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Abstract. When liquid nitrogen is set into rotation in a warm pot, the surface, initially forming an axis-
symmetrical, toroidal shape, spontaneously re-structures into a series of rotating polygons with a diminishing
number of corners, while slowing down. This spontaneous “ordering” occurs despite the violently turbulent
and boiling state of the fluid. We show experimentally that these shapes are well-described as a sum of a few
Fourier modes, and we present experimental results for the development of the frequencies and amplitudes
of these wave-modes during the transient process. We compare our results with the theoretical results for the
instabilities of a potential vortex flow and argue that the first polygon formed in the transient process should
be described by this theory. The paper is dedicated to the memory of Yves Couder, colleague, friend and a
life-long source of inspiration.

Résumé. Dans cet article nous nous intéressons au cas d’un volume d’azote liquide en état de caléfaction
mis en rotation dans un récipient cylindrique chauffé. La surface libre du liquide, initialement sous forme
d’un tore axisymétrique, va se déstabiliser et se restructurer en une série de polygones tournants dont le
nombre de côtés diminue à mesure que le liquide ralentit. Ce facettage apparaît spontanément alors même
que le liquide connait une violente ébullition et un écoulement extrêmement turbulent. Nous démontrons
expérimentalement que les formes observées peuvent être décrites par la combinaison d’un petit nombre de
modes de Fourier et nous étudions l’évolution de ces modes en termes d’amplitude et de fréquence depuis le
premier polygone visible jusqu’à la fin de la rotation du liquide. Nous comparons nos résultats expérimentaux
avec un modèle théorique décrivant la perte de stabilité des écoulements de type vortex potentiel et nous
soutenons que le premier polygone observable suite à la déstabilisation de la forme axisymétrique peut être
décrit par ce modèle. Cet article est dédié à la mémoire d’Yves Couder qui fut pour nous un collègue, un ami
et une intarissable source d’inspiration.

Keywords. Rotating polygons, Fluid instabilities, Free surface flows, Spontaneous symmetry breaking, Shape
dynamics.
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1. Introduction by Tomas Bohr

Yves Couder was a pioneer in the field of pattern formation that emerged through the 1980’ies
from nonlinear dynamics, chaos, statistical mechanics and fluid mechanics. His background
included condensed matter physics, and electronic band structures and his first work was on
cyclotron resonance and Landau levels in very pure Tellurium – a single author paper in Physical
Review Letters [1]. So when, late in his career, he discussed “Landau levels” formed by walking
droplets on a vibrating, rotating table [2], he knew what he was talking about. For him, the
change of field came around 1980, when he started his work on classical systems and instabilities
by looking at soap films [3], an experimental system that followed him for many years and
that he managed to turn into a surprizing and efficient laboratory for the study of 2-D fluid
dynamics.

I met him for the first time at the Cargèse summer school “New Trends in Nonlinear Dynamics
and Pattern-Forming Phenomena” in 1988 and again at that same beautiful place in “Growth
and Form” in 1990. At that time Yves was already a well-established leader of the field, attracting
brilliant students and co-workers. I remember the impression, at these first encounters, of the
originality, quality and clarity of Couder’s work. At that time he was trying to understand viscous
fingering, and I remember my surprize that one could solve (or reproduce) the result that the
limiting stable viscous finger has the width of half the channel in the presence of surface tension
– a strongly nonlinear fluid dynamics problem – by looking at the statistical physics of random
walkers [4]. Both the style of Couder’s work and the style of the schools themselves made a deep
impression on me and inspired me to organize summer schools in Denmark as well. This became
the series “Complex Motion in Fluids”, where Yves lectured himself in 2011, as testified in Figure 1.
The encounters with Yves also gave me courage and inspiration to introduce experimental work
on fluids in my own research.

