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Abstract  

This paper suggests a new technique for trabecular bone characterization using fractal analysis of 

X-Ray and MRI texture images for osteoporosis diagnosis. Oste-oporosis is a chronic disease 

characterized by a decrease in bone density that can lead to fracture and disability. In essence, the 

proposed fractal model makes use of the differential box-counting method (DBCM) to estimate 

the fractal dimension (FD) after an appropriate image preprocessing stage that ensures a robust 

estimation process. In this study, we showed that within the frequency domain generated through 

discrete cosine transform (DCT), only a quarter of DCT coefficients are enough to characterize 

osteoporotic tissues. The algorithmic complexity of the developed approach is of the order of 
𝑁

8
log2

𝑁

8
  where N stands for the size of the image, which, in turn, likely yields important gain in 

terms of medication cost. We report a successful separation of healthy and pathological cases in 

term of both P-value (using statistical Wilcoxon rank sum test) and margin difference. A 

comparative statistical analysis has been performed using a publicly available database that 

contains a set of MRI and X-Ray texture images of both healthy and osteoporotic bone tissues. 

The statistical results demonstrated the feasibility and accepted performance level of our fractal 

model-based diagnosis to discriminate healthy and unhealthy trabecular bone tissues. The 

developed approach has been implemented on a medical device prototype. 

 

Keywords: Discrete cosine transform (DCT), Fractal Analysis, Fractal dimension (FD), Medical 

imaging, Osteoporosis, Trabecular bone texture. 

1 Introduction  

Osteoporosis is a common public health problem that weakens bones, which increases 

the risk of fracture, due to the porous trabecular microarchitecture (see Figure1). The 

disease has a significant impact on morbidity and mortality and poses serious health issues 

to more than 200 million people in the world according to the World Health Organization.  

In a clinical routine check-up, screening for osteoporosis is performed by measuring bone  
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mineral density, which is a non-invasive procedure. However, trabecular 

microarchitecture cannot be evaluated without an invasive procedure. 

Therefore, automatic methods that potentially characterize the trabecular bone texture 

using texture analysis are deemed very relevant1. For this purpose, texture analysis and 

classification have been widely used2. 
 

 

Fig. 1 Bone Microarchitecture:  Healthy and Osteoporotic. 

 

Besides, from an implementation perspective, several steps should be considered when 

carrying out any texture analysis technique. First, texture properties are described through 

a feature vector. The latter may involve either statistical features of image intensity 

domain or some structural representation that rather describes the spatial relationship of 

repetitive texture elements. Second, a classification task determines to which predefined 

class the given texture belongs to. Third, the whole image is partitioned into disjoint 

regions containing homogeneous textures3. Among the statistical-based features, one 

distinguishes the growing interest in fractal-like analysis4-5, especially in medical 

applications. Indeed, the fractal theory, introduced by Mandelbrot4, offers a nice 

framework for dealing with complex shapes and phenomena. It enables representing such 

shapes / phenomena by extending the classical concept of dimensionality of the systems 

to add a fractional index that corresponds to a measure of the space-filling nature of a 

rugged structure. This was also motivated by the observation that fractal dimension (FD) 

is relatively insensitive to image scaling and exhibits a strong correlation with human 

judgment of surface roughness6 in the sense that the larger the value of FD, the rougher 

the appearance of the underlying fractal set. More specifically, a fractal is a geometrical 

object characterized by two fundamental properties: self-similarity and Hausdorff-

Besicovich dimension6. Furthermore, a fractal generally exhibits irregular shapes that 

cannot simply be described by Euclidian dimension, but rather as an FD index. However, 

unlike the topological dimension, the FD index can take non-integer values, meaning that 

the way a fractal set fills its space is qualitatively and quantitatively different from how 

an ordinary geometrical set does. Because of its inherent and appealing properties, fractal 

and multifractal analyses are frequently used in biomedical signal and image processing7-

16. 

Spatial and frequency domain approaches are two different techniques in image 

processing. In general, neighboring pixels within an image in the spatial domain tend to 
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be highly correlated. As such, it is desired to use an invertible transform to concentrate 

randomness into fewer decorrelated parameters. The discrete cosine transform (DCT) 

transforms a signal from a spatial (or time-domain, in the case of a 1D signal) domain 

into a frequency domain. Besides, DCT has been shown to be near-optimal for a large 

class of images in energy concentration and decorrelating17. Especially, DCT is widely 

applied in signal and image processing fields such as compression, classification and 

biomedical engineering17-19 due to its excellent properties of grouping energy where the 

information is essentially carried out by the low-frequency coefficients.  

Traditionally, the fractal dimension (FD) of an image is primarily estimated in the 

temporal and spatial domains. Indeed, the FD mostly quantifies the roughness or 

smoothness of time-series and spatial data in the limit as the observational scale becomes 

infinitesimally fine where the estimation is dependent on the availability of observations 

at sufficiently fine temporal or spatial resolution20-22. Methods developed for this purpose 

include box-counting (BC), differential box-counting method (DBCM)23, Hall-Wood 

estimator, variogram estimator and its variants24-25, level crossing26. The reader can 

consult, e.g., the review paper27 and references therein for an in-depth comparison of these 

estimators. In contrast to time-series and spatial approaches, alternative methods rely on 

the frequency or spectral domain. In this context, the scaling law applies as the frequency 

growths to infinity, equivalent to the scale becoming infinitesimally small in the time 

domain. Examples of such approaches include the semi-periodogram estimator of Chan 

et al.28. The key advantage of handling the fractal dimension in the frequency domain is 

that many complex convolution operations in the spatial domain employed for correlation 

or filtering tasks can be simplified significantly in the frequency domain.  Moreover, the 

anisotropic spatial distribution of a spectral energy density retains the spatial structure of 

a field29. Authors in30 derived a discrete cosine transform-based fractal dimension using 

ordinary least square fit of periodogram parameters. In the same spirit, this paper 

advocates the use of DCT-based FD estimation for the purpose of bone texture 

characterization. The percentage of transformed image (DCT%) was employed to 

demonstrate the feasibility of the proposal using only a quarter of DCT coefficients. In 

the sequel, the approach highlights the importance of the preprocessing step as a pre-

requisite for achieving acceptable results. In this respect, two variants of preprocessing 

stages have been investigated. The first one employs a median filter (MF) followed by a 

fractal analysis using DBCM. The second one uses a contrast enhancement (CE) followed 

by a DBCM. The developed approach is implemented on a medical device prototype that 

helps in osteoporosis diagnosis. By doing so, we expect to substantially reduce the 

associated medical costs and provide a valuable decision support system to clinicians in 

their attempt to diagnose osteoporosis disease.  

This work extends our previous findings in31 by including:  

i)  Two imaging modalities of trabecular bone textures: MRI and X-Ray images;  

ii)  Two preprocessing approaches based on median filter (MF) and contrast 

enhancement (CE);  

iii) A directional analysis (anisotropy analysis) with several orientations from 0° to 

360° with a step angle of 15° and quantifying the results with or without preprocessing 

stages. 
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Moreover, since the DCT has an excellent property of energy grouping: the information 

is essentially carried by the low-frequency coefficients, thereby, only a percentage of the 

total DCT coefficients were employed instead of all the DCT coefficients, in order to 

produce a robust fractal dimension in the DCT domain (DCT%).  

Section 2 of this paper presents some of the related works. Materials and methods that 

include the overall methodology, which fruitfully combines image acquisition and 

database, data preprocessing, and discrete cosine transform in order to robustify the 

estimation of 𝐹𝐷 are described in Section 3. Section 4 exhibits the experimental results 

using images from a large database of trabecular bone texture whose results are compared, 

commented and  discussed. Finally, the overall conclusion and perspective work are 

reported in Section 5. On the other hand, to ease the readability of the paper, we 

summarized in Table 1 the main acronyms employed throughout this paper.   

 

Table 1  Main acronyms used in this paper. 

