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ABSTRACT This paper explores the feasibility of using the multiple-input multiple-output (MIMO) radio
channel properties to passively detect and localize multiple humans in indoor environments. We propose to
utilize the unique reverberation characteristics of indoor channels for the purpose of detecting, and the power
angular delay profile (PADP) for localizing humans. On the one hand, the reverberation time corresponds
with the decay rate ofmultipath in a closed or partially closed cavity, and varies with the change of the number
of humans or the moving of humans relative to the antennas at link ends. On the other hand, the PADP is
proposed to be calculated by the Multiple Signal Classification (MUSIC) super resolution algorithm with
frequency smoothing preprocessing. The proposed approach is evaluated based on real-world MIMO radio
channel measurements obtained from a meeting room. Measurements with and without the presence of
humans have been conducted, where the maximum number of humans considered is four. Humans facing
different directions, either in parallel or orthogonal to the direct line between the transmit and the receive
antennas have been taken into account. In term of the detection feasibility, it is found that the change of
the number of humans as well as the change of their facing/moving directions inside the partial reverberant
region can be reflected on the change of the reverberation time estimated from the power delay profile of
channel. In term of the localization feasibility, it is found that single human location can be well associated
to the peak of the variation of the PADP during his/her movement, while multiple humans’ movements result
in obvious power variation in the very vicinity of some of them, and also in the vicinity of some background
objects that is far from target humans.

INDEX TERMS Indoor radio channel, MIMO, reverberation time, power delay angular profile, passive
detection and localization of humans.

I. INTRODUCTION
Device-free passive indoor localization plays a critical role
for the emerging assisted-living applications [1], [2], such as
the elder/child/disability care, smart home, etc. A device-free
localization (DFL) system does not require human to wear or
carry devices in order to be detected or localized. Radio-based

The associate editor coordinating the review of this manuscript and

approving it for publication was Luyu Zhao .

DFL systems are easily compatible with the existing wireless
networks (e.g., Wi-Fi, cellular), and do not put constraints on
the visibility conditions of the physical environment hence
bring less concerns about privacy issues than camera- or
visible light-basedDFL systemswhere people are ‘‘watched’’
directly through image data or under visible conditions.

Typical techniques applied in radio-based DFL systems
employ the time of arrival (ToA), the angle of arrival (AoA),
the received signal strength (RSS), or the complex channel
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state information (CSI) [3]–[7]. In addition, fingerprinting
[8], [9] or antenna array basedDFL systems [10], [11] are also
popular. Fingerprinting is mostly applied in RSS systems and
consists of an offline phase to build a reference data base from
surveyed signals at known positions. The offline phase is
labor intensive and the approach is not robust against environ-
mental changes. Also, a DFL system based on fingerprinting
normally requires large number of sensor nodes/anchors to be
deployed, and is difficult to apply if not compatibly designed
with the target environment.

Alternatively, multiple input multiple output (MIMO)
wireless radio systems become the feasible solution for
DFL [12], and are easily available due to the current develop-
ment of massive MIMO for next generation communication
networks. The narrowband antenna arrays with spatial res-
olution can be used for measuring the spatial domain radio
propagation characteristics, e.g., the information of AoA,
the power angular profile. The MIMO DFL system does not
require offline training, but the challenge is that the signals
interacting with human bodies may be too weak and are
buried among the undesired multipath interacting with back-
ground objects, especially for indoor scenarios with com-
plex physical configurations. The presence and movement
of humans in the propagation environment result in some
paths being blocked or unblocked [3]. The changes in power
spatial profile may not be linked to the actual location of
the humans in a simple manner due to the multi-reflection or
multi-scattering in particular for the real-world indoor envi-
ronment with various background objects, and this fact makes
the DFL using MIMO radio channel properties challenging.

Available MIMO radio channel based DFL algorithms
rely on the ’’decent’’ resolution of a MIMO system in the
spatial-temporal domains. The ’’decent’’ resolution can be
achieved by a combination of 1) purely by system design
with large bandwidth and/or large array aperture, and 2) the
use of the super-resolution algorithms for multipath extrac-
tion from measurable channel transfer functions (or channel
impulse response). Even though super-resolution algorithms
can somewhat help, their accuracy is still limited when paths
are close together, especially when the system bandwith
or/and the spatial aperture size of antennas are not suffi-
ciently large hence paths are not separated in delay or/and
spatial domains. This is a fundamental limitation which also
shows in, e.g., the Cramer-Rao bound on the estimation
accuracy, and it is possible that super-resolution algorithms
may introduce false multipath or false detected scatterer.
In [13], an ultra-wide bandwidth (UWB) MIMO system has
been used to successfully detect the remote breathing patterns
of human for localization purpose, together with the use of
the super-resolution RIMAX (iterative maximum-likelihood
estimation scheme) algorithm for multipath extraction and
linear antenna arrays at link ends. Reference [14], [15] have
utilized the monostatic radar system and UWB transmissions
for device-free localization. The transmit and receive anten-
nas in a monostatic radar system are co-located, while they
are separated in a certain distance in a bistatic radar system.

