N

N
N

HAL

open science

Optimisation of train speed to limit energy consumption

Julien Nespoulous, Christian Soize, Christine Funfschilling, Guillaume Perrin

» To cite this version:

Julien Nespoulous, Christian Soize, Christine Funfschilling, Guillaume Perrin.
train speed to limit energy consumption. Vehicle System Dynamics, 2022, 60 (10), pp.3540-3557.

10.1080,/00423114.2021.1965628 . hal-03322908

HAL Id: hal-03322908
https://hal.science/hal-03322908
Submitted on 20 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Optimisation of


https://hal.science/hal-03322908
https://hal.archives-ouvertes.fr

Optimization of train speed to limit energy consumption

Julien Nespoulous®?, Christian Soize®, Christine Funfschilling® and Guillaume Perrin®

& Univ Gustave Eiffel, MSME UMR 8208, 5 Bd Descartes, 77454 Marne-La-Vallée, France;
P SNCF Innovation & Recherche, 1-3 Av Francois Mitterrand, 93574 Saint-Denis, France;
¢ Univ Gustave Eiffel, COSYS, 5 Bd Descartes, 77454 Marne-La-Vallée, France

ARTICLE HISTORY
Compiled August 5, 2021

Abstract

The speed profile of a train plays an important role in energy consumption and resulting
costs. The industrial objective of this work is thus to develop a method to reduce the energy
consumed by a train over a journey by playing on the driver commands (traction and braking
forces) while respecting punctuality constraints. A coupling between measured data and simu-
lation is proposed to solve this optimization problem. First, a rigid body approach (Lagrangian
formalism) is introduced to characterize the dynamics of each element of the train and their
interactions with their environment. In particular, the aerodynamic (including the wind effect),
traction, and braking forces are taken into account, and a special attention is paid to the vertical
and lateral characteristics of the track as they play a key role on the train dynamics. Secondly,
a model for energy consumption and recovery (thanks to dynamic braking) is introduced. Ex-
perimental measurements of a high-speed line are then used to estimate the parameters on
which the two previous models are based and to validate their predictive capacities. The op-
timization problem under constraints is finally solved using an evolutionary algorithm where
the constraints are implemented using an augmented Lagrangian formalism. The performance
of the proposed method in terms of speed optimization and energy consumption reduction is
compared to measurements associated with commercial trains.

KEYWORDS
Optimization under constraints, high-speed train, energy saving

1. Introduction

The electric energy consumed by a train greatly depends on the driver commands. Indeed, we
can measure variations of the energy consumed of around 20% between two drivers on the
same journey. To limit this, some crossing points indicate at which speed and at which time the
driver should pass a position. Nevertheless, important variations of the energy consumed are
still noticed. Thus, the objective of this work is to propose a strategy to help the driver to find
the train controls that will allow him to best meet the punctuality constraints while consuming
as little energy as possible. This would particularly be useful when traffic is disrupted.

Several papers have addressed related objectives. Most of them are based on the coupling
of two simplified models: one for the train dynamics and one for the energy consumption. In
terms of dynamic modeling, rigid body approaches combined with a Lagrangian formalism are
mainly considered [I], as well as the projection of the dynamics equations on the longitudinal
to the train axis [2]. As for the modeling of the consumed energy, more or less sophisticated
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models can be found in the literature to fit with the reality [3]. The same framework will be
used in this work for physical modeling.

These models can then be used to minimize the energy consumed by the train during
its journey. The main difficulty lies in the fact that the dynamics and the constraints are
nonlinear. To speed up the resolution of the nonlinear dynamic problem, [4] proposes to
use the pseudo-spectral method, which projects the continuous equations on orthogonal
polynomials. The optimization problem is then solved thanks to a nonlinear programming
algorithm. Another approach is to translate the nonlinear dynamic problem and constraints
into a mixed integer linear programming problem, which is easier to numerically solve with
a linear programming solver [5]. Genetic or dynamic algorithms [6] were also proposed to
manage these non-linearities. In this work, we have chosen to use these evolutionary algorithms
because of their general and flexible nature.

