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ABSTRACT
At present, optical sensors are being widely used to realize high quality control or reverse engineering
of products, systems, buildings, environments or human bodies. Although the intrinsic characteristics
of such breakthrough technologies may vary, ensuring complete acquisition relies on the definition
of the optimal acquisition planning. To this end, the view planning problem (VPP) must be solved
to automatically determine the optimal positions and/or trajectories of the acquisition devices to fully
cover the part to be digitized. Such an automatization of the entire acquisition process is of con-
siderably interest in the context of Industry 4.0. The aim of this paper is to review the state of the
art works addressing the view planning problem and to identify the future challenges and possible re-
search directions. First, the paper introduces a set of criteria to analyze the available methods, grouped
into several macrocategories. The categories are presented and formalized to clearly understand the
backbone and similarities of the grouped methods. Second, the paper describes and characterizes
the available methods, based on their analysis according to the adopted criteria. The results of this
extensive analysis clearly highlight the open issues and future challenges.

1. Introduction
The need to reconstruct high-resolution 3D virtual mod-

els of objects, products and systems has become mainstream
in many industrial applications. The ability to reverse engi-
neer and specifically to reconstruct or update 3D models of
machined parts, buildings, historical monuments, lands and
human bodies is of considerable interest in the context of In-
dustry 4.0 aswell as in building informationmodeling (BIM)
and cultural heritage applications. With the emergence of in-
creasingly accurate and convenient acquisition means (e.g.,
optical sensors, robot arms, drones), the requirement of 3D
reconstruction has increased significantly in several domains,
especially inmanufacturing control and building surveillance
applications. In recent years, the accuracy of laser scanners
and fringe projection acquisition devices has been consid-
erably enhanced, thereby making it possible to respond to
an industrial demand for automated control. At present, in-
spection is often conducted in delayed time and in a loca-
tion different from the manufacturing point. This configura-
tion increases the cycle time and the final cost of a part. In
2018, Zhang proposed a state of the art review of the var-
ious means of measurement based on structured light [62]
and discussed the advantages and drawbacks of this type of
technology. One of the key steps driving the automatic re-
construction of 3D objects is the planning of views, namely,
the view planning problem (VPP), aimed at automatically
determining the optimal positions and/or trajectories of the
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acquisition means to fully cover the part under considera-
tion.
In recent years, this problem has been studied to realize the
reconstruction of postmanufactured mechanical parts by
using optical sensors. In the current industrial inspection
methods, probesmounted on coordinatemeasuringmachines
(CMM) are used, for high-accuracy measuring. However, in
this type of inspection, the amount of time spent is consid-
erably high compared to the number of points acquired. In
contrast, optical sensors can be used to collect several thou-
sand points in a few seconds. By installing such sensors on
robots or other means of movement, multiple views of the
object to be inspected can be acquired. In such a scenario,
the challenge is to position and orient the sensor in space to
scan the part efficiently, i.e. to cover the part as much as pos-
sible while minimizing the number of scans.
Although view planning methods are applicable to many do-
mains, this paper focuses on methods to realize view plan-
ning to reconstruct objects by using optical sensors. Such
methods can facilitate the development of Industry 4.0. By
automatically generating a view plan using an optical sen-
sor, machined parts on machine tools can be scanned and
controlled in real time without human intervention, thereby
allowing the automatic adjustment of machine parameters
and tool paths during machining, directly through a supervi-
sor. At present, in general, after a part is machined to com-
pletion, it is inspected on a different machine, usually a co-
ordinate measuring machine (CMM), and the machining is
restarted with new parameters if the quality is not satisfac-
tory. This process is repeated until the part specifications are
specified. By automatically planning the acquisition views
and obtaining a point cloud, controls can be automated, scrap
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generation can be reduced, and the product quality and com-
petitiveness can be enhanced.
In 2003, a state-of-the art review of the existing methods was
provided by Scott et al. [45]. Therefore, this survey paper
is focused on the methods developed a posteriori. In 2020,
Zeng et al. also provided a survey on the view planning prob-
lem [61]. Nevertheless this state-of-the-art only focuses on
next-best-view methods and it sorts methods by type of ap-
plication. The contribution of this work is threefold: (i) A
set of criteria is defined to compare and classify the existing
techniques; (ii) the existing techniques are extensively ana-
lyzed and systematically characterized considering the iden-
tified criteria; (iii) the open questions and future challenges
are highlighted.
The remaining paper is organized as follows. Section 2 presents
the issues related to the view planning problem and explains
the criteria adopted to classify the methods. Section 3 and
section 4 introduce the methods that use the a priori knowl-
edge of the object to be digitized and those in which no
knowledge of the object is considered, respectively. The fi-
nal section presents the concluding remarks with a compar-
ative study of the methods classified according to the iden-
tified criteria.

2. Classification of the approaches and
definition of the adopted comparison
criteria
This section introduces the view planning problem, along

with the different categories of and criteria used to charac-
terize the different solution approaches.
2.1. View planning problem and classification of

the resolution methods
The view planning problem (VPP) can be handled in

two different ways: either with or without knowledge of the
object to be digitized. Generally, methods that exploit the
knowledge of the object to be scanned employ a CADmodel
or simply a mesh as the input. In contrast, the methods that
do not exploit such knowledge usually start with an initial
position and determine the next positions in real time.
Solving the VPP involves determining a minimum number
of views that should be used to reconstruct the part in 3D. A
classical method involves generalizing the VPP in the form
of a more typical problem, namely, the set covering problem
(SCP). This problem can be formulated as follows: If P is
a set of elements {1, 2, 3, ..., n}, and Ps is a list of subsets
whose union is equal to P , solving the SCP is equivalent to
finding the smallest list of subsets in Ps such that the union
of this list is equal to P . In 2001, Scott et al. [43] highlighted
an approach to transpose the VPP into the SCP. If the outer
skin of a 3D object is divided into several patches, and if one
scan represents an overlap of a set of these patches, the goal
is to overlap a maximum of patches with the minimum num-
ber of scans. The SCP is a classical optimization problem,
and in 1972, Karp [17] demonstrated that among 21 other
problems, the SCP problem is NP complete. In other words,

no solution to this problem can be realized in polynomial
time. Consequently, the existing methods can be classified
in three categories:

• Methods based on the SCP principle that use opti-
mization algorithms to solve the problem in a reason-
able time. In this paper, these methods belong to the
category "set covering problem transposition", as de-
scribed in section 3.1.

• Methods that do not seek to minimize the number of
scans at all costs when an input model is used. These
methods do not need to solve the classical optimiza-
tion problem as the SCP is not considered in this case.
Such methods are grouped in the "covering optimiza-
tion" category described in section 3.2.

• Methods solving the VPP in the absence of an input
model, for instance, in reverse engineering applica-
tions or for area exploration applications. Here, the
objective is to scan a complete object without any prior
knowledge of its shape. In this context, an iterative
process is realized to search for the next optimal scan
at each new iteration, until a stop criterion is reached.
These methods belong to the "search based" category
described in section 4.

2.2. Adopted criteria and scoring system
The algorithms developed to solve the VPP can be char-

acterized through several criteria. Scott et al. [45] defined a
number of criteria in their paper, some of which, identified
with a *, are used in this survey paper. Each criterion is iden-
tified by a letter of the alphabet to facilitate its referencing.
Among the adopted criteria, several approaches are specific
to the computer graphics domain, even though the consid-
ered methods are not only related to this domain. To exam-
ine these criteria, 5 types of symbols are used, as described
in Table 1. In this article, the methods are evaluated with re-
spect to each of these criteria. For instance, (a,✓) and (a,∼)
characterize methods that fully or partially address a certain
criterion, respectively. The evaluation techniques for these
methods are summarized at the end of the document (see
Table 3).

Symbol Meaning
✓ Criterion fully addressed by the method
∼ Criterion considered in the method but

in a partial or unexplained manner
empty Criterion not addressed by the method
? Information not available or unclear
NA Criterion not applicable to the method

Table 1
Symbols used to characterize the methods with respect to the
adopted criteria.

2.3. Algorithmic criteria
The following criteria refer to the algorithmic character-

istics of the developed methods to solve the VPP.
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2.3.1. General criteria
Independence to the sensor types* (a). The viewpoints
must be generalized to ensure that they can be configured
regardless of the type of sensor. The algorithm must be gen-
eralized to ensure that all viewpoint configurations can be
handled regardless of the sensor technology.
Invariance to the object size (b). The algorithm must be
able to consider objects of all sizes. The number of view-
points must therefore be set considering the sizes of the sen-
sor field and object to be scanned.
Types of support and installation constraints (c). The
scanning strategy must take into account the constraints re-
lated to the parts and sensor positions, and the algorithm
must generate scan configurations satisfying themultiple con-
straints.
Treatment of constraints (d). The algorithm must be as
generic as possible to handle multiple types of constraints in
a simple manner. The addition or removal of the constraints
must be reasonably simple.
2.3.2. Algorithm performance characteristics
Self terminating* (e). The algorithm must be able to de-
termine when the objective is attained and stop the process
autonomously (without human intervention).
Scan number minimization (f). The algorithm must seek
to minimize the number of viewpoints used in the scan plan.
Cover maximization (g). The algorithmmust seek tomax-
imize the covering of the surface to be scanned.
Time inspection minimization (h). The algorithm must
determine a scanning strategy that minimizes the inspection
time. For example, the algorithm should compute an order
between each of the scans to minimize the dead times at the
time of inspection.
2.3.3. Object constraints
Type of entity selection (i). The scan plan is built consid-
ering a CAD model. The algorithm must be able to identify
the parts of the object associated with the scan plan and cre-
ate scan overlaps in these particular areas. This criterion is
important according to the industry needs, in order to in-
crease the efficiency of the machining and geometric toler-
ance control processes. This criterion is deeply related to the
time inspection minimization criterion (h).
A priori knowledge of the object* (j). The algorithmmust
have a minimum knowledge of the object to be scanned.
Overlap between scans* (k). The overlaps between the
scans obtained from different viewpoints can be used to ob-
tain correspondences between the scans. This aspect is es-
sential to register the point clouds and reconstruct 3D ob-
jects.

Analysis of the degrees of freedom for registration (l).
The point cloud registration often relies on the iterative clos-
est point (ICP) algorithm. The principle is to identify the
alignment of the point clouds that can minimize the distance
between the clouds. The accuracy generally depends on the
shape of the point clouds, which depends on the degrees
of freedom that characterize the contact between the point
clouds. Therefore, it may be relevant to analyze the shapes
and degrees of freedom of the surfaces to be aligned to deter-
mine whether a suitable alignment of the scans can be per-
formed.
2.3.4. Sensor constraints
Occlusion treatment* (m). The algorithm must take into
account the geometry and shape of the part to detect the sur-
face occlusions and consider them when generating a scan
plan covering the whole surface.
Sensor quality measure (n). The algorithmmust consider
the characteristics and limitations of the acquisition technol-
ogy to minimize disruptions and errors, for example, the in-
clination or distance of the sensor from the surface.
Collision detection* (o). When generating the scan plan,
the algorithmmust avoid collisions between the part, sensor,
support and environment.
2.3.5. Validation conditions (p).

To ensure consistency with the industrial conditions, the
results must be validated considering real industrial parts in
a real environment with potential obstacles.
2.3.6. Type of discretization

The considered criteria help approximate the types of
geometric representations that can be manipulated, which
helps clarify the associated advantages and disadvantages.
The methods examined in this paper involve five types of
discretization processes, which can be used as an input of
the methods or as intermediate representations adopted to
satisfy the algorithmic needs.
Mesh (q). In the context of the VPP, a mesh is a discrete
representation of an object’s outer surface and is often used
to accelerate computation. The mesh is composed of points,
edges and faces. Depending on the type of mesh used, it
can be organized in different ways. For example, the edges
can be oriented, and the mesh can have a certain direction
of travel. Triangular meshes are often used for display pur-
poses; however, they can also be used for processing when
subdivided homogeneously.
Voxel grid (r). The voxel grid is used to represent an ob-
ject in a simple manner and to represent the space areas dis-
cretized by a three dimensional grid. Depending on the type
of structure used, the voxels can be labeled in a binary man-
ner or according to several labels following certain criteria.
This structure is particularly effective to perform a neighbor-
hood search.
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Figure 1: Various tore representations : Mesh (a), Voxel Grid (b), Parametric Surface (c), Point Cloud (d), B-Rep (e).

