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Abstract12

In the NP-hard Longest Common Subsequence problem (LCS), given a set of strings, the task is13

to find a string that can be obtained from every input string using as few deletions as possible.14

LCS is one of the most fundamental string problems with numerous applications in various areas,15

having gained a lot of attention in the algorithms and complexity research community. Significantly16

improving on an algorithm by Irving and Fraser [CPM’92], featured as a research challenge in a17

2014 survey paper, we show that LCS is fixed-parameter tractable when parameterized by the18

maximum number of deletions per input string. Given the relatively moderate running time of our19

algorithm (linear time when the parameter is a constant) and small parameter values to be expected20

in several applications, we believe that our purely theoretical analysis could finally pave the way to21

a new, exact and practically useful algorithm for this notoriously hard string problem.22
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1 Introduction33

With its numerous applications in bioinformatics, data compression, computational linguistics,34

etc. the NP-hard Longest Common Subsequence (LCS) problem is among the best studied35

algorithmic string problems. Suiting our parameterized analysis purposes, we formally define36

the problem as follows.37

Longest Common Subsequence38

Input: A set of k strings S = {S1, . . . , Sk}, each of length at most n, an integer ℓ.39

Parameter: ∆ = n − ℓ.40
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Question: Is there a string S of length at least ℓ that is a (not necessarily contiguous)41

subsequence of each Si?42

With standard dynamic programming, LCS can be solved in O(nk) time; on the contrary,43

it is known to be W[1]-hard [12] respectively W[2]-hard for parameter k and it has no O(nk−ϵ)44

algorithm under SETH [1]. Indeed, LCS is the string problem receiving most attention45

when the field of parameterized complexity [8] started. Unfortunately, so far parameterized46

complexity analysis beyond trivial algorithmic observations mainly contributed computational47

hardness results. We refer to some surveys [2, 6, 7] for an overview on research results (and48

open questions) for LCS.49

We remark that the special case of two input strings (that is, k = 2) recently attrac-50

ted much attention, particularly motivated by the theoretical challenge of breaking the51

straightforward time bound of O(n2) [3, 5, 9]. Notably, Bringmann and Künnemann [5]52

(the corresponding arXiv paper has around 60 pages) also discuss the “maximum number53

of deletions” parameter we focus on here. Indirectly, this parameter already appears in the54

work of Irving and Fraser [10], who provided two algorithms for LCS with three or more55

input strings.56

Irving and Fraser [10] in their 1992 paper provided an algorithm for LCS running in57

time O(kn(n − ℓ)k−1, implying fixed-parameter tractability with respect to the combined58

parameter k and n − ℓ, where the latter coincides with our parameter ∆. We are not aware of59

any improvement since then and this is also reflected by a corresponding challenge featured60

in a 2014 survey [6, Challenge 9]. Answering positively the research challenge posed there,61

we improve Irving and Fraser’s result to fixed-parameter tractability only with respect to ∆.62

More specifically, our algorithm runs in time O((∆ + 1)∆+1kn), which means linear time63

when ∆ is a constant. In addition, we can enumerate all longest common subsequences64

within this time. Given that it seems natural to assume that in many applications the65

seeked common subsequence is fairly close to every input string (which would mean small ∆),66

this promises to be of also practical relevance. However, the focus of this work is purely67

theoretical. We mention in passing that our result holds for arbitrary alphabet size.68

