge numbers with 100 % of
accuracy.

4.4 Ablation study

CICYMiner introduces new elements, with re-
spect to previous attempts at predicting Hodge
numbers of CICYs [21, 35], namely:

1. Huber loss for robustness;
9

input feature

H

W

F

W

H
F'

kernel

1 x 1 x F
kernel

1 x 1 x F'

H

W

F

°

output feature

H

W

F

softmax

(a) Channel Attention module.

input feature

H

W

F

kernel

1 x 1 x F

kernel

1 x 1 x F

W

H
F'

W

H
F'

R

R

F'F'

D

F'

D

X

D

D

softmax

R

H

W

F

+.

learnable

scalar

output feature

H

W

F

F

D

X R

(b) Spatial Attention module.

Figure 6: Substructures of the attention mechanism used in the ablation study. Here, × indicates
a matrix product along appropriate axes, while ◦ is the Hadamard product (element-wise). Reshape
operations (R) are also indicated.

2. auxiliary branches.

In this section, we separately analyse each new
aspect, together with other variations of the ar-
chitecture. Specifically, we analyse the impact
of the batch normalization used in the Inception
modules. We also address the use of attention
mechanisms [53], used in the DeepMiner model,
which in our case did not lead to an improvement
in accuracy, but rather to a faster training.
We proceed by modifying the backbone struc-

ture of CICYMiner. We first introduce the atten-
tion mechanism used in [48] for comparison. The
Spatial Attention Module (SAM) and CHannel
Attention Module (CHAM) are presented in Fig-
ure 6: the full attention mechanism is the compo-
sition CHAM◦SAM used between each Inception
module in the main branch of the task-specific ar-
chitecture in Figure 4. We also analyse the per-
formance of the model by simply removing the
auxiliary branches in the top layers of the net-
work. Then, as opposed to the Huber loss, we
test the predictions using the usual MSE used in
most regression tasks. We finally change the size
and type of the normalization strategy used in
the architecture: we first train a network with a
mini-batch size of 256 samples, and we then com-
pare the results with a Layer Normalization [54]
strategy. Results are summarised in Figure 7
and numerically reported in Table 2. CICYMiner
leads to the best overall performance for all four
Hodge numbers. The distributions of the residu-
als, x(i) appearing in the Huber Loss (4.1), show
in Figure 8 a homoscedastic behaviour (no cor-
relations between predictions and absolute value
of the residuals), which ultimately supports the
completeness of the model and its ability to prop-
erly predict the four Hodge numbers correctly.

The use of a different loss function, which is
not robust against outliers, led to largest drop
in accuracy, overall: the difference starts to be
consistent even for h(2,1) and h(3,1), which do not

present many outliers in Figure 1. The accuracy
plummets when considering h(2,2), as expected.
The presence of outliers is also evident when in-
creasing the mini-batch size: h(2,2) suffers the
largest decrease in accuracy due to such normal-
isation strategy. At the same time, the introduc-
tion of a batch-size independent Layer Normaliza-
tion strategy, which normalizes each sample over
the channel direction rather than the batch di-
mension, leads to a similar decrease. The pres-
ence of outliers seems, therefore, a delicate issue
for which the size of the mini-batches plays a rel-
evant role.
A related aspect is represented by the abla-

tion study on the auxiliary branches. As their
role is to mine a richer variety of features to sta-
bilise the shared representation, and learn bet-
ter approximations of the output, the accuracy
drops significantly in the case of highly imbal-
anced distributions. The largest drop impacts
h(2,1) which suffers from predictions shifting to-
wards zero. This shows that we indeed need a
mechanism to get as much training information as
possible through the addition of transformations
and auxiliary branches, as in the CICYMiner.
Finally, we analyse the impact of the atten-

tion modules: we insert such additional layers to
improve the predictions of h(3,1) and h(2,2) only,
as other Hodge numbers do not need additional
transformations. The results do not strongly dif-
fer from the case without the attention modules,
though h(2,2) drops by 2 % in accuracy. It there-
fore seems that the attention modules do not
help the predictions in this case, supported by
the naive intuition that the configuration matri-
ces do not suggest the development of a sequence
model, such as in Natural Language Processing
(NLP) or deep learning for video sequences. How-
ever, the accuracy reached by the model occurs
at around 100 training epochs, rather than 300
as in other cases. The loss function then presents