Parametric surfaces (NURBS) (s). Parametric surfaces
allow the representation of complex shapes. For instance,
Non-Uniform Rational B-Spline (NURBS) [34] surfaces al-
low a complex object to be represented in a simple manner
by using control points, knot sequences and weights. It is
generally used for the analytical description of a surface.
Point cloud (t). Point clouds are often derived from a data
acquisition, and they allow a real object to be represented as
a set of 3D points.
B-Rep (Boundary Representation) (u). B-Rep represen-
tations [51] are widely used in the industrial domain to de-
scribe solids such as CAD models. A B-Rep object is com-
posed of several elements that constitute the object’s skin. It
covers aspects related to the geometry and the topology of
the skin. Faces of a model can be represented by means of
parametric surfaces (NURBS, B-Spline, etc.) and connected
to each other by so called wires composed of edges and ver-
tices.
2.4. Technological criteria

A part of the considered methods work only with one
type of sensor or are limited to specific applications. Conse-
quently, the approaches must be characterized with respect
to a set of technological criteria. Such criteria allow users
to choose the appropriate method according to their specific
constraints. The characteristics of the existing approaches
with respect to these criteria are summarized at the end of
the paper (see Table 2).

2.4.1. Acquisition technology
The digitization phase can be realized using various ac-

quisition technologies, which can be classified in three cate-
gories.
Laser scanners. Laser scanners usually involve a camera.
A ray is projected onto the surface to be scanned, and the
scanner is moved to obtain the complete digitization of the
surface (Figure 2).
Structured light sensors. Structured light sensors gener-
ally involve one or two cameras. The sensors project a set
of light patterns onto the object to be scanned and observe
the way that the patterns deform, to reconstruct the surface
within a field specific to each sensor. The sensor is fixed
during the acquisition (Figure 3).

Figure 2: Example of Keyence© brand laser scanner.

Figure 3: Example of GOM© brand structured light sensor.

Others sensors. Several other types of acquisition devices,
using cameras, wireless sensors, probes, etc. have been re-
ported in the literature.
2.4.2. Type of support

To establish a scan plan that allows the entire part to be
scanned, the acquisition systemmust be able to move around
it. Different strategies can be used depending on the avail-
able means. For instance, the part can move according to its
support, the acquisition device can move around the part, or
a combination of both strategies can be employed.
Turning table. A turntable can be used as a support for the
part to be scanned, if the part is not excessively large. The
table can generally rotate around an axis, or even two or three
axes in certain cases, to allow data acquisition from several
viewpoints (Figure 4).
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Figure 4: Example of FANUC© brand motorised turning table.

Robotic arm. A robotic arm is often used to approach areas
that cannot be easily accessed. The sensor is fixed at the end
of the arm. Depending on the size of the arm, the sensor
can move around and orient itself in different configurations
with respect to the part. The robotic arms reported in the
literature can move in six to eight axes (Figure 5).

Figure 5: Example of Staübli© brand robotic arm.

CMM. Coordinatemeasuringmachines are traditionally used
to measure a machined part by using probes. The machine
consists of a table and a gantry that moves in three axes,
with ameasurement head installed at the end. Although such
machines have a high accuracy, the measurement process is
slow as the points are acquired individually (Figure 6).
UAV. Several of the considered methods employ unmanned
aerial vehicles (UAVs). UAVs are small remotely controlled
aerial vehicles equipped with acquisition devices such as LI-
DAR, and they are used to reconstruct large objects, such as
monuments or land, whose parts cannot be reached other-
wise (Figure 7).

Figure 6: Example of ZEISS© brand CMM.

Figure 7: Example of DJI© brand UAV.

Mobile robot, AGV. Mobile robot are able to move in an
environment or to carry heavy objects (8). They are useful
to explore dangerous environments for humans (when there
are radiations for instance). In the process of view planning
they can be used to move around an object and to scan with a
sensor attached to it, or to carry a robotic arm equipped with
a sensor.

Figure 8: Example of IMR System© brand mobile robot.
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2.4.3. Application type
The different types of VPP applications can be classified

into four categories in order to choose properly the tools and
the data processing. The classification is important because
search-based methods are more suitable for the digitization
of unknown objects and the model-based methods are more
appropriate for the digitization of known objects. Also the
size of the object could influence the processing time. Here,
objects are considered "small" when they fit into twice the
length of the scanner field area, in the opposite case they are
considered as "large".
Digitization of small unknown objects. Such applica-
tions involve inspecting mechanical parts or reverse engi-
neering realistic 3D objects to feed databases for 3D model
learning or 3D simulations.
Digitization of large unknown objects. Such applications
involve the reconstruction of complex external structures such
as buildings, historical monuments, statues of even large out-
door scenes and environments.
Digitization of small known objects. The reconstruction
of small objects, whose shape is known a priori, is a key
focus area in this review. Such applications pertain to the
3D reconstruction of an object to enable its inspection at the
end of the manufacturing process.
Digitization of large known objects. As in the case of
small known objects, such applications involve the inspec-
tion of large parts and the reconstruction of historical mon-
uments, towers or buildings, whose geometry is known a
priori.

3. Approaches based on a priori knowledge
This section describes methods that exploit the a priori

knowledge of the object to be digitized (j✓), in contrast to
search based approaches, in which the shape of the object
is not required to be known. In this case, one of the inputs
of the algorithm is a 3D representation of the object to be
scanned (e.g. mesh, point cloud, volume, CAD model).
In particular, two types of algorithms exist: methods that
seek to solve the SCP, andmethods that seek not to minimize
the number of scans but maximize the coverage of the object.
3.1. Approaches based on solving the SCP

According to the definition presented in section 2.1, the
elements of set P correspond to the parts of the surface to
be scanned, known as patches. The list of subsets Ps is rep-
resented by a list of the viewpoints. Each viewpoint pv is
defined by coordinates pos to compute the set of patches pivisible from this point.
To solve the SCP, the existing methods involve five main
steps (Figure 9). The first step involves the segmentation of
the surface into patches. The object model to reconstruct
is sampled into n patches of pi surfaces in the set P . The
second step involves sampling the space into viewpoints. A

list Ps of viewpoints pv is sampled. A viewpoint pv is gen-
erally described with a vector pos that represents a (x, y, z)
position and an orientation (rx, ry, rz), and a vectorwpv thatcontains the patches pi of the object surface belonging to P
visible from pv. At the beginning of the method, the vector
wpv is empty. The third step involves an evaluation of the
viewpoints. At this step the vector wpv of the viewpoints
pv are filled. The fourth step involves the resolution of the
optimization problem. The number of pv which covers the
maximum of surface patches pi is minimized. Finally, the
fifth steps involves identifying the criteria used to optimize
the objective function.
All the methods in this section follow the same steps pre-
sented in the formalisation of the view planning problem res-
olution in Figure 9.

Geometric Model

Figure 9: Formalization of the 5 main steps involved in the
methods to solve the SCP.

3.1.1. Surface segmentation methods
Among the various surface segmentation methods, the

most common approach is to use a mesh of the object and
consider a face of this mesh as a patch pi. Themeshes can in-
volve different levels of details, and often, a simplified mesh
is used to approximately represent the shape of the object.
Loriot in 2009 [26], Scott et al. in 2002 [41, 44] and Mah-
mud et al. in 2011 [27] used this method because it can re-
duce the complexity of the algorithm, and therefore, the cal-
culation time (q ✓). However, if the object is complex, the
self occlusions of the surface may be lost when using this
approach.
In 2009, Scott [42] decided to use the decimated mesh of
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Figure 10: Original mesh (left) and mesh subdivided using the
bubble mesh algorithm [47, 14] (right).

a model (q ✓). In this approach, the simplification level
is determined experimentally for each scan plan. Thus, the
method is not automatic, and a manual preprocessing must
be performed. Similar to the condition in the aforementioned
approaches, mesh simplification results in the removal of oc-
clusions, and thus, potentially important features. In all the
methods proposed by Jing et al. [16, 14, 58, 15] andMoham-
madijaki et al. [31], the employed mesh is subdivided to ob-
tain a homogeneous mesh over the entire surface (q✓). Jing
et al. used the bubble mesh algorithm [47] (this method gen-
erates a uniform triangular mesh which preserves the origi-
nal shape), the process flow of which is illustrated in Figure
10. In this approach, the faces of the mesh are homogeneous
sized over almost the entire surface, even in the case of a flat
surface. Consequently, the sizes of the patches (i.e. segmen-
tation) are similar.
Another way to segment a surface into patches is to position
the object in a grid of voxels. In 2005, Martins et al. [28]
used this method (r ✓). This method allows the realization
of a structure that can be used to detect collisions between
the object and scanner, for example. Hepp et al. [12] also
used this method (r,o ✓).
In 2011, Krause et al. [19] used a grid to segment the sur-
face, although a simple 2D grid was used instead of voxels,
because the surface to be covered was planar (r ∼).
3.1.2. Viewpoint sampling methods

In these methods, a key aspect is to generate the view-
points. If the determined viewpoints do not cover the surface
suitably, the VPP cannot be solved.
Orientation with a normal surface A widely used ap-
proach involves generating a set of viewpoints per patch,
with the viewpoints aligned against the normal of the patch.
Scott [44, 41], Martins et al. [28] and Mahmud [27] used
this method in their respective research. In 2011, Krause
et al. [19] generated a set of positions for each patch, al-
though no orientation was generated, as it was not required
in their algorithm. Although this samplingmethod is simple,
it depends considerably on the surface segmentation. If the
mesh or its segmentation are excessively coarse, the self oc-
clusions cannot be considered, because the orientations are
defined according to the normal of each patch.

In 2009, Scott et al. [42] and Loriot [26] generated view-
points along the normal to each point on the surface. Sub-
sequently, a filter was applied to all the viewpoints to re-
duce the complexity. Nevertheless, similar to the limitation
of the aforementioned approach, this type of sampling was
also considerably dependent on the segmentation step.
Random sample in a volume space Jing et al. [16] ran-
domly sampled the positions of the viewpoints within a spe-
cific volume. This volume involved two volumes. Specifi-
cally, the first and second volumes were obtained by dilat-
ing the surface with the minimum and maximum distances
of the camera field, respectively. The final volume was the
intersection between these two volumes. To compute the
orientations, each object was considered to have a force of
attraction. Thus, for each viewpoint, the forces of the clos-
est patches were summed, and the resulting normalized 3D
force corresponded to the direction of the viewpoint.
In 2017, Jing [14, 58] used the same method, albeit instead
of the volume, the viewpoints were sampled on the medial
object of the previous volume. Subsequently, the viewpoints
were preselected according to certain criteria to reduce the
computation time. This method could be used to sample the
viewpoints to enable the visualization of the surface. How-
ever, since the positions of the viewpoints were sampled ran-
domly, and the orientations were computed according to the
force of attraction of the surface, certain parts of the surface
were likely never observed from the sampled viewpoints.
Graph method Hepp et al. [12] created a graph of can-
didate viewpoints. The nodes of the graph corresponded to
the viewpoints, and the voxels observed from these view-
points were recorded. The edges corresponded to a colli-
sion less path between the two viewpoints. The principle of
this method was to reduce the graph to a minimum graph to
cover the surface to be scanned. The candidate viewpoints
were generated iteratively. At each created viewpoint, 6 new
viewpoints were added with an offset in the directions−x, x,
−y, y, −z and z. The viewpoints were retained if they were
not too close to the already generated viewpoints, and if they
were located in a free access space. The orientations were
determined through random sampling, while preferring the
points located close to the regions of interest. The advan-
tage of this method was that the generated viewpoints were
located in an accessible space free of collisions.
Sampling in robot kinematic space Jing et al. [15] sam-
pled the viewpoints on an ellipsoidal hemisphere containing
the object, and for each viewpoint, a robot configuration was
defined in the robot kinematic space (c ✓). The viewpoints
for which no configuration existed, or which involved a col-
lision with the environment, were directly removed from the
set. The advantage of this method is that the viewpoints can
be directly filtered at the time of their generation, based on
the occurrence of a collision and robot accessibility criteria
(o, ✓). However, this aspect can be a disadvantage, as the
method is constrained to a specific workspace for a robot arm
whose accessibility can be directly tested. This phenomenon
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does not occur in the case of other types of media. Moreover,
the size of the objects is constrained by the maximum exten-
sion of the robot arm (b ∼).
Mohammadikaji et al. [31] did not simply sample a finite
number of viewpoints as the first step. In each iteration of
the optimization algorithm, a new random sampling of the
viewpoints was performed within the search space prede-
fined by the sensor andmodel support. This workingmethod
is similar to that of search based methods that search for the
next optimal scan at each iteration. The advantage of this
method is that all the viewpoints are renewed at each itera-
tion, which theoretically increases the possibility of finding
a better viewpoint. However, the efficiency of this approach
is low, since unlike in the case of other methods that sample
and evaluate viewpoints only once, the process is performed
each time a new viewpoint is calculated. In the approach
used by Jing et al. [15], the viewpoints are sampled and op-
timized in a space defined by the support (c✓). The method
is thus valid only for the support for which it is defined, and
the size of the object is also constrained by the size of the
positioning space (b ∼).