This type of energy optimization has been used to more precisely study different driving
choices: the braking strategy and its impact on energy recovery [7], but also the arbitration
between delay-recovery, energy-saving or on-time strategy [8]. Finally, there are works inte-
grating the minimization of rail and wheel wear. Indeed the modifications and the potential
multiplication of braking and acceleration phases induced by the minimization of energy could
prematurely degrade the system [9].

In this work, we present a method that distinguishes itself from these different works for
several reasons. First, the optimization method is applied to the driver commands and not
directly on the speed trajectory. Thus, the method can directly be transposed to real high-speed
trains. Then, the constraints combine both punctuality (applied on the end speed and position
of the train) and physical constraints (applied all along the journey). The model includes both
pneumatic and dynamic braking, which is able to recover energy. Those modifications allow a
better description of the dynamic behavior of the train. Finally, we use an iterative method to
limit the number of evaluations of the cost function, which would otherwise be far too long.
A validation process has been carried out by comparing the simulation results with measured
data in real traffic conditions.

The implementation of a real-time driver command must be based on the use of a robust
model, a fast optimization algorithm, and an appropriate computer. The robust aspects with
respect to uncertainties are in progress and are not presented in this paper. The optimization
algorithm that is presented is already fast because it is based on the use of a surrogate
nonlinear dynamical model (digital twin model) constructed from the full detailed dynamical
model of the train. In the optimization algorithm, the computation devoted to each draw of the
population of points (last paragraph of Section is parallelized. For each draw the surrogate
nonlinear dynamic model is used (second paragraph of Section and requires, using one
core of a CPU, about 30 seconds for the system under consideration (the one described in
Section [2.1)). Using a GPU instead of a CPU would yield a negligible calculation time with
the GPU and consequently, the real-time optimization will be able to be performed without
difficulty with an appropriate computer configuration (several GPU’s in parallel).

The organization of the paper is the following. Section [2] describes the models that will be
used to model the high-speed train longitudinal dynamics and its energy consumption. The
optimization problem, its numerical implementation, and the results it can provide, are then
presented in Section [3] At last, Section [4] concludes and proposes several prospects for this
work.



2. High-speed train dynamics and energy consumption

This section presents the system of interest (a train running at high speed on a dedicated railway
track) and proposes models to compute its dynamic behavior and the energy it consumes. The
predictive character of these different models is then evaluated by confronting the simulation
results with in-line measurements.

2.1. System description

In this work, we use a model of a TGV-Dasye that is a commercial high-speed train running on
the French Rhin-Rhone high-speed line. This train is composed of eight passengers cars pulled
by two engines at the head and tail of the train. Except for the two motor cars, bogies are
shared between carriages. The engine bogies are called motor bogies to dissociate them from
carrying bogies. Each bogie is composed of two wheelsets. These three bodies (cars, bogies,
and wheelsets) are integrated in a rigid body framework to describe their dynamic behavior.

There are three kinds of interactions imposed on the system: the internal, the external, and
the driver command interactions.

First, the rigid bodies are linked to each other by suspension joints. These joints can take
different forms with linear (springs, dampers) but also nonlinear (bumpstops, bushes, pinlinks
elements ...) behaviors. These behaviors are assumed well known and described by their behavior
laws. We consider these suspensions as internal to the system because it consists in interactions
between rigid bodies.

The external forces regroup all the interactions between the train and its environment. It
includes the weight, the aerodynamic forces, and the contact forces. The weight is expressed on
each rigid body thanks to the mass and inertia tensor. The aerodynamics can be applied to each
moving rigid body, but we neglect it on bogies and wheelsets. In particular, the aerodynamic
forces take into account the effect of wind, which has a big influence on the energy consumed
by the train [I0]. This wind speed is generally decomposed in two terms: the mean speed of
wind v,,(t), which is forecasted at different positions of the track, and the random fluctuations
around this mean value (that can be modeled by a stochastic process). In this work, these
fluctuations are neglected and we only keep the mean speed of wind. The mean speed of the
wind is then projected on the longitudinal axis defined by the track and can be used to obtain
a better approximation of the aerodynamic force. An example of the wind profile that has
been used and its projection on the track axis is shown on Figure (I} To model the wheel/rail
interaction, the Hertz model is chosen to describe the normal forces and the contact creep forces
are approximated thanks to Kalker’s wheel/rail theory (see [11, [12] for more details about these
contact forces).