For the same power level, the monostatic radar systems
have a much lower spatial range of operation than bistatic
radar system [16], hence [14] needed distributed monostatic
radars for the human detection purpose.Moreover, the perfect
condition combining both the UWB MIMO system and the
super-resolution algorithm on multipath extraction in [13] is
not always available, [17], [18] demonstrated the localiza-
tion of human through super-resolution algorithm in bistatic
MIMO system without UWB. In [17], [18], the authors have
utilized the bistatic MIMO radars and the MUSIC (MUltiple
SIgnal Classification) algorithm on multipath extraction to
estimate the human direction relative to the antenna locations.
They also utilized the system’s Doppler radar cross-section
for estimating the posture of a human at dedicated location.
The accuracy rate for localization and posture identification is
reported to reach 90%, but the scenario is rather ideal where
the person was located at the dedicated location that could
surely produce reflections between link ends. In addition to
the above mentioned work localizing one human, [19], [20]
have been able to localize multiple humans (static but breath-
ing, or moving) using MIMO radars with carrier frequencies
across UWB.

However, to the best of our knowledge, there is not yet
an investigation on localizing multiple humans using MIMO
radio channels without a desired large bandwidth (larger
than 500 MHz). Without investigating this, we will not
know whether the lower system configuration (obviously
with lower cost) can be used for multiple-human scenario.
The intention of this work is to investigate if such non-UWB
system can be used and explores the feasibility of detect-
ing and localizing multiple humans (up to four) by using
the indoor MIMO radio channel with a small bandwidth
(less than 100 MHz). To this end, we propose to use the
reverberation characteristic that is unique for indoor radio
channel, as well as the power angular delay profile calcu-
lated by the modified MUSIC with the modified smoothing
technique which has control over both the spatial sampling
and the frequency sampling. The evaluation of the proposed
approach in detecting and localizing humans is based on
the MIMO radio channel measurement using the MIMOSA
channel sounder [21] at 1.35 GHz with 80 MHz bandwidth,
with dual-polarized planar patch antenna arrays at both link
ends.

The rest of this paper is organized as follows. Section II
reviews the MIMO radio channel properties and illustrates
the proposed approach for detecting and localizing multiple
humans. Section III describes the measurement campaign
and the system parameters. Section IV provides numerical
examples and evaluations. Section V concludes this paper.
Throughout this paper, (·)H indicates the conjugate transpose
of the vector/matrix (·), (·)T indicates the transpose, (·)∗ indi-
cates the conjugate, and ⊗ denotes the Kronecker product.

II. PROPOSED APPROACH
In this section, first, theMIMO radio channel properties in the
temporal domain and in the joint spatial-temporal domains
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are reviewed. Second, the proposed detection and localiza-
tion scheme is introduced. For the spatial-temporal domain
channel property, we propose to use the modified MUSIC
with the modified smoothing pre-processing to optimally
enlarge the accuracy of the estimate in spatial domain from
the measurable radio channel. We do not claim that it is the
only suitable super-resolution algorithm that can be used;
there are other subspace based or maximum likelihood based
algorithms, and the applicability is determined by whether
there is considerable model mismatch to the measurement
system [22]. The other reason to use the MUSIC based algo-
rithm here is to be consistent hence be fair to compare with
the work of localizing single human by using bistatic MIMO
radars and MUSIC algorithm in [17], [18].

A. MIMO RADIO CHANNEL PROPERTIES
We denote the measurable channel transfer function (CTF) as
HXY ∈ CNR×NT :

HXY (f ) =

 hXY ,11 (f ) · · · hXY ,1NT (f )
...

. . .
...

hXY ,NR1 (f ) · · · hXY ,NRNT (f )

 , (1)

where hXY ,nrnt at each sampling frequency f is the element
of matrix HXY (f ), XY ∈ {VV,VH,HV,HH} indicates
the polarized pair of antennas, V indicates vertical polar-
ization, H indicates horizontal polarization. NR and NT are
the total numbers of the receive (Rx) and the transmit (Tx)
array antennas, respectively. nr = 1, 2, . . . ,NR and nt =
1, 2, . . . ,NT are the indices of Rx and Tx antennas, respec-
tively. The inverse Fourier transform of CTF is called the
channel impulse response (CIR).

1) TEMPORAL DOMAIN CHANNEL PROPERTY
The time domain channel is characterized by the power delay
profile (PDP) given by

PDP (τ ) =
1

NRNT

×

∑
XY

NR∑
nr=1

NT∑
nt=1

∣∣IFFT {HannWindow
{
hXY ,nrnt (f )

}}∣∣2 ,
(2)

where the Hann window is multiplied with CTF to suppress
side-lobes, before the inverse Fourier transform is used to
convert frequency signals to delay (denoted by τ ) domain
signals.

For indoor radio channels, an exponential slope in the
’’tail’’ of PDP can be expected [23]–[26], as demon-
strated in Figure 1. The exponential slope normally stems
from the reverberant components, e.g., the multiple reflec-
tions/scatterings, in a closed or partially closed environment.
From the exponential slope that represents the decay rate of
reverberant multipath, the reverberation time [24], denoted
as Trev, can be further estimated:

Trev = −
10

ln (10) slope
≈ −

4.34
slope

, (3)

FIGURE 1. Schematic diagram of the PDP in typical indoor radio channel.

where slope has the unit of dB per second. Observation
domain with fixed delay or power range can be applied to
the PDP to calculate Trev, and typically the range is visu-
ally determined by taking into account the effects of noise
floor [23], [25]–[28].