Figure 1, at a very high level, for three input strings presents an example for LCS and the69

main idea behind our recursive approach towards achieving our result, the FPT-algorithm70

for parameter ∆.71

2 LCS Algorithm Using Maximal Common Subsequences72

In this section, we present a linear-time algorithm for LCS when the number of deletions is a73

constant. Note that it is not incompatible with the quadratic lower bound for this problem,74

since this lower bound only applies to the general case where the number of deletions is75

unbounded. In particular, the O(δn) algorithm by Nakatsu et al. [11] (with δ = min{|Si|}−ℓ)76

remains better than our algorithm for the two-string case. Furthermore, it is not clear if a77

smaller (typically constant) alphabet could be exploited in the algorithm or its analysis to78

obtain a better running time.79

2.1 Definitions80

Strings81

The set of strings on an alphabet Σ is denoted Σ∗. The empty string is ϵ, |S| denotes the82

length of S. We write · for the concatenation. We write u · T := S as a short-hand for “let u83
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Figure 1 Our approach towards computing the LCS of three strings abcabac, acbabc, ababcba.
Left: compute maximal common subsequences of the first two strings (all three subsequences and
their alignment with input strings are depicted). Right: compute maximal common subsequences
of all three strings by comparing those obtained at the first step with the third input string (only
two strings remain after filtering non-maximal common subsequences). The longest result, ababc is
the LCS of the input strings. Filtering out strings that are shorter than a threshold prevents the
number of intermediate strings from growing too fast, yielding our FPT-algorithm.

be the first character of S and T be the suffix of S starting from the second character (or84

u = T = ϵ if S is empty)”.85

Given two strings S1, S2, we write S1 ⪯ S2 (resp. S1 ≺ S2) if S1 is a (strict) subsequence86

of S2 (formally, ϵ ⪯ S for any S and, if S ⪯ S′, then for any u, S ⪯ u · S ⪯ u · S′).87

Longest and Maximal Common Subsequences88

Given S and ℓ, let CSℓ(S) denote the set of all common subsequences of S that have length89

at least ℓ. Let L be the largest integer such that CSL is not empty, and let LCS(S) denote90

an arbitrary string in CSL, i.e. a longest common subsequence of S.91

Let MCSℓ(S) denote the set of all maximal common subsequences of S with length at92

least ℓ; that is, S ∈ MCSℓ(S) iff S ∈ CSℓ(S) and there is no S′ ∈ CSℓ(S) such that S ≺ S′.93

Note that, if ℓ is small enough (ℓ ≤ L), then LCS(S) ∈ MCSℓ(S), otherwise MCSℓ(S) is94

empty. A set of strings M is an extended MCS of (S, ℓ) if MCS(S, ℓ) ⊆ M ⊆ CS(S, ℓ).95

String parameters96

Let S = {S1, . . . , Sk} be a set of strings. We write n(S) = maxS∈S |S|, m(S) = minS∈S |S|.97

Given an integer ℓ, we write ∆(S, ℓ) = n(S)−ℓ and δ(S, ℓ) = m(S)−ℓ. We omit dependencies98

on S and ℓ when the context is clear (e.g., they are given in the lemma statement). Note99

that δ ≤ ∆.100

2.2 Main results101

▶ Theorem 1. Let S = {S1, . . . , Sk} be a set of strings and ℓ be an integer. Then an extended102

MCS of (S, ℓ) with size at most (∆ + 1)δ can be computed in time O(2δ+∆(∆ + 1)δkn).103

Theorem 1 directly yields an algorithm for LCS, since it suffices to test if an extended104

MCS of (S, ℓ) is non-empty. Note that the algorithm can be adapted for the optimization105

formulation of LCS, i.e., when ℓ is not part of the input, with a constant factor in the time106

complexity (taking δ and ∆ with respect to ℓ = |LCS(S)|). Indeed, apply Theorem 1 for107
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decreasing values of ℓ starting with ℓ = m, until a non-empty set is obtained. Then, the108

resulting set contains the common substrings of S of size LCS(S) (indeed, MCSℓ(S) = CSℓ(S)109

for this value of ℓ), so it contains all longest common subsequences of S. The time complexity110

of the i-th call, 1 ≤ i ≤ δ, is upper-bounded by O(2i+∆(∆ + 1)δkn). Using
∑δ

i=1 2i = O(2δ),111

we get the following corollary.112

▶ Corollary 2. All longest common subsequcences of S (and a fortiori the value LCS(S))113

can be computed in time O(2δ+∆(∆ + 1)δkn).114

The remainder of the section is dedicated to proving Theorem 1. We first compute the115

number of strings and their size distribution in the MCS of two strings, then build up on116

this result to bound the size of the MCS of k strings.117

2.3 Extended MCS for two strings118

Algorithm 1 allows us to compute an extended MCS of two strings. Its correctness is proven119

using the main recursive relation for MCS given in Lemma 3, while its time complexity is120

analyzed in Lemmas 6 and 8.121

▶ Lemma 3. For any two non-empty strings S, S′ and any ℓ, let u · T := S and u′ · T ′ := S′.122