10

h(1,1) h(2,1) h(3,1) h(2,2)

+att 1.00 0.99 0.96 0.81
MSE loss 1.00 0.97 0.92 0.50
no aux 1.00 0.84 0.92 0.72
bs-256 1.00 0.99 0.94 0.65
layer norm 1.00 0.99 0.92 0.66
CICYMiner 1.00 1.00 0.96 0.83
MSE (10−4) 1.3 98 560 6800
MAE (10−3) 7.8 19 130 360

Table 2: Comparison of the accuracy obtained by
similar models at 80 % training ratio. Regression
metrics are also specified for CICYMiner at the
same ratio.

h(1, 1) h(2, 1) h(3, 1) h(2, 2)
0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

CICYMiner
+att

MSE loss
no aux

bs-256
layer norm

Figure 7: Summary of the ablation study.

a slight increase after that. The use of attention
modules, together with an early stopping strat-
egy, may therefore significantly cut the training
time in this context.

5 Conclusion

In this paper, we were able to show that
Inception-based neural networks achieve good ac-
curacy in predicting h(3,1) and h(2,2) and can
reach perfect accuracy for the Hodge numbers
h(1,1), h(2,1). Earlier studies using dense archi-
tectures were only able to work accurately with
h(1,1) [35]. Moreover, we showed that only a frac-
tion of the training data is needed to already ob-
tain promising results. This stands in contrast to
earlier studies on CICY three-folds for which it
was not possible to accurately predict h(2,1) (the
only remaining non-trivial Hodge number in that
case). The significant increase in dataset size is
responsible for a good part of the increase in per-
formance: the risk of overfitting is strongly re-
duced and generalization over all configuration
matrices is more robust. This is also reflected
in the observation that removing the tails of the
Hodge number distribution is no longer needed
in order to obtain good results. Our main results
show that, given the two constraints (3.3) and
(3.4) derived from tangent bundle indices, we are
able to solve the problem of predicting all Hodge
numbers with perfect accuracy.
Our results demonstrate that it is possible to

obtain very accurate predictions for the dimen-
sion of cohomology groups with only partial train-
ing data. We emphasize that the computations
of more generic vector bundle cohomologies also

satisfy several linear relations and constraints de-
rived from the index, Serre duality or vanishing
theorems such as Kodairas. Thus, it is often suf-
ficient to predict a single Hodge number with
great accuracy to gain knowledge of all the oth-
ers. In our experiments, training and validation
error align, and we do not observe any significant
high variance issues. The high validation and test
accuracy suggests that the algorithm produces re-
liable results, even if it is only trained on par-
tial data, say 30 %. This should open up venues
for further investigation into other vector bundle
computations.
It is then important to find configurations

which yield high accuracy on the validation set.
In earlier studies, researchers have used feature
enhancement to improve accuracy [22, 35]. Un-
fortunately, it is not always possible to manip-
ulate the input data via feature engineering in
such a way. Adding a relevant monomial basis
changes the dimension of the input space in non-
trivial ways, such that one has to restrict oneself
to a subset of the configuration matrices.
We opted to follow a model-centered approach,

common in contemporary machine learning lit-
erature, by building a proper architecture with
the right amount of parameters. We balance the
increased risk of overfitting, due to a larger num-
ber of trainable variables, with the natural reg-
ularization of multi-task architectures, thus in-
creasing the final accuracy. With its 107 pa-
rameters, CICYMiner is, given its underlying ge-
ometric nature, still a small network with re-
spect to many state-of-art models for computer
vision or NLP. Good examples are represented
by Inception-Resnet-v2 [55], state-of-the-art in

11

(a) h(1,1) residuals. (b) h(2,1) residuals.

(c) h(3,1) residuals. (d) h(2,2) residuals.