Acronym Description  

ACC Accuracy 

AUC  Area under curve 

ANN  Artificial neural networks 

ap-WhE Anisotropic piecewise Whittle estimator 

BN Bayes network 

BTC Bone texture characterization 

CE Contrast enhancement  

DA Degree of anisotropy   

DBCM Differential box-counting method 

DCT Discrete cosine transform 

DCT% Discrete cosine transform percentage (25%, 50%, 75% and 100%) 

FD Fractal dimension  

fBm Fractional Brownian motion  

GLCM Gray level co-occurrence matrix 

H Hurst coefficient (exponent) 

𝐻𝑚𝑒𝑎𝑛  Mean Hurst coefficient (exponent) 

HR-pQCT High-resolution peripheral quantitative computed tomography 

IVCM Intravenous contrast medium 

KNN K-nearest neighbors 

LBP Local binary patterns 

MRI Magnetic resonance imaging  

MSE Mean square error  

MF Median filter  

MDCT Multi-detector computed tomography 

MLP Multilayer perceptron 
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NB Naive Bayes 

PSNR Peak signal-to-noise ratio 

ROI Region of interest  

RF Random forest 

SSIM Structural similarity index metrics 

SVM Support vector machine 

TNR True negative rate 

TPR True positive rate 

WC Wrapped Cauchy 

X-Ray  X-Ray images 

𝜎 Standard deviation 

∆ 

 

Difference between the minimum and the maximum of the mean FD between each 

class (healthy and pathologic) 

 

2 Related works 

Relevant works on medical image processing based on the analysis and classification 

of trabecular texture are summarized in this section. Dougherty and Henebry32 used the 

fractal signature and lacunarity for the measuring the texture of trabecular bone in clinical 

CT images. Harrar et al.33 proposed a new method that involves a fractal model and 

Whittle estimator for Hurst exponent calculus, to asses bone microarchitecture and 

characterize trabecular bone radiographs. Zheng et al.34 proposed a classification-based 

approach where the fractal dimension is among the set of feature attributes for 

discriminating healthy from osteoporotic subjects. The top performance is obtained by 

using the Bayes network classifier with an ACC of 79,3%. Oulhaj et al.35 proposed a new 

approach based on wavelet phase decomposition and parametric circular model applied 

to classify trabecular textures from osteoporotic and healthy subjects using SVM and 

ANN classifiers. Singh et al.36 investigated statistical features for different orders with 

and without preprocessing to classify osteoporotic trabecular bone form healthy cases 

using four classifiers: SVM, KNN, NB and ANN. The best result with an accuracy of 

98% was achieved for the SVM classifier. Su et al.37 proposed an encoded texture features 

to characterize bone textures based on two groups of new features, encoded GLCM (gray 

level co-occurrence matrix) and encoded LBP, each of which contains two subgroups. 

The first one results from encoding the Gabor and Hessian information into the GLCM 

features, while the second one employs LBP features and RF classifier. Harrar et al.38 

proposed an oriented fractal analysis method combining an anisotropic fractional 

Brownian motion model with an anisotropic piecewise white estimator to characterize 

trabecular bone radiograph. They validated their proposed approach using several well-

known estimators on anisotropic and isotropic synthetic fractional Brownian motion 

images in different orientations in multiples of 45°. Houam et al.39 proposed the 

combination of global and local information to better capture the image characteristics by 
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using a one-dimensional local binary pattern for bone texture classification. The 

aforementioned results support the hypothesis that 2D texture analysis can contribute to 

the identification of changes in trabecular bone microarchitecture. Similarly, the 

extensive work on image-based osteoporosis diagnosis has promoted several public 

databases to test and evaluate the performance of the developed approaches. Zou et al.40 

proposed the use of wavelet leader (WL) transformation to study trabecular bone patterns. 

After extracting WL from the trabecular texture, they used the two statistical texture 

characterization methods namely the gray level co-occurrence matrix (GLCM) and the 

Gray Level Run Length Matrix (GLRLM). Then they used two features, the energy from 

the GLCM and the Gray Level Non-Uniformity from the GLRLM to distinguish between 

the osteoporotic patients and control subjects and performed their method with ROC 

curves. Keni Zheng et al.41 studied and developed mathematical methods and algorithms 

for disease diagnosis and tissue characterization of the trabecular bone texture using 

supervised learning techniques. They developed methods for the calculation of sparse 

representations to classify imaging patterns and explore the advantages of this technique 

over traditional texture-based classification. They evaluated the classification 

performances of their methods using a 30-fold cross-validation.  Table 2 summarizes 

some of the key works in this field in recent years (2016-2019).    

 

Table 2  Comparison of some of main studies for trabecular bone texture characterization. 

Reference Database Site Methodology 

Features 

(or their 

number) 

Performance 

measure 
ACC,  AUC,  𝐩 Year 

M. R. K. 

Mookiah et 

al.42 

MDCT Data 

images 

(trabecular bone 

from HR-pQCT)  

with and without 

IVCM. 

Vertebral Texture analysis 

using GLCM 

(energy, 

entropy, 

homogeneity, 

…). Classifiers : 

SVM 

 

 

8 

 

Correlation  r 

𝑝 −  𝑣𝑎𝑙𝑢𝑒 

ACC 

 

r  up to 0.96 

𝑝 < 0.0001 

ACC= 83% 

 

 

2018 

Zheng and 

Makrogianni

s34 

BTC challenge 

data, 

healthy/osteoporo

sis  bone 

radiograph.   

Calcaneus Correlation- 

based features 

selection. 

Classifiers: NB, 

MLP, BN and 

RF.  

 

723 

123 

(Selected) 

 

TPR, TNR, 

ACC and AUC. 

 

ACC: 79,3%, 

AUC: 81% 

 

 

2016 

A. Singh et 

al.36 

Patients with 

osteoporosis 

fractures of hip or 

vertebral or 

wrist/Control 

patients. 

2004-2006, 

Orleans Hospital 

(France). X-Ray 

images. 

Calcaneus First and second 

order statistics 

features with 

and without 

preprocessing. 

Classifiers: 

SVM, NB, 

KNN and ANN.   

 

 

6 

 

 

 

ACC 

Without 

preproc.<70%.  

With  

preproc. > 95%.  

 
The best ACC is 

obtained for  

SVM: 97,87% 

 

 

2017 

H. Oulhaj et 

al.35 

2014 Challenge 

IEEE-ISBI : Bone 

Texture 

Characterization  

(X-Ray modality) 

Calcaneus  Wavelet 
decomposition 

and circular 

parametric 
models. 

Classifiers : 

SVM and ANN.  

WC and 
Gabor 

filters: 48 

Fractal:

𝐻𝑚𝑒𝑎𝑛 

GLCM: 64 
LBP: 128 

 
ACC, ROC, 

AUC and   

 𝑝 − 𝑣𝑎𝑙𝑢𝑒. 

The best result 
achieved with WC 

and Gabor models. 

 SVM : 95,98% 

 

2017 

https://www.spiedigitallibrary.org/profile/Keni.Zheng-4152020
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K. Harrar et 

al.38 

Trabecular 

texture  (X-Ray 

modality) 

Calcaneus  Oriented fractal 

analysis using 

estimators (ap-

fBm, ap-WhE) 

for different 

orientations. 

 

𝐻𝑚𝑒𝑎𝑛 ± 𝜎 

 

𝑝 −  𝑣𝑎𝑙𝑢𝑒 

 

𝑝 <  2.36 × 10−10 

 

2018 

R. Su et al.37 2014 Challenge 

IEEE-ISBI : Bone 

Texture 

Characterization  

(X-Ray modality) 

Calcaneus Encoded GLCM 

and encoded 

LBP features. 

Gabor  and 

Hessian 

information 

used. RF  

Classifier.  

Raw: 80 

GLCM: 96 

LBP: 384 

 

ACC 

The best results 

achieved with 

LBP: 60.8%. and 

with features 

selection: 71.2% 

 

2018 

Keni Zheng 

et al. 41 

 

TCB challenge 

dataset. 