Apart from the methods of Jing et al. [15] and Moham-
madikaji et al. [31], all the methods presented in this section
can be considered to be generalized for any object size (b✓).
According to the definition of the viewpoints, a method may
be independent to the measurement technique. Most of the
consideredmethods use generalized viewpoints. Specifically,
the methods proposed by Hepp et al. [12], Jing et al. [16,
14, 58], Mahmud et al. [27], Scoot et al. [44, 42] and Loriot
[26] define a viewpoint in terms of a position and a second
parameter, which can be an orientation, or a set of parame-
ters, such as an orientation and a scan direction, such as for
laser scanners (a✓). However, Martin et al. [28] defined the
viewpoint in terms of only the orientation and calculated a
path for the laser scanner. No position in space was defined,
and only the distance between the surface and scanner was
fixed according to the sensor characteristics. The viewpoints
were not generalized, although they could be easily gener-
alized by dividing the scan path into several parts sized as
the sensor field, if the sensor was not a laser scanner (a ∼).
Krause et al. [19] defined a point as a simple coordinate
in space since the adopted method and positioning means
did not require any additional information. Jing et al [15]
and Mohammadikaji et al. [31] positioned viewpoints in the
space of the positioningmean. Consequently, the viewpoints
were specific to the type of mean and could not be general-
ized to other acquisition devices.
3.1.3. Visibility evaluation methods

The methods to evaluate the visibility of a surface from
a viewpoint usually exploit a binary measurability matrix
for each patch of the surface. These matrices were derived
by Tarbox et al. [52]. The algorithms used by Scott et al.
[44, 41, 42], Loriot [26], Jing et al. [16, 14, 58, 15] andMar-
tins et al. [28] exploit the measurability matrices to evaluate
the visibility of each patch from different viewpoints. An

example of such a matrix is shown in Figure 11. This ma-
trix can be used to efficiently determine the surface patches
visible from different viewpoints (m ✓). The quality of the
matrix depends on both the quality of the segmentation of
the surface and sampling of the viewpoints. However, the
computation of these matrices is time consuming and must
be performed during the preprocessing of the algorithm. An-
other way to evaluate the visibility of each patch is to create
a visibility cone for each patch, as performed by Mahmud et
al. [27]. These cones determine a set of orientations from
which the patch is visible (m ✓). Thus, the patches with a
nonempty intersection of their cones can potentially be si-
multaneously visible. Nevertheless, these cones cannot be
used to simultaneously evaluate the visibility of the patches
and scan them with a well defined field, such as in the case
of structured light sensors. In the case of laser scanners, an
orientation must be associated with a scan path, and a simple
orientation may also be employed.

In contrast, in the approaches of Krause et al. [19], Hepp
et al. [12] and Mohammadikaji et al. [31], a visibility func-
tion is used for each viewpoint. In other words, each view-
point is evaluated according to a predefined function with
certain criteria defined specific to each method.
3.1.4. Objective function criteria

The approaches based on solving the SCP maximize the
coverage of the surfacewhileminimizing the number of view-
points (f ✓,g ✓). These algorithms minimize or maximize
a so called cost function or objective function, respectively.
The definition of this function is decisive for the result to be
obtained, and it can be characterized using several criteria.
The first criterion corresponds to the surface coverage. Scott
et al. [44, 41, 42], Loriot [26], Krause et al. [19], Jing et al.
[16, 14, 58, 15], Hepp et al. [12], Martins et al. [28] andMo-
hammadikaji et al. [31] integrated this criterion when defin-
ing their objective functions. Mohammadikaji et al. [31]
considered the selected CAD model from the perspective of
the specific region to be covered (i ✓), and therefore did not
intend to achieve a complete coverage of the model at all
costs.
Nevertheless, in the VPP, the coverage is a necessary but in-
sufficient criterion, and other aspects must be considered. In
addition to optimizing surface coverage, Jing et al. [16, 14,
58], Hepp et al. [12], Martins et al. [28] and Mahmud et
al. [27] attempted to optimize the scanner’s direction based
on the surface normal (n-checkmark). This principle helped
enhance the quality of the point cloud. In 1999, Prieto [37]
demonstrated that the angle between the surface normal and
sensor orientation should not exceed 35°, because beyond
this angle, the resulting point cloud is extremely noisy and
cannot obtain accurate measurements.
To evaluate the coverage of the surface from a viewpoint,
Jing et al. [16, 14, 15] and Hepp et al. [12] considered the
effects of occlusions. Several methods, such as those of Lo-
riot [26] or Scott [41], simplify the model of the object and
attempt to scan only the simplified model. Depending on the
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Figure 11: Matrix of measurability (left), where vi and si denote the viewpoints and patches of the surface (right), respectively
[26].

simplification rate, certain parts of the real surface may not
be reached because of the occlusions not considered.
Another key criterion to be optimized is the overlap between
scans. In computer graphics, to align two point clouds, the
registration algorithms rely on identifying a common part
between the two point clouds. When considering a com-
plete scan plan, because several measurements must be per-
formed, several alignments must be realized to reconstruct
the point cloud of the complete part. Consequently, the cri-
terion pertaining to the fact that each viewpoint in a scan
plan must have at least one part in common with another
viewpoint must be optimized. Scott et al. [41, 42], Krause
et al. [19], Jing et al. [58] and Hepp et al. [12] used this
criterion in their objective functions (k ✓).
Moreover, no collisions should occur between the acquisi-
tion means, object to be scanned and obstacles in the en-
vironment. Scott et al. [42], Hepp et al. [12], Jing et al.
[15] and Martins et al. [28] integrated the collision criterion
directly into the objective function to avoid selecting view-
points that would collide with a surrounding element (o ✓).
In the industry, the scan plan is used to scan parts to be in-
spected and controlled, to reduce the inspection time. One of
the criteria used by Hepp et al. [12] and Jing et al. [15] is to
optimize the inspection time (h ✓). To this end, the consid-
ered criterion pertains to the distance between a newly iden-
tified viewpoint and previously selected viewpoints. The
type of distance can vary according to the means of displace-
ment of the sensor (e.g. robot or drone).
In general, by using an objective function, constraints can be
added or removed as desired (d✓), as long as the constraints
can be evaluated in the created virtual environment.
3.1.5. SCP resolution methods

The set covering problem is an NP complete problem,
and thus, the optimal solution cannot be found in a reason-
able time. To solve this problem, many optimization algo-
rithms try to approximate the solution in a finite time. To this
end, one of the most widely used algorithms is the greedy
algorithm [32], which is an iterative algorithm that locally
chooses the optimal solution at each iteration. A disadvan-

tage of this method is its tendency to fall into local opti-
mums. Nevertheless, this approach is easy to implement
and, under a relevant cost function, the approach is suffi-
ciently efficient to be used to solve NP complete problems.
Scott et al. [44, 41, 42], Jing et al. [16, 58] and Martins et
al. [28] used only the greedy algorithm to optimize the prob-
lem (e ✓). Certain other optimization methods reported in
the literature drew upon the greedy method and improved it
to better fit the application requirements. The approach of
Hepp et al. [12] is a recursive greedy algorithm that ensures
a balance between the scan optimization and optimization of
the distance between the scans. Specifically, this algorithm
ensures a balance between the greedy and cost benefit algo-
rithms (e ✓).
Jing et al. [15] also proposed a greedy approach, although
the Monte Carlo tree search (e ✓) was used in this case. At
each iteration, starting from a starting node, a search tree
was established. Subsequently, the algorithm attempted to
identify the best "child" in this tree, which became the next
starting node. This method, combined with an ad hoc cost
function enabled the determination of a solution to not only
the SCP, but the traveling salesman problem (TSP), while
minimizing the inspection time.
In addition, Krause et al. [19] proposed a new greedy ap-
proach to solving the SCP, namely, the sensor placement at
informative and cost effective location (SPIEL). The princi-
ple is as follows. The possible positions are decomposed,
and the greedy algorithm is used to order the positions in
each cluster. A string is then generated to link the positions.
The first nodes of each chain is linked to form a complete
graph (modular approximation graph G’) in which the edges
are weighted by the communication costs. An approximate
solution to the maximization problem is then found on G’
(represented by a set of edges), and the solution is extended
to the graph G, thereby obtaining the shortest path to cover
a maximum area (e ✓).
Moreover, to solve this optimization problem, Loriot [26]
used a tool developed by Lan et al. [22], in which, the meta-
heuristic for randomized priority search (MetaRaPS)was em-
ployed. This solution was considered to be a general form
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of the greedy, COMSOAL and greedy randomized adaptive
search procedure (GRASP) algorithms developed by DePuy
et al. [4]. The tool helped improve the selection of a solution
at each iteration of the greedy algorithm and in penalizing
solutions whose search space was condensed in one location
(e ✓).
The use of genetic type optimization algorithms has also
been reported in the literature. Jing [14] used a random key
genetic algorithm combinedwith a greedy algorithm to solve
the coverage problem. In particular, an implementation avail-
able in MATLAB [13] was employed. The principle was to
encode the information with a random key between 0 and
1 and to store the keys in the genes of a chromosome. The
decoding process consisted of sorting the genes by values.
The cost function was evaluated by adding the sorted genes
individually to the solution until the coverage constraint was
satisfied. Although genetic algorithms are generally time
consuming, in this case, the initialization was close to the
solution (since it was similar to the partial solution found us-
ing the greedy approach) and the problem optimization was
prompt (e ✓).
Mohammadikaji et al. [31] combined the greedy optimiza-
tion method with particle swarm optimization (PSO). The
principle was to avoid the state of being confined to a set of
positions defined at the beginning of the process. With each
new iteration of the greedy algorithm, certain parameters in
the search space were initialized to create an initial parti-
cle swarm, and subsequently, a particle swarm optimization
process was performed to find the next optimal position (e
✓). The disadvantage of such algorithms is the low time effi-
ciency in most cases. In the approach of Mohammadikaji et
al. [31], an iteration based optimization was performed, ow-
ing to which, the process was extremely long, and the effort
was comparable to that of manual computation.
3.1.6. Algorithm validation

Various applications have been considered in the litera-
ture, and numerous tools have been proposed to develop a
test platform and validate the algorithms.
Scott et al. [42], Martins et al. [28], Loriot [26] used view
planning to rebuild all kinds of models. To this end, Scott et
al. [44, 41, 42] and Loriot [26] used structured light sensors,
whereas Martins et al. [28] used a laser scanner mounted on
a CMM.
The inspection of mechanical parts has been extensively ex-
amined (a✓,b?), notably in the works of Mahmud et al. [27],
Jing et al. [14, 15] and Mohammadikaji et al. [31] (see Fig-
ure 12). Jing et al. [14, 15] used a structured light sensor
mounted on a robotic arm, with the part placed on a rotary
table. In contrast, Mohammadikaji et al. [31] used a laser
scanner. Similar to Martins et al. [28], Mahmud et al. [27]
mounted their laser scanner on a CMM.
In 2017, Jing et al. [14, 58] expanded their work to build-
ing inspection and surveillance applications, as well as to
reconstruct the surface of a large outdoor statue [16]. Hepp
et al. [12] also proposed the application of their algorithm
to reconstruct outdoor environments. The acquisition means

used in these methods were cameras mounted on UAVs.
Krause et al. [19] proposed an application that was slightly
different from the existing approaches. The recovery algo-
rithm was not used for any reconstruction, but to support the
placement of thermal sensors to control the temperature on
the floor of a building (i NA)(p NA). Even though tempera-
ture and humidity sensors were used instead of optical sen-
sors, the principle remained the same, since the goal was to
cover an area by placing the sensors at a sufficient distance,
thereby allowing efficient communication between the sen-
sors; this aspect can be compared to the overlap between
each scan of the surface.