If u = u′, then MCSℓ({S, S′}) ⊆ {u · X | X ∈ MCSℓ−1({T, T ′})}.123

If u ̸= u′, then MCSℓ({S, S′}) ⊆ MCSℓ({S, T ′}) ∪ MCSℓ({T, S′}).124

Proof. Let R ∈ MCSℓ({S, S′}), and r · X := R.125

For the first case (u = u′), we show that r = u and X is a maximal common subsequence126

of {T, T ′} of length at least ℓ−1. Indeed, r = u, as otherwise the concatenation u ·r ·X would127

also be a common subsequence of {S, S′}, with R ≺ u · r · X (contradicting the maximality of128

R). Note that X is a subsequence both of T and T ′. Moreover X is maximal, as otherwise, if129

X ≺ X ′ with X ′ a common subsequence of T , T ′, then u.X ′ would be a common subsequence130

of S, S′ with R ≺ u.X ′ (again, contradicting the maximality of R).131

For the second case (u ̸= u′), we show that R is either in MCSℓ({T, S′}), or in132

MCSℓ({S, T ′}) (or both). Indeed, if r ̸= u, then R ≺ S implies R ≺ T , and R is a133

common subsequence of {T, S′}. Otherwise, r = u ̸= u′, and R is a common subsequence of134

{S, T ′}. In both cases, R is maximal, since for any R′, if R′ is a common subsequence of (say)135

{T, S′} with R ≺ R′, then R′ is also a common subsequence of {S, S′} which contradicts the136

maximality of R for {S, S′}. ◀137

Algorithm 1 follows the recursive relation of Lemma 3, along with trivial base cases138

(ℓ > min{|S|, |S′|} or one of S, S′ is a substring of the other). It also clearly returns only139

common substrings of S and S′ of length at least ℓ, so it is correct.140

▶ Corollary 4. Let S, S′ be two strings and ℓ be an integer. Then xMCS2(ℓ, S, S′) returns an141

extended MCS of ({S, S′}, ℓ)142

▶ Remark 5. The first inclusion in Lemma 3 (case u = u′) is actually an equality, but we143

only need this direction for the algorithm to be correct. The second inclusion however may144

be strict: for example with S = ABCD and S′ = DABC, string R = BC is a maximal145

common subsequence of T = BCD and S′, but not of S, S′ since R ≺ ABC. Such “extra”146

strings are actually returned by our algorithm, motivating the naming of extended MCS147

(although they could be filtered out, see Remark 7).148

We now focus on the time complexity of Algorithm 1149
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Algorithm 1 Compute a bounded-size extended MCS of two strings.

1 xMCS2(ℓ, S, S′):
2 if ℓ > |S| or ℓ > |S′|:
3 return {}
4 if S (resp S′) is a substring of S′ (resp S):
5 return {S} (resp {S′})
6 u · T := S

7 u′ · T ′ := S′

8 if u = u′:
9 return {u · X | X in xMCS2(ℓ-1, T , T ′)}

10 else:
11 return xMCS2 (ℓ, S, T ′) ∪ xMCS2(ℓ, T , S′)