In 2003, I was asked to advise on plans for the new MSC lab at Paris 7, and I had many
discussions with Yves on that issue. He was very enthusiastic about the prospects of the new lab,
but he was reluctant to leave his beloved LPS at École Normale Superieur. Seeing his beautiful
and productive lab in the finished MSC lab some years later, with direct access to the scenic roof
of the building, made me sure that he made the right decision! He also showed me his impressive
collection of leaves and their images for his studies of venation structures of plant leaves [5,6] and
his work on this subject, including the effects of stress on plant growth [7], definitely contributed
to my own choice of studying flows in plants [8]. Several times, he urged me to study algae.
Unfortunately, I did not follow this admonition in time to get his advice, but it is still on my
agenda! My own first hydrodynamical experiment was on hydraulic jumps. In Denmark such a
subject, which reminded of a kitchen sink, was not considered “fundamental physics”. People
would smile politely and then ask what on earth it might be useful for. Quite opposite, Yves was
very interested and asked penetrating questions, on both theory and experiments. In 2009, when
I visited the MSC lab, I was asked to give three (long) lectures on hydraulic jumps – and Yves was
there the whole time! He even showed me that he could very simply reproduce our polygonal
hydraulic jumps by inserting a ring at some distance from the jet.

In 2012 he co-authored a very interesting paper [9] studying large Leidenfrost “drops”: levitat-
ing Leidenfrost tori made by pouring water into a hot circular metal trough. This system is well
suited for studying hydrodynamical instabilities of surface waves, akin to those seen in hydraulic
jumps, but which are considerably harder to do in a clean way in the hydraulic jump case due to
the no-slip condition on the solid substrate. At roughly the same time, we also introduced large
Leidenfrost “drops” in our experiments, the subject of the present paper. They are even larger
than those investigated by Couder et al. – around one liter – and in stead of using water, we use
liquid nitrogen set into rotation in a warm pot.

C. R. Mécanique, 2020, 348, n 6-7, 457-473
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Figure 1. Group picture from the summer school Complex Motion in Fluids at Krogerup
Højskole in August 2011, where Yves Couder (fourth standing person from the left) gave
two seminal lectures on “Classical wave particle duality”.

Our motivation for these experiments came from some of our earlier papers, actually refer-
enced by Couder et al. as an application of their Leidenfrost tori. Here they mention the polygo-
nal hydraulic jumps [10], where one side of the jump deforms to something looking almost iden-
tical to the polygonal tori. But they also mention “instabilities in partially filled tanks” [11–13],
the subject of the present paper; and they pose as an open question, whether the polygons seen
in those two very different systems have the same origin. In fact, we do not believe that they are
much related: the polygonal hydraulic jumps are seen at intermediary Reynolds numbers – of the
order of 102 or less – and are believed to be caused by surface tension [14, 15], while “rotating
polygons” seen on swirling flows have Reynolds numbers in the 105-regime, and are believed to
be caused by wave resonances [16, 17], as we shall describe in the present paper.

2. Rotating polygons and wave resonances

The experiments showing “rotating polygons” were initially done by submitting a cylindrical tank,
partially filled with water, to rotation; but only by rotating the bottom, not the cylinder itself,
which remains stationary. This is illustrated in Figure 2, where the left side (a) shows the so-
called “Newton’s bucket” flow – the flow in a bucket rotating with constant speed, where the
flow comes to rest in the rotating frame, and where the parabolic free surface shows that this
frame is not inertial. On the right hand side (b), only the bottom of the cylinder is rotating, so
there is no rotating frame in which the flow can come to rest. The difference between the surface
shapes in the two cases is marked: The water in the rigidly rotating case (a) occupies a concave
region, whereas it is convex in the “frustrated” (b) case. And in contrast to the stable case (a) the
frustrated flow can be unstable and spontaneously deform in to a rotating wave – what we call a
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Figure 2. Two different rotating flows. In the “happy” Newton’s bucket flow (a), the whole
system is rotating, and the system comes to rest in the rotating frame. In the “frustrated”
bucket (b), only the bottom is rotated (with frequency ω = 2π fb) so there is no rotating
frame, where the flow can come to rest. In addition to the rapid azimuthal flow there is a
small (secondary) radial component. It was argued in [13] and [20] that it should be close
to a potential vortex flow.

Figure 3. A rotating triangle in water. (a) From above. (b) From the side. Courtesy of Barbara
Bohr.