Calcaneus Ensemble of 

sparse 

classifiers using  

30-fold cross- 

validation.   
 

FD, LBP, 

Gabor filter, 

DWT, DCT, 

FFT, edge 

histogram, 
Law’s 

energy 

masks for  
723 features.   

 

ACC 

AUC 

 

ACC = 70,7% 

AUC = 74,4% 

 

2019 

 

3 Materials and Methods 

3.1 Motivation 

Strictly speaking, the aforementioned works of fractal methods for texture classification 

reinforces the earlier work of Mandelbrot and Van Ness43, among others, which showed 

that FD conducted alone performs moderately and was often outperformed by many other 

standard approaches as concluded by Du Buf et al.44. Instead of augmenting the dimension 

of feature space, an alternative approach consists in transforming the original image into 

a transformed image whose FD value becomes more reliable in the view of the context 

under consideration. In this respect, one shall mention the work of Chaudhuri and Sarkar45 

where the transformation is meant to capture the coarseness and directionality, yielding a 

high (low) gray-valued image and horizontally (vertically) smoothed image. In the same 

spirit, the idea pursued in this paper is to investigate the use of DCT transformation to 

enhance the efficiency of the fractal dimension such that the bone texture classification-

based diagnosis of medical images is enhanced. Indeed, there is often a high correlation 

between neighboring pixels in the spatial domain, which generates redundancy in the 

information. As such, it is desired to use an invertible transform to concentrate 

randomness into fewer decorrelated parameters. For this purpose, the use of discrete 

cosine transform (DCT) is shown to be particularly useful17-19, 46-48 where the key 

information is essentially carried out by the low-frequency coefficients. Therefore, there 

is an implicit evidence that the DCT could contribute to capturing the coarseness and the 

directionality, which, in turn, makes the estimation of the FD more robust. Some 

preliminary results in this direction have been reported in31.  

The process is also ultimately related to the FD estimation algorithms employed. One 

distinguishes the popularity of box-counting (BC) and differential box-counting method 

(DBCM)27, which uses the spatial domain and without necessarily requiring extensive 

preprocessing stages.  

More specifically, this paper introduces a combination scheme of a fractal with DCT 

for the bone texture characterization and uses the percentage of transformed image 

https://www.spiedigitallibrary.org/profile/Keni.Zheng-4152020
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(DCT%) for the estimation of the fractal dimension in the frequency space. Also, the 

influence of the preprocessing stage is quantified using either the median filter (MF) or 

the contrast enhancement (CE) approach. Besides, we investigated the directional 

analysis (anisotropy analysis) by varying the orientation from 0° to 360° with a step angle 

of 15°. This is performed both without preprocessing phase and with a preprocessing 

phase in the spatial domain and DCT domain. Finally, the newly established algorithms 

are tested on our database that contains a set of MRI and X-Ray images with texture ROIs 

of trabecular bone tissues corresponding to both healthy and osteoporosis cases49-50. 

 

3.2 Image acquisition and database 

Patients were selected from the department of Rheumatology of the University Hospital 

of Lille to build a local database. This database contains a set of trabecular bone texture 

of X-Ray images and MRI in the grey level extracted from 100 patients. 

The database was generated using ElitePlusTM for X-Ray images with the following 

settings: 1-mm slice thickness, field view = 140 mm, matrix size = 512×512 pixels and a 

maximum spatial resolution of approximately 400 μm.  For each patient, four consecutive 

axial and four consecutive coronal slices of the nondominant forearm were selected. 

While for MR-images, the database was generated using Siemens Magnetom Open of 1.5 

Tesla. The characteristics of the MRIs are as follows: field view = 360 mm, spatial 

resolution =  512×512 pixels,  12 lateral cut planes with a 4 mm inter-slice distance, 

cutting thickness = 4 mm,  side of each pixel = 0.7031 mm and the parameters for 

measuring the T1 weighted acquisition sequence are: 𝑇𝑅 = 851 𝑚𝑠, 𝑇𝐸 = 30 𝑚𝑠. 

The choice of ROIs is such that its shape is squared with a relatively large radius to cover 

the key milestones that may be observed in the image. These are extracted from the 

trabecular part (see Figure 2) of patients whose mean age before menopause is 35±10 

years and postmenopausal women with a mean age of 64 ± 10 years.  The database 

includes both healthy and osteoporosis cases with various sizes, which are all coded using 

8-bit numbers. Figure 3 shows an example pertaining to both healthy and osteoporosis 

cases for MRI and X-Ray images. From this figure, we note the difference in the structure 

and the contrast between these two imaging modalities. For instance, the bony structure 

in X-Ray images has a high contrast compared to that of MRI that has a low contrast. 
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Fig. 2  Axial slices of radius and selection of Region of Interest (ROI). 

 

  
(a) (b) 

  
(c) (d) 

 

Fig. 3 Extracted healthy and pathological ROIs:  (a): Healthy MRI, (b): Osteoporosis MRI, (c): Healthy 

X-Ray image and (d): Osteoporosis X-Ray image. 

 

 



10 
 

 

3.3 Data preprocessing 

Two types of preprocessing techniques were considered. The first one involves the use 

of a standard median filter (MF) to the raw image to filter out possible noise occurrence, 

which also helps subsequent image processing stages. Median filters are useful in 

reducing random noise. The median filtering process is accomplished by sliding a 

window over the image. The second one involves the use of image contrast enhancement 

(CE). The aim of the image enhancement is to improve the perception of information in 

images, e.g., to improve the characteristics or quality of the initial image. For this purpose, 

histogram equalization is mainly used to enhance the contrast of the images. On the other 

hand, Gamma correction is used to control the level of contrast enhancement or to correct 

image's luminance. The latter addresses the problem of improving the visibility of 

significant features and the quality of the underlying medical image. This also allows us 

to reduce the image’s noise and ultimately, to increase the contrast of the structures of 

interest, which, in turn, facilitates the diagnosis process. A typical and a simple contrast 

enhancement consists of adjusting the image intensity values such that 1% of data is 

saturated at low and high intensities of the original image through a linear or non-linear 

stretching so that the lowest image intensity is mapped to the bottom and the highest to 

the top. Whereas the bottom and top covers 99% of the intensity ranges in the underlying 

color space model. This approach is now part of textbook material and implemented in 

most image processing toolboxes (see, e.g,  

https://www.mathworks.com/products/image.html). Therefore, because of its simplicity 

and availability this contrast enhancement approach is employed throughout our 

subsequent methodology.  

It should be noted that the Lille University Hospital database of  subsection 3.2 

contains some X-Ray  and MRI images that are by nature slightly noisy as well, 

nevertheless, for the sake of robustness analysis and to quantify the noise influence, we 

also created noisy images. The latter were obtained by injecting an additive zero mean 

random noise with a variance of 0.01 to the raw X-Ray and MRI images yielding a set of 

noisy MRI and noisy X-Ray images that will be tested in subsequent reasoning, See for 

example, Fig.4e and Fig.4j for instances of noisy MRI image and noisy X-Ray  image, 

respectively.  

On the other hand, the application of such preprocessing stage in terms of filtering and 

contrast enhancement expects to positively impact the performance of the discrimination 

power of the developed algorithm (s), especially for noisy images. 

Figure 4 shows the two imaging modalities (MRI in the first row and X-Ray images in 

the second row) from our database when the images are preprocessed using either MF or 

CE methods. 
 

 

 

 

 

 

https://www.sciencedirect.com/topics/engineering/median-filters
https://www.sciencedirect.com/topics/engineering/median-filtering
https://www.mathworks.com/products/image.html
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(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

 

Fig. 4 Two samples of bone MRI (first row) and X-Ray images (second row) textures of healthy subjects:  

(a) and (f): Original input textures; (b) and (g): Preprocessed with the median filter (MF); (c) and (h): 

Preprocessed with the contrast enhancement (CE);  (d):  Preprocessed MRI with (MF) and rotated 30°, (i):  

Preprocessed X-Ray images with (CE) and rotated 45°, (e): Noisy MRI, (j): Noisy X-Ray images.  