Finally, the command forces correspond to traction and braking, as their amplitude is
controlled by the driver. Two types of braking are however distinguished, the dynamic and
pneumatic braking, because they do not apply to the same subsystems and do not have the
same impact on the energy consumed. In the same way as for the traction forces, the dynamic
braking is applied to the motor wheelsets and can be simply described as the inversion of the
motors. It is therefore particularly interesting as it is able to recover energy and inject it in
the catenary. On the contrary, the pneumatic braking only dissipates energy but is applied to
each carriage wheelsets.

The driver command wu(t), which indirectly controls the train speed, can be modeled by a
continuous time-dependent function representing the traction and braking normalized torque.
This command is a mathematical modeling of the traction/braking manipulator used by the
train drivers. The traction and braking forces capacity are limited by the motor and braking
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Figure 1. Wind profile on the track.

capacities. In the proposed model, the driver command u(t) takes its values in the interval
[—1,1]. The bound —1 (resp. 1) is the maximum value for the braking (resp. traction) forces,
which cannot be exceeded in the model. These maximal traction and braking capacities depend
on the train speed. These bounds correspond to longitudinal accelerations that cannot induce
passengers comfort and train couplers problems. The jerk of the train is controlled by the time
derivative of u. In this version of this work, no constraint has been introduced for limiting the
jerk. Nevertheless, we have checked that for the optimal driver command found, this derivative
stays sufficiently small. If u(t) is positive (respectively negative), the driver uses the motors
(respectively brakes). The dynamic braking is prioritized over the pneumatic braking following
the braking strategy of in-line trains. Thus, the pneumatic braking is only used for high-
amplitude braking (for example for emergency stops). For instance, at a time ¢, if u(t) = —0.8
the driver is braking using 80% of the maximal braking capacity. For u(t) < 0, the traction
torque is equal to zero. By defining this control parameter instead of directly working on the
train speed, as it is generally done, we get as close as possible to the behavior of the driver who
can choose when to use motors or brakes. In addition to being novel, this approach will also
facilitate the integration of the obtained results into the on-board computers.

2.2. Models for the train dynamics and the energy consumption

Dynamics equations

A nonlinear 3D dynamic model is constructed from the Lagrangian formalism using a
multibody approach applied to each rigid body (8 passenger cars, 2 motor cars, 13 bogies,
and 26 wheelsets). All the forces that have been listed in Section are taken into account
in the model (including aerodynamic, contact, and suspension forces) and are adapted
to the TGV-Dasye train under consideration. As the objective of this work is to reduce
energy consumption under punctuality constraints and speed limitations, the quantities of
interest we need to extract from the train dynamics are the evolution of the speed and the



energy consumption during the simulated journey, but also the arrival time and the final
position. An important point is that all these quantities can be derived from the longitudinal
dynamics of the train only, which invites us to directly consider the behavior of the whole
train. In this work, we have chosen to study the longitudinal dynamics of the whole train
whose model is derived from the complete 3D model briefly evoked above. This has been
done by summing the Lagrangian of the different rigid bodies and then projecting the
Lagrange equations on the longitudinal axis. It should be noted that one of the following
step of this work will include the rail and rolling stocks damage in the optimization prob-
lem. This objective will impose the use of a complete multibody dynamic model that will be
carried out. This is the reason why the complete multibody model is not described in this paper.

To obtain a model whose calculation time is relatively small, several hypotheses are now
introduced to simplify the equations. First, it is assumed that the rigid bodies keep the same
distance to each other. As a consequence, the internal interactions can be neglected, and the
train can be considered as one element evolving at a longitudinal speed denoted by v(t). In
particular, the angular speed is assumed to be negligible for the cars and bogies (only the
wheelsets turn significantly), which considerably simplifies the expression of the total kinetic
energy of the train. In practice, it appears that the rotation term represents approximately 4%
of the longitudinal part. Thus, the kinetic energy T (v(t)) is often written, with a corrective
term k" = 1.04, as

T (0(t)) = gmaos K 0(0)?, o

with my.; the total mass of the train. It may vary between two journeys until more or less 5%
of a central value (because of different numbers of passengers in the train). As the total mass
will be measured directly on in-line trains in the future, we assume it well known. Thus, we
determine it for each series thanks to the experimental measurements.

