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Abstract: Growing empirical evidence reveals that traditional set-theoretic structures cannot in
general be applied to cognitive phenomena. This has raised several problems, as illustrated,
for example, by probability judgement errors and decision-making (DM) errors. We propose
here a unified theoretical perspective which applies the mathematical formalism of quantum
theory in Hilbert space to cognitive domains. In this perspective, judgements and decisions are
described as intrinsically non-deterministic processes which involve a contextual interaction between
a conceptual entity and the cognitive context surrounding it. When a given phenomenon is considered,
the quantum-theoretic framework identifies entities, states, contexts, properties and outcome statistics,
and applies the mathematical formalism of quantum theory to model the considered phenomenon.
We explain how the quantum-theoretic framework works in a variety of judgement and decision
situations where systematic and significant deviations from classicality occur.

Keywords: quantum structures; concept theory; decision theory; cognitive fallacies; disjunction effect;
Ellsberg paradox; quantum modelling; historical perspectives

1. Introduction

Set-theoretic algebraic structures, like Boolean algebras, are the building blocks of classical
(Boolean) logic and classical (Kolmogorovian) probability. It is, for example, well known that the
elementary connectives of conjunction, disjunction and negation in Boolean logic are represented
by the set-theoretic operations of intersection ∩, union ∪ and complementation \, respectively.
Similarly, conjunctions and disjunctions of two events are represented by the same set-theoretic
operations in Kolmogorovian probability theory [1–3].

Set-theoretic structures were originally used in classical physics and later applied to a variety of
disciplines, from psychology to economics, finance, computer science and statistics. This is why one
usually refers to them as “classical structures”. In particular, Kolmogorovian probability models
have characterized the experimental revolution which occurred in cognitive psychology in the
1970s [4]. In this regard, it is worth to briefly summarize the fundamental definitions and results of
Kolmogorovian probability theory that are needed for the scopes of the present paper.

Let S 6= ∅, let P(S ) be the power set of S , and let A ⊆P(S ). We say that A is a “σ-algebra”
if it satisfies the following properties:

(I) S ∈ A ;
(II) for every E ∈ A , E′ = S \ E ∈ A ;

(III) for every countable family {Ei ∈ A }i∈N, ∪i∈NEi ∈ A .
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It straightly follows from the definition that, in a σ-algebra A , for every countable family
{Ei ∈ A }i∈N, ∩i∈NEi ∈ A . A σ-algebra A is in particular distributive, that is, for every E, F, G ∈ A ,
E ∩ (F ∪ G) = (E ∩ F) ∪ (E ∩ G) and E ∪ (F ∩ G) = (E ∪ F) ∩ (E ∪ G). It then follows from
distributivity that, for every E, F ∈ A , E = (E ∩ F) ∪ (E ∩ F′).

Let now S 6= ∅, let A ⊆ P(S ) be a σ-algebra, and let p : E ∈ A 7→ p(E) ∈ [0, 1] be
an application over A . We say that p is a “normalized probability measure” if it satisfies the
following conditions:

(1) p(S ) = 1 (normalization);
(2) for every countable family {Ei ∈ A }i∈N of pairwise disjoint sets, that is, Ei ∩ Ej = ∅, i 6= j,

p(∪i∈NEi) = ∑i∈N p(Ei) (additivity).

The sets in A correspond to “events” of the real world. Conditions (1) and (2) were introduced by
Kolmogorov, hence, the normalized probability measure p is called “Kolmogorovian probability” [1].

Then, let p : E ∈ A 7→ p(E) ∈ [0, 1] be a Kolmogorovian probability, and let E, F ∈ A ,
with p(E), p(F) 6= 0. We define the “conditional probability” p(E|F) of E given F as

p(E|F) = p(E ∩ F)
p(F)

. (1)

The conditional probability p(F|E) of F given E is defined in an analogous way, and the
“Bayes formula”

p(F)p(E|F) = p(E ∩ F) = p(F ∩ E) = p(E)p(F|E) (2)

holds. The following laws of Kolmogorovian probability can be finally derived. For every E, F ∈ A ,

p(E) = p(F)p(E|F) + p(F′)p(E|F′), (3)

which is known as the “law of total probability”, and

p(E ∩ F) ≤ p(E), p(F) ≤ p(E ∪ F), (4)

which is known as the “law of monotonicity”.
Growing empirical evidence in cognitive psychology reveals that the classical structures above,

when applied to complex processes, like judgement and decision-making (DM), lead to predictions that
do not agree with empirical data [4,5]. Deviations from classicality in these domains can be roughly
divided into two main groups, as follows [6].

(i) Probability judgement errors. Given two events E and F, people judge the conjunction event
‘E and F’ (disjunction event ‘E or F’) as more (less) probable than the event E or/and F
separately. This entails a “violation” of the of the law of monotonicity (cfr., Equation (4)).

(ii) DM errors. Given two actions f and g, people prefer f over g if they know that an event E occurs,
and also if they know that E does not occur, but they prefer g over f if they do not know whether
E occurs or not. This entails a “violation” of the law of total probability (cfr., Equation (3)).

Over-/under-extension effects in membership judgements on conceptual combinations [7,8] and
conjunctive/disjunctive fallacies [9,10] are examples of type-(i) errors. The disjunction effect [11] and
empirical violations of expected utility theory (EUT) [12] are instead examples of type-(ii) errors.

The existence of situations of type-(i) and type-(ii) entails, in particular, that:

• the most natural set-based models of cognition cannot in general be used to represent human
judgements and decisions;

• the usual interpretation of human behaviour in terms of classical (Boolean) logic and classical
(Kolmogorovian) probability theory is problematical when human judgements and decisions are
at stake.
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The famous “Kahneman-Tversky research programme” considers the above empirical deviations
from classicality as genuine fallacies of human reasoning and provides a theoretical framework for
them which assumes individual heuristics and judgement biases [5,13], in substantial agreement
with Simon’s theory of bounded rationality [14]. This explains why terms like error, effect, fallacy,
paradox, contradiction, and so forth, are typically used in these cases. A major limitation of the
Kahneman-Tversky research programme is that it works at an intuitive level and has manifold
applications, but it does not provide a general theory of human judgements and decisions. This has
led various scholars to explore alternative mathematical structures which are more appropriate than
classical structures to model these phenomena.

On the other side, quantum theory is certainly one of the most successful theoretical
achievement that humans have ever produced. Originally elaborated to cope with specific phenomena
where empirical results did not agree with the predictions of classical physics, for example,
black-body radiation, photoelectric effect, atomic modelling, and so forth, quantum theory is nowadays
applied to any conceivable scale, from the micro-world to living matter.