 

 

3.4    Discrete cosine transform (DCT) 

The principal advantage of DCT is the removal of redundancy between neighboring 

pixels, yielding uncorrelated transform coefficients that can be encoded separately. 

Particularly, DCT exhibits an excellent energy compactness for highly correlated images, 

which allows the DCT to pack input data into as few coefficients as possible. This raises 

the problem of how to reduce the coefficients exhibited by the DCT. It is, for instance, 

acknowledged, see14, that DCT coefficients are divided into low, middle and high 

frequencies, where low-frequency components are rather correlated with illumination 

condition while high-frequency coefficients are more associated to noise and small 

variations. Middle frequency components often contain useful information about the 

structure of the image. Several studies tackled the problem of the appropriate selection of 

DCT components. Commonly employed is the first percentage; namely, DCT (𝑀%) of 

an (𝑁 × 𝑁) image would retain the first  (𝑁 × 𝑁 × 𝑀%) coefficients. Alternative 

approaches make use of complex minimization criteria. For instance, Pan et al.47 proposed 

to select coefficients that minimize the reconstruction error. Choi et al.19 proposed to use 

energy probability to generate a frequency mask. Sanderson and Paliwal48 used a 

polynomial coefficient derived from the 2D-DCT coefficients of neighboring blocks.   

In the context of image reconstruction, it was reported, for instance, that DCT (25%) 

introduces a blurring effect on all images, while DCT (50%) provides acceptable 

reconstruction capabilities, and DCT (75%) yields excellent reconstruction of all images. 

Therefore, it is interesting to investigate the effect of DCT (𝑀%) on image fractal 

analysis. Figure 5 summarizes the distribution of the DCT coefficients for  (𝑁 × 𝑁) 

image. 
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Fig. 5  Distribution of DCT% coefficients for an  (𝑁 × 𝑁) image. 

 

3.5 Proposed algorithm  

A generic description of the algorithm for trabecular texture analysis to estimate the FD 

value using a combination of image processing and DCT transform is summarized in 

Algorithm 1 shown in Table 3. 

 

Table 3  Pseudo-code for FD estimation with DCT. 

Algorithm 1: Estimation of FD with DCT. 

Input  :   Texture. 

Output :  FD value. 

1. Apply a preprocessing stage (median filter (MF) or contrast enhancement  

(CE)) to the  texture. 

2. Apply DCT to the filtered  and output DCT coefficients for DCT25%,  

DCT50%,  DCT75% and DCT100%. 

FOR each DCT % Do 

FOR each size of Box  Do 

3. Apply DBCM to filtered  texture to estimate the FD value.  

END 

END 

 

Besides, for the directional analysis of trabecular textures, a generic description of the 

algorithm for obtaining the directional FD values using a combination of image 

processing and DCT transform is summarized in Algorithm 2 highlighted in Table 4. 
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Table 4  Estimation of directional FD with DCT 

 

 

 

 

 

 

 

 

 

4 Results and discussion 

4.1 Setup and performance metrics 

Throughout our experiment, one distinguishes between MRI and X-Ray images where 

separate results will be presented. In both cases, one also distinguishes between healthy 

and osteoporosis cases. To evaluate the ability of the fractal dimension to discriminate 

between healthy and osteoporosis cases, the statistical Wilcoxon rank-sum test, which 

can be applied to unknown distributions, was employed. This evaluates the following 

hypothesis H0 against H1:   

     H0: FDs of Healthy and Osteoporosis Images have the same median 

    H1: FDs of Healthy and Osteoporosis Images have distinct medians          (H0 not valid) 

Especially, at the default 5% significance level, a  𝑝 − 𝑣𝑎𝑙𝑢𝑒  for the above test of less 

than 0.05 (𝑝 ≤ 0.05) indicates the rejection of the null hypothesis, and therefore, the 

ability of the FD estimate to discriminate healthy from osteoporosis cases. On the other 

hand, a  𝑝 − 𝑣𝑎𝑙𝑢𝑒 (strictly) greater than 0.05 (𝑝 > 0.05) is equivalent to a failure of the 

FD-based approach to discriminate the healthy tissue from osteoporosis tissue. 

In addition to the statistical test, we also present the results in terms of the minimum, 

maximum, mean and standard deviation (𝑚 ± 𝜎) of the FD values for each class of 

images. On the other hand, for the ease of comparison, we evaluated the maximum 

difference between the FD estimation in osteoporosis (𝐹𝐷𝑃) and healthy (𝐹𝐷𝐻) cases, 

which distinguishes the existence or absence of overlap between the two estimates. More 

specifically, this can be quantified as:  

 

∆= {
min(𝐹𝐷𝑃) − max(𝐹𝐷𝐻)              𝑖𝑓         𝐹𝐷𝑃 > 𝐹𝐷𝐻

min(𝐹𝐷𝐻) − max(𝐹𝐷𝑃)              𝑖𝑓         𝐹𝐷𝐻 > 𝐹𝐷𝑃
                                                (1) 

 

Especially, a negative value of ∆  translates to a likely overlapping between the FD 

estimates, or, equivalently, a failure of the FD estimation-based approach to distinguish 

Algorithm 2 : Estimation of directional  FD with DCT. 

Input    :  Texture. 

Output : Directional FD values : 𝐷𝐹(𝜃).  

FOR each  texture do 

1. Apply a preprocessing stage (median filter (MF) or contrast 

enhancement (CE)) to the texture. 

2. Rotate the preprocessed  texture by angle 𝜃: (𝜃 = 0°: 15°: 360°).  
FOR each preprocessed and rotated 𝑅𝑂𝐼 (𝜃), do  

3. Apply the DCT to the 𝑅𝑂𝐼 (𝜃). 
4. Apply the DBCM to the DCT to estimate the FD value: 𝐷𝐹(𝜃).  

END 

END 
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healthy patterns from osteoporosis patterns. While a positive ∆  corresponds to a 

successful operation.  

Besides, in order to evaluate the impact of the preprocessing stage, the results with and 

without preprocessing are also presented and commented accordingly.  

4.2 Estimation of FD without preprocessing 

Table 5 and Table 6 summarize the statistical analysis of the FD using DBCM applied 

to the MRI and X-Ray images, respectively. On the other hand, given the already pointed 

sensitivity of the DBCM approach to the size of the boxes, and in the light of the previous 

work, see, e.g.,31,49-51 where a linearly increasing box size for DBCM has been advocated, 

we compared the outcome of three linearly increasing box sizes (which roughly rounds 

up and down the minimum box size given the image pixel resolution). This yields sizes 

of ε ranging from 5 to 30 pixels, 5 to 35 pixels, and, finally, from 5 to 40 pixels, all by a 

step of 5 as in31.  

 

Table 5  Statistical analysis of FD using DBCM without preprocessing for MRI. 

Box  size  [5: 5: 30] [5: 5:  35] [5: 5: 40] 

 Healthy 

𝑚 ± 𝜎 2.6930±0.1172 2.4555±0.1034 2.2319±0.1269 

𝑚𝑎𝑥 2.8268 2.5715 2.3795 

𝑚𝑖𝑛 2.6045 2.3669 2.1240 

Osteoporosis 

𝑚 ± 𝜎 2.6262±0.1094 2.3802±0.1022 2.1650±0.1153 

𝑚𝑎𝑥 2.7417 2.4909 2.2938 

𝑚𝑖𝑛 2.5262 2.2627 2.0645 

∆  -0.1372 -0.144 -0.1653 

𝑝 − 𝑣𝑎𝑙𝑢𝑒  0.0706 0.0708 0.0708 

 

Table 6  Statistical analysis of FD using DBCM without preprocessing for X-Ray images. 