Figure 8: Residual plots at 80 % training ratio.

single-task image classification with 5.6× 107 pa-
rameters and a long training time on 20 NVidia
Kepler GPUs, and GPT-3 [56], state-of-the-art
NLP model, with more than 175× 109 model pa-
rameters. In fact, recent research suggests that
neural networks often admit power-scaling laws
with dataset size and model parameters [57]. It
can also be noted that increasing the capacity of
the model may be beneficial to the overall perfor-
mance [58]. However, the geometric and physical
interpretability might then become quite compli-
cated and involved, hence the suggestion to con-
strain the complexity of the CICYMiner archi-
tecture. It would be interesting to observe how
far one can improve the accuracy of h(3,1) and
h(2,2) by using larger networks or adding more
data samples to the dataset, or even by just pro-
longing the training time on multiple GPUs. Ad-
ditional data samples can in principle be easily

generated via (in-)effective splits of the already
existing configuration matrices. These redundant
matrices had been discarded when compiling the
initial dataset [12].
As a conclusion, our paper builds further the

case for using deep learning in algebraic geom-
etry by demonstrating that an appropriate neu-
ral network architecture can predict accurately
Hodge numbers of CICY. Moreover, since alge-
braic geometry uses datasets which are not of the
type usually encountered in usual machine learn-
ing applications, our results extend their range of
applications.

Acknowledgements

RS is funded in part by the Swedish Research
Council (VR) under grant numbers 2016-03873,
2016-03503, and 2020-03230. RS is grateful for

12

financial support from the Liljewalch scholar-
ship. HE is funded by the European Union’s
Horizon 2020 research and innovation program
under the Marie Skłodowska-Curie grant agree-
ment No 891169. HE is also supported by the
National Science Foundation under Cooperative
Agreement PHY-2019786 (The NSF AI Institute
for Artificial Intelligence and Fundamental In-
teractions, http://iaifi.org/). The work of
RF is supported by a joint programme (PTC)
between the Direction des énergies and the Di-
rection de la recherche tecnologique of the CEA
Paris–Saclay. Computations were in part enabled
by resources provided by the Swedish National In-
frastructure for Computing (SNIC) at the HPC
cluster Tetralith, partially funded by the Swedish
Research Council through grant agreement no.
2018-05973, and the FactoryIA supercomputer,
financially supported by the Ile-de-France Re-
gional Council.

References

[1] F. Ruehle. “Data science applications to string
theory.” Phys. Rept. 839 (2020), pp. 1–117.
doi: 10.1016/j.physrep.2019.09.005.

[2] F. Denef and M. R. Douglas. “Computational
Complexity of the Landscape I.” Annals of
Physics 322.5 (2007), pp. 1096–1142.
doi: 10 . 1016 / j . aop . 2006 . 07 . 013. arXiv:
hep-th/0602072.

[3] J. Halverson and F. Ruehle. “Computational
Complexity of Vacua and Near-Vacua in Field
and String Theory.” Phys. Rev. D 99.4 (2019),
p. 046015.
doi: 10 . 1103 / PhysRevD . 99 . 046015. arXiv:
1809.08279 [hep-th].

[4] W. Taylor and Y.-N. Wang. “The F-theory ge-
ometry with most flux vacua.” JHEP 12 (2015),
p. 164.
doi: 10.1007/JHEP12(2015)164. arXiv: 1511.
03209 [hep-th].

[5] J. Halverson, B. Nelson, and F. Ruehle. “Branes
with Brains: Exploring String Vacua with Deep
Reinforcement Learning.” JHEP 06 (2019),
p. 003.
doi: 10.1007/JHEP06(2019)003. arXiv: 1903.
11616 [hep-th].

[6] M. Larfors and R. Schneider. “Explore and
Exploit with Heterotic Line Bundle Models.”
Fortsch. Phys. 68.5 (2020), p. 2000034.
doi: 10.1002/prop.202000034. arXiv: 2003.
04817 [hep-th].