We add that classical physics had to face at the beginning of the 1900s problems of incompatibility
between classical structures and their underlying logic and empirical results that are similar to the
problems discussed here. For example, from the beginning of the 1900s, the problem of black-body
radiation represented the critical root of quantum theory in a period in which already the space in
physics had started to be conceived differently from the Euclidean one. Thus, the logical structure of the
forthcoming theories changed as well. Regarding the black-body radiation, the main epistemological
and foundational problem concerned the way in which the intensity of electromagnetic radiation
emitted by a black body (i.e., a perfect absorber, also known as a “cavity radiator”) depended on the
frequency of the radiation (i.e., the colour of light) and the temperature of the body. In other words,
a mathematical function was looked for which was able to work with both energy and frequencies.
This situation was logically the opposite that scientists had faced in the 1800s with the previous theory
of light. Other theories such as thermodynamics, analytical theory of heat and electromagnetism were
involved in the debate (see, e.g., References [15–20]).

In its modern versions, quantum theory is formulated in a mathematical language that uses
Hilbert spaces, unit vectors, self-adjoint operators and unitary dynamics, which give rise to specifically
non-classical algebraic and probabilistic structures, like non-Boolean lattices, non-Kolmogorovian
probabilities, non-commutative algebras, and so forth. In addition, quantum effects, like contextuality,
emergence, entanglement, interference, nonlocality, superposition, and indistinguishability, do not
admit a classical counterpart (see, e.g., Reference [21]).

Because of their generality and flexibility, quantum structures in Hilbert space may provide
the mathematical tools to deal with the classically problematical phenomenology above and,
indeed, quantum mathematical structures have systematically and successfully been applied
to a variety of complex systems in psychology, social science, biology and computer science
(see, e.g., References [4,22–29] and references therein).

We review and deepen in the present paper the contribution to the “quantum cognition
research programme” that we have provided in a decade of collaboration between the Brussels and
Leicester research teams (see, e.g., References [30–35] and references therein). More precisely, we put
forward a unitary theoretical framework in which both judgements and decisions are described as
intrinsically non-deterministic context-dependent processes and provide the foundations for applying
quantum theory in Hilbert space as a general theory for these processes. The ensuing models,
originally designed to represent specific phenomena, then find their foundation and justification
in the general quantum-theoretic framework presented here. The foundation of a quantum modelling
can then be split into three main steps, as follows.

The first step consists in the recognition that, in any judgement/decision process, exactly as in
a quantum measurement process, a contextual influence (of a cognitive, rather than physical, type)
occurs where one outcome is actualized from a set of possible outcomes. Like in quantum physics,
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the (measurement) context does not reveal pre-existing properties of the entity but, it rather actualizes
properties that were only potential in the initial state in which the entity had been prepared—unless the
initial state was chosen to be an eigenstate of the measurement in object.

The second step consists in the development of a “State-Context-Property (SCoP) formalism”,
originally worked out to provide a realistic and operational foundation of quantum physics [36,37].
In the SCoP formalism, tests involving judgements and decisions are considered as complex
phenomena in which:

(a) the conceptual entity under study is prepared by the test in a defined state and each participant
is confronted with this uniquely prepared state;

(b) an interaction occurs on a cognitive level between the conceptual entity and the participant,
which acts as a (measurement) context for the entity;

(c) the interaction is in general non-deterministic and the state of the conceptual entity is
transformed into a new state;

(d) the state change makes actual (potential) some properties of the conceptual entity which were
potential (actual) in the initial state;

(e) when the responses of all participants are collected, a statistics of outcomes is obtained.

The third step consists in the development of a unified quantum representation. Indeed, whenever a
specific cognitive phenomenon is studied and one identifies points (a)–(e) in it, namely, the conceptual
entity, its states, properties, the relevant contexts and the statistics of measurement outcomes, then the
notions in (a)–(e) are represented in the quantum-theoretic framework in exactly the same way as entities,
states, context, properties, probabilities and dynamics are represented in the Hilbert space formalism of
quantum theory. Proceeding in this way, one can in principle apply the quantum-theoretic framework to
any judgement and decision.

The theoretical framework presented here is alternative to the Kahneman-Tversky research
programme, because it considers the empirical deviations from classicality in cognition as natural
expressions of genuine quantum structures in human reasoning, which overlap with classical reasoning
and reveal a separate layer of reasoning, namely, “emergent”, or “conceptual”, reasoning [34].

For the sake of completeness, we summarize the content of this paper in the following.
We respectively review in Sections 2 and 3 the type-(i) errors that occur in conceptual

conjunctions/disjunctions and conjunctive/disjunctive fallacies. Then, we respectively review in
Sections 4 and 5 the type-(ii) errors that occur in the disjunction effect and Ellsberg-type violations
of EUT. We also sketch limitations of traditional modelling techniques and explanations for both
types of cognitive fallacies. Next, we present in Section 6 the SCoP formalism for conceptual entities,
applying the formalism to human probability judgements in Section 6.1 and to human decisions in in
Section 6.2. In these sections, we also show how a representation in Hilbert space can be constructed.
This quantum-theoretic framework enables successful modelling of membership judgements in
conceptual combinations, which is shown is Section 7, the conjunction and disjunction fallacy, which is
shown in Section 7.1, the disjunction effect, which is shown in Section 7.2, and Ellsberg-type paradoxes,
which is shown in Section 8. Finally, in Section 9, we offer some concluding remarks.

2. Probability Judgement Errors: Over- and Under-Extension Effects

The issue of what a concept is and how concepts combine has intrigued and fascinated
epistemologists and cognitive scientists for a long time. Leaving aside the dispute between the
former and the latter on the ontology of a concept, one however recognises at once the transition
needed when one moves from a very abstract concept, as Thing, to more concrete natural concepts,
as Fruit, . . . , Apple, . . . , to finally come to an object, as This Apple.

Concepts and categorization are the areas in cognition that deal with the ancient philosophical
“problem of universals”, that is, whether unique particular objects or events can be treated
“equivalently” as members of a class. According to the “classical view of concepts”, which can
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be traced back to Aristotelian school and has been dominant until the 1950s, all instances of a concept
share a common set of necessary and sufficient defining properties. It is however well known that
this classical view contrasts with some empirical results related to the way in which people concretely
judge and combine concepts. In particular, the following aspects have been identified in empirical
studies on categorization (see, e.g., Reference [38]).

(i) Concepts are “vague,” “fuzzy,” or “graded,” notions. For example, people judge an item like
Robin as more typical than Stork when typicality is defined with respect to the concept Bird.

(ii) The meaning of a concept depends on the “context” in which the concept is used. For example,
an item like Snake, or Spider would score a low typicality with respect to the concept Pet.
But, if typicality is defined with respect to the concept Weird Pet, or Pet of a Weird Person,
then Snake, or Spider, would score a high typicality.