Secondly, we assume there is no slip between wheels and rail, and that the wheel radius is
approximately constant and equal for all the wheels. In this case, the traction and braking
torques are equally distributed on each wheelset and can be converted in a global longitudinal
force applied to the train. In addition, if we assume that the contact parameters have no
influence on the driver maximum command force, the longitudinal components of the different
braking at time t can be expressed as functions of the command driver u(¢) and the train speed

v(t),
(2)

where F1 and FP  are respectively the maximal traction and braking capacities. Empirical

models based on experiments are chosen for these maximal capacities.

Then, the expression of longitudinal running resistance, which regroups both aerodynamic
and contact forces is approximated with the Davis formula [13]:

FPavs (1), v,(t)) = A+ Bu(t) + C (v(t) — vw(t)) [v(t) — vu ()], (3)

in which A, B and C are experimental parameters specific to each train. In this expression,
coefficient C' refers to the aerodynamic air pressure effect, coefficient B mostly comes from
the wheel flange friction, and coefficient A refers to the journal friction, the rolling and track



resistances. In order to improve the running resistance in curve, a correction term is applied to
each car o which is in curve under the form:

kC’urve

FCurve Q) = N ’
o (sa) =m I Re0)

(4)

with s, the longitudinal abscissa, m, the mass, g the acceleration of gravity, and R(s,) the
curve radius of the track associated with the a-th car of the train. As previously, the coefficient
kCurve is determined experimentally and is specific to each train. Finally, the weight of the a-th
car, projected on the longitudinal axis, is written as

Fy (sa) = —mq g sin(0(sq)) . ()
where 0(s,,) is the declivity of the track.

With these hypotheses and approximations, the dynamics equation in the longitudinal axis
can be written as,

Motk W08 = FT(u(t) u(®)) — FP(0(t), u(t) — FP (u(t), v, (1)

dt (©)
=Y FJU(sa) + ) Fa (sa)-

Thanks to this equation, which describes the dynamics of the whole train, we can calculate
the position and speed of the train all over the journey, and compute the final speed and final
position of the train, which will be included as constraints in the optimization problem.

Energy consumption

From the speed of the train and the driver commands, we can estimate the motor power and
the dynamic braking power used by the train. With an appropriate definition of efficiencies,
it is then possible to calculate the energy consumed as well as the energy recovered by the
system during the braking. Let n7 and ngr be the traction and recovery efficiencies. Attention
is drawn to the fact that the definition of these two parameters is different. As an example, if
we say that the traction efficiency is around 87%, this means that the mechanical power of the
motor represents 87% of the electric power transmitted by the catenary (the rest is lost in the
traction chain). On the opposite, the recovery efficiency is the part of mechanical power that
is reinjected in the catenary (around 82%). The efficiency of the traction chain depends on the
efficiency of each of its component. The behavior of these components has not been measured
by the constructor for the high-speed train under consideration. Consequently, we have chosen
to globally model the efficiency by integrating the whole traction chain. We have observed on
other types of trains that the efficiency depends on the train speed and on the longitudinal
traction force. As we have not access to the values of the efficiency model for the train used as
reference, we have proposed an approximated model that directly depends on the mechanical
power, and thus indirectly on the train speed and the traction force. We have verified that the
result obtained after the identification is close to the efficiency obtained on other types of train
and that the simulated energy consumed was close to the measurements. To take into account
this dependence, the following simplified models are proposed for the efficiency coefficients,

nr(PT) = anPT + by, (7)



nR(PB) = cnPB +d,. (8)

In these two equations, P7 and PP are respectively the mechanical traction and mechanical
braking power, whereas a,, b,, ¢, and d, are constants that will also be chosen thanks to
experimental measurements.

However, traction and braking are not the only functions that consume energy. Indeed, a part
of the energy provided by the catenary is transmitted to auxiliary tools of the train, such as
the air conditioner and the cooling system. To take into account this additional consumption,
we define the auxiliary power as a constant P*“*. Finally, with motor, dynamic braking, and
auxiliary power, the energy consumed by the train can be calculated along the journey.

