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Background: A plethora of methods and models of disproportionality analyses for safety
surveillance have been developed to date without consensus nor a gold standard, leading
to methodological heterogeneity and substantial variability in results. We hypothesized that
this variability is inversely correlated to the robustness of a signal of disproportionate
reporting (SDR) and could be used to improve signal detection performances.

Methods: We used a validated reference set containing 399 true and false drug-event
pairs and performed, with a frequentist and a Bayesian disproportionality method, seven
types of analyses (model) for which the results were very unlikely to be related to actual
differences in absolute risks of ADR. We calculated sensitivity, specificity and plotted ROC
curves for each model. We then evaluated the predictive capacities of all models and
assessed the impact of combining such models with the number of positive SDR for a
given drug-event pair through binomial regression models.

Results: We found considerable variability in disproportionality analysis results, both
positive and negative SDR could be generated for 60% of all drug-event pairs depending
on the model used whatever their truthfulness. Furthermore, using the number of positive
SDR for a given drug-event pair largely improved the signal detection performances of all
models.

Conclusion: We therefore advocate for the pre-registration of protocols and the
presentation of a set of secondary and sensitivity analyses instead of a unique result to
avoid selective outcome reporting and because variability in the results may reflect the
likelihood of a signal being a true adverse drug reaction.
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INTRODUCTION

Spontaneous reports are a valuable data source to complete the
pre-marketing safety profile of medical products, notably for rare
or long latency adverse drug reactions (ADRs) (Hartmann et al.,
1999; Hauben and Bate, 2009). With the massive increase in new
reports received each year by pharmacovigilance centers around
the world (e.g. more than 2,700,000 new reports were recorded in
the WHO’s pharmacovigilance database in 2019), traditional
approaches such as manual review needed to be
complemented. Automated screening tools using quantitative
methods have thus been developed to detect signals of
disproportionate reporting (SDR), i.e. a higher proportions of
reporting of ADRs for a studied drug as compared to the other
drugs in the database. They allow broad screening to trigger
further investigations, to detect more complex dependencies and
to prioritize potential signals (Bate and Evans, 2009; Hauben and
Aronson, 2009).

These methods include frequentist, Bayesian and machine
learning approaches (Hauben and Bate, 2009; Harpaz et al.,
2012). In addition, several models (subgroup, stratification or
adjustments) can be used to overcome the multitude of biases
related to spontaneous reporting rates of ADR, such as media
alerts, selective reporting according to ADR severity, or time since
the drug was first marketed (Seabroke et al., 2016; Wisniewski
et al., 2016; Sandberg et al., 2020). They also permit to overcome
disparities in drug usage and pharmacovigilance systems, or to
account for risk factors of developing an ADR (e.g. sex, age,
underlying conditions) (Raschi et al., 2018; Sandberg et al.,
2020). Several studies have assessed and compared the
performances of such methods and models, which did not
reveal significant differences for signal detection (Harpaz
et al., 2013; Candore et al., 2015; Pham et al., 2019). As a
result, no consensus exists to date on the best analyses and no
gold standard has been defined (Wisniewski et al., 2016). In this
context, a large heterogeneity exists in the modalities retained
for signal detection from spontaneous reporting, especially
regarding the complementary analyses that can be performed
to explore the robustness of the detected statistical signals. The
variety of the methodological choices that are made may lead to
substantial variability in results and, when these appear
conflicting in the literature, lead to increase the complexity
of their interpretation (Khouri et al., 2021). In this context, we
hypothesized that performing a set of standardized analyses
relying on different techniques could help appraising the
robustness of a signal.

METHODS

In this study, we used the Observational medical outcomes
partnership (OMOP) gold standard reference set to assess the
diagnostic performances of a set of seven models of two widely
used frequentist (Reporting Odds Ratio) and bayesian (Bayesian
confidence propagation neural network) disproportionality
methods applied to the WHO pharmacovigilance database,
Vigibase®.