To account for these features of “vagueness,” “graded typicality,” “context dependence,” several
alternative theories of concepts have been proposed since the 1970s. Limiting ourselves to the most
celebrated ones, we recall the following theories.

• “Prototype theory.” A given concept is associated with a “prototype,” which has a defined set of
characteristic, not defining, features. Similarity with the prototype establishes the membership of
an item with respect to the concept [39,40].

• “Exemplar theory.” A given concept is defined by a salient set of instances of it stored in
memory [41,42].

• “Theory theory.” A concept is similar to a “mini-theory,” and concepts stand in relation to one
other in the same way as the terms of a scientific theory [43,44].

Despite mutual differences, traditional theories of concepts share the view that concepts have
the form of “fixed mental representations,” whereas context only plays a secondary role in all of
them. On the other side, a “combination problem” raises in all traditional concept theories of concepts,
namely, how the combination, for example, conjunction, disjunction, negated conjunction, of two given
concepts can be consistently represented in terms of the representation of the individual concepts.
The combination problem becomes even harder when the combination of more than two concepts is
investigated.

At first glance, one may be tempted to believe that concepts combine by means of set-theoretic
rules that are similar to those used to combine propositions in classical (Boolean) logic. In order to
incorporate conceptual vagueness into such a set-theoretic perspective, Zadeh proposed to represent
concepts by using “fuzzy set logic” [45]. Given a concept A and an item X, a “graded membership”
µX(A) ∈ [0, 1] exists such that, for any two concepts A and B, the conceptual conjunction ‘A and B’
satisfies the “minimum rule of fuzzy set conjunction”

µ(A and B) = min
[
µ(A), µ(B)

]
, (5)

and the conceptual disjunction ‘A or B’ satisfies the “maximum rule of fuzzy set disjunction”

µ(A or B) = max
[
µ(A), µ(B)

]
. (6)

However, a wide range of empirical findings reveal that classical set-theoretic structures
and, in particular, this fuzzy set representation, are not able to model even simple combinations of
two concepts.

(1) “Pet-Fish problem”, or “Guppy effect”. People judge an item like Guppy to be a very typical
example of the conjunction Pet-Fish, without judging Guppy to be a typical example of either Pet
or Fish [46].
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(2) “Overextension effects in the conjunction”. For several items, people judge the membership
weight of the item with respect to the conjunction to be higher than the membership weight of
the item with respect to one or both the component concepts [7].

(3) “Under-extension effects”. For several items, people judge the membership weight of the item
with respect to the disjunction to be lower than the membership weight of the item with respect
to one or both the component concepts [8].

(4) “Borderline contradictions”. A significant number of people judge the proposition “John is tall
and John is not tall” to be true, in particular, for some borderline cases of “John” [47].

In the late 1980s, James Hampton performed a series of cognitive tests on the conjunction and the
disjunction of two concepts [7,8]. Let us illustrate an example of these tests in the following.

Let us consider, for example, the concepts Fruits, Vegetables, Fruits and Vegetables, Fruits or Vegetables.
Let us choose a set number of items, e.g, Apple, Tomato, Broccoli, Olive, Coconut, Almond, Raisin, Acorn,
Tomato, Mushrooms, and so forth. A sample of participants are asked to judge membership of a given
item with respect to Fruits, Vegetables and, for example, their disjunction Fruits or Vegetables. A 7-point
Likert scale {−3,−2,−1, 0,+1,+2,+3} is used as a judgement of membership, where the positive
values +1, +2 and +3 indicate that the participant considers the item to be a member of the concept,
and the degree of membership increases with the value, thus the value +3 indicates that the participant
considers the item to be a “strong member” of the concept. Analogously, negative numbers indicate
non-membership, again in increasing order, thus the value −3 indicates that the participant considers
the item to be a “strong non-member” of the concept. The value 0 indicates that the participant is
unresolved about membership or non-membership of the item. The relative frequencies of positive
responses are considered, in the large number limit, as probabilities of membership and are called
“membership weights.”

Hampton collected membership weights of several items with respect to different pairs of natural
concepts and their conjunction or disjunction, finding significant deviations from classical set-theoretic
structures and introducing a specific terminology to classify such deviations.

Let X be an item and let µ(A), µ(B), µ(A and B) and µ(A or B) be the membership weights
of X with respect to the concepts A, B, their conjunction ‘A and B’ and their disjunction ‘A or B’,
respectively. We say that X is:

• “overextended with respect to the conjunction” if µ(A and B) > µ(A) or µ(A and B) > µ(B);
• “underextended with respect to the disjunction” if µ(A or B) < µ(A) or µ(A or B) < µ(B);
• “double overextended with respect to the conjunction” if µ(A and B) > µ(A) and

µ(A and B) > µ(B);
• “double underextended with respect to the disjunction” if µ(A or B) < µ(A) and

µ(A or B) < µ(B).

Overextension and double overextension express a violation of the law of monotonicity of
Kolmogorovian probability for the conjunction of two events. Let us consider, for example, the item
Razor. Hampton measured membership of Razor with respect to Weapons, Tools and their conjunction
Weapons and Tools, finding µ(A) = 0.63, µ(B) = 0.78 and µ(A and B) = 0.83, respectively.
Hence, Razor is double overextended with respect to the conjunction Weapons and Tools [7].

However, the deviation from classical structures in conceptual conjunctions is even deeper.
To illustrate this aspect, let us introduce the following definition.

We say that the membership weights µ(A), µ(B) and µ(A and B) of the item X with respect to
the concepts A, B and their conjunction ‘A and B’, respectively, correspond to “classical data for the
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conjunction” if a σ-algebra A , a Kolmogorovian probability measure p : A −→ [0, 1], and events
EA, EB ∈ A exist such that:

µ(A) = p(EA), (7)

µ(B) = p(EB), (8)

µ(A and B) = p(EA ∩ EB). (9)

One can then prove that µ(A), µ(B) and µ(A and B) are classical data for the conjunction if and
only if the following inequalities are simultaneously satisfied:

µ(A and B)−min
[
µ(A), µ(B)

]
≤ 0, (10)

µ(A) + µ(B)− µ(A and B) ≤ 1. (11)

Inequality (10) expresses the law of monotonicity for the conjunction, while inequality (11) is
called the “Kolmogorovian conjunction factor” [22].

Similarly, underextension and double underextension express a violation of the law of
monotonicity of Kolmogorovian probability for the disjunction of two events. Let us consider,
for example, the item Razor. Hampton measured membership of Curry with respect to Spices, Herbs and
their disjunction Spices or Herbs, finding µ(A) = 0.90, µ(B) = 0.40 and µ(A or B) = 0.75, respectively.
Hence, Curry is underextended with respect to the conjunction Spices or Herbs [8].