Box  size  [5: 5: 30] [5: 5:  35] [5: 5: 40] 

Healthy 

𝑚 ± 𝜎 1.9832±0.1314 1.7506±0.1388 1.5482±0.1257 

𝑚𝑎𝑥 2.1252 1.8844 1.7158 

𝑚𝑖𝑛 1.8718 1.6279 1.4350 

Osteoporosis 

𝑚 ± 𝜎 2.0999±0.1136 1.8524±0.1268 1.6669±0.1130 

𝑚𝑎𝑥 2.2376 1.9902 1.7930 

𝑚𝑖𝑛 2.0013 1.7377 1.5667 

∆  -0.1239 -0.1467 -0.1491 

𝑝 − 𝑣𝑎𝑙𝑢𝑒  0.0711 0.0711 0.0703 

 

The results highlighted in Table 5 and Table 6 demonstrate the following: 

1) The complexity of the DBCM implementation increases with the box size. In this 

respect, the case of box size [5 30] reveals the lowest computational cost. Besides, the 

whole implementation is performed in Matlab platform, which allows us to benefit 

from the highly cost-effective image processing subroutines.  

2) In the case of a linear increase of box size in DBCM, the FD estimates decrease with 

the size of the box.  

3) The values of ∆ and  𝑝 − 𝑣𝑎𝑙𝑢𝑒 parameters (∆ < 0 and  𝑝 >  0.05) indicate the FD-

based approach cannot distinguish the healthy from osteoporosis cases when no 

preprocessing stage was employed.  

4) The comparison of the various box sizes in the DBCM implementation indicates a 
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marginally close performance of the linearly increasing box size [5 30], [5 35] and [5 

40]. This is partly explained by the nature of employed images where the presence of 

a (curve) line with distinct thickness influences the FD estimate negatively when the 

box sizes are not uniform. Such a phenomenon has also been noticed in related 

studies, see, e.g.,52. 

5) On the other hand, the statistically insignificant variation of the outcomes of the three 

linearly varied box sizes and the absence of further theoretical investigation motivate 

us to restrict to only a single box size choice; namely, [5 30] with a step size of 5 

pixels. 

6) The comparison between MRI and X-Ray images reveals that the FD estimation fails 

to distinguish the healthy from the osteoporotic tissues in both cases. On the other 

hand, scrutinizing the ∆ value indicates a greater uncertainty/confusion associated 

with MRI images. 

4.3 Estimation of FD with preprocessing 

Two variants of preprocessing stages have been used independently for both MRI and 

X-Ray images; namely the standard MF, consisting of a mask of (3 × 3) pixels, and the 

CE. The latter is obtained by the adjustment of the image intensity values such that 1% 

of data is saturated at low and high intensities, which, sometimes, substantially increases 

the quality of the raw image.  Figures (6-7) present the performance metrics in terms of 

PSNR and SSIM53 for MRI and X-Ray texture images of both healthy and osteoporosis 

cases when the preprocessing stage is through the median filter and contrast enhancement 

methods.  

 

       

 

Fig. 6  Performance evaluation of contrast enhancement (CE) versus median filter (MF) in terms of 

objective metrics (peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM)) for MRI. 
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Fig. 7 Performance evaluation of contrast enhancement (CE) versus median filter (MF) in terms of 

objective metrics (peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM)) for X-Ray 

images. 

 

After the preprocessing stage, the DCT transform of the filtered image (using DCT 

25%, DCT 50%, DCT 75%, and DCT 100%) has been performed and its associated FD 

using DBCM of box size [5  30] is calculated accordingly. The results for both MRI and 

X-Ray images are summarized in Tables 7-10. Similar to the previous section, the results 

are presented in terms of mean, standard deviation, maximum, minimum, ∆, and the 𝑝 −

𝑣𝑎𝑙𝑢𝑒 for 300-selected MRI and 300-selected X-Ray images including both healthy and 

osteoporosis cases, corresponding to 150 ROI trabecular textures for each group (healthy 

and pathological) and each modality (MRI and X-Ray images). 

Table 7  Statistical analysis of FD using median filter (MF) + DCT%+DBCM for MRI. 

Box size 

[5: 5: 30] 
FD Without DCT DCT25% DCT50% DCT75% DCT100% 

DCT25%   

(Noisy images) 

Healthy 

𝑚 ± 𝜎 2.7407±0.0864 2.6860±0.0302  2.6807±0.0298 2.6777±0.0305  2.6753±0.0336 2.6512±0.0345 

𝑚𝑎𝑥 2.8467 2.7427 2.7409 2.7395 2.7372 2.6921 

𝑚𝑖𝑛 2.6475 2.6433 2.6425 2.6400 2.6383 2.6275 

Osteoporosis 

𝑚 ± 𝜎 2.6390±0.0817 2.5942±0.0267 2.5914±0271 2.5940±0.0206 2.5974±0.0143 2.5728±0.0342 

𝑚𝑎𝑥 2.7252 2.6367 2.6349 2.6306 2.6279 2.6245 

𝑚𝑖𝑛 2.6139 2.5499 2.5513 2.5622 2.5837 2.5291 

∆  -0.0777 0.0066 0.0076 0.0094 0.0104 0.0030 

𝑝 − 𝑣𝑎𝑙𝑢𝑒  0.0602 1.4045e-04 1.4045e-04 1.4045e-04 1.4045e-04 1. 4045e -04 

 

 

Table 8 Statistical analysis of FD using contrast enhancement (CE) + DCT%+DBCM for MRI. 

Box size 

[5: 5: 30] 
FD Without DCT DCT25% DCT50% DCT75% DCT100% 

DCT25%   

(Noisy images) 

Healthy 

𝑚 ± 𝜎 2.6334±0.0649 2.6363±0.0231  2.6391±0.0232 2.6414±0.0233 2.6484±0.0230 2.6205±0.0305 

𝑚𝑎𝑥 2.7410 2.6876 2.6876 2.6862 2.6977 2.6985 

𝑚𝑖𝑛 2.5643 2.5875 2.5869 2.5894 2.5923 2.5828 

Osteoporosis  

𝑚 ± 𝜎 2.5398±0.0576 2.5542±0.0218 2.5471±0.0219 2.5471±0.0220 2.5537±0.0218 2.5362±0.0300 

𝑚𝑎𝑥 2.6064 2.5821 2.5809 2.5787 2.5819 2.5793 

𝑚𝑖𝑛 2.4911 2.5242 2.5246 2.5225 2.5211 2.5162 

∆  -0.0421 0.0054 0.0060 0.0107 0.0104 0.0035 

𝑝 −  𝑣𝑎𝑙𝑢𝑒  0.0511 1.4045e-04 1.4045e-04 1.4045e-04 1.4045e-04 1.4756e-04 
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Table 9  Statistical analysis of FD using median filter (MF) + DCT%+DBCM for X-Ray images. 

Box size  

[5: 5: 30] 
FD Without DCT DCT 25% DCT50% DCT75% DCT100% 

DCT25%   

(Noisy images) 

Healthy 

𝑚 ± 𝜎 1.9983±0.0887 2.2444±0.0095 2.2449±0.0100 2.2413±0.0126 2.2439±0.0117 2.2468± 0.0204 

𝑚𝑎𝑥 2.0629 2.2651 2.2603 2.2556 2.2639 2.2714 

𝑚𝑖𝑛 1.9069 2.2435 2.2332 2.2213 2.2298 2.2381 

Osteoporosis 

𝑚 ± 𝜎 2.1531±0.0823 2.2768±0.0088 2.2771±0.0091 2.2738±0.0097 2.2760±0.0072 2.2794± 0.0110 

𝑚𝑎𝑥 2.1376 2.2979 2.2922 2.2903 2.2865 2.3015 

𝑚𝑖𝑛 2.0323 2.2610 2.2642 2.2581 2.2674 2.2737 

∆  -0.0306 0.0041 0.0039 0.0025 0.0035 0.0023 

𝑝 −  𝑣𝑎𝑙𝑢𝑒  0.0615 1.5589e-04 1.5589e-04 1.5589e-04 1.5589e-04 1. 5589e -3 

 

Table 10  Statistical analysis of FD using contrast enhancement (CE) + DCT%+DBCM for X-Ray 

images. 