Reference Set
The OMOP reference set have been established to facilitate
methodological research in drug safety and to allow comparison
of signal detection performances of disproportionality analyses.
The gold standard consists of 165 true and 234 false drug-event
pairs originating from a systematic literature review and natural
language processing of structured product labels (Ryan et al.,
2013). The reference set spans 181 unique drugs covering
antibiotics, nonsteroidal anti-inflammatory drugs,
antidepressants, antihypertensives, antiepileptics and glucose
lowering drugs. The specific outcomes (acute renal injury,
myocardial infarction, acute liver injury, gastrointestinal
bleeding) have been selected because they are considered as
high priority events in pharmacovigilance for different reasons
(Ryan et al., 2013). Acute myocardial infarction and upper
gastrointestinal bleeding possess high background rates in
the general population, with a different proportion of
iatrogenic etiologies identified. Acute kidney and liver injury
are important outcomes for post-market drug surveillance as
they are the main pathways for drug metabolism and
elimination, and because patients with pre-existing
conditions are often excluded from phase 3 clinical trials
(Trifirò et al., 2009).

Data Source
All data used for disproportionality analyses were extracted from
theWHO pharmacovigilance database, VigiBase, from January 1,
1968 to December 31, 2019. Gathering reports from more than
130 member countries, Vigibase is the largest pharmacovigilance
database containing more than 21 million individual case safety
reports (ICSRs) submitted by pharmaceutical manufacturers,
health professionals, or consumers through national
pharmacovigilance systems (Lindquist, 2008).

We identified the four outcomes in Vigibase by using a
collection of MedDRA Preferred Terms (PT) or standardized
MedDRA queries (SMQ) to match the broader definitions used in
the reference set (Supplementary Table S1). (Reich et al., 2013;
Ryan et al., 2013)

Signal Generation
Two disproportionality methods were used in this study, the
Reporting Odd Ratio (ROR) used by the European Medicines
Agency, and the Bayesian confidence propagation neural network,
used by the Uppsala Monitoring Center on behalf of the WHO. A
SDR was considered significant if the lower boundary of the 95%
confidence interval of ROR (RORLB) was ≥1 and the number of
observed drug-event combinations ≥3; or if the lower boundary of
the IC 95% confidence interval (ICLB) was >0 (Bate et al., 1998;
European Medicines Agency and EudraVigilance Expert Working
Group, 2006. Guideline on the use of statistical signal detection
methods in the EudraVigilance data analysis system. Available on:
https://www.ema.europa.eu/en/documents/regulatory-procedural-
guideline/draft-guideline-use-statistical-signal-detection-methods-
eudravigilance-data-analysis-system_en.pdf, 2006).

We used seven disproportionality models for which the
results were very unlikely to be influenced by actual differences
in absolute risks of ADR: Model 1: only suspect reports
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included; Model 2: to assess the influence of
pharmacovigilance systems between countries we restricted
reports to a specific country (United States); Model 3:
restricting reports to those submitted by health care
professionals only (physicians or pharmacists); Model 4:
restricting the database to the drug’s corresponding
therapeutic area (ATC code level 3) to account for
difference non-cases populations; Model 5: including only
serious cases; Model 6: included only cases reported
within 5 years after the drug’s marketing approval date to
account for reporting variability according drug time on
the market; and Model 7: included suspected and
concomitant drugs.

Evaluation
The performances of the disproportionality models were
evaluated through sensitivity, specificity and area under the
curve (AUC). ROC curves were plotted for each model. To
understand the contribution of the number of positive SDRs
alongside the disproportionality values we built logistic regression
models both with and without inclusion of the number of positive
SDR. In addition, we plotted the predictive capacities (marginal
means) of the models according to the number of positive SDR.

We postulated that the number of drug-event pairs could impact
the disproportionality results; we thus included this variable in
the logistic regression models.

Lastly, we calculated and compared median RORLB and
ICLB values, and the median number of positive SDR between
true and false drug-event pairs through Mann-Whitney-
Wilcoxon tests. A two-sided p value < 0.05 was considered
significant.