However, other non-classical effects are at play in the disjunction case too. Indeed, we say that the
membership weights µ(A), µ(B) and µ(A or B) of the item X with respect to the concepts A, B and
their disjunction ‘A or B’, respectively, correspond to “classical data for the disjunction” if a σ-algebra
A , a Kolmogorovian probability measure p : A −→ [0, 1], and events EA, EB ∈ A exist such that:

µ(A) = p(EA), (12)

µ(B) = p(EB), (13)

µ(A or B) = p(EA ∪ EB). (14)

One can then prove that µ(A), µ(B) and µ(A or B) are classical data for the disjunction if and
only if the following inequalities are simultaneously satisfied:

µ(A or B)−max
[
µ(A), µ(B)

]
≥ 0, (15)

µ(A) + µ(B)− µ(A or B) ≥ 0. (16)

Inequality (15) expresses the law of monotonicity for the conjunction, while inequality (16) is
called the “Kolmogorovian conjunction factor” [22]. Let us consider, for example, the item Olive.
Hampton measured membership of Olive with respect to Fruits, Vegetables and their disjunction Fruits
or Vegetables, finding µ(A) = 0.50, µ(B) = 0.10 and µ(A or B) = 0.80, respectively. In this case,
inequality (15) is satisfied, whereas inequality (16) is violated. Hence, the membership weights Olive
correspond to non-classical data.

As mentioned in Section 1, over- and under-extension effects in membership judgements are
examples of type-(i) errors. Additional examples of these non-classical effects will be considered in the
next section.

3. Probability Judgement Errors: Conjunctive and Disjunctive Fallacies

The identification of fallacies in cognition and the role played by psychological insights into social
science marked the beginning of new disciplines, for example, behavioural economics, and allowed
Daniel Kahneman to receive the Nobel Prize in Economic Science in 2002.
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One of the key results in his research, obtained by Kahneman in 1983, in collaboration with Amos
Tversky, was the discovery of the “conjunction fallacy” [9]. A sample of participants underwent a test
in which they were presented the following story about an hypothetical woman named “Linda”.

“Linda is 31 years old, single, outspoken and very bright. She majored in philosophy. As
a student, she was deeply concerned with issues of discrimination and social justice, and
also participated in anti-nuclear demonstrations.”

The test required participants to indicate which of the following events they judged as more likely.

(i) Linda is a bank teller.
(ii) Linda is a bank teller and is active in the feminist movement.

The test revealed that overall 85% of the participants judged event (ii) as more probable than
event (i). This empirical pattern violates the law of monotonicity of Kolmogorovian probability
(see Equation (4), Section 1). Indeed, if we denote by p(EA) the probability that the event “Linda
is a bank teller” occurs and by p(EB) the probability that the event “Linda is active in the feminist
movement” occurs, then the conjunction event “Linda is a bank teller and is active in the feminist
movement” is associated with the probability p(EA ∩ EB) in a Kolmogorovian probability framework,
and the monotonicity law requires in particular that p(EA ∩ EB) ≤ p(EA), in contrast to the empirical
findings in Reference [9].

The test was performed in two distinct ways.

• “Joint test”. The same group of participants were asked to judge the likelihood of both the
individual event and the conjunction event.

• “Separate test”. One group of participants were asked to judge the likelihood of the individual
event and another group of participants were asked to judge the likelihood of the conjunction
event.

A fallacy was identified in both types of tests. A large empirical literature exists in cognitive
psychology which confirms the existence of a conjunction fallacy in the “Linda story problem”.
However, this is not the only probability judgement error that has been identified.

A more convincing test was performed by Morier and Borgida in 1984 [10]. People participating
in the test were asked to rank the likelihood of the following events:

(i) Linda is a feminist;
(ii) Linda is a bank teller;

(iii) Linda is a feminist and a bank teller;
(iv) Linda is a feminist or a bank teller.

Let us denote by µ(A), µ(B), µ(A and B), and µ(A or B) the judgement probabilities in points (i),
(ii), (iii), and (iv), respectively. Then, Morier and Borgida found that the mean probability judgements
are ordered as follows:

µ(A) = 0.83 > µ(A or B) = 0.60 > µ(A and B) = 0.36 > µ(B) = 0.26. (17)

Thus, the test revealed the simultaneous presence of a conjunction fallacy and also
a “disjunction fallacy”.

As mentioned in Section 1, Kahneman and Tversky developed a research programme,
assuming heuristics and biases, to account in a descriptive way how people make judgements and
take decisions in the presence of uncertainty [5,9]. The main steps of it are summarized in the following.

(1) Human judgement and DM rest on a preliminary subjective assessment of the probabilities of
uncertain events.
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(2) In these processes, people rely on a limited number of heuristics principles, for example,
representativeness, availability, adjustment and anchoring, and so forth.

(3) Judgement heuristics are simple strategies/mental processes that people use to find quick
solutions to a complex problem by focusing on the most relevant aspects of it.

(4) These heuristics are generally very useful, but they may also lead to severe and systematic
errors, or “biases”, because the ensuing judgements are all based on data of limited validity.

(5) Examples of biases are given by the already mentioned over-/under-estimation of probabilities
and other fallacies.

Despite individual differences, the programme in (1)–(5) is substantially compatible with Simon’s
theory of bounded rationality, that is, rationality is limited in judgements/decisions by the tractability
of the problem, the cognitive limitations of the mind, and the time available to make a choice: people
thus seek a satisfactory, rather than an optimal, solution [14].

Let us now sketch the most celebrated explanations for conjunctive and disjunctive fallacies.

• Kahneman-Tversky explanation. The heuristics of representativeness is introduced to explain the
conjunction fallacy. The event “being a feminist and a bank teller” is judged as more representative
than the event “being a bank teller” for Linda’s story [5,9]. This explanation can be criticised,
as the heuristics hypothesis works well at an intuitive level, but a general theory of heuristics is
missing and different heuristics have to be assumed each time to accommodate different types of
fallacies [6,48].

• Misunderstanding explanation. People misunderstand the Linda problem, in the sense that they
misinterpret the terms “and” and/or “probability” in the story. This explanation can be criticised,
as the fallacy also occurs when the terms “and” and “probability” are not mentioned in the
story [48].

• Quantum probability explanation. People judge the sentence “Linda is a feminist and a bank
teller” as an ordered sequence, namely, “Linda is a feminist”, then “Linda is a bank teller”.
The two questions are incompatible in the standard quantum sense, that is, they produce different
statistical distributions when asked in a different order [4,6]. This explanation can be criticised,
as new tests seem to confirm that the conjunction fallacy is not directly related to question order
effects [49].