Figure 12: Top: (left) fast rasterization based simulation to
evaluate the measurement coverage; (middle) simulations with
path tracing, considering the camera spectral response; (right)
real camera image. Bottom: Point cloud scanned by applying
30 acquisitions optimized through the greedy planning realized
using the method of Mohammadikaji et al. [31].

The types of object on which a method is validated can
vary widely. In many cases, classical models such as the
Stanford Bunny, a mask, a gnome, a hairdryer or the model
of a woman’s body are used [28, 42, 15]. Mohammadikaji
et al. [31] (p ✓) and Mahmud et al. [27] (p ∼) validated
their methods by using industrial mechanical parts. In this
regard, certain studies can be considered to be preliminary
considering the experiments conducted. Scott et al. [44] and
Jing [14] tested their method on objects with simple shapes
and with little or no change in curvature. Such testing tech-
niques cannot fully validate the approaches, considering the
highly complex nature of industrial applications. Several of
these validations were performed through simulation, as in
the works of Jing et al. [58] and Hepp et al. [12] (i NA)(p
NA). Jing et al. [16, 14] validated their methods on a statue
in its outdoor environment as well as on an actual building.
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3.1.7. Summary of SCP resolution based methods
The methods presented in this section are based on a

transposition of the VPP into a more general graph theory
combinatorial optimization problem, that is, the SCP.
All the identified methods follow the same global scheme,
as formalized in 5 main steps. In the first step, the surface
is segmented to create a set P of patches. To this end, two
types of methods can be used. The first method is to mesh
the surface and consider that a face of the mesh represents a
patch of the surface. This method was used by Loriot [26],
Scott et al. [44, 41, 42], Mahmud et al. [27], Jing et al.
[16, 14, 58, 15] and Mohammadikaji et al. [31]. The sec-
ond method employs a grid, in which each cell represents a
patch. This approach was adopted by Martins et al. [28],
Hepp et al. [12] and Krause et al. [19].
In the second step, the viewpoints are sampled to obtain a
list of subsets Ps. To this end, two groups of methods can
be used: The first group is based on the segmentation of the
surface to determine a viewpoint for a given patch, as used
by Scott et al. [44, 41, 42], Martins et al. [28], Mahmud
et al. [27], Krause et al. [19] and Loriot [26]. The sec-
ond method does not perform any surface segmentation and
instead samples viewpoints randomly in a defined space, as
performed by Jing et al. [16, 14, 58, 15], Hepp et al. [12]
and Mohammadikaji et al. [31].
The third step is to evaluate the visibility of the sampled
viewpoints. Two types of methods can be used to conduct
this step: The methods that evaluate the visibility of a patch,
used by Scott et al. [44, 41, 42], Loriot [26], Jing et al.
[16, 14, 58, 15], Martins et al. [28] and Mahmud et al. [27],
and those that evaluate viewpoints, as used by Krause et al.
[19], Hepp et al. [12] and Mohammadikaji et al. [31].
The final step is to solve the minimization problem. To this
end, two groups ofmethods can be identified. The first group
employs different variants of the greedy approach and was
used by Scott et al. [44, 41, 42], Jing et al. [16, 58, 15],
Martins et al. [28], Hepp et al. [12], Krause et al. [19] and
Loriot [26]. The second group, which was utilized by Jing
[14] and Mohammadikaji et al. [31], employs metaheuris-
tics to solve the problem.
The key difference among these approaches is the structuring
of the cost function to be minimized. The result varies de-
pending on the parameter that each function intends to min-
imize. The criteria used are specific to each method, and
thus, the methods cannot be grouped in this scenario.
3.2. Approaches based on coverage optimization

This section attempts to classify methods in which the
view planning problem and set coverage problem are not di-
rectly compared. The objective of these methods is to op-
timize, first, the coverage of the object to be scanned, and
later, the number of scans. Specifically, these methods focus
mainly on the technique to segment the surface into patches
and involve four main steps. The first step is to segment the
surface into patches. The object model to reconstruct is sam-
pled with n patches of pi that are part of the set P . The sec-ond step involves optimizing the position and orientation of

Geometric Model

Figure 13: Formalization of the resolution steps for methods
based on coverage optimization.

the scan. Each point of view pv is individually constructed
with a vector pos which contains the position (x, y, z) and
the orientation (rx, ry, rz), computed in order to determine
a vector wpv that contains a maximum of patches pi of theobject surface. The third step consists in evaluating the vis-
ibility of patches pi from viewpoints with the computation
of thewpv vector, and in also optimizing the viewpoint posi-
tions. The last step involves computing the required number
of scans in order to maximize the patches pi included in all
thewpv selected vector viewpoints. Figure 13 shows how the
methods based on coverage optimization can be formalized
around these four main steps.
3.2.1. Surface segmentation methods

In thesemethods, the result is dependent primarily on the
way that the surface is segmented. Consequently, several dif-
ferent types of segmentation methods have been developed.
Sadaoui et al. [40], Lartigue et al. [23] and Koutecky et al.
[18] performed an adaptive voxelization of the model as a
function of both the surface normals and size of the sensor
field (r✓). Specifically, first, a grid of voxels is created, with
each voxel having the size of the sensor field. It is ensured
that the angle between all the surface normals contained in
each voxel is not greater than a certain threshold. Subse-
quently, the voxel is divided in two, and so on, iteratively.
This method has certain advantages. For instance, by using
a voxel grid, collisions (o ✓) can be easily detected, and all
the volumes (e.g. sensor fields) can be easily represented.
However, this segmentation method can turn greedy rapidly
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Figure 14: Critical point groups: (a) cylindrical surface, (b)
cross-sectional view [25].

and segment the surface into extremely small voxels, for in-
stance, in the case of a complex model with many changes in
the curvatures and normals. Moreover, in this method, the
normals must be calculated accurately. Sadaoui et al. [40]
proposed the conduction of a "preparation" step before vox-
elizing the model. In this step, the CAD model is tessellated
in the form of a mesh such that the faces are at most 50% the
size of the sensor field (q ✓). The CAD model is decom-
posed into entities to be and not to be inspected (i ✓). This
decomposition helps the approach focus on the scan plan and
the accuracy of the measurement of the parts of the model
to be measured.
In 2009, Germani et al. [9] performed the segmentation of
a surface according to a sphere encompassing the object,
divided into several sectors. However, this segmentation
method works only if the object is convex, and because even
the shape of the object is not considered, occlusion issues
may occur.
Several view planning algorithms tend to segment the sur-
face by sampling the surface as a point cloud and clustering
the points according to the normals and distances. Lee et
al. [25] and Son et al. [49] sampled the points along the
parametric curves of the model and computed the so called
critical points (t ✓, s ∼). If the angle between the normal
vectors of two points was greater than a certain value, the
points were identified as critical and grouped into regions
(see Figure 14).

Raffaeli et al. [38, 39] proposed several methods to seg-
ment a surface. One approach was similar to the aforemen-
tioned approach, with the surface sampled in a point cloud.
The points were grouped according to their normal and dis-
tance by using the kmeans algorithm. Another approachwas
to divide the surface into patches by performing the NURBS
parameterization of the surface (t, s, q ✓). Each patch was
defined smaller than the sensor field size to ensure a margin
for overlap (k ✓). In 2013, the authors sampled the point
cloud on the edges of the model rather than on the surface.
These methods are reasonably effective as they consider the
risk of occlusion by using normals and the size of the sensor
field as well. Moreover, these approaches require the clus-
tering part to be parameterized, in order to implement the k
means technique, but the way this is performed is not fully
explained.
In 2018, Phan et al. [33] used parametric surfaces to seg-
ment a surface. The 3D mesh of the object was transformed
into 2D parametric surfaces, and parallel planes were gener-

ated on this surface (q ✓, s ∼). The direction of the scans
depended on the length of the parametric surface. Using the
same concept, Wu et al. [59] projected the points onto a 2D
plane and divided the plane into a rectangle with the size of
the sensor field. The method of Wu et al. [59] appears to
be suitable only for objects without concavity, because the
surface of the model is projected perpendicularly on the 2D
plane (q ✓). Furthermore, the occlusion problems are not
taken into account.
Normals are commonly used when segmenting the surface;
in fact, certain approaches use normals to create "cones" of
visibility. This concept is used to represent a set of sensor
orientations around the normal of a point on the surface from
which it is visible. Lee et al. [24], Souzani et al. [29] and
Ding et al. [6] used this approach. Specifically, the points on
the surface whose "cones" of visibility intersect were con-
sidered to be part of a set of points visible from the same
orientation. Lee et al. [24] sampled the surface along the
parametric curves of the model and visibility cones, and the
so called LADs were calculated for each point (t ✓). Sim-
ilarly, Souzani et al. [29] discretized their model as a grid
of voxels; for each voxel containing the surface, a visibility
cone was computed. Ding et al. [6] used the same method
for grid points. This method considerably reduces the oc-
clusion problems (m ✓). However, this method only works
for laser type sensors. Specifically, the patches of the sur-
face are separated according to only the orientations, which
is suitable for laser sensors that scan continuously along a
path; however, for certain sensors (e.g., structured light sen-
sors), a well-defined field must be considered because such
sensors scan only a precise area in one acquisition.
Germani et al. [9] and Bircher et al. [1] considered one
side of the mesh to represent a segmentation of the surface
(q ✓). In this case, the segmentation depended on the mesh
size of the object to be scanned. However, this method was
efficient only when the subdivision of the mesh was homo-
geneous, and the number of faces was not extremely large.
Shi et al. [46] divided the mesh into patches according to the
face normals of the mesh (q ✓). For each patch, a bounding
box was generated to contain all the triangles. This method
was similar to those employed by Sadaoui et al. [40], Lar-
tigue et al. [23] and Koutecky et al. [18].
3.2.2. Viewpoint position and orientation optimization

methods
In the aforementioned methods, to solve the SCP, the

viewpoints were first sampled and later selected from this
set of points. With certain exceptions, the approaches based
on coverage optimization are different. Instead of choosing
from a set of points, the viewpoints are generated individu-
ally, and their position and orientation are optimized.
Lee et al. [24] used a laser scanner in their approach. The
orientation of the sensor was determined, and the difference
in the angle between this orientation and the normal to the
surface of each point of the patch was minimized. The dis-
tance from the viewpoint to the surfacewas determined based
on the sensor characteristics. For each patch, the scan path
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was determined by creating a rectangle enclosing the patch
and dividing it into subrectangles along the x axis. Likewise,
for each patch, Phan et al. [33] determined a scan direction
and path by ensuring that the laser ray is perpendicular to the
direction of travel of the path. The scan directionwas defined
as the average of the normals of the faces involved in the scan
path on the patch. Similar to Lee et al. [24] and Phan et al.
[33], Souzani et al. [29] minimized the sensor orientation
such that the corresponding angle with the surface normal
was minimized (n ✓). The direction of the path was deter-
mined to scan the entire patch, in this case, a voxel, and the
distance of the sensor from the surface was determined based
on the sensor characteristics. Lee et al. [24] decreased the
size of the scanner ray such that each actual scan is larger
than the simulated one, and a guaranteed overlap occurred
between scans (k ✓). Nevertheless, the approach does not
involve any control, and the shape of the surface involved
in the overlap remains unclear. Phan et al. [33] generated
their viewpoints to control the overlap between each scan (k
✓). The distance between the generated parallel planes on
the 2D surface was determined according to the overlap ratio
between two desired passes. However, Souzani et al. [29]
did not provide any information regarding the consideration
of the overlap between scans (k?), and thus, a correct align-
ment between each measurement could not be ensured.
Germani et al. [8] and Wu et al. [59] defined a viewpoint
per patch by minimizing the angle between the normals of
the patch and direction of the sensor (n ✓). Ding et al. [6]
initialized a direction and searched for all the patches on the
surface for which the average normals did not diverge exces-
sively from the initial direction. The directions were gener-
ated iteratively until the surface was covered. If the surface
could not be completely covered with the generated direc-
tions due to surface occlusions, new directions were gener-
ated by adjusting the initial ones. Using a similar approach,
Lee et al. [25] and Son et al. [49] determined the directions,
distances and orientations for each patch. In the presence of
occlusions, if the surface of the patch could not be scanned
completely (m ✓), the viewpoint was changed, and if this
configuration was insufficient, a new viewpoint was added
(see Figure 15).