On the other hand, as discussed in [23], the reverbera-
tion time can be modeled empirically using the Sabine’s
model [29]

Trev =
4V
Scā

(4)

or the Eyring’s model [30]

Trev = −
4V

Sc ln (1− ā)
, (5)

where V is the volume of the indoor environment, S is the
total surface area that absorbs radio waves, c is the speed of
light, and ā is the area weighted average absorption coef-
ficient of all objects in the physical environment. Sabine’s
model is the first order Taylor expansion of the Eyring’s
model, and is most suited for situations with relatively low
absorption, i.e. very reverberant cases. In most indoor radio
propagation environments, however, are relatively ’’dead’’
in terms of reverberation and hence Eyring’s model is most
accurate [24]. Note that Eyring’s model in (5) can be further
improved by applying the Kuttruff correction factor, as has
been shown in [31]. In both of these models, reverberation
time is a function of the average absorption coefficient,
the volume, and the surface area specific to the considered
indoor environment.

With the increase or the decrease of the number of pre-
senting humans, or with the moving of humans relative to
the Tx/Rx antennas, the power absorbed by humans varies,
leading to a change in average absorption coefficient and
absorption area hence a change in the value of Trev. Note
that the influence of humans on reverberation time depends
on many factors, such as the body surface area, the body
component (fat or muscle), the clothes worn, the posture and
the facing direction to antennas and the antenna radiation

3740 VOLUME 8, 2020



Y. Miao et al.: Measurement-Based Feasibility Exploration on Detecting and Localizing Multiple Humans

patterns, etc., [32]. In addition, the exposed surface area
differs in case the person is standing, sitting or lying down,
with the latter yielding the minimum absorption area.

2) SPATIAL-TEMPORAL DOMAIN CHANNEL PROPERTY
The spatial domain channel can be characterized jointly with
the temporal domain by the power angular delay profile
(PADP), which holds geometrical information on the scatter-
ers interacting with radio waves.

We propose to use the modified MUSIC super resolution
algorithm, to be consistent with the existing work using
non-UWB bistatic MIMO radars in [17], [18] as mentioned
previously. In addition, we use the modified smoothing
pre-processing to achieve a better accuracy in classifying
paths, where we sacrifice the frequency samplings for decor-
relation purpose hence an improved observation in spatial
domain. According to [33], weak signals are combined if the
number of signals is underestimated. To tackle that, super
resolution algorithm performs well even in severe multipath
environments as the under-determined solution, and the over-
estimation of dimension of signal subspace preserves the
estimates of typical signals. The frequency smoothing prepro-
cessing [34] is applied to decorrelate the coherent measured
signals. The decorrelation by frequency smoothing depends
on the time difference of thewaves and the frequency distance
of the samples [34], [35]. The correlation of signals with
very short time difference (’’continuous’’ PDP for instance)
will not be sufficiently decorrelated on the narrowband mea-
surement. In addition, smoothing among frequency samples,
rather than among spatial samples, is preferred here for two
reasons: 1) the frequency domain sampling size can be set
much larger than the spatial domain sampling size which is
determined by the number of array antennas; 2) giving up
frequency points in the observation domain harms less the
estimation resolution than giving up spatial points because
localization is based on spatial information from the PADP.

Referring to [7], [33]–[36], we modify the MUSIC spec-
trum to involve as much spatial-temporal information as pos-
sible from the given system configuration, and the spectrum
is given by

PMUS (φR, θR, φT, θT, τ )

=

∑
XY

BH (φR, θR, φT, θT, τ)B (φR, θR, φT, θT, τ)

BH(φR, θR, φT, θT, τ)EN,XYEHN,XYB(φR, θR, φT, θT, τ)
,

(6)

and

B (φR, θR, φT, θT, τ )

= AT (φT, θT)⊗ AR (φR, θR)⊗ b (τ ) ∈ C(Nf NRNT)×1,

(7)

where B is the steering vector involving both the phase
differences among antenna elements in spatial domain and
the phase differences among subcarriers after frequency

smoothing. The Tx steering vector is defined as

AT (φT, θT)

= [aT,1 (φT, θT) , · · · , aT,NT (φT, θT)]
T
∈ CNT×1 (8)

with

aT,nt (φT, θT) = exp
(
−j

2π
λ

(
k̂T · r̄T,nt

))
, (9)

where λ is the wavelength, and k̂T is a unit vector in the
direction (φT, θT), i.e.

k̂T = [sin (θT) cos (φT) , sin (θT) sin (φT) , cos (θT)] . (10)

The vector r̄T,nt gives the position of nt-th element of Tx
array in local coordinate. The array vector for the Rx is
similarly defined by swapping subscripts r and R for t
and T. The azimuth and co-elevation angles of departure are
denoted by φT and θT, respectively. Similarly the azimuth
and co-elevation angles of arrival are denoted by φR and θR,
respectively. The steering vector of the phase difference
across subcarriers is

b (τ ) =
[
�1 (τ ) , . . . , �Nf (τ )