“rotating polygon” – with up to six corners [18,19]. Figure 3 shows a rotating “triangle”. As one can
see the surface deformations can be rather large and dramatic! The polygons shown in Figure 3
have been called “dry” [12] since the centrifugal forces are large enough to create a dry hole in the
middle of the plate. One also finds “wet” states where the free surface never touches the bottom
plate. In the following, we shall only discuss the dry states.

The first papers describing this instability [11,12] contained no theoretical explanation. It was
much later [16] that a theory was presented. The first step was taken in [13], where it was noted
that the polygonal structures developed via an axially symmetric, circular state, which would then
be a candidate for stability analysis. The question was then what the flow in this symmetric state
looked like. This was answered by Laust Tophøj, who was working on his phd under the guidance
of Tomas Bohr, trying to understand the general restrictions for motion on a free surface with an
arbitrary but specified shape. The conclusion was [13,20] that such an axially symmetric flow had
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Figure 4. The “Tophøj” model. In stead of treating the entire surface, the attention is
restricted to two regions: near the center and near the rim, respectively. These surface
regions, A and B are coupled through the channels Dc and Dg and give rise to two families
of excitations: centrifugal- and gravitational waves, respectively [16].

to have the form of a line vortex, except in the special situation where the radial flow vanished –
as e.g., the Newton’s bucket flow Figure 2a. Simultaneously, Jerome Mougel was working for his
phd under the guidance of David Fabre in Toulouse to understand instabilities of free surface,
both analytically and numerically – in particular the Newton’s bucket flow [21]. When we told
them that our base flow was probably a line vortex flow, they quickly showed numerically that
such flows are actually unstable, and that the spectrum splits nicely into “families” living near the
center and near the cylinder wall, respectively, as explained in detail in [17]. The theory in [16]
was mostly focused on a simpler model, the “Tophøj” or “channel” model, replacing the analysis
of the entire surface with narrow connected channels as shown in Figure 4 and thus utilizing the
family-structure of the spectrum.

The line vortex flow is a potential, purely azimuthal, flow with velocity field

U (r ) = Γ

2πr
(1)

where Γ is the circulation, and for an inviscid flow (neglecting surface tension) the shape of the
free surface extending from the outer cylindrical wall of the system r = R to an inner radius ξ is

z0(r ) = 1

2g

(
Γ

2πR

)2 (
R2

ξ2 − R2

r 2

)
(2)

and the outer height, which is H for the nonrotating system, is ζ = z0(R). Correspondingly the
volume of fluid V = 2πR2H is given

V = 2π
∫ R

ξ
z0(r )r dr = Γ2

4πg

(
R2 −ξ2

2ξ2 + ln

(
ξ

R

))
. (3)

The result of the stability analysis of the Tophøj model is a dispersion relation linking fre-
quency ω and wave number m, where m is the number of corners in the emerging polygon,
and thus a positive integer. In the Tophøj model there are two channels: Dg , where the surface
is nearly horizontal and the restoring force is predominantly gravitational, and Dc , where the
surface is almost vertical and the restoring force is predominantly centrifugal. These channels
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give rise to two “free wave” families – each containing a forward (compared to the current) and a
backward moving wave with dispersion

Dg (ω) = (ω−mΩR )2 − g mF /R = 0 (4)

Dc (ω) = (ω−mΩξ)2 − gc mF /ξ= 0 (5)

where g is the gravitational acceleration,

gc = U 2(ξ)

ξ
= Γ2

4π2ξ3 (6)

is the centrifugal acceleration, and where Ωξ = U (ξ)/ξ and ΩR = U (R)/R are the angular flow
speeds in the two channels. Further

F = 1+e−2mζ̃
(
ξ̃
)2m

1−e−2mζ̃
(
ξ̃
)2m (7)

where ζ̃= ζ/R and ξ̃= ξ/R. Thus the free waves have dispersion

ω±
g = mΩR ±√

g mF /R (8)

ω±
c = mΩξ±

√
gc mF /ξ. (9)

With this notation, the dispersion relation for the full model of interacting waves can be
written [16]