Conjunctive and disjunctive fallacies have been identified in several cognitive tests involving
Linda-like stories (see, e.g., References [4,6,48–51]). It should be noted that the original story considered
a likely event (L), namely, “Linda is a feminist”, and a unlikely event (U), namely, “Linda is a bank
teller”. More recent variants consider the other possible combinations “UU” and “LL”, in both
conjunctions and disjunctions. Consider, for example, the following story.

“Bill is 34 years old. He is intelligent, but unimaginative, compulsive and generally lifeless.
In college, he was strong in mathematics.”

People were asked in Reference [50] to rank likelihood of the following events.

(U) Bill is a reporter;
(LU) Bill is an accountant and plays jazz for a hobby;
(UU) Bill is a reporter and surfs for a hobby;

(L) Bill works for the Inland Revenue;
(U) Bill plays jazz for a hobby;

(LL) Bill is an accountant and works for the Inland Revenue;
(U) Bill surfs for a hobby;
(L) Bill is an accountant.

Empirical results clearly suggest that conjunctive and disjunctive fallacies are systematically
present and do not depend on likelihood of events. Tables 1 and 2 are illustrative in this direction.
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Table 1. Test by Fisk and Pidgeon on the conjunction fallacy [50]. Values obtained from the quantum
model in Section 7.1 are also reported.

Case µ(A) µ(B) µ(A and B) θc |A〉 e−iθc |B〉
LL 0.84 0.62 0.71 94.65 (0.92, 0, 0.4) (0.27, 0.74, −0.62)
LL 0.59 0.85 0.63 111.28 (0.77, 0, 0.64) (0.32, 0.86, −0.39)
LU 0.76 0.28 0.37 111.15 (0.87, 0, 0.49) (0.48, 0.23, −0.85)
LU 0.85 0.31 0.42 119.82 (0.92, 0, 0.39) (0.35, 0.43, −0.83)
UU 0.33 0.11 0.13 118.19 (0.82, 0, 0.57) (−0.23, −0.91, 0.33)

Table 2. Test by Fisk on the disjunction fallacy [51]. Values obtained from the quantum in Section 7.1
are also reported.

Case µ(A) µ(B) µ(A or B) θd |A〉 e−iθd |B〉
LL 0.82 0.6 0.78 74.88 (0.91, 0, 0.42) (0.3, 0.72, −0.63)
LL 0.85 0.62 0.72 93.60 (0.92, 0, 0.39) (0.26, 0.74, −0.62)
LU 0.61 0.2 0.47 79.28 (0.62, 0, 0.78) (−0.56, −0.7, 0.45)
LU 0.82 0.31 0.62 81.02 (0.91, 0, 0.42) (0.39, 0.4, −0.83)
UU 0.36 0.11 0.26 82.78 (0.8, 0, 0.6) (−0.25, −0.91, 0.33)
UU 0.3 0.08 0.23 75.04 (0.84, 0, 0.55) (−0.19, −0.94, 0.28)

4. Decision-Making Errors: The Disjunction Effect

We present in the next two sections examples of type-(ii) errors (cfr., Section 1). Let us preliminarily
note that both the disjunction effect, which is discussed in this section and Ellsberg paradox, which will be
discussed in Section 5, entail a violation of a fundamental axiom of EUT, namely, the “sure-thing principle”.

The sure-thing principle was formulated by Savage within his subjective EUT (SEUT) formulation [2].
He was inspired by the following story.

“A businessman contemplates buying a certain piece of property. He considers the outcome
of the next presidential election relevant. So, [. . . ], he asks whether he would buy if he knew
that the Democratic candidate were going to win, and decides that he would. Similarly, he
considers whether he would buy if he knew that the Republican candidate were going to
win, and again finds that he would. Seeing that he would buy in either event, he decides
that he should buy, even though he does not know which event obtains [. . . ].”

Tversky and Shafir performed a test on the sure-thing principle in which they asked a sample of
participants to bet on a gamble that can be played twice, that is a “two-stage gamble” [11]. Let us consider
a gamble that has probability 0.5 of winning $200 and probability 0.5 of losing $100. At each stage of the
test, respondents were asked whether they wanted to play the gamble. They were presented the following
three situations.

(i) Respondents knew they had won the first gamble.
(ii) Respondents knew they had lost the first gamble.

(iii) Respondents did not know the outcome of the first gamble.

According to the sure-thing principle, if respondents decide to play again in both situation (i) and
situation (ii), then they should play again also in situation (iii). Tversky and Shafir instead found that:

(1) 69% of the respondents who knew they had won the first gamble decided to play again.
(2) 59% of the respondents who knew they had lost the first gamble decided to play again.
(3) 36% of the respondents who did not know the outcome of the first gamble decided to play again.

The two-stage gamble test violates the sure-thing principle. Moreover, it also violates the law of
total probability of Kolmogorovian probability. Indeed, let us denote by p(EP) the probability that the
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respondent plays again without knowing the outcome of the first gamble, by p(EW) the probability
that the respondent wins the first gamble, by p(EL) the probability that the respondent loses the first
gamble, by p(EP|EW) the conditional probability that the respondent plays again knowing they have
won the first gamble, and by p(EP|EL) the conditional probability that the respondent plays again
knowing they have lost the first gamble. Then, one should have

p(EP) = p(EW)p(EP|EW) + p(EL)p(EP|EL), (18)

according to the law of total probability (see Equation 3, Section 1). But, it is easy to show that
one cannot find Kolmogorovian probabilities p(EW) and p(EL) = 1− p(EW) such that the data in
Reference [11] are reproduced, that is, p(EP) = 0.36, p(EP|EW) = 0.69 and p(EP|EL) = 0.59, and the
law of total probability is satisfied. This deviation from classicality is known as the “disjunction effect”.
A similar result was obtained in another test of the sure-thing principle, the “Hawaii problem” [11],
and also the “prisoner’s dilemma” can be formulated as a disjunction effect [52,53]. Tversky and Shafir
explained the effect suggesting that people are generally “averse to uncertainty”, that is, they prefer
sure over unsure choices. In the two-stage gamble, participants prefer to play again in both cases
where they have certainty about the outcome of the first gamble, while they refuse to play again when
they do not know the outcome of the first gamble.

Recent two-stage gamble have found an empirical pattern that substantially agrees with
Tversky-Shafir’s findings [52,53] (see Table 3).

Table 3. Average data on the two-stage gamble tests by Tversky and Shafir (TS 1992) [11], Kühberger,
Kamunska and Perner (KKP 2001) [52], and Lambdin and Burdsal (LB 2007) [53] on the disjunction
effect. Values obtained from the quantum in Section 7.2 are also reported.