[7] Y.-H. He. “Calabi-Yau Spaces in the String
Landscape.” Oxford University Press Oxford
Research Encyclopedia of Physics (2020).
doi: 10.1093/acrefore/9780190871994.013.
60. arXiv: 2006.16623.

[8] P. Candelas, A. M. Dale, C. A. Lutken, and
R. Schimmrigk. “Complete Intersection Calabi-
Yau Manifolds.” Nucl. Phys. B298 (1988),
p. 493.
doi: 10.1016/0550-3213(88)90352-5.

[9] P. S. Green, T. Hubsch, and C. A. Lutken. “All
Hodge Numbers of All Complete Intersection
Calabi-Yau Manifolds.” Class. Quant. Grav. 6
(1989), pp. 105–124.
doi: 10.1088/0264-9381/6/2/006.

[10] L. B. Anderson, X. Gao, J. Gray, and S.-J.
Lee. “Fibrations in CICY Threefolds.” Journal
of High Energy Physics 2017.10 (2017).
doi: 10.1007/JHEP10(2017)077. arXiv: 1708.
07907.

[11] M. Kreuzer and H. Skarke. “Complete classifica-
tion of reflexive polyhedra in four-dimensions.”
Adv. Theor. Math. Phys. 4 (2002), pp. 1209–
1230.
doi: 10.4310/ATMP.2000.v4.n6.a2. arXiv:
hep-th/0002240.

[12] J. Gray, A. S. Haupt, and A. Lukas. “All
Complete Intersection Calabi-Yau Four-Folds.”
JHEP 07 (2013), p. 070.
doi: 10.1007/JHEP07(2013)070. arXiv: 1303.
1832 [hep-th].

[13] J. Gray, A. S. Haupt, and A. Lukas. “Topo-
logical Invariants and Fibration Structure of
Complete Intersection Calabi-Yau Four-Folds.”
JHEP 09 (2014), p. 093.
doi: 10.1007/JHEP09(2014)093. arXiv: 1405.
2073 [hep-th].

[14] O. Russakovsky, J. Deng, H. Su, J. Krause, S.
Satheesh, S. Ma, Z. Huang, A. Karpathy, A.
Khosla, M. Bernstein, A. C. Berg, and L. Fei-
Fei. “ImageNet Large Scale Visual Recognition
Challenge.” International Journal of Computer
Vision (IJCV) 115.3 (2015), pp. 211–252.
doi: 10.1007/s11263-015-0816-y.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton.
“ImageNet Classification with Deep Convolu-
tional Neural Networks.” Commun. ACM 60.6
(2017), 84–90.
doi: 10.1145/3065386.
url: https://doi.org/10.1145/3065386.

[16] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet,
S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich. “Going Deeper with Con-
volutions.” In: 2015 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR).
2015, pp. 1–9.
doi: 10.1109/CVPR.2015.7298594.

13

http://iaifi.org/
http://dx.doi.org/10.1016/j.physrep.2019.09.005
http://dx.doi.org/10.1016/j.aop.2006.07.013
https://arxiv.org/abs/hep-th/0602072
http://dx.doi.org/10.1103/PhysRevD.99.046015
https://arxiv.org/abs/1809.08279
http://dx.doi.org/10.1007/JHEP12(2015)164
https://arxiv.org/abs/1511.03209
https://arxiv.org/abs/1511.03209
http://dx.doi.org/10.1007/JHEP06(2019)003
https://arxiv.org/abs/1903.11616
https://arxiv.org/abs/1903.11616
http://dx.doi.org/10.1002/prop.202000034
https://arxiv.org/abs/2003.04817
https://arxiv.org/abs/2003.04817
http://dx.doi.org/10.1093/acrefore/9780190871994.013.60
http://dx.doi.org/10.1093/acrefore/9780190871994.013.60
https://arxiv.org/abs/2006.16623
http://dx.doi.org/10.1016/0550-3213(88)90352-5
http://dx.doi.org/10.1088/0264-9381/6/2/006
http://dx.doi.org/10.1007/JHEP10(2017)077
https://arxiv.org/abs/1708.07907
https://arxiv.org/abs/1708.07907
http://dx.doi.org/10.4310/ATMP.2000.v4.n6.a2
https://arxiv.org/abs/hep-th/0002240
http://dx.doi.org/10.1007/JHEP07(2013)070
https://arxiv.org/abs/1303.1832
https://arxiv.org/abs/1303.1832
http://dx.doi.org/10.1007/JHEP09(2014)093
https://arxiv.org/abs/1405.2073
https://arxiv.org/abs/1405.2073
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
http://dx.doi.org/10.1109/CVPR.2015.7298594