Figure 15: Modification of a scan direction due to: (a) DOF
constraint, (b) occlusion problem [49].

The disadvantage of this method occurs in the case when
the surface is unreachable (e.g. in the event of extremely
deep holes). In this case, the new viewpoints must be added
at infinity, although the maximum number of viewpoint re-
orientations and additions must be fixed. Son et al. [49] and

Lee et al. [25] used the same approach as that of Lee et al.
[24] to ensure an overlap between the scans and decrease the
size of the scanner line such that each real scan is larger than
the simulated one (k ✓).
Lartigue et al. [23] used the same principle in their Voxel2Scan
method. For each patch, a set of six initial directions was
defined along the (x, y, z) axes of the grid. The voxels were
qualified as "well seen", "poorly seen" and "not seen", de-
pending on the occlusions (m ✓), distances to the sensor,
field size, angle of the sensor to the surface (n ✓) or colli-
sions of the sensor with the environment (o ✓), as shown
in Figure 16. Subsequently, for unseen voxels, two strate-
gies were exploited. In the first strategy, new directions were
added at the intersection of the planes of the main coordinate
system, and the process was restarted with the newly added
directions. This process was conducted iteratively until all
the voxels were seen. The second strategy was adopted in
the case in which the normals varied considerably, and the
process resulted in numerous voxels. The positions calcu-
lated using the initial voxelization were retained. The parent
voxel was considered, and the viewpoint was created from
the center of this voxel. However, small occlusions due to
the strong segmentation were not processed.

Figure 16: Representation of the initial set of viewpoints (a),
and voxel qualification (b) [23].

Germani et al. [9], Raffaeli et al. [38, 39] and Koutecky
et al. [18] used a visibility map to calculate the viewpoints.
First, a viewpoint was defined using a point (mean point of
the patch) and a vector (mean normal of the points of the
patch) for each patch. The position was along the normal at
a distance from the mean point, defined by the sensor char-
acteristics. The visibility map was used to determine the oc-
clusion directions. This map was computed for each point
of the patch by projecting the faces to be inspected onto a
sphere centered on the point (see Figure 17).

Only the rays having an angle of less than 50° with the
surface normal were projected onto the sphere to preserve
the high point cloud quality at the time of scanning (n ✓).
This visibility map was used to automatically detect an oc-
clusion (m ✓). Subsequently, the sphere was sampled ev-
ery degree and transposed into a matrix. The viewing maps
were assembled (overlapped) to produce a grayscale image
(see Figure 18). The scanner positions were searched in the
areas with the maximum number of visible points to max-
imize the overlap of the patches. The disadvantage of this
type of map is the large time required for the determination.
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Figure 17: Determination of the visibility map. For a generic
point, the occlusion produced by another surface was evaluated
in the cone corresponding to the maximum glancing angle [39].

The calculation cannot be performed in real time and must
be performed before the execution of the algorithm.

Figure 18: Example of combined visibility map obtained from
the intersection of the fictitious (upper) and real tree points
(lower). The red dots represent the mean surface normal, and
the different tones of gray indicate the regions with different
levels of occlusion. The scanner orientation is searched in the
most white area [39].

The approach of Bircher et al. [1] did not focus on min-
imizing the number of viewpoints. Similar to the methods
for PCS resolution, in this approach, the viewpoints for each
face of the object’s mesh were generated. The principle was
to solve the problem of the commercial traveler, that is, to
minimize the travel time between all the viewpoints (h ✓).
The viewpoints were sampled to minimize the angular dis-

tance between the normal of the face and the orientation
of the sensor (n ✓), and to minimize the distance to the
neighboring viewpoints. To this end, the TSP solver Lin-
Kernigen-Helsgaun (LKH) heuristic [10] was used to cal-
culate the optimal path. This method could minimize the
time taken for the reconstruction by calculating a "minimum
path" between each viewpoint. However, no notion of the
overlap between the viewpoints was considered. Consequently,
the model was required to be convex, or the cavities were re-
quired to be sufficiently large for the surface to be scanned
entirely.

The principle of feedback was employed by Shi et al.
[46]. Thismethod is somewhat similar to the so called search
based methods, which are not aware of the model and whose
objective is to find the next viewpoint sequentially, based on
the part that has already been scanned. Shi et al. [46] start
with an initial mesh of the preconstructed object, parts of
which were missing in the complete covering. The authors
initially generate the viewpoints considering the enclosed
boxes of the patches and update them based on the result of a
cost function that check whether the holes in the mesh were
filled. Here again, holes correspond to part of the object that
have not been acquired. If a stop criterion is not defined, the
process could add infinite dots to fill the holes. The criterion
corresponds to the ratio between the total area of the holes,
and the measurement error between the model and resulting
point cloud. To ensure that the process ends satisfactorily, a
maximumnumber of iterations can be defined (e✓). Numer-
ous stop criteria could be used depending on the objective
being maximized. The measurement quality and overlap are
prioritized over the number of points (g ✓, n ✓). If only the
overlap is being maximized, a ratio between the total area of
the surface and the total size of the remaining holes can be
considered. Moreover, it could be verified if the newly gen-
erated viewpoints add new information (e.g. area of holes
not seen previously) to avoid unnecessary iterations.
The method of Sadaoui et al. [40] was slightly more unique
in that it combined laser scanning and probing. The calcu-
lated viewpoints were a set of orientations for the scanner
and the probe. The set of orientations and positions for the
scanner was defined according to the method of Souzani et
al. [29] (m✓, n✓). The orientations for the probe were cal-
culated using the method proposed by Cho et al. [3]. These
orientations corresponded to particular orientations defined
using the touch probe approach orientation (PAO) method
for features such as cylinders, spheres, planes, and cones.
The viewpoints were selected using an accessibility func-
tion for the scanner and probe. The advantage of combining
the two measurement techniques was that the entire surface
to be measured was ensured to be reachable. However, the
inspection time reduced through optical measurement was
lost owing to the time spent performing measurements us-
ing the probe. In addition, the data processing using the
two techniques could not be identical, and thus, the data was
required to be processed separately. Specifically, the touch
probe considers only a few extremely precise points on the
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surface to be inspected, while the scanner measures thou-
sands of points with a lower accuracy. Moreover, the two
devices do not work in the same reference frame, and a reg-
istration with the ICP algorithm cannot be realized to recon-
struct the entire model later.
Most of these methods used generalizable and configurable
viewpoints for any type of sensor, as indicated by Souzani et
al. [29], Shi et al. [46], Germani et al. [9, 8], Raffaeli et al.
[39], Lartigue et al. [23], Bircher et al. [1], Wu et al. [59]
and Koutecky et al. [18], who defined, for each viewpoint,
a position and an orientation in a global reference frame (a
✓). Certain methods took into account the particularity of
the laser scanner, and instead of defining a position for the
sensor, a scan direction associated with a distance from the
surface was defined. Although this method is not entirely
generic, it can be easily adapted to a higher generalization by
dividing the scan path into several positions along the path
direction, depending on the orientation of the sensor and the
distance to the surface, as indicated by Lee et al. [24, 25] and
Son et al. [49] (a ∼). Ding et al. [6] also used viewpoints
with a sensor specific orientation and scan direction (a ∼).
However, the information regarding how the distance to the
surface is calculated, or whether the surface is within the
sensor’s field of view is not unclear. If these aspects cannot
be verified, the method can be applied only for small objects,
for which all the surfaces with the same direction are within
the scanner’s field of view. The method of Phan et al. [33]
does not define a real viewpoint, but a trajectory composed
of a set of couples of piloted points/orientations for a given
direction. The direction of the trajectory is defined by the
length of the rectangle of the 2D surface, and the point pairs
are sampled on each edge of the mesh along the defined scan
path. This type of definition is therefore not generalizable to
all types of sensors. Another method that cannot be gener-
alized in this manner is that of Sadaoui et al. [40], which
takes into account two types of viewpoints, one of which is
specific to the CMM probe.
One of the advantages of the approaches based on coverage
optimization is that, since the viewpoints are calculated and
optimized directly according to the surface, the methods are
a priori adaptable to all object sizes (b ✓), except the ap-
proach of Ding et al. [6], for which the information is not
available (b?).
3.2.3. Scan number computation methods

Themethods described in this section do not seek tomin-
imize the number of scans at all costs, but rather, to max-
imize the surface coverage. Consequently, many methods
consider that defining a scan by a patch is a sufficient solu-
tion. Lee et al. [24], Germani et al. [9, 8], Phan et al. [33],
Souzani et al. [29], Bircher et al. [1] and Wu et al. [59]
adopted this type of solution (g ✓).
Certain other methods initially define a scan for each patch
and later adapt the viewpoints, or the segmentation of the
surface, according to the parts observed or not observed. Lee
et al. [25], Son et al. [49] and Ding et al. [6] computed a
viewpoint for each patch and evaluate all the viewpoints. If

the entire surface of the patch was not visible, the position
and orientation of the viewpoint were changed. If this step
was insufficient, a new viewpoint was added (g ✓). Shi et
al. [46] re-evaluated the viewpoints of each patch at each it-
eration with a cost function and added or modified the view-
points according to the result obtained. The use of such a
function allowed the easy addition or removal criteria ac-
cording to the needs (d ✓), similar to the methods involving
the transposition to the SCP or search based methods. Lar-
tigue et al. [23] and Koutecky et al. [18] also defined a
viewpoint per patch and directly modified the segmentation
of the model according to the result to ensure maximum cov-
erage of the surface (g ✓).
Raffaeli et al. [38] [39] segmented the surface into patches
and computed the combined visibility maps of each patch;
consequently, one viewpoint per patch was calculated. The
viewpoints were evaluated and ranked in ascending order of
the number of points covered on the surface. Subsequently,
the views at the bottom of the list and those that did not add
new points to be covered were deleted. Later, a new iter-
ation of the process was launched with all the points that
had not been covered. This process is repeated until it was
no longer possible to add new viewpoints that covered the
unseen points on the surface (g ✓). Using this method, the
list of viewpoints was continuously optimized by adding bet-
ter viewpoints and removing the less effective viewpoints.
However, the process was stopped after a number of itera-
tions, because certain points could never be accessed, ren-
dering the algorithm to loop endlessly. Raffaeli et al. [38,
39] did not use the information from visibilitymaps to prede-
termine the completely occluded points, and, therefore, re-
moved them from the viewpoint coverage assessment com-
putation.
Sadaoui et al. [40] established a list of viewpoints with both
sensor and probe orientations. The method ordered the list
according to the accessibility of the sensor and probe and it-
eratively tested the viewpoints in the list. At each iteration,
the viewpoint was evaluated, i.e., the surfaces scanned by
the laser scanner were examined, and subsequently, the area
around the surfaces that could not be reached by the scanner
but by the probe was examined. At the end of the iteration,
a group of features corresponding to this viewpoint was cre-
ated. The process was repeated for the following viewpoints
until all the features were reached from one viewpoint, as
shown in Figure 19. (g ✓).