Statistical analyses were performed with R (version 3.6.1). The
protocol, data and R codes underlying this article could be found
on Open Science Framework (osf.io/a7j3z/)

RESULTS

Data and Signal Generation Results
The distribution of included cases in each analysis and the
results of disproportionality analyses for the seven models are
presented in Figure 1 and Table 1 respectively. Over the
399 drug-event pairs, signals could not be examined for
four drugs relating to thirteen events in the reference
dataset (3.26% of the set) as these drugs were not found in
VigiBase. As recommended, ROR values were not computed

FIGURE 1 | Venn diagram and Upset plot presenting the distribution of cases included in each disproportionality analysis and the overlap between each of the
models. Model 4 (subgroups by therapeutic area) is not displayed in the figure because only the comparators were modified in this model (cases correspond to all
suspect cases).
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when the number of exposed cases was lower than 3. This led to
lack of ROR value for 4.8–51.9% of the 399 drug-event pairs for
the model including concomitant drugs and the model
including only ICSRs within 5 years of the drug’s approval,
respectively. The RORLB values varied from 0.01
(gastrointestinal bleeding and neostigmine) to 57.6 (acute
liver injury and propylthiouracil) and ICLB values from
−17.2 (acute liver injury and miconazole) to 5.1 (acute liver
injury and propylthiouracil). Figure 2 presents the SDR
generated by the two methods for the 7 models. Overall, we

noted high variability in the results and in the number of
detected SDRs among the models.

Evaluation and Comparison of Model
Performances
The sensitivity, specificity, AUC and ROC curves corresponding
to the seven models are presented in Supplementary Figure S1
and Supplementary Table S2. Overall, in all disproportionality
methods, model 4 (subgroup by therapeutic area), model 6
(within 5 years of drug approval) and model 7 (suspected and

TABLE 1 | Disproportionality analyses and signal generation results for the lower bound of the 95% confidence intervals of the reporting odds ratio (RORLB) and of the
information component (ICLB) for the seven selected models. SDR: Signal of disproportionate reporting. Model 1: only suspect cases; Model 2: subgroup by country
(United States); Model 3: health professionals only; Model 4: subgroup by therapeutic area; Model 5: serious cases only; Model 6: 5 years after drug approval; Model 7:
suspected and concomitant drugs.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

RORLB

N missing (%) 49 (12.3%) 77 (19.3%) 71 (17.8%) 49 (12.3%) 75 (18.8%) 207 (51.9%) 19 (4.8%)
Median 0.48 0.53 0.43 0.61 0.43 0.65 1.16
Q1—Q3 0.15–1.75 0.17–1.97 0.12–1.59 0.28–1.28 0.18–1.62 0.21–2.42 0.59–2.06
Min—Max 0.00–22.39 0.01–57.55 0.00–16.70 0.00–46.57 0.01–22.28 0.00–13.20 0.01–16.74
N positive SDR 122 (33.3%) 120 (30.1%) 107 (26.8%) 117 (29.3%) 104 (26.1%) 73 (18.3%) 212 (53.1%)
N misclassified SDR
True ADR 59 (35.7%) 60 (36.4%) 71 (43.0%) 86 (52.1%) 73 (44.2% 99 (60%) 40 (24.2%)
False ADR 17 (7.3%) 16 (6.8%) 14 (5.9%) 39 (16.6%) 13 (5.6%)) 8 (3.4%) 88 (37.6%)

ICLB

N missing (%) 13 (3.3%) 13 (3.3%) 13 (3.3%) 13 (3.3%) 13 (3.23%) 13 (3.3%) 13 (3.3%)
Median −1.57 −1.72 −2.14 −0.99 −2.04 −9.99 0.13
Q1—Q3 −3.44–0.46 −4.69–3.67 −4.38–0.16 −3.07–0.13 −4.16–0.03 −10.27–−1.19 −0.94–0.99
Min—Max −15.45–4.29 −15.70–5.08 −15.40–3.76 −17.24–4.73 −15.90–4.11 −14.50–3.40 −12.70–3.92
N positive SDR 120 (30.1%) 112 (28.1%) 106 (26.6%) 110 (27.6%) 97 (24.3%) 65 (16.3%) 204 (51.1%)
N misclassified SDR
True ADR 60 (36.4%) 66 (40.0%) 72 (43.6%) 88 (53.3%) 79 (47.8%) 106 (64%) 42 (25.4%)
False ADR 16 (6.8%) 14 (6.0%) 14 (6.0%) 34 (14.5%) 12 (5.1%) 7 (3.0%) 82 (35.0%)