Box size 
[5: 5: 30] 

FD Without DCT DCT25% DCT50% DCT75% DCT100% 
DCT25%   

(Noisy images) 

Healthy 

𝑚 ± 𝜎 1.9381±0.0795 2.2042±0.0261 2.2046±0.0263 2.2049±0.0262 2.2053±0.0260 
2.2328± 

0.0314 

𝑚𝑎𝑥 2.0205 2.2506 2.2049 2.2025 2.2018 2.2712 

𝑚𝑖𝑛 1.8542 2.1695 2.1284 2.1283 2.1283 2.1924 

Osteoporosis 

𝑚 ± 𝜎 2.1153±0.0647 2.2851±0.0297 2.2856±0.0298 2.2861±0.0296 2.2844±0.0295 
2.3024± 

0.0340 

𝑚𝑎𝑥 2.1658 2.3378 2.2965 2.2968 2.2974 2.3484 

𝑚𝑖𝑛 2.0532 2.2587 2.2131 2.2093 2.2088 2.2764 

∆  -0.0327 0.0081 0.0082 0.0068 0.0070 0.0052 

𝑝 −  𝑣𝑎𝑙𝑢𝑒  0.0556 1.5540e-04 1.5540e-04 1.5540e-04 1.5540e-04 1.6154e-3 

 

Especially, a quick look at the results highlighted in Tables 7-10 reveals both the 

importance of the DCT task and the sufficiency of a small proportion of DCT components 

(25 % for both MRI and X-Ray images) to achieve a successful discrimination of healthy 

from osteoporosis cases. Besides, a fair comparison between MF and CE preprocessing 

indicates a marginal outperformance of median (resp. CE) like-approach in the case of 

MR images (resp. X-Ray images) as revealed by the value of the ∆ entity. This provides 

further motivation grounds for subsequent analysis of the image database. On the other 

hand, instead of displaying global results across all images highlighted in Tables 7-10, 

through averaging operation, it is also interesting to see the variations of the FD across 

individual images that highlight key patterns. For this purpose, Figure 8 and 9 provide an 

example of FD estimate for both healthy and osteoporosis cases of images pertaining to 

the same contextual scenario (described in the database by letters) G, S, O, B and T for 

healthy and C, U, K, M, E for osteoporosis in case of MRI. In the context of X-Ray images 

P, A, R, I and Z for healthy and V, X, F, N, and W for osteoporosis bones. For illustration 

purposes, we deliberately restricted to the image classes exhibiting important visual 

variations. In terms of pre-processing tasks, we deliberately restricted to median filter 

(MF) for MRI images and CE for X-Ray images because of the results pointed out in 

Tables 7-10. The lines in blue represent the healthy case and the lines in red represent the 

osteoporosis case.  
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Fig. 8 Variation of the FD preprocessed using MF with DCT 50% and without DCT for MRI. 

 

 

Fig. 9 Variation of the FD preprocessed using CE with DCT 50% and without DCT for X-Ray images. 

 

Figure 10 highlights the range in the variations of the fractal dimension values for 

various DCT percentages (DCT%) in the case of CE-preprocessing applied to MRI 

texture images, discriminating Healthy and Osteoporosis cases.  

Figure 11(Figure 12) exhibits the overall performance of CE preprocessed MRI (X-

Ray) texture images in terms of FD range values over three distinct classes: non-noisy 

images without DCT features, non-noisy images with 25% DCT, noisy images with 25% 

DCT.  
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From these figures, one notices the absence of overlapping in the FD range estimates 

on non-noisy images preprocessed using the CE method with 25% DCT, which testifies 

of the ability of the developed FD-based approach to discriminate healthy and 

osteoporosis cases. Although, the use of CE in MRI (X-Ray) texture images showed 

successful discrimination even in the case of noisy-images. In contrast, the use of CE or 

MF without DCT indicates an overlap between the healthy cases and the osteoporosis 

cases, and therefore, we cannot distinguish healthy trabecular textures from the 

osteoporosis cases in the spatial domain using DBCM.  

 

 

Fig. 10 FD results using DBCM with preprocessing (CE) for different DCT percentages (CE+DCT%) for 

MRI. 

 

 

 

Fig. 11  FD results using DBCM with (Contrast Enhancement (CE), (CE+ DCT25%)) for MRI. 

 



20 
 

 

 

 
 

Fig. 12  FD results using DBCM with ((CE), (CE+ DCT25%)) for X-Ray images. 

 

 

4.4 Directional analysis (anisotropic analysis) 

According to the anisotropic property of the trabecular texture, different characteristics 

can be presented for different orientations or directions. To test the developed approach 

to directional changes, we designed a new experiment in which the original texture 

images are rotated with incremental angles from 0° to 360° with a step angle of 15° and 

repeated the FD calculus process using both preprocessed and non-preprocessed MRI / 

X-Ray images. In other words, for each rotated texture, we have applied the DCT 

followed by the DBCM to the transformed texture to estimate the value of the directional 

FD with the variation of the box sizes from (5: 5: 30) pixels. A total of 25 rotation angles 

(0°:15°:360°) were generated, yielding 25 different FD values for the same texture. Next, 

these FD are averaged across the various angles. This process is applied to both (raw and 

preprocessed) healthy and osteoporosis texture issues of MRI and X-Ray images. Noisy 

cases were also created and tested accordingly to quantify the robustness of the approach. 

Tables 11 and 12 summarize the mean statistical results of directional FD for MRI and 

X-Ray texture images, respectively, using DBCM. For each class, we provide the result 

in terms of the mean, the standard deviation, the maximum and the minimum of the 

directional FD and the degree of anisotropy (DA), which is defined as the ratio between 

the maximum and the minimum of directional FD estimate (equation (2)). The associated  

𝑝 − 𝑣𝑎𝑙𝑢𝑒 for both MRI and X-Ray images are also reported. 

 

𝐷𝐴 =
max (𝐹𝐷)

min (𝐹𝐷)
                                                                                                         (2) 
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Table 11  Statistical analysis of directional FD using preprocessing (CE or MF)+rotations (0°:15°:360°)+ 

DCT+DBCM for MRI. 

Preprocessing Cases 𝑚 ± 𝜎 𝑚𝑎𝑥 𝑚𝑖𝑛 𝐷𝐴 𝑝 −  𝑣𝑎𝑙𝑢𝑒 

Without 
Preproc. 

Healthy 2.6293±0.0653 2.6442 2.5774 1.0259 
0.0831 

Osteoporosis  2.6273±0.0872 2.6424 2.5772 1.0252 

MF  
Healthy 2.5875±0.0636 2.5998 2.5491 1.0198 

0.0634 
Osteoporosis  2.6357±0.0782 2.6490 2.5963 1.0202 

CE 
Healthy 2.6448±0.0821  2.6685 2.4594 1.0850 

0.0634 
Osteoporosis  2.6125±0.0716  2.6309 2.5400 1.0357 

(MF)+DCT 
Healthy 2.1190±0.0619 2.4026 1.8806 1.2775 

4.5482e-4 
Osteoporosis  2.2974±0.0526 2.5807 2.1013 1.2281 

 (CE)+DCT 
Healthy 2.2016±0.0428 2.4765 1.9798 1.2508 

4.1708e-4 
Osteoporosis  2.3730±0.0449 2.6565 2.1781 1.2196 

(CE+DCT) for 

noisy images 

Healthy 2.1943± 0.0627 2.4713 1.9772 1.2498 
5.8639e-4 

Osteoporosis  2.3688 ±0.0528 2.6534 2.1629 1.2267 

(MF+DCT) for 

noisy images  

Healthy 2.1430±0.0468 2.4180 1.9362 1.2488 
3.7952e-3 

Osteoporosis  2.2953±0.0561 2.5775 2.0964 1.2294 

 

 

Table 12  Statistical analysis of directional FD  using preprocessing (CE or MF)+rotations 

(0°:15°:360°)+ DCT+DBCM for X-Ray images. 