All these methods involve an iterative process that can
end autonomously (e ✓). In certain cases, if the algorithm
ends when the surface is not completely covered, new view-
points are manually added, as in the approaches used by Ger-
mani et al. [8] and Raffaeli et al. [38, 39]. This aspect makes
the process semi-automatic instead of fully automatic (e ∼).
After calculating the optimal number of scans, certain meth-
ods try to minimize the total measurement time, by mini-
mizing the travel time between each scan. This problem is
transposable to the travelling salesman problem (TSP), an-
other optimization problem that involves finding the short-
est Hamiltonian cycle in a graph. In the context of the SCP,
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Figure 19: Result of an operation sequence generation: a)
laser ability evaluation at the first iteration, b) after one it-
eration, c) after two iterations, and d) after three iterations.
The green and blue regions indicate the surfaces measured us-
ing the laser sensor and touch probe, respectively, and the red
region indicates the non-measured surface [40]

.

it has been demonstrated that the problem of nonoriented
Hamiltonian cycles is an NP complete problem. In such ap-
proaches, the resolution of this problem is not paramount,
and thus, heuristics are used. Germani et al. [8, 9] and Raf-
faeli et al. [39] used Dijkstra’s algorithm to search for the
shortest path in a graph based on pairs of scans that have
an overlap (h ✓) of a high quality. Such methods attempt
to identify the absence of a small curvature in the overlap
(l ∼). Koutecky et al. [18] used a modified solution of
Shintyakov’s TSP [48], which takes into account the dis-
tance between the positions, angle between the left camera
and surface normals and angle between the x axis and sur-
face normals (h ✓). Bircher et al. [1] attempted to solve the
TSP problem by using the LKH heuristic [10], as discussed
in section 3.2.2 (h ✓).
3.2.4. Algorithm validation

Most of the approaches discussed in this section cor-
respond to applications of inspecting the mechanical parts.
Compared to other methods, the coverage optimization ap-
proaches validate the algorithms on industrial parts with rather
complex geometries. Specifically, Koutecky et al. [18], Sadaoui
et al. [40], Germani et al. [9, 8] and Ding et al. [6] val-
idated their methods on such parts (p ✓). Raffaeli et al.
[38, 39] validated their method considering the inside of a
car door, and Shi et al. [46] performed the validation con-
sidering a part from the inside of a car with certain small
variations (p✓). Lartigue et al. [23] worked on a crankshaft
using the approach of Zuquete Guarato [63] (p ✓). This
validation demonstrated that the developed algorithms can
be industrialized. In each case, the accuracy of the result-
ing point cloud was considered, and thus, measurements on
these clouds could be realized.

Several of the presented approaches correspond to prelimi-
nary work aimed at an application on a mechanical part, and
the validation is conducted on parts with simple geometries,
for example, on a half cylinder or planar shape with small
variations in the curvature. Lee et al. [24, 25], Son et al.
[49], Phan et al. [33] andWu et al. [59] validated their work
on such academic parts. These validations cannot be used
to determine whether a specific method can be transposed to
real industrial parts with more complex shapes.
Souzani et al. [29] validated their work on objects not in-
tended to be measured afterwards (e.g. small cars and fig-
urines) (p NA). Bircher et al. [1] developed a method to be
applied to large objects without any high precision require-
ments for the reconstruction of the complete point cloud.
Their method was validated on monuments (i,p NA), and it
was not clear whether the approach could be applied to small
industrial parts. The authors developed the tool used to val-
idate the method, which included an UAV equipped with a
sensor with two cameras (see Figure 20).

Figure 20: Firefly UAV equipped with the VI sensor [1].

The main sensor types used in these methods include the
laser scanner and structured light sensor. In the case of a
laser scanner, a single line is projected, and it is necessary to
move the scanner to scan the part; therefore, the considered
viewpoints have a scan direction (or path) associated with
an orientation. In contrast, for the structured light sensor,
a position is associated with an orientation, because in this
case, a single measurement allows a point cloud to be re-
trieved from an entire model. The size of this measurement
is defined by the characteristics of the field associated with
the sensor. Lee et al. [24] [25], Son et al. [49], Souzani et
al. [29], Ding et al. [6] and Phan et al used such approaches
involving a laser scanner. [33]. Sadaoui et al. [40] also used
a laser scanner, although a probe was used in combination.
Lartigue et al. [23] proposed a method that could be applied
to both laser scanners and structured light sensors and val-
idate this method considering the two measurement means.
Germani et al. [8, 9], Raffaeli et al. [38, 39], Shi et al. [46],
Wu et al. [59] and Koutecky et al. [18] used the methods
involving structured light sensors, as shown in Figure 21.

The association of a robot arm with a structured light
sensor is widely applied, because only one robot position
per scan is required. In this context, the low precision posi-
tioning of the robot does not lead to errors in the point cloud
resulting from a measurement. Germani et al. [8, 9], Raf-
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Figure 21: Configuration involving a KUKA robot arm and an
ATOS structured light sensor [18].

faeli et al. [39], Wu et al. [59] and Koutecky et al. [18]
used such a configuration to validate their work. Laser scan-
ners, which measure only one line at a time, require a sup-
port to ensure the precise positioning of the scanner to have
a coherent point cloud. To this end, Phan et al. [33] com-
bined an optical tracker with the laser scanner/robot arm cou-
ple, thereby allowing a more precise positioning of the scan-
ner compared to that achieved by the robotic arm. Another
widely used configuration is the laser scanner/CMM com-
bination. The CMM is a tool used in metrology, associated
with the use of probes to measure parts precisely. A laser
scanner mounted on a CMM is therefore an ideal configura-
tion to reconstruct a point cloud highly accurately. Son et al.
[49], Souzani et al. [29], and Lartigue et al. [23] employed
this configuration, in which both the laser scanner and struc-
tured light sensor were combined with the CMM. In addition
to associating the laser scanner with the CMM, Sadaoui et
al. [40] maintained the classic association of the CMMwith
a probe (see Figure 22).
3.2.5. Summary of coverage optimization methods

The so called coverage optimization approaches were de-
scribed in this section. Unlike SCPmethods, these approaches
do not seek to minimize the number of viewpoints at all
costs, but rather, to optimize the covered area. A generic
scheme of the fourmain steps forming the core of thesemeth-
ods was formalized.
In the first step, as in the case of the SCP transposition ap-
proaches, a segmentationmust be performed, and threemeth-
ods can be used to this end. Lartigue et al. [23], Sadaoui et
al. [40], Koutecky et al. [18] and Shi et al. [46] adaptively
voxelated their model using different methods. Lee et al.
[24, 25], Son et al. [49], Raffaeli et al. [39], Souzani et al.
[29] and Ding et al. [6] sampled the surface and cluster it
into subsurfaces by using mainly the mesh normals. Ger-
mani et al. [9] and Bircher et al. [1] considered one side of

Figure 22: Configuration involving a CMM and hybrid sensor
: a) view of the CMM, b) scanner KA50 composed of a touch
probe and laser sensor mounted on a Renishaw PH10 head.

the mesh to represent a patch on the surface.
The next step in this type of method was the construction
of the viewpoints. In such methods, the viewpoints were
not sampled and later selected. In fact, the viewpoints were
computed directly from the surface segmentation. Conse-
quently, the previous segmentation step was a key step in
this method. The way to define a viewpoint was highly spe-
cific to each method. In contrast, the computation of the
number of viewpoints was common to most methods. In the
approaches of Lee et al. [24], Germani et al. [8, 9], Phan
et al. [33], Souzani et al. [29], Bircher et al. [1] and Wu et
al. [59], a viewpoint was optimized for each patch. Lee et
al. [25], Son et al. [49], Ding et al. [6], Lartigue et al. [23],
Koutecky et al. [18] and Raffaeli et al. [38, 39] optimized
a viewpoint per patch and later adapted the segmentation if
necessary, or added a new viewpoint. Only Shi et al. [46]
proposed a method that approximated the viewpoint based
on solving the SCP.
These methods, unlike the SCP methods, are not optimized
to easily add or remove constraints. In SCP methods, the
constraints are mainly included in the cost function. In con-
trast, in these approaches, the implementation of the con-
straints was split between the segmentation and optimization
of the viewpoint position.

4. Search based approaches
Search based methods do not have knowledge regarding

the model to be scanned (i NA, j NA). These algorithms are
generally iterative, and within each new iteration, the algo-
rithms seek the next optimal scan. In each iteration, a space
evaluation is performed to determine an area in which the
surface could "probably" be the most suitable. Four main
steps are common to all thesemethods, which resemble those
of the approaches involving the SCP transposing. A cost
function is maximized at each iteration, albeit the stopping
criterion is not the coverage of the model, because it the
model is unknown. First, a representation of the surface
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Figure 23: Formalization of the resolution steps for search
based approaches

S[0] seen from an initial viewpoint pv[0] and void volume
P [0] is formulated. Subsequently, a sampling method of the
viewpoints is applied. A Ps[k] list of viewpoints is sampled
at each iteration k. A viewpoint pv is generally described
with a vector poswhich represents a (x, y, z) position and an
orientation (rx, ry, rz), and a vector wpv which contains the
patches pi of the object surface belonging to P visible from
pv. At the beginning of the method, the vectorwpv is empty.
The objective function to be optimized is established in or-
der to maximize the set of new patches pi seen by the view
point pv and itswpv vector at the current iteration k. A stop-
ping criterion related to the number of newly added patches
pi is used to stop the iterative process (see Figure 23).

Figure 24: Efficient representation of the scanned and non-
scanned areas: a) coordinate system of an edge, b) free space
map induced by the scan orientation r [36].

4.1. Observed surface and void volume
representation

One of the difficulties in such algorithms pertains to ob-
taining an efficient representation of the volume of both the
scanned and nonscanned parts. Pito [35, 36] represented the
observed surface by using a simplified mesh of the scanned
parts, in which the edges of the mesh were the original edges
of the unsimplified mesh (q ✓). The nonscanned space was
represented in a more complex manner. Only the empty vol-
ume near the edges of the scanned area was represented as
a small rectangular patch. By considering the orientation
of the sensor when scanning, the space can be divided into
three types: the observed space, the empty space around
each edge, and the unknown space (see Figure 24). The ad-
vantage is that the void patches are in the continuity of the
surface, and thus, when scanning a void patch, the algorithm
is constrained to have an overlap with the surface already
scanned (k ✓).

To represent the observed surface, Loriot [26] relied on
the mass vector chain (MVC) developed by Yuan [60]. The
model was considered as a convex object. The method was
based on the fact that, for a convex object, the total Gaus-
sian mass must be equal to zero. The sum of the normals of
the scanned surface provided a vector corresponding to the
SVM of the current view, and the inverse of the vector pro-
vided the direction of the nonacquired surfaces. This step
considered the object only as a convex shape that cannot ex-
ist autonomously. Therefore, at the end of this step, the type
of result obtained was incomplete if the part was not convex.
Consequently, in the second step of his method, Loriot iden-
tified the "holes" in the mesh as missing data to be acquired,
and thereby, to be covered (q ✓). Kriegel et al. [21] also
used this notion of holes (q ✓).
To represent space, voxel grids are commonly used, as in the
approaches of Kriegel et al. [20] [21] and Vasquez-Gomez
et al. (r ✓); even probabilistic voxelated space has been em-
ployed in certain cases [54, 57]. This voxel grid represents
the probability of a cell being occupied. At the beginning
of the process, the grid is empty, and it is filled each step.
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In 2009, Vasquez et al. [53] used a voxel grid (r ✓); how-
ever, instead of labeling voxels with a probability of occu-
pancy, the voxels were directly labeled using five states: un-
marked, occupied, empty, occluded, occplane (i.e. adjacent
with none of the six faces of an empty voxel). The authors
narrowed the labels to three states in their subsequent work
in 2014 [56]: occupied, free and unknown.
By using a grid of voxels to represent the space, other ob-
jects in the scene can be detected, thereby potentially avoid-
ing collisions with the sensor (o ✓). A second advantage of
this type of method is that a nonbinary type can be assigned
to a part of the space. The areas of space represented by
the voxels are not only seen/unseen, the unseen parts are dif-
ferentiated from those that could be on the surface and are
obscured by the object itself.
4.2. Viewpoint sampling methods

The viewpoint sampling methods are applied at each it-
eration of the algorithm. Subsequently, the viewpoints are
evaluated, and the viewpoint that maximizes the cost func-
tion is selected as the next optimal scan. The samplingmethod
is therefore a key step of the algorithm.
Pito et al. [35, 36] used an intermediate positioning space
divided into two subspaces. The first space corresponded to
the positional space surface (PSS), which encompassed the
volume of the object to be viewed. The second space repre-
sented the positional space directions (PSD), which encoded
the directions of the observation beams for each point of the
PSS (see Figure 25).

Figure 25: Intermediate positioning space divided into two
subspaces: PSS and PSD [36].

The viewpoints were transformed into the P(w, y, �, �)
space, in which the PSS was represented in terms of w and
y, and the PSD was represented in terms of � and �. An
image of each viewpoint xi of X was computed in the PS.
The viewpoints were sampled around a circle at an angle that
was a multiple of 4; the barycenter was the center of the ob-
ject, and the radius was defined according to the parameters
of the sensor used. This type of sampling is not optimal and
does not allow many degrees of freedom; specifically, only a
rotation around a single axis was available in this case. Con-
sequently, concave objects larger than the focal length of the
scanner cannot be scanned, and, depending on how the scan-
ner is mounted, the top or bottom of the part may not be
scanned. Moreover, this way of defining the viewpoints is
not generalizable to all types of sensors.