]T
∈ CNf×1, (11)

where

�nf (τ ) = exp
(
−j2π fδ(nf − 1)τ

)
, (12)

fδ is the subcarrier separation. Different paths have different
times of arrival, the time differences may introduce measur-
able phase difference across subcarriers. The eigenvectors
gathered in the matrix EN,XY ∈ C(Nf NRNT)×(Nf NRNT−Ns)

correspond to the noise subspace spanned by the covariance
matrix of hXY ∈ CNf NRNT×1 which is composed by h

nf
XY ,nrnt ,

and Ns denotes the number of significant signals. Here the
elements in EN,XY are determined according to the insignif-
icant eigenvalues [37]. The significant eigenvalues used in
this paper are determined with a 95% confidence level in the
cumulative distribution. The modified smoothing technique
in [34] is applied before calculating the MUSIC spectrum.
In the smoothing process, the correlation matrix of hXY is
defined by

RhXY =
1

2
(
Nf 0 − Nf + 1

) Nf 0−Nf+1∑
i=1

(
hiXYh

i
XY

H

+ J
(
hiXYh

i
XY

H
)∗
J
)
∈ CNf NRNT×Nf NRNT , (13)

where Nf 0 and Nf are the numbers of subcarriers before
and after frequency smoothing preprocessing, respectively.
Nf 0−Nf+1 indicates the number of frequency subarrays after
smoothing, and i is the index for the subarrays. The exchange
matrix is denoted as J ∈ CNf NRNT×Nf NRNT , and the term
J
(
hXYhHXY

)∗
J is added in the modified smoothing technique

to enhance the effect of destroying the signal coherence.
Eigen decomposition of RhXY results in an eigenvector EXY
and diagonal matrix VXY whose diagonal elements are the
corresponding eigenvalues.
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B. PROPOSED DETECTION AND LOCALIZATION SCHEME,
AND MEASUREMENT TECHNIQUE
We propose a method for detecting and localizing multi-
ple humans by the use of a MIMO system without large
bandwidth (narrower than 100 MHz). We aim at exploiting
the most of the spatial information from the measurable
non-UWB MIMO CTF to localize moving humans, that is,
1) the move from one location to another (denoted asMOV1),
and 2) the move to turn to different direction but stay at the
same location (denoted as MOV2).

During the measurement, at each time, several snapshots
(time duration denoted as tsp) of CTF or CIR are measured
at entire frequency points to ensure the reliability of data
and to minimize the effect of noise. The CTF or CIR is
measured periodically at time interval tit, and we compare the
MIMO channel properties measured at t and that at t + tit
(i.e. at every tit) in terms of PDP, reverberation time Trev,
and PADP. Here we define the reverberation time variation
1Trev|

t+tit
t as:

1Trev|
t+tit
t =

∣∣Trev,t − Trev,t+tit ∣∣ , (14)

the PDP variation 1PDP(τ )|t+titt as:

1PDP(τ )|t+titt =
∣∣PDPt (τ )− PDPt+tit (τ )

∣∣ , (15)

and the PADP variation 1PMUS(φR, φT, τ )|
t+tit
t as:

1PMUS(φR, φT, τ )|
t+tit
t =

∣∣∣PMUS,t (φR,
π

2
, φT,

π

2
, τ )

−PMUS,t+tit (φR,
π

2
, φT,

π

2
, τ )
∣∣∣ .

(16)

Here, for the purpose of localization, we are more inter-
ested in the azimuth domain. Therefore, the five dimensional
parameter estimation in (6) is simplified to the three dimen-
sional parameter estimation of φT, φR, τ by setting θT and
θR as π

2 , as in (16). With the comparison between Trev at
adjacent channel samplings, and the comparison between the
modified MUSIC spectrum (with well controlled degree-of-
freedom on exploiting the super resolution) at adjacent chan-
nel samplings, the detection and the localization of multiple
humans can be achieved at certain accuracy.

In this paper, the part of PDP considered for estimating the
Trev starts from the delay bin with power 20 dB lower than
the peak power, ends at the delay with power 3 dB above the
noise floor. The noise floor is defined the sameway as in [27].
The numerical analysis will be illustrated in Section IV.

III. MEASUREMENT CAMPAIGN
Radio channel measurements were performed with the
MIMOSA channel sounder [21]. The settings of the sounder
are given in Table 1. The sounder supports 8 transmitting
and 16 receiving parallel channels. Orthogonal frequency
division multiplexing (OFDM) is used to encode the digi-
tal transmit symbols, dividing the 80 MHz bandwidth into
6560 sub-carriers equally split among 8 parallel transmit
channels. This yields an inter-frequency spacing of 12.2 kHz

TABLE 1. MIMOSA channel sounder parameters.

and an OFDM symbol duration is about 82 µs. The cyclic
prefix is chosen to be a fraction of the symbol duration.
Each transmit channel is connected to a two-state RF switch,
therefore 16 × 16 channels can be measured and it costs at
most 295.04µs for one snapshot. Both link ends are equipped
with planar arrays with each 8 dual-polarized patch antennas.
The array element spacing and positions of element center are
shown in Table 2. In addition, as shown in Figure 2, arrays are
placed vertically parallel to the wall.