▶ Lemma 6. Let S, S′ be strings of length respectively ℓ+δ and ℓ+∆ = n. Then xMCS2(ℓ, S, S′)150

terminates in time O(2δ+∆n).151

Proof. The time complexity is achieved using a precomputed substring table: for every pair152

i, i′ with 1 ≤ i ≤ |S|, 1 ≤ i′ ≤ |S′|, and |i − i′| ≤ ∆, sub[i, i′] contains True if S[i...|S|]153

is a substring of S′[i′...|S′|]. The entries of this table can be computed in time O(n∆) by154

straightforward dynamic programming.155

Note that during recursive calls, the values of ∆ and δ are non-increasing, and ∆ + δ156

decreases by 1 in the case where two recursive calls are performed. In particular, if ℓ ≤157

min{|S|, |S′|} in a recursive call then ||S|−|S′|| ≤ ∆, which enables us to use the precomputed158

table for the substring test. So the total number of leaves in the tree of recursive calls is at159

most 2δ+∆, each call taking constant time, and the height of this tree is at most ℓ+d+∆ ≤ 2n.160

Thus the algorithm takes overall time O(2δ+∆n). ◀161

▶ Remark 7. Algorithm 1 can be adapted to output only the set of maximal common162

substrings, rather than an extended version of it, by simply removing non-maximal strings163

(which can be done in quadratic time in the size of the output set). However, this does164

not improve the theoretical size of the returned set since in the worst case it does not filter165

out any string, but adds a quadratic running time to the complexity. It should however166

be an important step in an implementation of the algorithm, since an additive quadratic167

computation would probably be quickly compensated by pruning a possibly exponential168

search-tree.169

Lemma 6 gives a first bound on the number of strings returned by xMCS2 (precisely, at170

most 2δ+∆). We know that all strings have lengths between ℓ and m. However, we will need171

an additional information for a more precise analysis of our algorithm on k instead of two172

strings. Namely, the fact that there cannot be many strings of length almost m. Intuitively,173

a long string in the returned set corresponds to a leaf in the search tree with few branching174

nodes among its ancestors, which actually helps reducing the size of the search tree. On175

the other hand, a short string in the returned set will cause less branchings in our next176

algorithm. Thus, the following lemma describes the repartition of the number of maximal177

common subsequences of two strings based on their lengths. Note that we would obtain the178

same bound if we used the filtering step from Remark 7 (i.e., the same formula applies to179

the set MCSℓ({S, S′})).180

▶ Lemma 8. Let ℓ, d, d′ be integers, and S, S′ be two strings of length respectively ℓ + d and181

ℓ+d′ (note that {δ, ∆} = {d, d′}). Moreover, let Ni be the number of strings in xMCS2(ℓ, S, S′)182

of length exactly ℓ + d′ − i. Then183
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d′∑
i=0

Ni

(d + 1)i
≤ 1.

Proof. We prove this property by induction on |S| + |S′|.184

If ℓ > min{|S|, |S′|}, then xMCS2(ℓ, {S, S′}) is empty, and the inequality is valid. If one185

of S, S′ is a substring of the other, then |xMCS2(ℓ, S, S′)| = 1, so we have Ni = 1 for some i186

and Nj = 0 for j ̸= i. The formula follows in this case as well. Note that this includes the187

cases where S or S′ are empty.188

In the remaining cases, S and S′ are not substrings of each other, so in particular they189

are not empty. Let u · T := S, u′ · T ′ := S′.190

If u = u′, then Ni is upper-bounded by the number of strings of length (ℓ − 1) + d′ − i in191

xMCS2(ℓ−1, T, T ′), so we can directly apply the property by induction to get
∑d′

i=0
Ni

(d+1)i ≤ 1.192

Otherwise (u ̸= u′), let Na
i (resp. N b

i ) be the number of strings of length ℓ + d′ − i193

in xMCS2(ℓ, S, T ′) (resp. xMCS2(ℓ, T, S′)). We have Ni ≤ Na
i + N b

i ≤ 2Ni (accounting for194

the fact that a string counted in Ni must be counted once one of Na
i , N b

i , and at most195

twice in total). Note that N0 = 0 (otherwise, S and S′ have a common substring of length196