[17] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens,
and Z. Wojna. “Rethinking the Inception Ar-
chitecture for Computer Vision.” In: 2016 IEEE
Conference on Computer Vision and Pattern
Recognition (CVPR). 2016, pp. 2818–2826.
doi: 10.1109/CVPR.2016.308. arXiv: 1512.
00567.

[18] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A.
Alemi. “Inception-v4, Inception-ResNet and the
Impact of Residual Connections on Learning.”
In: 31st AAAI Conference on Artificial Intelli-
gence. AAAI’17. AAAI Press, 2017, pp. 4278–
4284. arXiv: 1602.07261.

[19] K. He, X. Zhang, S. Ren, and J. Sun. “Deep
residual learning for image recognition.” In: Pro-
ceedings of the IEEE conference on computer vi-
sion and pattern recognition. 2016, pp. 770–778.
doi: 10 . 1109 / CVPR . 2016 . 90. arXiv: 1512 .
03385 [cs.CV].

[20] Y.-H. He. “Deep-Learning the Landscape”
(2017). arXiv: 1706.02714 [hep-th].

[21] H. Erbin and R. Finotello. “Inception neural
network for complete intersection Calabi–Yau
3-folds.” Mach. Learn. Sci. Tech. 2.2 (2021),
02LT03.
doi: 10 . 1088 / 2632 - 2153 / abda61. arXiv:
2007.13379 [hep-th].

[22] H. Erbin and R. Finotello. “Machine learning
for complete intersection Calabi-Yau manifolds:
a methodological study” (2020). arXiv: 2007.
15706 [hep-th].

[23] R. Caruana. “Multitask Learning: A
Knowledge-Based Source of Inductive Bias.”
In: Proceedings of the Tenth International
Conference on Machine Learning. Morgan
Kaufmann, 1993, pp. 41–48.
doi: 10.1016/b978-1-55860-307-3.50012-5.

[24] T. Standley, A. R. Zamir, D. Chen, L. Guibas, J.
Malik, and S. Savarese. Which Tasks Should Be
Learned Together in Multi-task Learning? 2020.
arXiv: 1905.07553 [cs.CV].

[25] T. pandas development team. pandas-
dev/pandas: Pandas. Version latest. 2020.
doi: 10.5281/zenodo.3509134.
url: https : / / doi . org / 10 . 5281 / zenodo .
3509134.

[26] Wes McKinney. “Data Structures for Statistical
Computing in Python.” In: Proceedings of the
9th Python in Science Conference. Ed. by Stéfan
van der Walt and Jarrod Millman. 2010, pp. 56
–61.
doi: 10.25080/Majora-92bf1922-00a.

[27] C. R. Harris, K. J. Millman, S. J. van der Walt,
R. Gommers, P. Virtanen, D. Cournapeau, E.
Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern,
M. Picus, S. Hoyer, M. H. van Kerkwijk, M.
Brett, A. Haldane, J. F. del Río, M. Wiebe, P.

Peterson, P. Gérard-Marchant, K. Sheppard, T.
Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant. “Array programming with
NumPy.” Nature 585.7825 (2020), pp. 357–362.
doi: 10.1038/s41586-020-2649-2.
url: https : / / doi . org / 10 . 1038 / s41586 -
020-2649-2.

[28] J. D. Hunter. “Matplotlib: A 2D graphics envi-
ronment.” Computing in Science & Engineering
9.3 (2007), pp. 90–95.
doi: 10.1109/MCSE.2007.55.