2.3. Parameter identification

In addition to potentially affecting the quality of the model, the different assumptions pre-
sented in the former sections resulted in the introduction of a series of parameters that need
to be carefully adjusted. The first step of the parameter identification consists in performing
a sensitivity analysis in order to determine the most important parameters that will be iden-
tified, the other ones being fixed to their initial values provided by SNCF, the French railway
company, for the TGV Dasye. For this step, eleven parameters have been considered: the resis-
tant force coefficients, the traction and recovery efficiency constants, the auxiliary power, the
corrective parameter for the resistant force in curve, and two corrective parameters related to
the efficiency of the traction and of the energy recovery. The sensitivity analysis has thus been
performed with respect to each one of this eleven parameters fixed to their initial values. The
sensitivity of the energy consumed by the train is then performed using a sensitivity interval
of £10 % around their initial values. The results of this analysis show that the mots important
parameters are:

e the resistant force coefficients A, B, and C,
e the traction and recovery efficiency constants a,, b,, ¢, and d,,
e the auxiliary power P*"*.

From this analysis, we also found that coefficient C' and the two coefficients a, and b,
associated with the traction efficiency nr played the most important role on the energy
consumed during the journey. This is not surprising: the resistant force coefficient C' has more
impact than A and B because at high speed, the aerodynamic force is preponderant. Moreover,
as the traction phases are much more frequent than braking phases, nr has a greater effect on
the energy consumed than 7g. In the following, these eight influent parameters are called the
calibration parameters.

To identify these calibration parameters, measurements were carried out on the French Rhin-
Rhone high-speed line (LGV RR), where the train of interest is assumed to run. The character-
istics of this line, which are the relative altitude (integration of the declivity 6(s)) centered on
the starting altitude of the journey, the curvature R(s), and the speed limitation v™*(s) are
described in Figure 2l The measurements of the position, the speed, and the energy consumed
by the train on different portions of this track are detailed in [3]. Wind forecasts have also been
simulated by Meteo France near the track at each hour. As an illustration, a particular wind
field and its interpolation along the track are shown in Figure[I] Based on this information, and
keeping in mind that the driver commands were unfortunately not recorded during these mea-
surements, the following procedure is now proposed for the estimation of the eight calibration
parameters.

e The initial values of the parameters are fixed to the values provided by the train con-
structor and operator.
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Figure 2. Rhin-Rhone high-speed line description.

e An inverse method is used consisting in calculating the driver commands in such a way
that the simulated train trajectory fits with the measured one. In other words, we look for
the traction and braking forces so that the simulated and measured speeds and positions
are as close as possible.

e Finally, the energy consumed is calculated by simulation and is compared to the measured
value.

Comparisons between simulated and measured train speed and energy consumed along the
track are shown in Figure [f] We can observe that the inverse method is quite accurate as it
is possible to recover driver commands that allow to simulate the same trajectory than the
measured one (left plot). Nevertheless, we clearly see on the right plot that working on the
driver commands only is not sufficient as the associated simulated energy consumed (dashed
line) is not equal to its measured value (dotted line). It should be noted that the energy
consumed by the train depends on the traction force and on the speed of the train, which both
depend on the driver commands. This energy is estimated by using the nonlinear dynamic
equation and the energy consumption model presented in Section

Values for the calibration parameters can however be found such that speed and energy
consumed fit relatively well with the measurements. As the driver commands are not unique
(they depend on the parameters), the solution of the identification may not be unique as
well. To avoid overfitting, the chosen values for the calibration parameters correspond to a
compromise between a good representation of the measured speed and energy consumed,
and a proximity to the values provided by the constructor. The result of the identification is
shown in Figure |3| (solid line). Here, the simulated and measured energy are very close. More
precisely, by playing with the values of the calibration parameters, the mean error (calculated
as the Lo-norm between the measured energy consumed along the track and the simulated
one) goes from 6.4 % to 3.0 % for 10 different measured journeys.

As an example, the identified values for the resistant force coefficients obtained by using the
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Figure 3. Speed (left figure) and energy consumed (right figure) of the train as a function of its position for the mea-
surements, for the initial and the identified values of the parameters (identification process).

above methodology are A = 2680 N, B = 31.2 N xs/m, C = 0.427 N x s?/m?. It should be
noted that the parameters-identification method that is proposed can be applied to other types
of trains.