Loriot et al. [26] thus employed two steps. The first step
did not require sampling the viewpoints, because the view-
points were directly determined according to the VMCs at
each iteration (see section 4.1). The second step involved
filling the remaining holes. For each identified hole, a nor-
mal was calculated, and the viewpoint was fixed and oriented
around this normal. If an occlusion appeared, a sphere was
sampled and centered on the hole. Each point of the sphere
included in a 60° cone around the normal of the hole repre-
sented a potential viewpoint to scan the considered hole. As
in the previous method, although the sphere allowed higher
positioning freedom than that allowed by a circle, if the hole
to be filled in had a radius greater than the distance recom-
mended by the scanner, the surface was likely never scanned
because the scanner in this case would be extremely far from
the surface. However, one of the advantages of this method
is that several types of solutions can be attained before try-
ing to sample the viewpoints to optimize the next optimal
view when filling holes. Moreover, the holes to be plugged
in the case of the object presented in the method may not be
sufficiently large to present this type of configuration (b ∼).
Vasquez et al. [53, 56] also used a sphere to sample view-
points, with the sphere centered at the barycenter of the ob-
ject to be scanned. Although this solution can be easily im-
plemented, it involves the same limitations as those presented
above. The solution of sampling the viewpoints around a
sphere only works in the case of objects smaller than the
measurement range of the sensor used.
Kriegel et al. [20, 21] sampled viewpoints along the edges
and holes of the mesh at each new search. The advantage of
this method is that, for each potential viewpoint, there exists
a minimum overlap with the already scanned areas (k ✓).
The viewpoints computed by Kriegel et al. are represented
as scan paths with a start and end point, an orientation, a
direction and a distance to the model (see Figure 26). Sub-
sequently, the viewpoints are evaluated such that the scan
paths are collision free (o ✓), and if the surface is occluded
by an environmental obstacle, the viewpoints around the ob-
ject are rotated until the occlusion disappears (m ✓). The
advantage of using this method to sample viewpoints along
the edges and holes of themesh is that it allows the algorithm
to be applicable for objects of all sizes (b ✓).

Vasquez et al. [54] [57] sampled viewpoints directly
in the robot’s configuration (kinematics) space (c ✓). The
viewpoints were sampled randomly with a uniform distri-
bution at each new iteration. Subsequently, the viewpoints
were evaluated to ensure that they do not collide with the en-
vironment (o✓) and that the orientation radius of the sensor
intersects the box surrounding the object. Next, the visibil-
ity of the viewpoint was determined (m ✓) to evaluate the
percentage of overlap (k ✓). Viewpoints that did not meet
the minimum criteria were removed from the set of candi-
date viewpoints. The advantage of this method is that the
viewpoints can be generated directly according to the sensor
support, in this case, a robotic arm. This principle allows
the viewpoints to be determined automatically with colli-
sion free paths between each scan, thereby helping reduce
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Figure 26: Viewpoint sampling method: left) boundaries de-
tected in partial meshes of the Putto statue; right) a scan
path in the direction of the largest expansion of the hole dℎ, in
the inverse hole normal nℎ direction and at the optimal sensor
distance ds [21].

the inspection times. However, this method only works if the
support can provide this type of information automatically.
Moreover, the approach is not generalizable to all configu-
rations and types of sensors, and the size of the object to be
reconstructed is constrained by the maximum extension of
the robot arm (b ∼).
In contrast, the methods of Loriot [26], Vasquez et al. [53,
56] and Kriegel et al. [20, 21] define the viewpoints in a gen-
eral way and can thus be generalized to all types of sensors
and supports (a ✓).
4.3. Stop criteria

The process of searching the next optimal view is itera-
tive. Therefore, a stop criterion must be established to maxi-
mize the quality of the reconstruction while ensuring that the
algorithm terminates autonomously in a reasonable time (i.e.
in a time competitive with that of human computation). The
stop criteria are similar in most works and involve achiev-
ing a certain percentage of surface coverage (g ✓). Pito et
al. [35, 36] and Loriot [26] used a so called redundancy
criterion. At each iteration, the rate of the new surface cov-
ered was calculated and, if a certain percentage of the new
surface covered was not reached, it was considered that the
algorithm could not find any new surface. Subsequently,
the algorithm terminated. (e ✓). Similarly, Vasquez et al.
[53, 56, 54, 57] used a surface factor that provided informa-
tion regarding the rate of unknown voxels observed by the
viewer. If the factor was below a certain threshold, the pro-
cess was terminated. Vasquez et al. considered that adopted
a criterion based solely on the model was insufficient. A sec-
ond criterion was applied, and the process was terminated if
the robot did not identify any path between its current posi-
tion and the positions of the candidate viewpoints (e ✓).
Kriegel et al. [20, 21] computed a coverage index based on
the mesh and holes detected in the mesh, as well as, the av-
erage density of the points that the algorithm was required
to reach before it terminated. If none of the criteria were
satisfied, as in most methods, the process terminated when a
predefined maximum number of scans was attained (e ✓).

4.4. Objective function to be minimized
The objective function (or cost function) is a key param-

eter of this type of method. The principle of these methods
is that, at each iteration of the process, a viewpoint is chosen
as the best possible next scan among a set of possibilities.
To this end, the viewpoints are evaluated according to a cost
function, and the viewpoint that maximizes this function is
chosen as the next optimal scan. Each method involves its
own objective function that meets well defined criteria.
Pito et al. [35, 36] established an objective function that
sought a viewpoint thatmaximized the coverage of the empty
patches, while maintaining a certain ratio of the area already
scanned. To this end, the rate of the new visible area was
prioritized while maintaining a ratio of the area already ob-
served, such that an overlap existed between each scan (k✓).
The overlap between the next optimal scan and the area al-
ready observed was also a key criterion for the methods used
by Kriegel et al. [20, 21] and Vasquez et al. [53, 56, 54, 57]
(k ✓).
Kriegel et al. [20, 21] determined an objective function with
two components. The first component represented the "ex-
ploration" part, i.e. considering the viewpoints that maxi-
mized the number of voxels with the greatest information
gain (IG). The algorithms attempted to search for the view-
point that maximized the sum of the probabilities of the vox-
els visible from it. The probability of a voxel represented
the probability that the voxel was occupied, thereby indicat-
ing that this part of the object was required to be scanned.
The second component represented the "modeling" part, in
which the viewpoint that could observe the voxels with a
high quality was selected. To compute the acquisition qual-
ity of a voxel, the angle between the normal to the surface
and sensor orientation was calculated. The advantage of this
method was that the unknown regions, overlapping a surface
already scanned, could be scanned, and an area considered
to have a low quality could be rescanned (k ✓, n ✓).
This notion of the quality of acquisition was also employed
by Vasquez et al. [53, 56], whose objective function was
formulated considering four criteria. As mentioned previ-
ously, the quality of acquisition was considered in terms of
the angle between the normal to the surface and sensor orien-
tation (n✓). The main criterion was a factor that considered
the rate of the new surfaces with the rate of the already ob-
served surfaces, such that the selected viewpoint overlapped
with the already observed surface. The third criterion cor-
responded to a navigation criterion, which helped minimize
the geodesic distance between the next optimal view and the
previous scan to minimize the travel time, and thus, the in-
spection time (h✓). The last criterion was an occlusion fac-
tor that examined whether the surface was occluded or not
from the considered viewpoint (m ✓).
In 2014 and 2017, Vasquez et al. [54, 57] used a completely
different objective function, for which themethod viewpoints
were sampled directly in the robot workspace. This function
also considered four criteria. The first criterion ensured that
the viewpoint did not collide with the environment, and that
the path between the previous scan and the viewpoint was
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collision free (o ✓). The second criterion corresponded to
the degree of overlap between the area covered by the view-
point and the area already scanned (k✓). The third criterion
corresponded to the ratio of the new voxels not yet observed,
but visible from the current viewpoint, to the total number of
voxels not observed. The last criterion corresponded to the
distance between the previous scan and the viewpoint, with
this distance computed according to the robot’s degrees of
freedom. The weights associated with the axes were deter-
mined experimentally such that the robot motion time was
minimized (h ✓). The latter principle can be both an ad-
vantage and disadvantage of this method. When a robot
arm support is used, this aspect can prevent the robot from
conducting excessively large movements if a position with a
shorter axis movement is possible. This condition can min-
imize the robot movements, thereby reducing the inspection
time. However, this method only works when using a robot
arm, and therefore, the calculation of the viewpoints cannot
be generalized to any type of support.
An advantage of the methods of Vasquez et al. and Kriegel
et al. is that the selected objective functions allow many cri-
teria to be considered in a modular way. The addition, mod-
ification, or removal of new criteria is convenient in such
approaches (d ✓).
Loriot [26] established an iterative process involving several
steps. The first step was to use the VMCs to perform an
initial reconstruction of the part. In the second step, the pro-
cess attempts to cover all the holes of the mesh, considering
the areas not scanned in the first step. During this step, the
viewpoint is first positioned along the normal of the hole and
oriented toward this direction. Subsequently, the viewpoint
is evaluated, and if self occlusion occurs, the viewpoint is
sampled. The sampled viewpoint that maximizes an objec-
tive function is selected (m ✓). The objective function em-
ploys a single criterion to ensure the selection of the maxi-
mum number of visible points of the hole. One of the disad-
vantages of this method is that in the first stage, a common
surface may not exist between two scans. Consequently, the
alignment between scans is not ensured at this stage.
None of the algorithms of this category can evaluate the
quality of the overlap between scans. Specifically, these al-
gorithms can assess the sufficiency of a surface in ensur-
ing the alignment between two scans, if the two scans share
a common surface. However, if the shared surface is ex-
tremely small, an algorithm such as the ICP cannot be used
to ensure a correct alignment, even if the shared surface has
no particular shape and is smooth. This aspect is a key lim-
itation of such approaches.
4.5. Algorithms validation

Several of the methods presented in this section are not
based on an input model. Therefore, no a priori knowledge
regarding the model to be scanned is available. In the indus-
try, one of the most important applications is reverse engi-
neering, which consists of scanning a part and later recon-
structing the CAD model from the point cloud.
Pito [35, 36] performed tests on small simple objects such as

a telephone receiver, coffee cup and small statue. The type
of scanner used to validate this method was a laser scanner
mounted on a fixed support. The part to be scanned was
placed on a turntable, and it could thus be rotated. Pito’s
work can be seen as preliminary work, as this type of test
does not allow industrialization of the method, because the
constraints of the algorithm linked to the sensor are extremely
stringent, and the tested objects are extremely simple.
Kriegel et al. [20, 21] also used a laser scanner mounted on
a robotic arm. In this work, the reconstructed objects were
small and midsized, for instance, a statuette, a cake box, and
an industrial valve type part. The diversity of the models
tested suggests that the method can be used for all types of
objects. However, as the result of the method is not intended
to be used to perform subsequent measurements, the accu-
racy of the reconstruction of the complete point cloud is not
emphasized.
In their early works, Vasquez et al. [53, 56] did not val-
idate their results on a physical test platform; specifically,
only computer simulations were performed for the valida-
tion. Consequently, the scanner was simulated and not at-
tached to any kind of support. The simulations were per-
formed on small simple objects such as the Stanford Bunny,
a sphere or a coffee cup. This configuration did not allow
a full appreciation of the environmental constraints such as
collisions or constraints induced by the sensor used.
Nevertheless, in 2014 and 2017, Vasquez et al. [54, 57] used
a Kinect device attached to a robotic arm with eight axes of
freedom. As in their previous work, the algorithmwas tested
in a virtual environment on small simple objects (see Figure
27), although the algorithm was later tested on a real plat-
form. The method was validated on objects sized similar to
an office chair. As in the case of the existing studies, the ob-
jects on which the algorithms were validated were simple,
and the method could thus not be directly industrialized.

Figure 27: Stages of the Stanford Bunny reconstruction. The
unknown and known voxels are indicated in yellow and blue,
respectively [55].