[29] M. L. Waskom. “seaborn: statistical data visual-
ization.” Journal of Open Source Software 6.60
(2021), p. 3021.
doi: 10.21105/joss.03021.
url: https : / / doi . org / 10 . 21105 / joss .
03021.

[30] M. Abadi, A. Agarwal, P. Barham, E. Brevdo,
Z. Chen, C. Citro, G. S. Corrado, A. Davis, J.
Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Joze-
fowicz, L. Kaiser, M. Kudlur, J. Levenberg, D.
Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Va-
sudevan, F. Viégas, O. Vinyals, P. Warden, M.
Wattenberg, M. Wicke, Y. Yu, and X. Zheng.
TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. Software available from
tensorflow.org. 2015.
url: https://www.tensorflow.org/.

[31] K. Bull, Y.-H. He, V. Jejjala, and C. Mishra.
“Machine Learning CICY Threefolds.” Phys.
Lett. B 785 (2018), pp. 65–72.
doi: 10 . 1016 / j . physletb . 2018 . 08 . 008.
arXiv: 1806.03121 [hep-th].

[32] K. Bull, Y.-H. He, V. Jejjala, and C. Mishra.
“Getting CICY High.” Phys. Lett. B 795 (2019),
pp. 700–706.
doi: 10 . 1016 / j . physletb . 2019 . 06 . 067.
arXiv: 1903.03113 [hep-th].

[33] S. Krippendorf and M. Syvaeri. “Detecting sym-
metries with neural networks.” Machine Learn-
ing: Science and Technology 2.1 (Dec. 2020),
p. 015010.
doi: 10 . 1088 / 2632 - 2153 / abbd2d. arXiv:
2003.13679 [physics.comp-ph+].

[34] Y.-H. He and S.-J. Lee. “Distinguishing Ellip-
tic Fibrations with AI.” Physics Letters B 798
(2019), p. 134889.
doi: 10 . 1016 / j . physletb . 2019 . 134889.
arXiv: 1904.08530.

[35] Y.-H. He and A. Lukas. “Machine Learn-
ing Calabi-Yau Four-folds.” Phys. Lett. B 815
(2021), p. 136139.
doi: 10 . 1016 / j . physletb . 2021 . 136139.
arXiv: 2009.02544 [hep-th].

14

http://dx.doi.org/10.1109/CVPR.2016.308
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1602.07261
http://dx.doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1706.02714
http://dx.doi.org/10.1088/2632-2153/abda61
https://arxiv.org/abs/2007.13379
https://arxiv.org/abs/2007.15706
https://arxiv.org/abs/2007.15706
http://dx.doi.org/10.1016/b978-1-55860-307-3.50012-5
https://arxiv.org/abs/1905.07553
http://dx.doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
http://dx.doi.org/10.25080/Majora-92bf1922-00a
http://dx.doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
https://www.tensorflow.org/
http://dx.doi.org/10.1016/j.physletb.2018.08.008
https://arxiv.org/abs/1806.03121
http://dx.doi.org/10.1016/j.physletb.2019.06.067
https://arxiv.org/abs/1903.03113
http://dx.doi.org/10.1088/2632-2153/abbd2d
https://arxiv.org/abs/2003.13679
http://dx.doi.org/10.1016/j.physletb.2019.134889
https://arxiv.org/abs/1904.08530
http://dx.doi.org/10.1016/j.physletb.2021.136139
https://arxiv.org/abs/2009.02544

[36] M. Demirtas, L. McAllister, and A. Rios-
Tascon. “Bounding the Kreuzer-Skarke Land-
scape” (2020). arXiv: 2008.01730 [hep-th].

[37] M. Bies, M. Cvetič, R. Donagi, L. Lin, M.
Liu, and F. Ruehle. “Machine Learning and Al-
gebraic Approaches towards Complete Matter
Spectra in 4d F-theory” (2020). arXiv: 2007.
00009 [hep-th].