2.4. Model validation

To quantify the relevance of the identified values, comparisons have also been performed for
measurements that have not been used during the identification procedure. As an illustration,
Figures and [p| compare the energy consumed with initial and identified values for the
calibration parameters for data not used during the estimation procedure. Looking at these
figures, it can be seen that the predictive capabilities of the model are relatively satisfactory
and have been improved compared to the case where the calibration parameters are fixed at
their nominal values. More precisely, the mean error goes from 6.9% to 3.1% when optimizing
these values. For most series (8 series out of 10), the error is under 3%, which is very
encouraging in view of the simplifications introduced, but some measurements have an error
slightly over 5%. These differences between simulation and measurements may be due to a
shift between speed and energy measurements but can also come from the simplifications
listed in the previous section, the presence of specific rolling conditions, such as rain, or
uncertainties on the total mass of the train. As an example, running the simulation with a
train full of passengers or empty results in variations of the error of around 2%. The auxiliary
power, assumed constant, is also a possible source of error. Indeed, it can be dissociated in two
parts. The power dedicated to the passenger comfort is approximately constant but the part
transmitted to traction or braking auxiliary (cooling system) may vary during the journey.
These aspects may be inspected in further studies to improve the quality of the modeling.
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3. Optimization of the driver commands

Based on the simplified models presented in Section [2] the objective of this section is to present
an algorithm to optimize the driver commands in order to minimize the energy consumed by the

10



train during a given journey, while verifying punctuality constraints. For this purpose, we will
start by presenting the general constrained optimization problem. A number of simplifications
will then be listed in order to allow the identification of interesting solutions in a reasonable
computation time. The relevance of this simplified problem will finally be illustrated on two
real traffic configurations.

3.1. Definition of the constrained optimization problem

Definition of the cost function. In this paper, we focus on the impact of the driver command
{u(t), t > 0} on the electric energy consumed by the train during a whole journey. To calculate
this energy, we denote by P¥ the electric power, and we distinguish different configurations
depending on the sign of w. On the one hand, if u(¢) > 0, the train is in traction phase and the
electric power can be written as a function of the traction force FT', the traction efficiency nr,
the traction power P, the auxiliary power P%“*, and the train speed v:

PE(u(t),u(t)) = nT(lPT)FT(v(t),U(t)) v(t) + P (9)

On the second hand, if u(t) < 0, the train is braking, and a part of the dynamic braking power
can be recovered:

PE(u(t),u(t)) = —nr(P") F (u(t), u(t)) v(t) + P**, (10)

where 7p is the recovery efficiency and FP is the dynamic braking force. By writing ¢ the
total time of the journey, the total energy consumed by the train is finally given by

fE(v,u):/OfPE(v(t),u(t))dt. (11)

In some specific cases, it could be interesting to recover energy at special positions on the track
or at specific periods (near cities, rush hour for instance). Thus, it might be interesting to
express this energy as an integral in space rather than in time, and to weight certain portions
of the track for energy recovery. This recovery criterion is however not considered in this study.

Definition of the constraints. So that the driver commands can be used in real configura-
tions, several constraints have to be added to the optimization problem. The first ones concern
the comfort of the passengers, and aim to limit acceleration and jerk. As we only consider the
longitudinal problem, these constraints are however not restrictive (they could be more limiting
when considering lateral and vertical axes). They are therefore not taken into account in the
following of the paper. The second group of constraints relates to circulation safety. In our
problem, these constraints mainly concern the speed of the train, which can be limited to take
into account a high curve radius, a tunnel, a switch or a well identified state of degradation of
the track. Let v™*(s) be the speed limitation. The first constraint we will consider is written
as

Vs, u(s) <v™(s), (12)
in which s is the curvilinear abscissa of the track. The last type of considered constraints are the

punctuality constraints, which force the train to arrive at the right point x s at the right moment
ty with the appropriate speed vy = 0. In this work, we propose to express these constraints as

11



integrals on the train speed v and acceleration a:

/Otf o(t)dt = (13)

/t'f a(t)dt = vy = 0. (14)
0

Let C be the space of the driver commands allowing to respect the constraints defined by the

equations , and .

Definition of the constrained optimization problem. If we defined {(z(¢;u),v(t;u),
a(t;u)), 0 <t <t} as the solution of the dynamic system associated with the driver command
u={u(t), 0 <t <ty}, the optimization problem is written as,

rqfleing(v(U),U) : (15)

3.2. Practical solving of the optimization problem

In order to numerically solve the constrained optimization problem defined by Eq. , we
need to proceed to several simplifications.