Loriot [26] used a structured light sensor fixed on a robotic
arm to validate his work. The type of object used to vali-
date the method did not differ considerably from the types
of objects used in other methods. For instance, the selected
objects likely included a coffee cup, small statuettes or in-
dustrial parts such as car rims.
Finally, in all methods, the tests performed did not provide
information regarding the accuracy of the reconstruction. With-
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out knowledge of the real object, it is not possible to quanti-
tatively validate the accuracy of the reconstruction.
4.6. Synthesis of search-based approaches

The so called search based approaches traverse the sur-
face to be digitized without a priori knowledge regarding the
model of the object. As in the case of the previous methods,
a global operating scheme common to the algorithms was
formalized.
First, an iteratively evolving representation of the space is es-
tablished. To this end, two groups of methods can be used.
Pito [35, 36] divided the space into three parts: an observed
part represented by the surface, a free part represented by the
edges of the mesh and an unknown part. The same concept
was employed by Kriegel et al. [20, 21] and Vasquez et al.
[53, 56, 54, 57], although in their approaches, the time space
was voxelized and later labeled.
In the second step, the viewpoints were sampled following
one the three methods. Pito [35, 36], Vasquez et al. [53, 56]
and Loriot [26] sampled their viewpoints on a surface such
as a sphere or circle. Kriegel et al. [20, 21] sampled the
viewpoints along the borders of the mesh. Vasquez et al.
[54, 57] sampled the viewpoints directly in the robot’s kine-
matic space.
Contrary to the approaches based on a transposition of the
SCP, the process of search basedmethods is iterative because
at each iteration, the representation of the space evolves. There-
fore, an effective stop criterion must be established. To this
end, two main criteria can be highlighted. Pito [35, 36],
Vasquez et al. [53, 56, 54, 57] and Loriot [26] performed
a check for the minimum percentage of new surface scans at
each iteration, whereas Kriegel et al. [20, 21] checked the
coverage rate of the holes in the mesh.
Similar to that in the SCP transposition methods, a different
cost function was implemented for each method. The ad-
vantage of this type of method is that the criteria used can
be easily eliminated or added.

5. Conclusion and future work
This article presents a state of the art review of the meth-

ods used to solve the view planning problem (VPP). The
goal is to establish a scan plan to reconstruct or control a 3D
object. The choice of the method clearly depends on both
the type of object to be reconstructed and the technologi-
cal means available to implement a solution. The types of
available inputs directly define the type of method to be im-
plemented. Overall, the methods can be divided into two
groups: methods exploiting the a priori knowledge of the
object to be scanned, and methods that do not require such
knowledge. Table 2 summarizes the evaluation techniques
of these methods with respect to the technological criteria
presented in section 2.4, and Table 3 summarizes the posi-
tioning of the various methods with respect to the algorith-
mic criteria defined in section 2.3. The advantages and dis-
advantages of each method were highlighted. The methods
involving a transposition to the set covering problem (SCP)
allow the definition of a scan plan with an input model, and

constraints can be easily added or removed, as required. The
methods that tend to optimize the coverage seek to cover
the maximum surface, as specified in the input. The advan-
tage of these methods is that they prioritize both the quality
of the measurements and coverage of the model, and thus,
accurate measurements can be made on the resulting point
cloud. These methods are generally more industrialized than
the other approaches. The advantage of search based meth-
ods is that the model to be scanned is not known. The view
planning is therefore conducted iteratively in real time, and
the point cloud can be later used to create a model of the
scanned part.

Considering the limitations of the existing approaches,
as highlighted in Tables 2 and 3, several perspectives can be
emphasized. It can be noted that although machine learn-
ing is widely used in the field of computer graphics, none
of the studied methods use this type of paradigm, likely be-
cause these methods require a large amount of data. Never-
theless, if a database were to exist in view planning, machine
learning techniques can be likely applied to solve the VPP.
Recently, some works based on this technology have been
published by Mendoza et al. [30], Hepp et al. [11] and De-
vrim Kaba et al. [5].
Considering the time issue and the need to reduce the inspec-
tion time, nearly all the methods can be noted to postprocess
the sensor positions to order them while solving the travel-
ling salesman’s problem. A future research direction can be
to directly integrate this constraint in the algorithms, thereby
removing the postprocessing step. Galceran et al. [7] and
Cabreira et al. [2] propose reviews of methods solving the
coverage path planning problem, which is a variant of the
traveling salesman problem. The idea is to determine a path
that passes through all points of an area or volume. This kind
of methods could maybe also be studied and adapted to solve
the view planning problem.
There are many papers published every day on this particular
research topic. Indeed the problem being NP-complete, an
unique solution do not exist and each applications can have
its particular solution. We can mention the recent paper of
Song et al. [50] for illustration.
Another constraint that has been highlighted in certain meth-
ods but never addressed is the quality of the overlap. When
two scans are performed, they must be aligned. Depend-
ing on the alignment methods used, an overlap between the
point clouds is necessary, although some constraints must
be implemented on this overlap. For example, an overlap on
a flat surface does not provide sufficient information to en-
able a correct alignment between the two scans, because the
degree of freedom is extremely important to ensure proper
registration. Thus, it can be considered that the study of the
shapes contained in the overlapping areas can help further
understand the remaining degrees of freedom to improve the
quality of the alignment of the scans, and thereby, intrinsi-
cally, the quality of the final point cloud.
In the various works presented in this paper, the uncertain-
ties of the measures are not addressed. Their estimation as
well as the estimation of the point cloud quality could be
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Scott et al. 2001 [44] ✓ ? ✓

Scott 2002 [41] ✓ ? ✓ ✓

Martins et al. 2005 [28] ✓ ✓ ✓ ✓

Scott 2009 [42] ✓ ? ✓

Loriot 2009 [26] ✓ ? ✓ ✓

Krause et al. 2011 [19] ✓ ? ✓ x
Mahmud et al. 2011 [27] x ✓ ✓

Jing et al. 2016 [16] ✓ ✓ ✓

Hepp et al. 2017 [12] ✓ ✓ ✓

Jing 2017 [14] ✓ ✓ ✓ ✓ ✓ ✓ ✓

Jing et al. 2018 [58] ✓ ✓ ✓

Jing et al. 2018 [15] ✓ ✓ ✓

Mohammadikaji et al. 2018 [31] ✓ ? ✓

C
ov
er
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g
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ti
m
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n

Lee et al. 2000 [24] ✓ ✓ ✓

Lee et al. 2001 [25] ✓ ✓ ✓

Son et al. 2002 [49] ✓ ✓ ✓ ✓

Souzani et al. 2006 [29] ✓ ✓ ✓

Shi et al. 2007 [46] ✓ ✓ ✓ ✓

Germani et al. 2009 [9] ✓ ✓ ✓

Germani et al. 2010 [8] ✓ ✓ ✓ ✓

Raffaeli et al. 2013[39] ✓ ✓ ✓

Lartigue et al. 2014 [23] ✓ ✓ ✓ ✓

Bircher et al. 2015 [1] ✓ ✓ ✓

Wu et al. 2015 [59] ✓ ✓ ✓ ✓

Koutecky et al. 2016 [18] ✓ ✓ ✓

Ding et al. 2016 [6] ✓ ? ✓

Phan et al. 2018 [33] ✓ ✓ ✓

Sadaoui et al. 2018 [40] ✓ ✓ ✓ ✓

Se
ar
ch
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ed

Pito 1997-1999 [35] [36] ✓ ✓ ✓

Loriot 2009 [26] ✓ ✓ ✓ ✓

Vasquez et al. 2009 [53] ✓ ? ✓

Kriegel et al. 2012 [20] ✓ ✓ ✓

Vasquez et al. 2014 [56] ✓ ✓ ✓

Vasquez et al. 2014 [54] ✓ ✓ ✓

Kriegel et al. 2015 [21] ✓ ✓ ✓

Vasquez et al. 2017 [57] ✓ ✓ ✓

Table 2
Positioning of the approaches with respect to the technological criteria

of great interest in further optimizing the pose of the view
points.

Moreover, as we see in sections 3.1.6, 3.2.4 and 4.5, the
validation and evaluation methods are completely different
for each work, and a complete evaluation of the approaches

using the same criteria is challenging. A research on fair
evaluation metrics can be a subject of future works in this
area.

Alignment methods can also be a considered in future
work. Even though different registration methods exist, in
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Scott et al. 2001 [44] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Scott 2002 [41] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Martins et al. 2005 [28] ✓ ∼ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Scott 2009 [42] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Loriot 2009 [26] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Krause et al. 2011[19] ∼ ✓ ✓ ✓ ✓ ✓ NA ✓ ✓ NA
Mahmud et al. 2011[27] ✓ ✓ ✓ ✓ ? ✓ ✓ ✓ ✓ ✓ ∼
Jing et al. 2016[16] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Hepp et al. 2017 [12] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ NA ✓ ✓ ✓ ✓ ✓ NA
Jing 2017 [14] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Jing et al. 2018[58] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ NA ✓ ✓ ✓ ✓ NA
Jing et al. 2018[15] ✓ ∼ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Mohammadikaji et al. 2018 [31] ✓ ∼ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

C
ov
er
in
g
op

ti
m
iz
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io
n

Lee et al. 2000 [24] ✓ ∼ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Lee et al. 2001[25] ∼ ✓ ∼ ✓ ✓ ✓ ✓ ✓ ✓

Son et al. 2002 [49] ∼ ✓ ∼ ✓ ✓ ✓ ✓ ✓ ✓

Souzani et al. 2006 [29] ✓ ✓ ✓ ✓ ✓ ✓ ? ✓ ✓ NA
Shi et al. 2007 [46] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Germani et al. 2009 [9] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Germani et al. 2010 [8] ✓ ✓ ✓ ∼ ✓ ✓ ✓ ✓ ✓

Raffaeli et al. 2013 [39] ✓ ✓ ✓ ✓ ✓ ✓ ∼ ✓ ✓ ✓ ✓ ∼ ✓ ✓

Lartigue et al. 2014[23] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Bircher et al. 2015 [1] ✓ ✓ ✓ ✓ ✓ ✓ NA ✓ NA
Wu et al. 2015 [59] ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ding et al. 2016 [6] ✓ ∼ ? ✓ ✓ ✓ ✓ ✓

Koutecky et al. 2016 [18] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Phan et al. 2018 [33] ✓ ∼ ✓ ✓ ✓ ✓ ✓ ✓

Sadaoui et al. 2018 [40] ✓ ✓ ? ✓ ✓ ✓ ? ✓ ✓ ✓ ✓

Se
ar
ch
-b
as
ed

Pito 1997-1999 [35] [36] ✓ ✓ ✓ NA NA ✓

Loriot 2009 [26] ✓ ✓ ✓ ✓ NA NA ✓

Vasquez et al. 2009 [53] ✓ ✓ ✓ ✓ ✓ ✓ NA NA ✓ ✓ ✓ ✓

Kriegel et al. 2012 [20] ✓ ✓ ✓ ✓ ✓ ✓ ✓ NA NA ✓ ✓ ✓ ✓

Vasquez et al. 2014 [56] ✓ ✓ ✓ ✓ ✓ ✓ NA NA ✓ ✓ ✓ ✓

Vasquez et al. 2014 [54] ✓ ∼ ✓ ✓ ✓ ✓ ✓ NA NA ✓ ✓ ✓

Kriegel et al. 2015 [21] ✓ ✓ ✓ ✓ ✓ ✓ ✓ NA NA ✓ ✓ ✓ ✓

Vasquez et al. 2017 [57] ✓ ∼ ✓ ✓ ✓ ✓ ✓ NA NA ✓ ✓ ✓

Table 3
Characterization of the approaches with respect to algorithmic criteria.

some cases, classical methods such as the iterative closest
point (ICP) cannot find a proper solution, as several solu-
tions may exist. For example, asymmetric objects cannot be
properly aligned using this type of method. Consequently,
new methods must be implemented. For instance, the new
methods could be implemented with a singularity in the sen-
sor field or by using photogrammetry.

In conclusion, the capabilities of the examined methods
and the foreseen prospects can help in better understanding
and resolving the numerous challenges associated with In-
dustry 4.0. Indeed, the problem of view planning can be
extended to many applications in addition to part manufac-
turing control: surveillance, building reconstruction, under-
water inspection, site exploration, etc. This type of applica-
tions can be exploited with different varieties of robots not
mentioned in this manuscript such as mobile robots AGV
and AUV.
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