Test µ(A) µ(B) µ(A or B) θd |A〉 e−iθd |B〉
TS 1992 0.69 0.58 0.37 137.26 (0.73, 0, 0.68) (0.61, 0.45, −0.66)

KKP 2001 0.72 0.47 0.48 107.37 (0.85, 0 ,0.53) (0.45, 0.51, −0.73)
LB 2007 0.63 0.45 0.41 106.75 (0.79, 0, 0.61) (0.57, 0.36, −0.74)

Tversky-Shafir’s explanation is that people are generally “averse to uncertainty”, that is, they prefer
sure over unsure actions. In the two-stage gamble test, participants specifically prefer to play again in both
cases where they have certainty about the outcome of the first gamble, while they refuse to play again
when they do not know the outcome of the first gamble.

5. Decision-Making Errors: Ellsberg-Type Paradoxes

EUT is the prevalent theory of DM under uncertainty. Because of its intuitive character, mathematical
simplicity and predictive success, EUT has been widely applied to a wide range of choice problems
in economics, finance, management and also medicine. The main tenet of EUT is that, in situations of
uncertainty individual agents (or, decision-makers) choose in such a way to maximize their utility, or degree
of satisfaction.

In the 1940s, von Neumann and Morgenstern proposed a set of “reasonable” axioms on human
preferences which allow to uniquely represent uncertain gambles (or, lotteries) by means of a suitable
expected utility (EU) functional [54]. However, this formulation only deals with the uncertainty
that can be formalized by known probabilities (“objective uncertainty”, or risk). On the other side,
situations frequently occur in social science where uncertainty cannot be formalized by known
probabilities (“subjective uncertainty, or “ambiguity”) [55]. The so-called “Bayesian paradigm”
minimizes the distinction introducing the notion of “subjective probability”: even when probabilities
are not known, people may still form their own beliefs (or, priors), and they would aim to maximize EU
with respect to these priors [56]. And, indeed, Savage presented in the 1950s an axiomatic formulation
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of EUT which extends von Neumann and Morgenstern’s to subjective uncertainty (Savage’s SEUT,
cfr., Section 4) [2].

Let us provide a simplified presentation of SEUT. Let S be a (discrete, finite) set of all physical
states of nature, let {E1, . . . , En} be a family of mutually exclusive and exhaustive elementary
events, that is, for every i, j = 1, . . . , n, i 6= j, Ei = {si} ⊆ S , Ei ∩ Ej = ∅, and ∪n

i=1Ei = S .
For every i = 1, . . . , n, let p(Ei) be the (subjective) probability that Ei occurs and suppose that p
is a Kolmogorovian probability measure. Then, let {x1, . . . , xn} be a family of monetary payoffs
(payoffs are special cases of consequences in SEUT). For every i = 1, . . . , n, let u(xi) be the utility
value of xi (u is a risk-dependent continuous and strictly increasing utility function in SEUT).
Finally, let f = (E1, x1; . . . , En, xn) define an “act”. Then, the EU of f with respect to the Kolmogorovian
probability measure p is defined as

W( f ) =
n

∑
i=1

p(Ei)u(xi). (19)

Savage proved that, if the set F of all acts satisfies a number of “reasonable” axioms, including
the sure-thing principle, then, for every f , g ∈ F , a single Kolmogorovian probability measure p and
a single (up to positive affine transformations) utility function u exist such that f is preferred to g
(or, f % g) if and only if W( f ) ≥W(g) [2].

Savage’s theorem is compelling from a normative point of view and testable from a descriptive point
of view. Regarding the former, if decision-makers are “rational”, in the sense that their decisions reveal
axioms satisfying preferences, then they must all behave as if they maximized an EU with respect to
a single Kolmogorovian probability measure interpreted as their subjective probability. Regarding the latter,
the validity of SEUT and its underlying axioms can be concretely tested. And, indeed, deviations from
classicality have occurred in various DM tests. More specifically, Daniel Ellsberg proved in two seminal
thought experiments, the “three-color example” and the “two-urn example”, that decision-makers violate
the predictions of SEUT, because they prefer in general acts with known probabilities over acts with
unknown probabilities, instead of maximizing EU [12].

Let us start by the three-color example. One urn contains 30 red balls and 60 balls that are either
yellow or black, the latter in unknown proportion. One ball will be drawn at random from the urn.
Then, a person is asked to bet on pairs of the acts f1, f2, f3 and f4 in Table 4.

Table 4. Payoff table for the Ellsberg three-color example.

p(ER) = 1/3 p(EY) + p(EB) = 2/3

Act Red Yellow Black

f1 $100 $0 $0

f2 $0 $0 $100

f3 $100 $100 $0

f4 $0 $100 $100

Ellsberg suggested that most individuals will choose f1, revealing the preference f1 � f2, and f4,
revealing the preference f4 � f3. This is intuitively reasonable, as f1 and f4 are unambiguous acts,
that is, are associated with events over known probabilities, whereas f2 and f3 are ambiguous acts,
that is, are associated with events over unknown probabilities. This attitude of decision-makers to
prefer known over unknown probabilities is called “ambiguity aversion” [12].

Ellsberg preferences above violate the sure-thing principle of SEUT, because the latter predicts
consistency of preferences, that is, f1 � f2 if and only if f3 � f4. Indeed, if we denote by
p(ER) = 1/3, p(EY) and p(EB) the Kolmogorovian probabilities associated with the events “a red
ball is drawn”, “a yellow ball is drawn” and “a black ball is drawn”, respectively, then the EUs are
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such that f1 � f2 if and only if W( f1) > W( f2) if and only if (1/3− p(EB))(u(100) − u(0)) > 0 if
and only if W( f3) > W( f4) if and only if f3 � f4. Equivalently, no assignment of Kolmogorovian
probabilities p(ER) = 1/3, p(EY) and p(EB) reproduces Ellsberg preferences f1 � f2 and f4 � f3,
with W( f1) > W( f2) and W( f4) > W( f3), respectively, whence the “Ellsberg paradox”.

Tests on simple urns, but also on financial, management, insurance and medical choices,
generally confirm Ellsberg preferences, in most cases indicating ambiguity aversion attitudes
(ambiguity seeking attitudes have been identified in a few cases; for a review of empirical studies,
see, for example, References [57,58]). A recent test on the three-color example, performed by ourselves,
has found a rate of 0.82 for the preference f1 � f2 and a rate of 0.78 for the preference f4 � f3. The test
thus agrees with empirical patterns found in the literature [59].

Various extensions of SEUT have been elaborated to cope with the Ellsberg paradox and
non-neutral attitudes towards ambiguity. These “non-EU models” in general weaken the sure-thing
principle and explicitly incorporate ambiguity in their formulations. Major models include Choquet
EU, cumulative prospect theory, max-min EU, α-max min EU, variational preferences, robust control,
and second order beliefs (for a review of theoretical studies, see, for example, References [58,60] and
references therein).