Dc (ω)Dg (ω) = mg

R

mgc

ξ
(F 2 −1). (10)

Using

Ṽ = V

πR3 = H

R
; Γ̃= Γ

2π
√

g R3
; ω̃= ω√

g /R
(11)

we can write

gc = Γ̃
2

ξ̃3
g (12)

and express

Dg (ω) = g

R

[
(ω̃−mΓ̃)2 −mF

]
(13)

Dc (ω) = g

R

[
(ω̃−mΓ̃/ξ̃2)2 −mΓ̃F /ξ̃4] (14)

and, similarly, using (3), the scaled volume is

Ṽ = Γ̃2
(

1− ξ̃2

2ξ̃2
+ ln(ξ̃)

)
(15)

and the scaled fluid height at the rim is

ζ̃= 1
2 Γ̃

2 (
ξ̃−2 −1

)
(16)

and we see that the dispersion relation is universal in the scaled variables, and that the knowledge
of m, ξ̃ and Ṽ (or Γ̃) completely specifies ω̃. The scaled free waves are given by

ω̃±
g = mΓ̃±

p
mF (17)

ω̃±
c = mΓ̃/ξ̃2 ±

√
mΓ̃F /ξ̃4 = ξ̃−2(mΓ̃±

√
mΓ̃F ). (18)

In the scaled variables, the full dispersion (10) now becomes(
(ω̃−mΓ̃)2 −mF

)(
(ω̃−mΓ̃ξ̃−2)2 −mΓ̃2F ξ̃−4)= m2Γ̃2ξ̃−4(F 2 −1) (19)
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Figure 5. Real part of the frequency spectrum with level crossings and instabilities in the
“Tophøj” model with Ṽ = 0.2 and m = 4. The dashed lines represent the non-interacting
waves, i.e. the solution of (17)–(18): forward gravitational (purple dashed), backward grav-
itational (red dashed), forward centrifugal (blue dashed) and backward centrifugal (yellow
dashed), and the full lines show Re[ω̃] for the interacting system (10). Note that the dashed
and the full lines are almost on top of each other except at the places where the different
wave frequencies cross. (b) Blow-up of the crossing of a backward centrifugal wave and a
forward gravitational wave giving rise to an instability in the interval (0.49 < ξ̃< 0.51). Here
ω̃ is complex and the system is linearly unstable. (c) Blow-up of the crossing of a backward
centrifugal wave and a backward gravitational wave. The interacting waves (full line) “re-
pel” each other and never cross, but exchange identity at the crossing of the non-interacting
waves.

and the solution for ω̃(ξ̃) or, more correctly, the real part of ω̃, is shown in Figure 5a for the
case Ṽ = 0.2 and m = 4. Here we clearly see the four waves: forward gravitational, backward
gravitational, forward centrifugal and backward centrifugal waves. The dashed lines represent
the non-interacting waves, i.e. the solution of (17)–(18), and the full lines show the interacting
system (10). Note that the dashed and the full lines are almost on top of each other except at
the places where the different wave frequencies cross, and this is due to the smallness of the
(positive) factor F 2 −1. The wave crossings are of two types: at the center a forward gravitation
wave crosses a backward centrifugal one, and towards the right a backward gravitation wave

C. R. Mécanique, 2020, 348, n 6-7, 457-473
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crosses a backward centrifugal one. On the blow-ups one can see that only the first type of
crossing actually creates an instability (Figure 5(b)), whereas the two waves, in the second case,
“repel” each other and actually never cross, but exchange identity at the crossing (Figure 5(c)).
In the first case, there is an interval in ξ̃ where ω̃ is complex and the real part has collapsed to
a single value and this represents a true instability with exponential growth. This scenario is in
agreement with Cairns [22] study of the Kelvin–Helmholtz instability, and it is interesting that,
in the final state, the gravitational wave is completely dominated by the large centrifugal wave,
which is a retrograde wave in a supercritical region and thus has “negative energy”.