TABLE 2. Patch array placement, given in carrier wavelengths 0.5λc,
where λc =

c
fc

is the wavelength at central frequency fc.

FIGURE 2. Dual-polarized patch antenna array (a) Tx patch array (b) Rx
patch array, where θ and φ are the co-elevation and azimuth angles.

The measurements were conducted in a meeting room in
Lille University, France. Figure 3 shows the floor plan with
Tx and Rx locations. The floor and ceiling are made of
concrete, the outer wall (top side in Figure 3) consists of
windows and concrete structures, while the inner walls are
plasterboard. In addition, there are meeting tables and chairs.
The door was open during the measurement and the win-
dows were kept shut. Both arrays were set to fixed locations.
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FIGURE 3. Floor plan with Tx, Rx, person locations (P1 - P6, where P1, P2,
P4, P5 are outside of the first Fresnel zone of Tx and Rx, and P3, P6 are
inside), FP indicates Facing in Parallel, FO indicates Facing in Orthogonal
to the direct line between Tx and Rx.

They were parallel to wall surfaces and radiated radio waves
towards inside the room. Different from the measurement
settings in [13], [17], [18], the measurement presented in
this paper is the obstructed line-of-sight (O-LOS) scenario;
the meeting table presented in the very first Fresnel zone
between Tx/Rx as well as the side walls behind Tx/Rx
result in the co-existence of the LOS, the reflected, and the
multiple-reflected paths in the zone.

The channels were measured with and without humans,
where the former considered up to four persons standing at
six different locations and facing either in parallel (FP) or
orthogonal (FO) to the direct line between Tx and Rx. The
measurement scenarios are summarized in Table 3, where Y,
E, F, N stand for four different persons. Each radio channel
was measured 15 times (snapshots) assuming static condi-
tions within 4.5 ms (tsp <= 15 × 295.04 µs). Outlier
elimination [38] is implemented to exclude the snapshots with
errors due to mechanical vibration or switching errors of the
channel sounder. Such snapshots have significantly different
powers from the rest and are usually rare. The good snapshots
for one measurement are supposed to be perfectly correlated
under reasonable signal-to-noise ratio.

With no humans present, the measured channel is a col-
lection of the direct path and the paths interacting with back-
ground objects. With humans present, the measured channel
contains not only the formerly mentioned paths but also
paths interacting with the bodies; the changes in the num-
ber of humans, or position and gesture may influence the

TABLE 3. Reverberation time calculated from PDP.

background paths. We aim at localizing humans by identi-
fying the changes in MIMO radio channel properties caused
by the movement of humans: MOV1 and MOV2. We differ-
entiate the spatial-temporal changes that are directly linked
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FIGURE 4. An example of calculating the PDP slope.

to the human by comparing the proposed channel properties
in adjacent samplings of measured channel. The change in
the number of humans is mimicked by comparing the mea-
sured channels without person and/or with different persons,
the movement of humans can be mimicked by comparing the
channels when humans face different directions or standing
at different locations.

IV. DATA ANALYSIS
First, the feasibility of using the reverberation time calculated
from PDP for the purpose of multiple-human detection is
demonstrated. Second, the PADP calculated from the mod-
ified MUSIC spectrum with modified smoothing preprocess-
ing is justified for its capability in localizingmultiple humans.

A. PDP, REVERBERATION TIME, AND MULTI-HUMAN
DETECTION
Figure 4 provides an example of the averaged PDP over
snapshots as well as the fitted slope for the measured channel
when person E stands at P1 in direction of FP. Consecutive
multipath peaks appear in the observation domain on the
slope. Through the linear fitting of the considered range,
the slope rate is −0.094 dB/ns, hence the reverberation time
is 46.4 ns. The same procedure is applied with fixed power
range to all the measured scenarios. The resulting reverber-
ation times are reported in Table 3, Figure 5 and Figure 6.
Since we use the reverberation time as one important param-
eter to compare, we need to make sure the accuracy of the
determined reverberation times by evaluating the confidence
intervals. Notable observations from the data in Table 3,
Figure 5 and Figure 6 are summarized as follows.
First, no matter howmany people (maximum 4) are present

in room, as long as the humans are not inside the 1st Fresnel
zone of Tx and Rx, the reverberation time varies only little
from the situation with no one in the room. Moreover, in this
case, the reverberation time when human posing FO (mean
45.0 ns, standard deviation (std) 0.6 ns) and that when FP
(mean 45.5 ns, std 0.5 ns) do not have significant differences
either.

TABLE 4. Statistics of reverberation time of measurement scenarios.

Second, nomatter howmany humans in total (maximum 4)
in the room, the increase of one human inside the 1st Fresnel
zone causes the decrease of about 5.9 ns to 6.6 ns in the
reverberation time, and the increase of two humans inside
the zone causes the decrease of about 12.2 ns to 15.9 ns.
With more humans, the facing directions of them relative to
the direct line between Tx and Rx influence more on the
reverberation time, e.g. two humans with FO cause 12.2 ns
decrease in Trev, while two humans with FP cause 15.9 ns
decrease.