[38] F. Ruehle. “Evolving neural networks with ge-
netic algorithms to study the String Landscape.”
JHEP 08 (2017), p. 038.
doi: 10.1007/JHEP08(2017)038. arXiv: 1706.
07024 [hep-th].

[39] M. Larfors and R. Schneider. “Line bundle co-
homologies on CICYs with Picard number two.”
Fortsch. Phys. 67.12 (2019), p. 1900083.
doi: 10.1002/prop.201900083. arXiv: 1906.
00392 [hep-th].

[40] D. Klaewer and L. Schlechter. “Machine Learn-
ing Line Bundle Cohomologies of Hypersurfaces
in Toric Varieties.” Phys. Lett. B 789 (2019),
pp. 438–443.
doi: 10 . 1016 / j . physletb . 2019 . 01 . 002.
arXiv: 1809.02547 [hep-th].

[41] C. R. Brodie, A. Constantin, R. Deen, and A.
Lukas. “Machine Learning Line Bundle Coho-
mology.” Fortsch. Phys. 68.1 (2020), p. 1900087.
doi: 10.1002/prop.201900087. arXiv: 1906.
08730 [hep-th].

[42] C. R. Brodie, A. Constantin, R. Deen, and A.
Lukas. “Index Formulae for Line Bundle Coho-
mology on Complex Surfaces.” Fortschritte der
Physik 68.2 (2020), p. 1900086.
doi: 10.1002/prop.201900086. arXiv: 1906.
08769.

[43] A. Constantin and A. Lukas. “Formulae for Line
Bundle Cohomology on Calabi-Yau Threefolds.”
Fortsch. Phys. 67.12 (2019), p. 1900084.
doi: 10.1002/prop.201900084. arXiv: 1808.
09992 [hep-th].

[44] S. Falkner, A. Klein, and F. Hutter. “BOHB:
Robust and Efficient Hyperparameter Opti-
mization at Scale.” In: Proceedings of the 35th
International Conference on Machine Learning.
Ed. by J. Dy and A. Krause. Vol. 80. Pro-
ceedings of Machine Learning Research. Stock-
holmsmässan, Stockholm Sweden: PMLR, 2018,
pp. 1437–1446.
url: http://proceedings.mlr.press/v80/
falkner18a.html.

[45] L. Li, K. Jamieson, G. DeSalvo, A. Ros-
tamizadeh, and A. Talwalkar. “Hyperband: A
Novel Bandit-Based Approach to Hyperparam-
eter Optimization.” Journal of Machine Learn-
ing Research 18.185 (2018), pp. 1–52.
url: http://jmlr.org/papers/v18/16-558.
html.

[46] S. Ioffe and C. Szegedy. “Batch Normal-
ization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift.” CoRR
abs/1502.03167 (2015). arXiv: 1502.03167.
url: http://arxiv.org/abs/1502.03167.

[47] J. Baxter. “A Bayesian/Information Theoretic
Model of Learning to Learn via Multiple Task
Sampling.” Machine Learning 28.1 (July 1,
1997), pp. 7–39.
doi: 10.1023/A:1007327622663.
url: https : / / doi . org / 10 . 1023 / A :
1007327622663.

[48] A. Benzine, M. El Amine Seddik, and J. Des-
marais. “Deep Miner: A Deep and Multi-branch
Network which Mines Rich and Diverse Features
for Person Re-identification,” arXiv:2102.09321
(2021), arXiv:2102.09321. arXiv: 2102 . 09321
[cs.CV].

[49] R. Zhang, H. Zhang, and X. Li. “Robust Multi-
Task Learning With Flexible Manifold Con-
straint.” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 43.6 (2021),
pp. 2150–2157.
doi: 10.1109/TPAMI.2020.3007637.

[50] Y. Zhang and Q. Yang. “A Survey on Multi-
Task Learning.” IEEE Transactions on Knowl-
edge and Data Engineering (2021), pp. 1–1.
doi: 10.1109/TKDE.2021.3070203.

[51] D. P. Kingma and J. Ba. Adam: A method for
stochastic optimization. 2014. arXiv: 1412.6980
[cs.LG].