Preprocessing Cases 𝑚 ± 𝜎 𝑚𝑎𝑥 𝑚𝑖𝑛 𝐷𝐴 𝑝 −  𝑣𝑎𝑙𝑢𝑒 

Without 
 preproc.  

Healthy 2.1672±0.0532 2.1789 2.1429 1.0167 
0.0679 

Osteoporosis 2.1963±0.0618 2.2080 2.1644 1.0201 

MF 
Healthy 2.1614±0.0578 2.1743 2.1365 1.0176 

0.0679 
Osteoporosis  2.1956±0.0630 2.2075 2.1619 1.0210 

CE 
Healthy 2.1818±0.0427 2.2060 2.1145 1.0432 0.0634 

 Osteoporosis  2.2455±0.0622 2.2646 2.2027 1.0281 

(MF+DCT) 
Healthy 2.0282±0.0664 2.3306 1.8472 1.2616 

4.7805e-4 
Osteoporosis  2.1977±0.0568 2.5113 2.0054 1.2522 

(CE+DCT) 
Healthy 2.0078±0.0396 2.3005 1.8372 1.2521 

4.7820e-4 
Osteoporosis  2.1978±0.0422 2.5036 2.0187 1.2402 

(MF+DCT) for 

noisy images  

Healthy 2.0263±0.0661 2.3276 1.8466 1.2604 3.7952e-3 

 Osteoporosis  2.1425±0.0575 2.4570 1.9568 1.2556 

(CE+DCT) for 
noisy images 

Healthy 2.0361 ±0.0621 2.3415 1.8441 1.2697 
4.8368e-4 

Osteoporosis  2.1801±0.0544 2.4967 1.9985 1.2492 

 

Figures 13-19 display the mean results of the directional FD estimates as a function of 

angles from 0° to 360° in Polar and Cartesian representation for each case presented in 

Table 11 and Table 12, where the lines in blue represent the healthy case and the lines in 

red represent the osteoporosis case. A quick look at these figures shows important 

variations in the FD estimates with respect to rotational angles, especially in the Cartesian 

frame, which, somehow demonstrates the anisotropy property of the trabecular textures. 

Figures 20 and 21 highlight the overall average of the means of directional FD estimates 

of each class for MRI. More specifically, Figure 20 uses the median filter as preprocessing 

applied to MR images, while Figure 21 uses the contrast enhancement as a preprocessing 

method applied to X-Ray images. From these two figures, one notices that there is no 

overlapping using (CE+DCT), and, thereby, we can classify the healthy trabecular 

textures from the osteoporosis cases in the DCT domain using DBCM. In contrast, the 

use of CE or MF without DCT indicates an overlap between the healthy cases and the 

osteoporosis cases, and therefore, we cannot classify the healthy trabecular texture from 

the osteoporosis cases in the spatial domain using DBCM.  
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Fig. 13  Results of directional FD without preprocessing for X-Ray images in polar and Cartesian 

representation. 

      

Fig. 14 Results of directional FD with preprocessing MF for MRI in polar and Cartesian representation. 

 

       

Fig. 15 Results of directional FD with preprocessing CE for X-Ray images in polar and Cartesian 

representation. 
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Fig. 16 Results of directional DBCM in the DCT domain using preprocessing (CE) for MRI in polar and 

Cartesian representation. 

 

      

Fig. 17  Results of directional DBCM in the DCT domain using preprocessing (MF) for X-Ray images in 

polar and Cartesian representation. 

 

      

Fig. 18  Results of directional DBCM in the DCT domain using preprocessing (MF) for noisy MRI  in 

polar and Cartesian representation. 
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Fig. 19  Results of directional DBCM in the DCT domain using preprocessing (CE) for noisy  X-Ray 

images in polar and Cartesian representation. 

 

Fig. 20  Mean directional FD results using DBCM with preprocessing median filter in DCT domain for 

MRI.   

 

Fig. 21 Mean directional FD results using DBCM with preprocessing contrast enhancement (CE) in DCT 

domain for X-Ray images. 
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4.5 Robustness to noise  

Given the various sources of uncertainty pervading the image acquisition process 

including both operator expertise and general environmental conditions that could 

substantially undermine the quality of the underlying images, which in turn might affect 

the subsequent diagnosis, we selected a random sample of noisy images (of low to 

medium noise intensity) in order to test the robustness of the developed approach. The 

images were generated by injecting a random noise of low to medium intensity into real 

images for both MRI and X-Ray imaging modalities, starting from an additive noise of 

zero mean and standard deviation of 0.01 as pointed out in subsection 3.3. The results of 

FD estimation are summarized in Figures 11, 12, 20 and 21. The latter exhibits the range 

of FD values for both healthy and osteoporosis cases with comparison to non-noisy 

images distinguishing the cases of the presence and absence of DCT processing. 

Especially, the absence (resp. presence) of overlapping among the range of FD estimates 

(for healthy and osteoporosis) testifies the success (resp. failure) of the FD-based 

diagnosis operation. The ability of the approach to discriminate healthy and osteoporosis 

cases demonstrate the robustness of the approach in the presence of disturbances.  

A quick look at the results highlighted in Figures 11, 12, 20 and 21 reveals the 

robustness of the approach for both MRI and X-Ray images. This issue will be discussed 

in the next subsection. 

4.6 Discussion  

The analysis of the results displayed in the previous subsections reveals the following: 

1) The importance of the preprocessing stage cannot be ignored in robustifying the 

estimation of the fractal dimension54. Intuitively, both median filter and contrast 

enhancement help in dealing with low noise intensity that may occur in the 

original image database while highlighting key patterns in the images. This, in 

turn, enhances the FD estimation as it can be noticed through a decrease in 𝑝 −
𝑣𝑎𝑙𝑢𝑒 as compared to Tables 5 and 6 (without preprocessing). On the other hand, 

in terms of the absolute value of the FD estimate, one notices an increase when 

the median-filter preprocessing stage has been introduced. For instance, this goes 

from 2.6930±0.1172 to 2.7407±0.0864 for healthy and from 2.6262±0.1094 to 

2.6390±0.0817 for osteoporosis cases for MRI images. While a relatively 

constant FD estimate is noticed in case of X-Ray images, e.g., 1.9832±0.1314 to 

1.9983±0.0649 for healthy and 2.0999±0.1136 to 2.1531±0.0823 for 

osteoporosis cases. However, such a trend is not preserved when contrast 

enhancement preprocessing is applied.  One notices a decrease in FD value for 

healthy cases (from 2.6930±0.1172 to 2.6334±0.0649 for MRI, 1.9832±0.1314to 

1.9381±0.0795for X-Ray images) and a decrease/increase in FD for osteoporosis 

cases (2.6262±0.1094 to 2.5398±0.0576 for MRI, 2.0999±0.1136 to 

2.1153±0.0647 for X-Ray images). 

2) The application of the preprocessing stage alone, either median filter or contrast 

enhancement, is proven not sufficient to ensure a clear distinction between healthy 

and osteoporosis cases as demonstrated by a  𝑝 −  𝑣𝑎𝑙𝑢𝑒 greater than 0.05 and a 

negative  ∆.  

3) According to Figures 6 and 7 (right), the use of the PSNR metric reveals that the 

median filter yields a better result than contrast enhancement for both MRI and 

X-Ray images. On the other hand, according to the SSIM metric, the graph reveals 

mixed results where CE outperforms (underperforms) MF in the case of MRIs 
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dataset (X-Ray dataset).  