ℓ + d′ = |S′|, which implies S′ is a substring of S). Thus Na
0 = N b

0 = 0.197

We apply the induction property first on pair {S, T ′}. Note that d′ decreases by 1 and198

indices of Ni are shifted by 1, which gives
∑d′−1

i=0
Na

i+1
(d+1)i ≤ 1, so199

d′∑
i=0

Na
i

(d + 1)i
= Na

0 + 1
d + 1

d′∑
i=1

Na
i

(d + 1)i−1 ≤ 1
d + 1 .200

201

Then the induction property on {T, S′} (where d decreases by 1) gives
∑d′

i=0
Nb

i

di ≤ 1, so202

d′∑
i=0

N b
i

(d + 1)i
= N b

0 +
d′∑

i=1

N b
i

(d + 1)i
203

= d

d + 1

d′∑
i=1

di−1

(d + 1)i−1
N b

i

di
204

≤ d

d + 1

d′∑
i=1

N b
i

di
≤ d

d + 1 .205

206

Combining both inequalities yields:207

d′∑
i=0

Ni

(d + 1)i
≤

d′∑
i=0

Na
i

(d + 1)i
+

d′∑
i=0

N b
i

(d + 1)i
208

≤ d

d + 1 + 1
d + 1209

= 1210
211

◀212

Lemma 8 yields an upper bound of ∆δ on the size of MCSℓ(S, S′). Examples (see Figure 2213

and Proposition 9) indicate that this bound is close to being tight, since there exist instances214

where |MCSℓ(S, S′)| =
(
(1 + ∆

δ )δ.215
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Figure 2 Examples of pairs of strings {S, S′} with large |MCSℓ(S, S′)|. Left: a pair with
δ = 1, ∆ = 4, and |MCSℓ(S, S′)| = 5 = 1 + ∆

δ
, showing that a dependency on ∆ is unavoidable.

Right: a pair with 2δ maximal common subsequences, with δ = ∆ = 2. Proposition 9 is a
generalization of both examples that yields strings with |MCSℓ(S, S′)| = (1 + ∆

δ
)δ.

▶ Proposition 9. For any integers u and v, there exist some ℓ and two strings S, S′ of length216

respectively ℓ + u and ℓ + uv such that |MCSℓ(S, S′)| ≥ (u + 1)v = (1 + ∆
δ )δ.217

Proof. Let ℓ = uv, and Σ = {xi,j | 1 ≤ i ≤ v, 1 ≤ j ≤ u + 1} be an alphabet of size (u + 1)v.218

Using
∏

as the concatenation operator, let S =
∏v

i=1 Si and S′ =
∏v

i=1 S′
i with219

Si =
u+1∏
j=1

xi,j220

S′
i =

u∏
j=1

xi,j+1 xi,j .221

222

Note that the length of S is indeed |Σ| = ℓ + v and the length of S′ is 2uv = ℓ + uv. Since223

Si and S′
i′ only have common characters for i = i′, a common substring T of S, S′ is of the224

form T =
∏v

i=1 Ti where Ti is a common substring of Si and S′
i. Each Ti has length at most225

u (since Si is not a substring of S′
i, any common substring has length at most |Si| − 1 = u).226

If T has length at least ℓ = uv, then each Ti has length exactly u. There are precisely u + 1227

such common substrings for each i (all proper substrings of Si are also substrings of S′
i).228

Counting all combinations of strings Ti, there are a total of (u + 1)v common substrings of229

S, S′ of length ℓ, and they are all maximal. So |MCSℓ(S, S′)| = (u + 1)v. ◀230

2.4 Extended MCS of k strings231

We now present our algorithm computing an extended MCS for any number k of strings,232

using xMCS2 as a subroutine, see Algorithm 2. We first give the recurrence relation on MCS233

on which the algorithm is based.234

▶ Lemma 10. Let S = {S1, . . . , Sk} be a set of strings (k ≥ 2) and ℓ be an integer. Let
M ′ = MCSℓ({S1, . . . , Sk−1}), then

MCSℓ(S) ⊆
⋃

S′∈M ′

MCSℓ({S′, Sk}).