The models above accommodate the Ellsberg paradox and have manifold applications in
social science. More important, they already depart from the assumption that only Kolmogorovian
probabilities can represent subjective priors. However, Mark Machina has recently proved that
major non-EU models cannot reproduce his hypothesized preferences in two thought experiments,
namely, the “50/51 example” and the “reflection example” [61,62]. Some DM tests have confirmed
Machina preferences against the predictions of the non-EU models above [59,63].

The situation becomes even more problematical if one considers the Ellsberg two-urn example,
which constitutes the paradigm of real life tests involving managerial and medical decisions. We briefly
review the two-urn example and its consequences in the following.

Consider two urns, “urn I” with 100 balls that are either red or black in unknown proportion,
and “urn II” exactly with 50 red balls and 50 black balls. One ball is to be drawn at random from each
urn. Then, free of charge, a person is asked to bet on pairs of the acts f1, f2, f3 and f4 in Table 5.

Table 5. Payoff matrix for the Ellsberg two-urn example.

Urn I Urn II

Acts ER: Red Ball EB: Black Ball ER: Red Ball EB: Black Ball
p(ER) ∈ [0, 1] p(EB) = 1− p(ER) p(ER) = 1/2 p(EB) = 1/2

f1 $100 $0

f2 $100 $0

f3 $0 $100

f4 $0 $100

In this case, acts f2 and f4 are unambiguous, whereas acts f1 and f3 are ambiguous.
Thus, Ellsberg suggested that, while decision-makers will be generally indifferent between f1 and f3

and between f2 and f4, but they will prefer f2 over f1 and f4 over f3, thus revealing preferences f2 � f1

and f4 � f3, together with an ambiguity aversion attitude.
The predictions of SEUT are incompatible with the Ellsberg preferences above. Indeed, if we we

denote by p(ER) and p(EB) = 1− p(EB) the Kolmogorovian probabilities associated with the events
“a red ball is drawn from Urn I” and “a black ball is drawn from Urn I”, respectively, then the EUs are
such that f2 � f1 if and only if W( f2) > W( f1) if and only if (p(ER)− 1/2)(u(100)− u(0)) < 0 if and
only if W( f3) > W( f4) if and only if f3 � f4. Tests on the two-urn example generally confirm Ellsberg
preferences, hence an ambiguity aversion attitude of decision-makers. We have tested the two-urn
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example too, finding a rate of 0.82 for the preference f2 � f1 and a rate of 0.84 for the preference
f4 � f3. The test thus agrees with empirical patterns found in the literature [59].

In each bet, the two-urn example consists in comparing a risky option (Urn II) with an ambiguous
option (Urn I). This is the typical scenario one finds in real life tests involving financial, managerial
and medical decisions (see, e.g., References [64,65]). One observes in these tests a shift from ambiguity
averse to ambiguity seeking attitudes, and viceversa, as due to the presence of “hope and fear effects”.
In these situations, indeed, a benchmark value is set which determines whether the decision leads
to a “gain”, for example, a better than expected return on an investment, or a “loss”, for example,
a failure in a medical treatment, and intuition suggests that the level of probability will play a crucial
role in the final decision: if the probability of a gain (loss) is high, then a fear effect (hope effect) occurs
in which people tend to be ambiguity averse (seeking). But, as the probability of a gain (loss) decreases,
people tend to be less ambiguity averse (seeking), reaching a crossover point in which they become
ambiguity seeking (averse), which indicates a shift from a fear (hope) to a hope (fear) effect [64,65].

Shifts of ambiguity attitudes, as due to hope and fear effects, cannot be explained, either from the
point of view of traditional SEUT nor from the point of view of more general non-EU models.

The consequence of the empirical findings summarized in this section is that, according to many
authors, a unified theory of human choices under uncertainty is still missing (see, e.g., Reference [66]).

6. Elaboration of a SCoP Formalism for Cognitive Domains

As anticipated in Section 1, the quantum cognition research programme rests on the recognition
that complex cognitive phenomena, like judgements and decisions, exhibit peculiar aspects which
prevent in general the application of traditional modelling techniques based on classical set-theoretic
formalisms. In particular, the following features have arisen from the phenomena studied in
Sections 2–5.

(i) Judgements and decisions are intrinsically and unavoidably probabilistic processes.
(ii) Judgements and decisions involve constructive processes which create rather than record.

(iii) In these processes, context plays a fundamental role in determining the final response among
a range of possible alternatives.

(iv) Different and mutually exclusive alternatives generally disturb each other.
(v) The unrestricted validity classical (Boolean) logic and (Kolmogorovian) probability cannot be

assumed in these cases.

These and other considerations have lead several scholars to start using systematically
the formalism of quantum theory in Hilbert space, as pure mathematical formalism detached
from its physical interpretation, in these classically problematical cognitive phenomena
(see, e.g., References [36,37] and references therein).

In this section, we aim to present a unified view on how and why the mathematical formalism
of quantum theory is able to provide a general theoretical framework for human cognition. In other
words, we aim to provide a foundation of human cognition which justifies the use of quantum
theory as a general theory for it. The starting point of our research was the recognition that, in
view of points (i)–(v), the systems (or, entities) studied in cognitive domains exhibit deep analogies
with quantum entities in the description of what occurs in a laboratory where preparations and
measurements are performed.

Indeed, an experiment, or test, on a quantum entity is typically performed in a physics laboratory.
The quantum entity preliminarily undergoes a preparation procedure designed by the experimenter,
at the end of which “the entity is in a defined state”. This state expresses the “physical reality” of
the entity, in the sense that, as a consequence of being in that state, the entity has some “actual”
properties independently of any measurement that can be performed on it. Then, when a measurement
is performed on the quantum entity, the macroscopic apparatus operates as a measurement context
which interacts, on a physical level, with the entity and changes its state in a way that is generally
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indeterministic, that is, neither controllable nor predictable. Then, the quantum entity, its states,
contexts, properties, and the mutual statistical relations are represented in the Hilbert space formalism.

Similarly, a cognitive test, or measurement, is typically performed in a “psychology laboratory”,
that is, a spatio-temporal domain where participants give their responses. Suppose, for example, that a
judgement/decision test is performed in which a sample of participants have to write down their
responses on a paper picking them from a list on a structured questionnaire. The information contained
in the questionnaire and the meaning content of the situation that is the object of the decision (literally,
what is written in the questionnaire and which has to be judged/decided on) define a preparation
procedure for a “conceptual entity”, at the end of which we can say that “the entity is in a defined
state”. Thus, a preparation does take place when a cognitive test is performed and each participant
“is confronted with this one and unique state”, independently of any belief the participant has about
it, because the state was prepared by the experimenter designing the test, before and independently
of any individual participating in the test. This state has a conceptual, rather than a physical, nature,
but it is a “state of affairs”, because it expresses the meaning content of the questionnaire that was
prepared by the experimenter. As such, it is not a mental state or a state of belief. In addition, this state
is independent of any operation that can be performed on the entity, hence it expresses the “conceptual
reality” of the entity at a given time.