4) The contribution of the discrete cosine transform (DCT) is clearly noticed from 

Tables 8-10 and Figures 8-12, Tables 11-12 and Figures 16-21 for directional 

analysis. Indeed, regardless of whether the median filter or contrast enhancement 

preprocessing has been employed, the application of DCT systematically leads to 

a clear distinction between healthy and osteoporosis patterns as demonstrated by 

positive values of ∆  and 𝑝 −  𝑣𝑎𝑙𝑢𝑒 (𝑝  0.05), regardless the percentage of DCT 

coefficients employed. This result is valid for both MRI and X-Ray images of the 

database. Besides, monitoring individual values of FD for individual images over 

the 10 key image types in the database shows no occurrence of overlapping when 

DCT has been employed. Besides, through monitoring the mean values of FD 

estimate for each class (healthy and osteoporosis) presented in Figures 13-21, no 

occurrence of overlapping when DCT has been employed even in the presence of 

noise was shown. 

5) From figures 14 to 19, we note that the variation of the directional FD shape from 

0° to 90° is repeated three times from 90° to 180°, from 180° to 270° and from 

270° to 360°.  

6) Through monitoring the FD value, one notices that the fractal dimension increases 

systematically when DCT was employed as a counterpart to its value when DCT 

is ignored. This applies to both MRI and X-Ray images regardless of whether the 

median filter or contrast enhancement was employed. 

7) Overall comparison between the median filter and contrast enhancement as 

preprocessing stages for discrete cosine transform reveals mixed results, where 

according to ∆ values, a clear superiority of the median filter is noticed in case of 

MRI images and contrast enhancement in case of X-Ray images. Intuitively this 

is also explained by the lower quality of X-Ray images of the database, which 

requires contrast enhancement to highlight key patterns of the images. 

8) Comparing the results with various percentages of DCT coefficients reveals that 

FD exhibits a roughly constant value (the change occurs only up to a third decimal 

number) regardless of whether a median filter or contrast enhancement has been 

employed. This demonstrates that the use of a small percentage (25% for both 

MRI and X-Ray images) is enough to guarantee a clear distinction between 

healthy and osteoporosis cases.  Figure 10 presents an example of results with 

preprocessing contrast enhancement (CE) with different DCT percentages 

(CE+DCT%) in the case of MRI. 

9) The results highlighted in subsection 4.2 indicated that FD estimated by linear 

regression through the DCBM method is sensitive to the interval of scales 

considered during the operation of box-counting. It also shows that DBCM is very 

sensitive to the presence of important grey-level variations at relatively isolated 

locations (e.g., presence of singularity)55. Therefore, the use of DCT is shown to 

robustify the FD estimation by making the estimate less sensitive to such 

phenomena (box sizes, singularities). This is due to both the denoising ability 

introduced by the preprocessing stage and the frequency handling conveyed by 

the DCT-based approach. 

10) The directional fractal analysis reinforces the property of the anisotropy of the 

trabecular bone textures, and we still can separate the healthy cases from the non-
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healthy ones in both MRI and X-Ray imaging modalities using the mean 

directional FD estimate for each class, or the degree of anisotropy, DA, for each 

class, where the results indicate 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠  (𝑝 <  0.0004).  

11) Strictly speaking, as already pointed out in the introduction part of this paper, the 

DCT is widely applied in the field of image compression, and up to some extent 

to image classification. To our knowledge, the DCT has not been previously 

applied to fractal analysis for texture characterization of trabecular bone texture. 

12) Comparing our results with alternative results in51 where the same image database 

has been employed (X-Ray images) and an alternative method based on 

variational and morphological cover reveals a mean FD of 2.910.15 for healthy 

cases and 2.720.15 for osteoporosis, which constitutes a slight increase 

compared to FD results obtained in our study. Besides a more noticeable 

distinction between healthy and osteoporosis cases is observed in our study.  

13) Comparing our results with alternative results in35 and 38, where the authors used 

the X-Ray trabecular textures of calcalneus, although the database is very 

different, the trabecular textures have the same properties. The authors used the 

directional fractal analysis and estimated the Hurst parameter (𝐻𝑚𝑒𝑎𝑛) with 

different estimators. Besides, due to the analogy between Hurst parameter and 

fractal dimension, equivalent results in terms of the ability of FD estimate to 

differentiate healthy from non-healthy cases can be derived accordingly.  

14) Although the process of noising original images by injecting random noise 

uniformly distributed in the image region, which is commonly employed in the 

image processing community, can be debatable, the results of subsection 4.5 

evaluate the robustness of the developed approach. The marginal failure to fully 

discriminate osteoporosis cases in X-Ray images is mainly rooted back to the 

quality of the X-Ray images themselves as already pointed out.   

15) The preceding demonstrates the simplicity and computational attractiveness of the 

developed approach whose algorithmic complexity is of the order of  
𝑁

8
log2

𝑁

8
  

where 𝑁 stands for the size of the image, which, in turn, likely yields important 

gain in terms of medication cost. The accuracy56 of the developed approach to 

characterize the trabecular bone texture is exemplified through a 𝑝 − 𝑣𝑎𝑙𝑢𝑒 (𝑝 <

 0.0001). It is a pragmatic and clinically effective method, which has been 

implemented on a prototype device where the first validation tests were 

promising.  

16) The results reported in this study correspond to a single configuration of the 

acquisition devices (X-Ray and MRI devices). However, a growing number of 

studies reported the impact of the acquisition parameters on the quality of the 

image outputted by the MRI or X-Ray devices, which can potentially influence 

the 𝐹𝐷 estimate as well. Unfortunately, while acknowledging the importance of 

such factors, we do not have access directly to the measurement devices in order 

to tune the acquisition parameters, and test subsequent hypotheses. Therefore, we 

cannot speculate on the potential impact of such factors on the 𝐹𝐷 estimates of 

our developed approach. Intuitively, one may guess that some adjustments that 
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will be brought by the change in acquisition parameters can be compensated by 

the preprocessing stage and thereby leaves the 𝐹𝐷 estimates unchanged. However, 

other adjustments can induce stronger changes in the morphology of the output 

image, which cannot be compensated by the preprocessing stage, and, thereby, 

expects a non-negligible impact on the 𝐹𝐷 estimates. 

5 Conclusion  

In this paper, a new method for a robust estimation of  the fractal dimension for 

trabecular bone texture analysis is put forward. The approach builds on a fruitful 

combination of DCT coefficients and the differential box-counting method (DBCM) 

while contrasting two commonly employed preprocessing techniques: median filter and 

contrast enhancement. Such an approach is found very useful to handle the sensitivity of 

the standard DBCM approach to both box-size variations and the presence of 

singularities. The developed methodology was applied to a large database of trabecular 

bone texture containing both MRI and X-Ray images of healthy and osteoporosis tissues. 

The algorithm is shown to be simple, effective and computationally attractive to 

characterize the trabecular bone texture. The approach has demonstrated a successful 

separation of osteoporosis and healthy cases as highlighted by both statistical analyses, 

through the Wilcoxon rank-sum test, using 𝑝 − 𝑣𝑎𝑙𝑢𝑒 and overall margin difference, and 

the monitoring of individual FD values of separate images. The results also show a 

steady-state of the FD estimate for the various proportion of DCT coefficients employed, 

which demonstrates that the objective of distinguishing healthy patterns from 

osteoporosis cases can be achieved with only a minimum level of DCT percentage, where 

a quarter of DCT coefficients suffices to characterize osteoporosis tissues. The proposed 

approach is pragmatic and clinically effective, which can be implemented on a prototype 

device where the first validation tests are promising. The results exhibited in this paper 

open new challenges to estimating the fractal dimension, which rather focuses on image 

transforms instead of complex transformations of the differential box-counting method 

that have been pursued by some scholars. From a medical diagnosis perspective, our 

results suggest that bone texture analysis might be a useful tool in the assessment of 

osteoporosis. On the other hand, in the light of alternative studies, one may also expect 

that through monitoring the evolution of the FD estimate, one may gain further insights 

into the mechanisms of tumor growth. 

As a way forward, the work opens new perspectives for enhancing the FD estimation-

based approach by introducing new features as a result of a fruitful combination of basic 

processing stages with a frequency57 like transforms to test the ability of fractal dimension 

to distinguish healthy and non-healthy tissues using a variety of medical imaging datasets. 
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