Proof. Consider some string S ∈ MCSℓ(S). Then in particular S is a common subsequence235

of {S1, . . . , Sk−1} of length at least ℓ, and so S ∈ CSℓ({S1, . . . , Sk−1}). By definition of MCS,236

there exists a string S′ in MCSℓ({S1, . . . , Sk−1}) such that S ⪯ S′
237

Since S is a subsequence of both S′ and Sk, we have that S ∈ CSℓ({S′, Sk}). To see that238

S is also in MCSℓ({S′, Sk}), assume that S′′ ∈ CSℓ({S′, Sk}) and S ⪯ S′′. Then S′′ is in239

CSℓ(S) (since S′ ∈ CSℓ({S1, . . . , Si})), and since S is maximal in CSℓ(S), then S = S′′.240

Thus S is in MCSℓ({S′, Si+1}) for some S′ ∈ MCSℓ({S1, . . . , Sk−1}, which gives the241

desired inclusion. ◀242
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Algorithm 2 Compute a bounded-size extended MCS of k strings.

1 xMCSk(ℓ, S1 , ..., Sk ):
2 assert (∀i, |Si| ≥ |S1| )
3 if k = 1:
4 if |S1| ≥ ℓ: return {S1}
5 else: return {}
6 else:
7 M ′ := xMCSk(ℓ, S1 , ..., Sk−1)
8 M := {}
9 for S′ in M ′:

10 M := M ∪ xMCS2(ℓ,Sk ,S′)
11 return M

▶ Remark 11. We note that the containment in Lemma 10 may sometimes be strict, as243

can be seen in the following example with ℓ = 1. Take S1 = ABC and S2 = ACB. Then244

MCSℓ({S1, S2}) = {AB, AC}. Combining strings AB and AC with S3 = AAB yields245

respectively MCSℓ({S3, AB}) = {AB} and MCSℓ({S3, AC}) = {A}. However, only AB246

(and not A) is part of MCSℓ({S1, S2, S3}). As for xMCS2, xMCSk outputs these extra strings247

to avoid a costly filtering step without any gain in the worst case.248

▶ Corollary 12. Given S and ℓ, Algorithm 2 correctly computes an extended MCS of (S, ℓ).249

We now bound the number of strings at any point in the set M of the algorithm. The key250

point here is that this bound does not depend on k or n. This may seem counter-intuitive,251

compared to the following upper bound: the algorithm starts with a single string, and each252

recursive call may replace any string by up to 2δ+∆ strings (cf. the complexity of xMCS2).253

There are k recursive calls so this would give a bound of 2k(δ+∆) strings in total. The key254

argument here is that whenever a string is replaced, new strings are strictly shorter than255

the former. Since we only allow for at most δ deletions (starting from a minimal length256

input string), this gives a bound depending on δ and ∆ only. Our more precise analysis in257

Lemma 13 allows us to shrink this quantity from 2O(∆δ) to 2O(log(∆)δ).258

▶ Lemma 13. Let S = {S1, . . . , Sk} be a set of strings with S1 of minimal length (i.e.259

|S1| = m), and ℓ be an integer. Then260

|xMCSk(ℓ, S)| ≤ (∆ + 1)δ.

Proof. We prove the following property by induction on k: let d ≥ ∆, and Ni be the number
of strings in xMCSk(ℓ, S) of length ℓ + d − i. Then

δ∑
i=0

Ni

(d + 1)i
≤ 1.