[52] P. J. Huber. “Robust Estimation of a Location
Parameter.” The Annals of Mathematical Statis-
tics 35.1 (1964), pp. 73 –101.
doi: 10.1214/aoms/1177703732.
url: https : / / doi . org / 10 . 1214 / aoms /
1177703732.

[53] D. Bahdanau, K. Cho, and Y. Bengio. “Neu-
ral Machine Translation by Jointly Learning to
Align and Translate,” arXiv:1409.0473 (2016).
arXiv: 1409.0473 [cs.CL].

[54] J. L. Ba, J. R. Kiros, and G. E. Hinton.
Layer Normalization. 2016. arXiv: 1607.06450
[stat.ML].

[55] C. Szegedy, S. Ioffe, V. Vanhoucke, and A.
Alemi. Inception-v4, Inception-ResNet and the
Impact of Residual Connections on Learning.
2016. arXiv: 1602.07261 [cs.CV].

[56] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J.
Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A.
Ramesh, D. M. Ziegler, J. Wu, C. Winter, C.
Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, I. Sutskever, and D. Amodei. “Lan-
guage Models are Few-Shot Learners.” CoRR

15

https://arxiv.org/abs/2008.01730
https://arxiv.org/abs/2007.00009
https://arxiv.org/abs/2007.00009
http://dx.doi.org/10.1007/JHEP08(2017)038
https://arxiv.org/abs/1706.07024
https://arxiv.org/abs/1706.07024
http://dx.doi.org/10.1002/prop.201900083
https://arxiv.org/abs/1906.00392
https://arxiv.org/abs/1906.00392
http://dx.doi.org/10.1016/j.physletb.2019.01.002
https://arxiv.org/abs/1809.02547
http://dx.doi.org/10.1002/prop.201900087
https://arxiv.org/abs/1906.08730
https://arxiv.org/abs/1906.08730
http://dx.doi.org/10.1002/prop.201900086
https://arxiv.org/abs/1906.08769
https://arxiv.org/abs/1906.08769
http://dx.doi.org/10.1002/prop.201900084
https://arxiv.org/abs/1808.09992
https://arxiv.org/abs/1808.09992
http://proceedings.mlr.press/v80/falkner18a.html
http://proceedings.mlr.press/v80/falkner18a.html
http://jmlr.org/papers/v18/16-558.html
http://jmlr.org/papers/v18/16-558.html
https://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://dx.doi.org/10.1023/A:1007327622663
https://doi.org/10.1023/A:1007327622663
https://doi.org/10.1023/A:1007327622663
https://arxiv.org/abs/2102.09321
https://arxiv.org/abs/2102.09321
http://dx.doi.org/10.1109/TPAMI.2020.3007637
http://dx.doi.org/10.1109/TKDE.2021.3070203
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1214/aoms/1177703732
https://doi.org/10.1214/aoms/1177703732
https://doi.org/10.1214/aoms/1177703732
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1602.07261

abs/2005.14165 (2020). arXiv: 2005.14165.
url: https://arxiv.org/abs/2005.14165.

[57] Y. Bahri, E. Dyer, J. Kaplan, J. Lee, and
U. Sharma. “Explaining Neural Scaling Laws.”
CoRR abs/2102.06701 (2021). arXiv: 2102 .
06701.
url: https://arxiv.org/abs/2102.06701.

[58] M. Belkin, D. Hsu, S. Ma, and S. Mandal. “Rec-
onciling modern machine-learning practice and
the classical bias–variance trade-off.” Proceed-
ings of the National Academy of Sciences 116.32
(2019), pp. 15849–15854.

16

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2102.06701
https://arxiv.org/abs/2102.06701
https://arxiv.org/abs/2102.06701

	Contents
	1 Introduction
	2 Related works
	3 Exploring the dataset
	3.1 CICY four-folds
	3.2 Classifying Hodge numbers

	4 CICYMiner
	4.1 Preprocessing and Evaluation Strategy
	4.2 Training
	4.3 Results
	4.4 Ablation study

	5 Conclusion
	References