As shown in [16] the predictions of the model compare reasonably well with experiments.
The main difference is that the theory predicts rather thin regions of instability, whereas the
experiments show that the polygon states basically fill up a whole compact phase space region.
One reason for this is that the instabilities found in [16] are all supercritical in the sense that
infinitesimal perturbation of the circular state leads to instability. Experimentally, this is probably
not the case and it is known that the system displays a considerable amount of multistability [19].
For further analysis of the available experimental data, see [23]. Also, the “Tophøj” model has
been used for the description of “surface switching” in [24] and the physics of the interacting
waves has been studied in [25].

3. Polygons on a liquid nitrogen surface

The theoretical model described above, being inviscid, even potential does not take into account
that the flow is set up by a rotating bottom. Also, it is impossible to design a rotating bottom
which is perfectly horizontal and rotates without any wobbling. There then always remains a
slight suspicion that these instabilities are triggered by the wobbling of the plate, although it
has been demonstrated with care that the frequency of the rotating polygon and that of the
bottom plate are not locked [19]. We were thus very happy that we were able to find similar
instabilities in systems that are not rotating at all [16], relying on the Leidenfrost effect, where
boiling creates a thin vapor layer that separates the liquid from the pot making the friction very
small. If we pour liquid nitrogen into a heated cylindrical pot and set the nitrogen into rotation,
either by stirring, or, as shown in Figure 6, by accelerating it down a ramp, it can rotate sufficiently
long for spontaneous symmetry breaking to occur as seen in Figure 7 (from Gallery of Fluid
Motion, 2018 [26]). Surprisingly, one can find very well-defined polygonal shapes (ranging from
ellipses to hexagons) despite the transient and strongly turbulent nature of the flow. Of course,
the polygons seen in the nitrogen experiment are not fixed: the number of corners will slowly
decay, disappearing one by one, as discussed in detail later.

As sketched in Figure 6 the Liquid nitrogen (at 77 K) is filled in the loading chamber and
after releasing the hatch it flows down through the pipe and into the pot. To find the volume,
we measure the weight and capture a video of the flow during the experiment, and to make the
correspondence, we need the density of liquid nitrogen which is typically given asρ = 804 kg·m−3.
However, under the conditions of our experiment, where the nitrogen is poured into a pot of 60 ◦C
and is strongly boiling, we found a density of ρ = 675 kg·m−3 for the stationary liquid nitrogen,
and used that density also for obtaining the volume of the rotating fluid.

Two cold spotlights were needed to get enough light for the very short shutter time in the
camera. The field of view of the camera also captured the weight display which gave perfect
synchronization between the flow image and the weight. The spotlights where covered with a
thin paper such that no sharp shadows were cast. We found it very important for the image
analysis of the weight to have a very evenly distributed light over the display such that the only
gradients where due to display contrast. In Table 1 we list the important information describing
the experiment.

C. R. Mécanique, 2020, 348, n 6-7, 457-473
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Figure 6. Experimental setup for the liquid nitrogen experiment. Liquid nitrogen is poured
into the loading chamber with the hatch closed. When the hatch is lifted the liquid runs
down the inclined pipe into one side of the pot of radius R = 10 cm, kept at 60 ◦C by the
heat bath, ensuring a sufficient amount of angular momentum to keep the liquid rotating
for around 1 min. After the liquid has been set into motion, a lid is mounted on top of the
pot, allowing the evaporating nitrogen to expel the vapour and thus giving good visibility of
the rotating liquid. The experimental data consist of videos of the liquid taken from above,
allowing us to compute the distance ξ(θ) from the center of the pot to the the inner surface
of the liquid as function of the angle, while simultaneously monitoring the mass (volume)
of the liquid from the display of the scale.