To analyze the similarity of Trev between FO and FP cases,
the Wilcoxon rank sum test is conducted. The results are
reported in Figure 6 and Table 4. TheWilcoxon rank sum test
compares the hypothesis that two data sets are from contin-
uous distributions with equal medians against the alternative
that they are not. At the 5% significance level, the scenario
with one person inside the Fresnel zone facing in direction of
FO has a statistically equal median with that when FP, and the
scenario with two persons inside the Fresnel zone facing in
direction of FO has statistically equal median with that when
FP. For the other scenarios, theWilcoxon rank sum tests reject
the null hypothesis of equal medians of Trev.
Comparing with [27], this is a drastic change of Trev result-

ing from human entering or leaving the 1st Fresnel zone. One
of the reasons is the deployment of Tx andRxwhere the direct
path is in perpendicular to the side walls (left and right walls
in Figure 3). Not only the reflected paths through the meeting
table arrive Rx in directions similar to the direction of LOS
direct path, but also the multiple reflected paths (higher order
reflections with longer propagation distance) interacting with
the side walls arrive Rx in directions similar to the direct
path. The multiple reflections/scatterings by side walls and
meeting table contribute to the reverberant components of
the channel, and the presence of humans in the 1st Fresnel
zone obstructed not only the major multipath but also the
reverberation paths, so that a drastic change in the reverbera-
tion time occurs. It is interesting that the 1st Fresnel zone in
this measurement setting seems to form a partial reverberant
space that is sensitive to the number of humans presenting
inside. When more than one human presents inside the zone,
the resulting reverberation time varies with the body cross
section relative to the direction of the direct path. From this
point of view, we see the feasibility of detecting humans and
estimating the number of humans with similar deployment of
link ends as in this measurement set-ups.
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FIGURE 5. Mean and standard deviation (std) of Trev for categorized measurement scenarios based
on how many humans present in room, how many inside 1st Fresnel zone, and their facing direction.

FIGURE 6. Mean and std. of Trev for categorized measurement scenarios
based on how many inside 1st Fresnel zone and their facing direction.

On the other hand, the door was open to the corridor
during the measurement; when multiple humans presenting
in location P4 and P5, it seems that there is no obvious change
in the reverberation time comparing to the case when no one
inside the room. The same consequences on the reverberation
time happen when multiple humans presenting in location
P1 and P2 where the windows are nearby. The reason is
the lack of the multiple reflections/scatterings arriving Rx
from those regions outside of the 1st Fresnel zone, given the
measurement setting. As explained in [23], the energy asso-
ciated with the radio waves that are interacting with humans
near the door or the windows may fled out of the room.
It may also related to the fact that the number of humans is
rather small in our measurement scenarios comparing to [27],
and the reverberation time may have an obvious decrease if,
say, 10 persons standing at around P5 even outside of the
1st Fresnel zone.

When the reverberation time variation 1Trev|
t+tit
t is not

obvious, alternatively, the PDP variation can be used to exam-
ine or detect the appearance or the disappearance of humans
outside of the 1st Fresnel zone. The examination range can
start from the peak of PDP (τpeak) until the end of the PDP
slope (τtailend), i.e. 1PDP(τ )|t+titt for τpeak ≤ τ ≤ τtailend.
If there are obvious (more than 2 dB) power variations in
the examination range, we could suspect that the appearance

FIGURE 7. Example of 1PDP(τ )|
t+tit
t , τpeak ≤ τ ≤ τtailend for all

snapshots, when no one is inside room at t , and Y (@P1), E (@P5),
F (@P4) are inside room but outside of the 1st Fresnel zone at t + tit, here
relative delay index 0 denotes τpeak and 30 corresponds to τtailend.

or the disappearance of humans or the movement of humans
may happens outside of the 1st Fresnel zone. This suspect is
based on the fact that the background objects have not been
changed during the time intervals. Figure 7 shows an example
and it can be observed that the maximum power change on
target delay bins can reach 3 dB. This observation reminds us
that the PDP variationwill increase the feasibility of detection
if both the reverberation time and PDP are compared between
the channels measured at successive time intervals at t and
t + tit, although the detailed analysis on the PDP variation is
out of the scope of this paper.

B. PADP AND MULTI-HUMAN LOCALIZATION
Here, the spatial-temporal channel property PADP is esti-
mated by the method descried in Section II.A.2), and the
PADP variations calculated from the observed channel at t
and that at t + tit when humans are moving are used for
localization purpose. We aim at localizing humans through
their movements: MOV1 and MOV2. We assume that the
humans’ translational movement in space during the time
interval of the observations onCTF is small enough so that the
movement in category MOV1 can be described by the move-
ment in category MOV2 but with several time intervals. As a
result, we mainly focus on evaluating the capability of PADP
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in multi-human localization when humans are in rotational
movements at the same location; in our measurement setting,
the rotational movements of humans are mimicked by from
FO to FP or the contrary.