FIGURE 2 |Number of positive and negative signals of disproportionate reporting (SDR) with ROR and ICmethods. Each line represents a disproportionality model
and each column represents a drug-event pair. A SDR was deemed significant if RORLB > 1 and n > 3 for the ROR method, and ICLB > 0 for the IC method.
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concomitant drugs) showed limited performances compared to
model 1 (including only suspect reports), model 2 (subgroup by
country (United States)), model 3 (reports by health
professionals) and model 5 (serious cases only). The number
of positive and misclassified SDR according to disproportionality
methods and models are also presented in Table 1. The number
of positive SDR generated ranged from 73 to 212 and 65 to 204 for
RORLB and ICLB respectively. Moreover, the proportion of
misclassified SDRs was lower for model 1 and model 2 and
systematically higher for true than for false ADR (Table 1).

Of importance, with the ROR method only 37 of the 165 true
ADR displayed a SDR with all models, and 125 of the 234 false
ADR for negative SDRs. The results were similar with the IC
method for which 33 of the 125 true ADRs systematically
displayed a signal and 130 of the 234 false ADRs did not
(Figure 2).

Comparison of Disproportionality Results
Between True and False ADRs
Median RORLB values were 1.67 (0.68, 3.91) and 0.39 (0.20,
0.72) for true and false ADRs respectively (p < 0.01). Median
ICLB values were 0.09 (−1.37, 1.28) and −3.62 (−5.82, −2.22)
for true and false ADR respectively (p < 0.01). The median
number of positive SDR significantly differed between false
and true ADR groups, 0 (0, 1) and 5 (1, 6) respectively, in both
frequentist and Bayesian methods (Supplementary
Table S3).

Using the Number of Positive SDRs to
Improve a Model’s Predictive Capacities
To investigate whether the number of positive SDRwas predictive
of a true ADR independently of the disproportionality
estimates we performed logistic regression models with
and without the inclusion of the number of positive SDR.
In all models the number of positive SDR remained
independently and significantly predictive of an ADR
(Supplementary Table S4). The lower boundary of ROR
and IC were no longer significant after adjustment on the
number of positive SDR in 5 of the models. The predictive
capacities of all methods and models are plotted in Figure 3,
Supplementary Figures S2, S3. The number of positive SDR
strongly impacted the predictive capacities of all models
notably for lower boundary values close to the threshold of
signal detection for ROR and IC.

DISCUSSION

To our knowledge, this is the first study assessing the variability
of disproportionality analyses using several models and
methods. We showed that the number of positive SDR in a
standardized set of 7 models can serve as a significant predictor
of a true ADR. Importantly, this property of the number of
positive SDR was independent of disproportionality values and
could therefore be used to further investigate the plausibility of a
signal.

FIGURE 3 | Predicted probability for a signal of disproportionate reporting (SDR) to correspond to a true ADR according to the lower boundary of disproportionality
values and to the number of positive SDR. Results of all models according to number of positive SDR for RORLB and ICLB are presented in A, B respectively. Results of
model 1 according to the number of positive SDR for RORLB and ICLB are presented in C, D. Model 1: only suspect cases included; Model 2: subgroup by country
(United States); Model 3: reporting by health professionals only; Model 4: subgroups by therapeutic area; Model 5: serious cases only; Model 6: within 5 years of
drug approval; Model 7: suspected and concomitant drugs.
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Our study also underlines the necessity of reporting multiple
secondary or sensitivity analyses when studying a drug-event
association through disproportionality analyses. Indeed, almost
60% of all drug-event pairs displayed both positive and negative
SDR regardless of their truthfulness. This finding highlights the
potential risk of reporting bias in disproportionality analyses
studies, especially since in this study we used a single threshold
to define a signal, whereas this is not the case in all studies
(Candore et al., 2015). This risk is particularly important in the
pharmacovigilance field where the data are openly accessible to
researchers, no protocols are pre-registered and no gold standard
methods have yet been established (Wisniewski et al., 2016).