Constant piecewise approximation. Looking for a function u solution of the former opti-
mization problem, means trying to solve an extremely difficult optimization problem because it
is defined in a space of infinite dimension. In order to reduce the complexity of the problem, we
first propose to limit the search to piecewise constant functions. To this end, we decompose the
track into segments of the same length, this length being adapted to the available calculation
capacity. The greater the number of segments, the better it is possible to adapt the train speed
to the track design and constraints, but the higher the numerical cost. For instance, this length
could be chosen around §; = 200 m for journey of about one hundred kilometers.

Solving the dynamic equations. To solve the nonlinear system defined by Eq. @, we use
the Runge Kutta scheme at the order 4. The associated time step d; is chosen equal to 0.5 s
according to a convergence analysis. For this value of §;, this scheme gives a good precision of
the results in an acceptable calculation time.

Perturbation method. As the punctuality constraints can only be evaluated at the end of
the dynamic calculation, most of the tested trajectories will not respect these constraints. In
order to avoid a too high rejection rate, and thus very high computation costs, we propose in
this paper to test only new driver commands under the form of a deviation around a trajectory
verifying the punctuality constraints. In other word, if u is a driver command allowing to respect
the punctuality constraints, it is assumed that there is a good chance that, for Au small with
respect to u, the command v = u + Au will be close to respect the constraints. In that case,
if v =v+4+ Av and a = a + Aa are the train speed and train acceleration associated with u,
whereas v and a are the train speed and train acceleration associated with u, we have

/Ov(t)dt:xf , /Oa(t)dt:O, (16)
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such that the new punctuality constraints are rewritten as,

/tf Ao@ydi=0 . [ Aa@ydi=0. (17)

0

In practice, if we randomly choose Auwu, even if the constraints have a chance to be almost
verified, the chances are very low if not zero that they are completely verified. To be able to
better compare two driver commands, we propose a double adaptation of the train trajectory. If
the train stops before the arrival point, we stop the calculation to avoid negative speed and the
constraint on the final position is not verified. On the opposite, if the train is assumed to stop
after the arrival point, we stop the calculation at time ;. In this situation, both constraints on
final speed and final position are not respected.

Optimization algorithm. In order not to limit the research to the immediate surroundings of
the initial solution without drawing a huge number of driver command perturbations, we need
to use the information given by the dynamic responses to guide the choice of the perturbations.
This is how the CMA-ES method works, which we choose to solve the optimization problem
under constraints. For this algorithm, to start the calculation, we need to define a starting
point, a starting amplitude, and several hyperparameters (see [14] for further details about
this method), the constraints being implemented as a penalization of the cost function with
Lagrangian multipliers. Among these hyperparameters, we can mention the size of the popula-
tion, the number of draws selected, and the adaptation coefficient. Then, at each iteration, the
method follows several steps, which can be summarized as follows.

e Draw a population of points following the direction given by the covariance matrix around
a starting point.

Estimate the cost function and the constraints for each generated point.

Select the best points.

Update the Lagrangian coefficients associated with the constraints.

Update the covariance matrix and the starting point in order to find a better direction
for the next draws.

For the considered application, this method has allowed us to find very interesting solutions
with a relatively low number of iterations.

3.3. Presentation of the optimization results

The optimization procedure we have proposed in the former section is run for the optimization
of the driver command under punctuality and safety constraints. The values of the cost
function and constraints are kept as the algorithm is iterated. The simulation is run over the
LGV Rhin-Rhoéne track to verify the quality of the optimal trajectory compared with the
energy measurements. Figure [6] displays the cost and constraints distributions represented
with box plots of the population with respect to the number of iterations. The final position
and speed constraints are expressed relatively to the expected ones. This figure gives a visual
interpretation of the random search strategy. In fact, during the first iterations, we see that
the standard deviation is important. This means that the method searches roughly a direction
to explore. After few iterations, the energy consumed by the train begins to decrease: the
method has found an interesting energy-saving direction. However, the punctuality and speed
limitation constraints are not respected yet. Then, around 50 iterations, the Lagrangian
penalization takes more importance and a new direction is defined. This has an impact on
the energy consumed that increases slightly but also on the constraints that are closer to be
respected. This method continues until the standard deviation reaches the threshold defined
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Figure 6. Random draws cost and constraints (LGV Rhin-Rhone).

as a hyperparameter. We choose it in order that the solution obtained at the end of the
optimization calculation is converged.