To reduce the cost of calculation time and memory on the
available computers, the measured channel is downsized by
smoothing it to obtain Nf0 = 273 frequency points uniformly
sampled from 1.31 GHz to 1.39 GHz. During the frequency
smoothing, the number of frequency subarray element Nf
is set as 10, hence totally Nf0 − Nf + 1 = 264 frequency
subarrays are used for the decorrelation of the signal space
of measured channel. The delay resolution after smoothing
is τ = 0.38µs corresponding to the bandwidth of subarray
of 2.65 MHz. Since the observation on frequency domain is
sacrificed for the observation on spatial domain, the main
PADP variationsmay be concentrated in the earlier one or two
delay bins from the peak delay bin. In addition, the angular
resolutions of φT and φR in (6) are set to 5◦.

1) SINGLE HUMAN
Figure 8 (a) provides an example for person E standing at
P4 and moving from FO to FP from t to t + tit, or the other
way around. We compare the PADP of the two channels
measured at t and t + tit, and plot the absolute difference.
The sub-figures show 1PMUS (φR, φT, τ ) |

t+tit
t , at the peak

delay bin τpeak and the delay after the peak τpeak+1. It can be
observed that the peak of 1PMUS

(
φR, φT, τpeak

)
|
t+tit
t coin-

cides with E’s location P4, and the peak level of this variation
is about 2.8 dB. At the following delay bin, no obvious
connection between 1PMUS

(
φR, φT, τpeak+1

)
|
t+tit
t and E’s

location can be observed, but the 1 dB power variation in
the 1st Fresnel zone of Tx and Rx seems to be caused by
the human’s movement. This variation could be owing to
the multiple reflections/scatterings whose propagation paths
interact with human and then the tables or/and the side
walls.

Figure 8 (a) provides an example for localizing mov-
ing person standing at P4 that is at the door side, and
Figure 8 (b) and (c) provide examples for one moving person
at the window side P2 and in the Fresnel zone P3, respec-
tively. It can be observed from both cases that the peak of
1PMUS

(
φR, φT, τpeak

)
|
t+tit
t is directly linked to the location

of the human. From both Figure 8 (a) and (b), while the
human stands outside of the 1st Fresnel zone, his movement
causes power variations not only at his vicinity, but also inside
the zone; the power variations inside the zone are due to the
multiple reflections/scattering via firstly the human and later
the physical objects inside the zone.

2) TWO HUMANS
Figure 9 shows several examples of the PADP variations
of measured channels when two humans move from FP to
FO (or the other way around) at the adjacent observation
time. Figure 9 (a) and (b) show the examples when E stands
and moves at P4, and Y stands and moves at the window

FIGURE 8. PADP variations when E stands at (a) P4 (b) P2 (c) P3 with FO
and that when FP, the red pentagram indicates the actual location of E.

side. It can be observed that the peak of power variation
1PMUS

(
φR, φT, τpeak

)
|
t+tit
t can only be directly linked to P4,

but the location of P1 and P2 can not be clearly indicated.
It can be expected from Figure 8 (a) and (b) where the spatial
power variation at τpeak brought by person moving at P2 is
about 2 dB smaller than that by person moving at P4. This
poses the challenge of localizing multiple humans by only
using the PADP variations.

Figure 9 (c) and (d) show the examples when E stands
and moves at P4, and Y stands and moves inside the
first Fresnel zone. When Y stands and moves at P3 which
is closer to Rx, the peak of the spatial power variation
1PMUS

(
φR, φT, τpeak

)
|
t+tit
t clearly indicates the location of

P3; when Y stands and moves at P6 which is closer to
Tx, the peak of the spatial power variation at τpeak clearly
indicates the location of P4. The observations show that the
power flows of radio wave propagation at P3, P4, P6 are in a
decreasing order.

Comparing Figure 9 (e) where Y and E stand/move
at P5 and P4 respectively, to Figure 8 (a) where
only E stands and moves at P4, the power variation
1PMUS

(
φR, φT, τpeak

)
|
t+tit
t of the former is about 1.7 dB

less than that of the latter; it indicates that the movement
of human at P5 does influence the whole spatial power, and
decreases the power flow associatedwith P4. It is still difficult
to differentiate the P4 and P5 locations just from the PADP
variations.
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FIGURE 9. PADP variations when Y and E stand at (a) P1 and P4
(b) P2 and P4 (c) P3 and P4 (d) P6 and P4 (e) P5 and P4, respectively, with
FO and that when FP; the red pentagram indicates P4, the white cross
indicates P1, the green dot indicates P2, the black triangle indicates P3,
the magenta diamond indicates P6, and the brown triangle with green
outline indicates P5.

3) THREE HUMANS
Figure 10 shows examples of the PADP variations of
measured channels when three humans move from FP to
FO (or the other way around) at the adjacent observa-
tion time. Figure 10 (a) shows the results when the Y,
E, F stand at P6, P5, P1, respectively, that are close
to Tx side, while Figure 10 (b) shows the results when
they stand at P3, P4, P2, respectively, that are close to

FIGURE 10. PADP variations when Y, E, F stand at (a) P6, P5, P1 (b) P3, P4,
P2 (c) P5, P1, P2 (d) P1, P5, P4, respectively, with FO and that when FP;
the red pentagram indicates P4, the white cross indicates P1, the green
dot indicates P2, the black triangle with red outline indicates P3,
the magenta diamond indicates P6, and the brown triangle indicates P5.