Performing a set of analyses, rather than only one, is all the
more important as their variability seems to be associated with
the probability of being a true finding. The impact of this
variability is particularly important when disproportionality
values are close to the threshold of signal detection (RORLB >
1 or ICLB > 0), for which the probability of a result being true may
vary from 30 to 80% depending of the number of positive SDR.
Unexpectedly, the disproportionality values were no longer
significant when adjusted on the number of positive SDR in 5
of the 7 models for both methods, stressing the relevance of this
metric. In this study, we pre-defined a set of analyses for which
the results are almost exclusively impacted by the random
variability in ADR reporting rates, unrelated to ADRs or patients
characteristics. However, we cannot exclude that real differences
in the ADR relative risk may exist for some individual drugs
according, for example, to the reporting country (Sandberg et al.,
2020). Further work is thus needed to select the best set of analyses.

Although this study did not primarily aim to compare the
performance of disproportionality analysis models and methods,
it supplements the knowledge on this topic. Importantly, we
observed very similar results between frequentist and Bayesian
methods, in accordance with some previous studies (Candore
et al., 2015; Pham et al., 2019). This might indicate that our results
could be generalized to other methods. In addition, we found
comparable performance between four models: all suspect reports
included, limiting reports from a given country, including only
reports by health professionals, and including only serious cases,
with a lower proportion of misclassified SDR when using the first
two methods. In contrast, models restricting comparison to a
given therapeutic area, including only cases reported within
5 years of drug approval, or including concomitant reports,
were inferior whatever the method. An earlier study conducted
by Seabroke et al. likewise showed an appreciable benefit
associated with subgrouping by reporter qualification or by
country of origin, but little advantage using severity (Seabroke
et al., 2016). This discrepancy might be explained by a slightly
different definition of a positive signal (subgroup analyses were
examined in each strata and a SDR was found significant if the
criteria were met in any of the strata). In 2013 Harpaz et al.
compared the performances of several disproportionality
methods using the FDA adverse event reporting database
using the same reference set (Harpaz et al., 2013). They also
found a better specificity than sensitivity of the reported odds
ratio but the overall performances were inferior to those in our
study. That may be due to the greater number of cases included in

our study (21 million vs. 5 million) and broader definitions of
outcomes, consistent with other studies that found higher
performances using larger databases and similar event
definitions (Reich et al., 2013; Caster et al., 2020).

Our study had some limitations. The reference dataset used
here is one of the largest to date that incorporates both SPCs and
evidence from literature reviews. However, Hauben et al.
suggested that a small part of false drug-event pairs may be
misclassified, which could impact the performances of
disproportionality analyses (Hauben et al., 2016). Nonetheless,
the comparisons between models and methods are unlikely to
have been affected by this bias. Moreover, to standardize the
models we had to make choices (e.g. 5 year after drug approval for
model 6, United States country for model 2 or defining the
therapeutic area by the ATC level 3 in model 4). These
standardized definitions may not be relevant for some drug-
event pairs (e.g. for drugs not commercialized in the United States
or belonging to an heterogenous ATC class) and have to be
further adapted to the nature of the studied drug and ADR. The
findings of our study may not be generalizable to other databases
due to differences related to the database background and the
medical products covered. Nevertheless, several studies have
highlighted the similitudes and overlaps between SDR found
from pharmaceutical company databases and international
pharmacovigilance databases (Candore et al., 2015; Vogel
et al., 2020). Finally, while it can be assumed that the results
are applicable to other drug events pairs, the predicted
probabilities calculated in this study are not extrapolable.

CONCLUSION

To conclude, this study shows the wide variability of
disproportionality analysis results depending on the method
and model specifications, thus opening the door for selective
reporting of results. We therefore advocate for the pre-
registration of protocols and the presentation of a set of
secondary and sensitivity analyses instead of a unique result to
limit reporting bias and because variability in the results may
reflect the likelihood of a signal being a true adverse drug reaction.
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