Note that the lemma statement follows easily from this property for d = ∆:

|xMCSk(ℓ, S)|
(∆ + 1)δ

=
δ∑

i=0

Ni

(∆ + 1)δ
≤

δ∑
i=0

Ni

(∆ + 1)i
≤ 1

For k = 1, we have a single string in xMCSk(ℓ, S), namely, S1, so Ni = 1 for exactly one261

value of i and 0 otherwise, and the formula is satisfied.262
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For k ≥ 2, we have M ′ = xMCSk(ℓ, {S1, . . . , Sk−1}). Consider the for-loop in Lines 9–10.263

We assume that when we iterate with S′ ∈ M ′, the string S′ is immediately removed from M ′.264

At any point of the loop, we write σ for the quantity
∑δ

i=0
Ni

(d+1)i where Ni denotes the265

number of strings of length ℓ + δ − i in M ′ ∪ M . Note that by induction, before the first266

iteration of the loop, σ ≤ 1 (using the fact that δ({S1, . . . , Sk−1}, ℓ) = δ since |S1| is minimal,267

and d ≥ ∆ ≥ ∆({S1, . . . , Sk−1}, ℓ)).268

We show that σ may only decrease after each iteration. Consider the iteration for string S′,269

let d′ = |S′| − ℓ and j = δ − d′ (since S′ is a substring of it has length at most ℓ + δ, so270

d′ ≤ δ and j ≥ 0).271

First, removing S′ from M ′ makes Nj decrease by one, so σ decreases by 1
(d+1)j . Then,272

we insert strings from xMCS2({Sk, S′}) in M . Write Di for the number of such strings of273

length ℓ + d′ − i. Note that for each pair i, j with j ≤ i ≤ δ, Ni increases by Di−j . By274

Lemma 8,
∑d′

i=0
Di

(|Sk|−ℓ+1)i ≤ 1. Since d ≥ ∆ ≥ |Sk| − ℓ,
∑d′

i=0
Di

(d+1)i ≤ 1. Then σ increases275

by
∑d′

i=0
Di

(d+1)j+i = 1
(d+1)j

∑δ
i=j

Di−j

(d+1)i ≤ 1
(d+1)j . Overall, σ may not increase between two276

steps, so at the end of the for loop,
∑δ

i=0
Ni

(d+1)i ≤ 1. ◀277

We can now conlude with the proof of Theorem 1.278

Proof of Theorem 1. Given S and ℓ, Algorithm 2 computes an extended MCS of (S, ℓ)279

(Corollary 12) of size at most (∆ + 1)δ (Lemma 13). Its running time is bounded by k times280

the complexity of the for loop, which requires at most (∆ + 1)δ calls to xMCS2, each taking281

time O(2δ+∆n) (Lemma 6). This gives the overall complexity of O(2δ+∆(∆ + 1)δkn). ◀282

3 Conclusion283

Regarding LCS, we have proposed an FPT algorithm for parameter ∆, i.e., the maximum284

number of deletions per input string. It is open whether the complexity could be improved,285

e.g. using only parameter δ, i.e., the smallest number of deletions per input strings. In other286

words, the goal is to find an LCS of size ℓ in a set of strings where one string has size at most287

ℓ + δ (and other strings might be arbitrarily long). Such an algorithm may not compute and288

store explicitely each MCS, since the number of maximal common subsequenes, even with289

only two input strings, can grow in (1 + ∆
δ )δ. Also, it is open whether any improvement290

can be obtained when the alphabet size is bounded, or when each character has a bounded291

number of occurrences in each string.292

A longest common subsequence can be seen as a string that can be obtained with a293

minimal number of edits (deletions only) from all input strings. Generalizing this notion to294

other edits (insertions and substitutions) yields the Center String problem, which is highly295

related to the problem of Multiple Sequence Alignment in bioinformatics. In future work,296

we aim at extending our approach in order to design an FPT algorithm for Center String,297

parameterized by the maximum distance to input strings. Allowing for a small number of298

outliers (input strings that are discarded in order to obtain a better solution [4]) would also299

be a useful extension of our algorithm.300

Finally, a more practical objective towards algorithm engineering would be to design an301

efficient data structure to store all maximal common subsequences of any number of strings,302

in order to reduce the memory footprint of our algorithm.303
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