3.1. Polygon shapes and their dynamics

As mentioned above, we concentrate on the “dry” polygons, where a part of the bottom of the pot
is dry. In that case, it is easy to visualize the polygons, as was done for the water case by Bergmann
et al. [13]. Using digital video-recordings we find the distance ξ(θ) from the center of the pot to
the inner nitrogen surface as function of the angle. This signal was decomposed into a Fourier
series,

ξ(θ, t ) =
M∑

m=0
am(t )cos(mθ)+bm(t )sin(mθ). (20)

This can also be written terms of modes travelling with frequencies ωm

ξ(θ, t ) =
M∑

m=0
Am(t )sin(mθ−ωm t ) (21)

where

Am(t ) =
√

a2
m(t )+b2

m(t ), ωm t =− tan−1(am(t )/bm(t )). (22)

To be meaningful, Am and ωm should be varying slowly in time compared to am and bm (which
vary on the scale of 2π/ωm) so that it makes sense to decompose the waves into rotating triangles
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Figure 7. Polygons formed by liquid nitrogen in the experiment shown in Figure 6, with-
out the inclined pipe, simply stirring the fluid from rest and using a high-speed cam-
era. The pictures are from [26] and the corresponding video, winner of the Gallery
of Fluid Motion in 2018, can be found at https://gfm.aps.org/meetings/dfd-2018/
5b992d40b8ac31610362f452.

(m = 3), squares (m = 4) etc., and using this decomposition we can quantitatively follow the shape
dynamics. In Figure 8a we show the amplitude for each Fourier component m = 3−6 as a function
of time, and in Figure 8b–d one can follow the corresponding detected shape.
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Figure 8. Shapes and Fourier amplitudes of rotating polygons in liquid nitrogen. (a) The
amplitude of each Fourier component. (b–d) The detected inner and outer fluid surface for
t = 39 s, t = 45 s, and t = 55 s.

We can now trace the development of the shapes in time by monitoring the volume of fluid V
and the average value of the shape radius 〈ξ〉 = A0 (the zeroth Fourier component) which we use
as a proxy for ξ in (3) to compute the circulation Γ, even though the state might not be circular.
In this experiment the volume of fluid V and the circulation Γ are monotonically decreasing with
time, due to evaporation and slowing down, and in fact we also observe a monotonic decrease
in the number of corners in the “polygon” observed. This is seen clearly in Figure 8a where we
observe an essentially circular state around t = 35 s, a hexagon around t = 39 s, a pentagon
around t = 45 s and a square around t = 55 s. Eventually, the volume and circulation get so small
that no polygonal shape can be observed. In this example that happens before forming m = 3 or
m = 2 shapes.

3.2. Wave frequencies and their evolution

In Figure 9a we show an amplitude diagram for another run of the experiment, where the
first clearly non-spherical shape m = 5 appeared at t ≈ 40 s. In Figure 9b we have plotted the
normalized angular frequencies ω̃ = ω/

√
g /R for different m, where the color shows the value

of m as in Figure 9a. Here solid lines are the detected ω̃m frequencies whereas dotted and
dashed lines are the computed gravitational ω̃g ,m and centrifugal ω̃c,m frequencies respectively,
calculated from (17) and (18), where the plus-sign is chosen in (17) and the minus sign in (18). The

C. R. Mécanique, 2020, 348, n 6-7, 457-473
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detected solid lines are bold when the corresponding amplitude is significant. According to the
resonance theory [16] described above we then expect to excite a wave when dotted and dashed
lines of the same color cross.

First we see that the purple dashed ω̃c,6 and purple dotted lines ω̃g ,6 do not intersect, and,
correspondignly, looking at Figure 9a, we see that no hexagon is excited. Returning to Figure 9b
following the blue dashed line ω̃c,5 and the blue dotted line ω̃g ,5 we see that these get close around
t = 40–55 s. Now Figure 9a we see that a pentagon is excited in this time interval. Finally, following
the green dashed line ω̃c,4 and the green dotted line ω̃g ,4 in Figure 9b we see that these never
intersect. However, still a large amplitude square is excited exactly at the centrifugal angular
frequency ω̃m = ω̃c,m . Based on these observation one might conjecture that the first excited
shape emerging from the circular state, is dictated by resonance between a forward gravitational
wave and a backward centrifugal wave in agreement with the theory of Tophøj et al. [16], at least
if the time scale for this instability is long compared to the life time of the circular state, which
is true for our system. However, the next shape changes take place from some fully developed
polygon state, which is not close to the circular state, and where therefore the linear stability
theory used in [16] would not be valid. We also see that the detected frequency ω̃m always follows
the dispersion of a centrifugal wave alone, and thus that the centrifugal wave is the only survivor
after the resonance.