Rx side. For both cases, 1PMUS
(
φR, φT, τpeak

)
|
t+tit
t and

1PMUS
(
φR, φT, τpeak+1

)
|
t+tit
t are able to be clearly linked

to the humans’ locations. In Figure 10 (a), at the peak delay
bin, the variations on spatial power spectrum result in three
peaks; the peaks associated to P5 and P3 are obvious while
the peak associated to P1 is bit weak. At τpeak+1, the varia-
tions on spatial power spectrum clearly indicates the location
of P1, and it suggests that the move of the human standing at
P1 mainly causes changes to multiple reflections/scatterings
with longer propagation path.

In Figure 10 (b), at the peak delay bin, the variations on
spatial power spectrum result in two obvious peaks associated
to P4 and P2. At τpeak+1, the variations on spatial power
spectrum clearly indicates the location of P3. It is interesting
since Y locates at P3 that is inside the Fresnel zone, but the
move of Y does not bring obvious power variation at the peak
delay bin as what E did in Figure 8 (c). It is probably due to
the body figure differences, e.g. shoulder width, noting that
Y is a female and is smaller than that of E who is a male.
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In Figure 10 (c) where E stands at P1 and (d) where Y
stands at P1, both cases can indicate the location of P1 at
τpeak+1. At the peak delay bin, only P4 where F stands
at can be suggested by observing the variations on power
angular profiles 1PMUS

(
φR, φT, τpeak

)
|
t+tit
t ; nevertheless,

the moves of those three humans cause clear variation inside
the 1st Fresnel zone, which could be due to the multiple
reflections/scattering via humans then the objects inside the
zone (tables/side walls) before arriving at Rx.

4) FOUR HUMANS
Examples of variations on PADPwhen four humans move are
omitted for the sake of conciseness. Similar observations are
made as in the examples shown in Figure 8, Figure 9, and
Figure 10.
For the case when single human stands at one location and

conducts rotational movement (to face different direction),
it is rather easy to associate the peak of the variation on power
angular profile at the peak delay bin of estimated PADP
spectrum, i.e. 1PMUS

(
φR, φT, τpeak

)
|
t+tit
t to the location of

moving human. When more than one human stand and move,
such as 2, 3, 4 humans in our measurement settings, it is
rather difficult to directly associate the peaks of the variations
on power angular profile to the locations of humans. The
challenges lie in the following facts observed from measured
data:

1) the obvious power variations may not only occur in
the vicinity of different humans, but also occur in the
vicinity of other background objects that interact with
radio waves propagated via humans;

2) the peaks of the observable power angular spectrum
variations may not equal in number with the presenting
moving humans, where the number of the peaks in
angular power variationsmay be larger than the number
of humans as stated in 1), and may also be smaller than
the number of humans due to the power flow at certain
human location is too small to appear.

V. CONCLUSION
This paper has explored the feasibility of detecting and local-
izing multiple humans by using the indoor MIMO radio
channel properties, namely, the power delay profile, the rever-
beration time, and the power angular delay profiles. In this
study, theMIMO system has a bandwidth of 80MHz, andwas
implemented with eight patch antennas organized in a planar
configuration at link ends. To exploit the spatial domain infor-
mation from the measured channels with different humans
standing and moving, the super resolution algorithm of mod-
ified MUSIC with modified smoothing pre-processing is
applied. The frequency samples are smoothed out for the
observation in spatial domain. From the observations on the
change of the reverberation time and the power angular delay
profile when different humans stand and move at different
locations in a meeting room, the feasibility of using rever-
beration time and power delay profile for detecting multi-
ple humans, and the feasibility of using the power angular

profiles at the peak and its adjacent delay bins for localizing
multiple humans, are assessed.

The considered environment is considered partially rever-
berant. We analyzed the reverberation time, i.e. the decay
rate of the slope of the power delay profile, when humans
were present in the partially reverberant region. We find that
both the number of humans and the direction of humans
influence the reverberation time. From the measured data,
one human in the partial reverberant region leads to a
decrease in reverberation time of approximately 6 ns to
6.6 ns, whereas two humans yield a 12.2 ns to 15.9 ns
decrease. In addition, when more than one human presents
in the partial reverberant region, the turning movement of
the humans results at most 4 ns change in reverberation
time. These values are site-specific, but are instructive for the
system design and deployment for multiple-human detection
purpose.

The variation on the power angular spectrum at the peak
delay bin and its successive delay bin has been investigated
for its potential in indicating the location of moving humans.
From numerical analysis, it is observed that the location of
single human can be well indicated from the peak of the
variation of the power angular profiles. However, it remains
challenging to use only the power angular delay profile for
indicating locations of multiple humans. The obvious power
variations resulting from the moves of multiple humans may
occur in the very vicinity of some of those humans, but may
also occur in the vicinity of background objects that is far
from target humans.

As this paper is a proof-of-concept feasibility exploration,
for future work, the in-depth accuracy analysis and perfor-
mance evaluation in different propagation scenarios, as well
as the differentiating of multiple humans when localization
will be studied.
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