The quality of the optimal solution is then verified by comparing it with measurements.
Thus, left Figure [7] shows a comparison of the speed between the measured and optimal
trajectories. It can be observed that the optimal trajectory reduces the maximum speed of the
train when it is possible but brakes later to stay on time. Indeed, reducing the maximal speed of
the train leads to a reduction of the resistant force, thus a reduction of the energy consumption,
but the punctuality constraint imposes that the measured and simulated trajectories arrive
on the same time. In order to reduce the energy consumption but still to arrive on time, the
optimal solution is to decrease the maximal speed of the train and brake later. This is not
clearly shown in Figure [7| but the measured speed of the train is around 25 km/h during
almost 1 km at the end of the journey whereas the optimal solution brakes at the last moment,
this is why both trajectories respect the punctuality constraint. If the punctuality constraint
has been tighter, braking later would not have been sufficient and the solution would have
been to increase slightly the maximum speed. Right Figure [7] displays the associated energy
consumed. It can be seen that the solution is effectively better and consumes around 20.9%
less energy. Thus, the method is interesting to reduce the energy consumed by trains. It can
also be observed that, during the first part of the journey, the energy consumed soars, which
corresponds to the acceleration parts. Then, during the second part, the energy consumed
still increases but slightly, which coincides with the constant speed part of the journey. The
energy consumed decreases, which means that the train is braking and recovering energy.
The trajectory and energy consumed may be more precise by choosing a lower discretization
path &5, which should improve the energy saving. We can observe this spatial discretization
path on the optimal result because the solution is not smooth and seems to be defined piecewise.
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Figure 7. Optimized solution (LGV Rhin-Rhone).

Finally, if we compare the trajectory with the declivity of the track, it can be understood why
the speed is not constant once the train reaches its maximal speed. Indeed, in term of energy, it
is not efficient to accelerate during a slope if we need to brake when going down. Thus, before
the kilometer 60, it can be seen that the train accelerates and takes advantage of its inertia to
climb the slope without accelerating more. This is shown in Figure [§| that displays the optimal
trajectory of the optimization run on another journey (LGV est) in the left figure and the
associated altitude of the track in the right figure. Here, the arrival time is set arbitrarily so
that the train needs to reach its maximal speed for most of the journey to be on time. Thus, we
can highlight the efficiency of the maximal speed constraint, which is well respected. Despite
this, we still observe that before each positive declivity (kilometers 31, 37 or 68), the optimal
trajectory have important speed, which confirms the previous observations. The punctuality
and the speed limitation constraints are respected as we can see on the trajectory (left plot in
Figure . In this work, the comfort and security constraints have not been taken into account
but the Lagrangian penalization offers the capacity to add as many constraints as we need.
The only impact will be on the time calculation of the method, which will need more time to
converge to an optimal trajectory.

4. Conclusion

In this paper, a model has been proposed to describe the high-speed train dynamics among
the longitudinal axis. The parameters have been identified and the model has been validated
thanks to measurements carried out on a real high-speed line. Then, the optimization problem
has been defined and numerically solved. Finally, the obtained results have been analyzed and
compared it to in-line train.

The method allows the energy consumed to be reduced. It could be used to define an optimal
trajectory on each journey to help drivers following the most energy saving trajectory. This
application of the method takes even more importance when it is known that the automatic
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Figure 8. Optimal solution and associated altitude of the track (LGV est).

train is a technology being developed today. It will need a proper trajectory definition as the
driver will probably no longer be in the train.

To complete the method, we may introduce other objectives. The optimal trajectory obtained
as a result does not take into account other important stakes of railway world. As an example,
the wear of wheels and rolling stokes might be fasten if all trains follow the optimal trajectory.
This multi-objective aspect will be inspected in further works. The uncertainties of the model
parameters is also another further development as we saw that they impact the model quality.
Taking it into account allows a better modeling of the physical system and thus improves the
optimal trajectory we may find.
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