In Figure 9c we show the flow at three different times. Here we have plotted the detected edge
(noisy white line), together with the full Fourier decomposition ξ(θ) =∑10

m=0 Am sin(mθ−ωt )
(smooth white line). The colored lines then show the m = 5, m = (5 and 4) and m = 4 Fourier
components respectively (always including m = 0 mode). This confirms that the flow is well
described by single (nonzero) Fourier components. Even a complicated shape as for t = 52.80 s is
well described by a linear combination of Fourier components m = 4 and m = 5.

3.3. Phase diagram

In Figure 10 we show a phase diagram containing multiple runs for the nitrogen experiment
where the shape and the weight where simultaneously detected. The grey tongues show the
instability regions for the “Tophøj model”, i.e., combinations of Ṽ and Γ̃ where (19) has complex
solutions and hence where a backward centrifugal and forward gravitational wave of some
wave number m are in resonance. The numbers at each grey tongue indicate the value of m
for that particular resonance. Note that, as remarked above, the experiments with stationary
polygons over a rotating bottom [12] show an entire, compact region of polygons in contrast to
the narrow tongues predicted by the theory. Notice in general how hexagons are only formed
in the left part near the hexagon-area while triangles are only formed in the right part near the
triangle-area. Notice also how experiments initiated to the right of the hexagon-area never excite
hexagons as described in relation to Figure 9. Another interesting feature is that the squares
seem to distribute all over the phase diagram below Γ̃ ≈ 0.4 but usually following a pentagon,
i.e. they are not excited first. This supports the hypothesis that the first excitation is governed
by resonance while following shapes might follow from the previous excitation. This feature can
be a consequence of the decrease of Γ̃ and Ṽ due to the setup and would of course be better
investigated in a setup where Γ̃ and Ṽ where not changing over time. In Figure 11, we show a
more complete phase diagram, where, in Figure 11a we only plot the first discernible polygon
appearing in a given experimental run. In Figure 11b we plot our corresponding measurements
on the setup described in [19], where stationary rotating polygons appear over a rotating plate
as shown in Figure 2b. In principle these two experiments should be very close, but as one
can see the deviations from the theory are much larger for the nitrogen experiment. For the
water experiment, the theoretical predictions for the Γ̃ corresponding to a given polygon are
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Figure 9. Shape and spectral dynamics of the polygon shapes. (a) Fourier amplitudes vs.
time. (b) Scaled frequencies ω̃ = ω/

√
g /R vs. time. The colors follow m as in (a). Solid

lines represents experimental data which are marked bold when the amplitude in (a) is
high. Dashed lines are centrifugal backward waves ω̃c,m and dotted lines are gravitational
forward waves ω̃g ,m . Note how these cross around t = 40 s to t = 50 s where the first wave
(m = 5) is excited. Note also how the experimental wave (solid) follows the centrifugal waves
(dashed). (c) The shape at three different times. White noisy line is the detected edge, white
smooth line is sum of Fourier components m = 0 and m = 3–6, and colored lines are only
Fourier component m = 0 with m = 5, (m = 4)+ (m = 5) and m = 4 respectively.

consistently lower than the experiments, but actually rather close when we take into account
the simplicity of the theory and the fact that the narrow theoretical polygon-tongues should
actually fill up the entire region shown. The predictions for the nitrogen experiment Figure 11a
correspond best with the experiments for hexagons and pentagons, whereas polygons with fewer
corners are further off and the borders between the respective regions seem to be more horizontal
than for water. Why this is so, we do not know, but one reason might be that the description of the
flow as a line vortex is worse for the nitrogen flow with its strong fluctuations. To test this we show
in Figure 12 a comparison of the measured values of ξ̃ and the predicted (“theoretical”) values.
For each state ξ̃ and ζ̃ were determined experimentally. We included only circular states, either
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Figure 10. Phase diagram for multiple runs of the nitrogen experiment. In each run, Ṽ =
V /(πR3) and Γ̃ = Γ/(2π

√
g R3) are followed in time and the surface shape is indicated at

each time step. The grey tongues show the instability regions for the Tophøj model. The
large symbols show the first discernible polygon appearing in a given run.

states that remain circular or the circular state preceding a polygon. For water (filled blue points),
the determination of ζ̃ is easy, since the cylinder is transparent. For nitrogen (open red circles) ζ
was determined from the videos taken from above, comparing with the pictures of an empty pot
equipped with a vertical measuring rod at the rim. We then used this experimental ζ̃ in (15) and
(16), i.e.,

ζ̃= Ṽ (1− ξ̃2)

1− ξ̃2 +2ξ̃2 ln(ξ̃)
(23)

to determine a “theoretical” ξ̃. As seen in Figure 12, the experimental and theoretical values of ξ̃
for water are extremely close, since the blue points are very close to the diagonal. For nitrogen, the
correspondence is not that close. The open red circles are more strongly scattered, as we would
have expected since the determination of ζ̃ is much harder in this case, but they also lie above the
diagonal, i.e., have ξ̃th > ξ̃exp, implying a systematic deviation from the line vortex flow, perhaps
due to the strong turbulence.

4. Conclusions

We have described a quite surprising experiment, where spontaneous large scale ordering takes
place despite strong disorder at the small scales in the form of drop-ejection and turbulent
eddies. We have compared the system to a theory based on potential perturbations on a laminar
potential vortex flow, and we find some correspondence, but also large deviations. The system
contains some interesting features, e.g., displaying a “critical line” separating subcritical flow
at the rim from supercritical flow at the center. Such a line is the distinguishing feature, which
determines whether a given frequency (as in Figure 5) will give rise to an instability or not.
A feature, which is not captured by the theory, however, is the fact that one of these modes,
the centrifugal wave near the center, becomes totally dominant with an amplitude orders of
magnitude larger than the gravitation one. Correspondingly, the system displays a kind of one-
way coupling: a perturbation near the rime seems to propagate readily toward the center, whereas
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Figure 11. Phase diagram for the nitrogen experiment and for water over a rotating bottom.
(a) For each run of the nitrogen experiment, only the first discernible polygon is marked.
The determination of Γ̃ is made through the value of ξ̃ in the circular state preceding
the polygon using (15). (b) The corresponding phase diagram for the water experiment,
described in [19], where stationary rotating polygons appear. Here, the determination of Γ̃
is made through the value of the exterior height ζ̃ and rest-height Ṽ using (15) and (16) to
eliminate ξ̃. In the water experiment the cylinder is transparent and it is easy to measure
the height at the rim.

Figure 12. Experimental test of the “line vortex” approximation (1)–(3) by comparing
the experimentally determined value of ξ̃ with a theoretical value determined through a
measurement of ζ̃ as explained in the text. The blue points are the results for water and the
open red circles are for the nitrogen experiment. Only values of ζ larger than 20 mm have
been kept, due to the difficulty of this measurement for small ζ.

on at the rim only perturbs the rim very weakly. Finally, the agreement with theory is a lot better
for the (stationary) water experiment than for the nitrogen experiment. This goes also for the
flow structure of the circular states (i.e., the base-flow), where the deviations from the potential
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vortex flow is larger for the nitrogen experiment, maybe because of the large eddy-viscosity. In
conclusion, we cannot help asking ourselves: What would Yves have said?
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Appendix A. Details of the experiment

In Table 1 we describe some of the important parameters for our experiments.

Table 1. Experimental setup information

Fixed experiment parameter Value
Weight model Kern DE60K1DL

Weight resolution 1 g
Weight equilibrium time 2 s

Camera ISO 500
Camera aperture F6.3

Frame rate 50 f/s
Shutter speed 1/400 s

Distance from camera to bottom of pot ∼40 cm
Number of spotlights 2

Radius of pot 10 cm
Inclination angle of pipe 14◦–16◦

Length of pipe 1.25 m
Initial temperature of surrounding water bath 60 ◦C
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