The state of a conceptual entity can change under the effect of the surrounding context, which has in
general a cognitive nature and may include the individual participating in the test. Indeed, when the test
is performed and a participant is asked to express a judgement or make a decision on the questionnaire,
the participant operates as a context which interacts, on a cognitive level, with the entity and changes its
state in a way that is generally indeterministic, that is, neither controllable nor predictable. More specifically,
when the first participant enters the laboratory and fills out the questionnaire, the participant “interacts
with this conceptual state presented to her/him in the test”, but prepared, for example, on a paper, by the
experimenter, and changes this state. When the second participant enters the laboratory and fills out
the questionnaire, the participant again interacts with this independently prepared conceptual state and
contextually changes it, and so on – different individuals may determine different changes of state. As
a consequence of this “(measurement) context-induced actualization of potential”, a statistics of responses
can be collected, which can be interpreted as outcome probabilities in the large number limit. In addition,
some properties of the conceptual entity, which were actual (potential) in the initial state in which the
entity is originally prepared, will become potential (actual) in the final state, as a consequence of this
contextual interaction.

Now, research on the foundations of quantum physics and quantum probability has allowed
to recover the Hilbert space formalism of quantum theory from “operationally reasonable” axioms,
resting on well defined empirical notions, directly connected with the operations that are performed in
a physics laboratory. In particular, one line of research, initiated by Jauch [67] and Piron [68] in Geneva,
and further developed by the research team in Brussels (see, e.g., References [36,37]), has produced
a “realistic” and “operational” foundation of this kind, which was called the “State Context Property”
(SCoP) formalism. In the ScoP formalism, any physical entity is described by means of the basic
notions of “state,” “context,” “property,” and their mutual statistical relations. If suitable axioms
are imposed on the mathematical structure underlying the SCoP formalism, then the Hilbert space
structure of quantum theory emerges as a unique mathematical representation, up to isomorphisms
(see, e.g., References [36,67,68]).

Then, following the analogies above between quantum and conceptual entities, we have
elaborated a realistic-operational foundation of conceptual entities, in which any entity of this kind is
described in terms of its states, contexts, properties, and statistics of outcomes [69]. We resume and
deepen the SCoP description of a conceptual entity in the following.

Let Ω be a conceptual entity, which can be a concept, a combination of concepts, a proposition, or
a more complex DM entity. In the SCoP formalism, Ω is described by the 5-tuple (Σ, M , L , µ, ν), where:
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(1) Σ is the set of all states of Ω. A state p ∈ Σ is the result of a preparation procedure of Ω at the
end of which Ω is in the state p.

(2) M is the set of all contexts of Ω. A context e ∈M has typically a cognitive nature and interacts
with Ω changing in general its state.

(3) L is the set of all properties of Ω. A property a ∈ L can be either actual or potential for Ω,
depending on its state.

(4) µ is the “state-transition probability function”, that is, an application µ : Σ×M × Σ −→ [0, 1],
such that, for every p, q ∈ Σ, e ∈M , µ(q, e, p) is the probability that the state p of Ω is changed
to the state q by the context e.

(5) ν is the “property-applicability probability function”, that is, an application ν : Σ×L −→ [0, 1],
such that, for every p,∈ Σ, a ∈ L , ν(p, a) is the probability that the property a is actual in the
state p of Ω.

The above realistic-operational description of any conceptual entity involved in a judgement
or a decision in the SCoP formalism suggest representing these entities, states, contexts,
properties, probabilities and dynamics within the Hilbert space formalism, in the sense that, in the
modelling of a given phenomenon in the cognitive domain, once one identifies the conceptual entity,
its states, contexts, properties and statistics of responses, one represents them by means of the usual
representation in Hilbert space.

Before coming to the applications, we stress that this description of a judgement/decision process
differs from that of other quantum-based approaches to cognition, where the state corresponds to
a “mental state of the individual participating in the test” (see, e.g., References [4,6,25]). While the latter
description is frequently used, we believe that it does not completely capture all elements involved in
such processes, namely, preparation, contextual interaction, state change. In particular, the notion of
“state of a conceptual entity” introduces a new element, not directly related to beliefs and not previously
used in cognitive science, at the best of our knowledge. The notion is mainly borrowed from physics,
as a test in cognitive science, like an experiment in physics, is a bridge between a preparation and
a measurement. We believe that this notion of state should be a constitutive element of any statistical
theory. This is why we prefer to adopt the description presented here, as it also adheres more closely
to the interpretation of the Hilbert space formalism expounded in modern manuals of quantum theory
(see, e.g., Reference [21]).

In the following, we will specify the SCoP formalism for probability judgement tests, like those
performed on conceptual combinations (Section 6.1), and for DM tests, like those performed on
Ellsberg-type situations (Section 6.2), and sketch how a Hilbert space representation of these
phenomena can be constructed.

6.1. Application of the SCoP Formalism to Human Probability Judgements

We apply in this section the SCoP formalism to the judgements that are expressed when
participants are asked about typicality and membership probabilities with respect to concepts and
their combinations. This will allow us to construct a general Hilbert space representation of the
phenomenology encountered in Section 2.

Let A be a concept and let us consider judgement tests in which a sample of participants are asked
in a questionnaire to judge typicality or membership of specific items with respect to the concept A,
as in Section 2. We associate A with the conceptual entity ΩA following the prescriptions in Section 6.
In particular, the information and meaning content of the questionnaire provides a preparation of ΩA
at the end of which ΩA is in a defined state pA.

A context e interacts with the conceptual entity ΩA and can change its initial state pA. A relevant
context is the one introduced by the judgement test itself. Indeed, when the test starts, an interaction
occurs between the conceptual entity ΩA and each participant, in which the state pA of ΩA generally
changes, being transformed into another state p. This interaction, which occurs at a cognitive level, as
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we have seen in Section 6, is specifically described by a measurement context. For example, when in
a typicality judgement each participant is asked to pick the most typical item in the family {X1, . . . , Xn}
of n distinct items and the participant chooses the item Xi, i = 1, . . . , n, then the initial state pA of ΩA
is transformed by the typicality measurement context eT into pXi , as a consequence of the contextual
interaction between ΩA in pA and eT .

The change of state of ΩA due to a context e may be either “deterministic”, hence in
principle predictable under the assumption that both pA and e are perfectly known, or “intrinsically
probabilistic”, that is, only the state-transition probability µ(p, e, pA) that the state pA of ΩA changes
to the state p is known. Specifically, in the typicality judgement test above, the typicality of the item Xi
with respect to the concept A is formalized by means of a state-transition probability µ(pXi , eT , pA),
where eT is the typicality measurement context and pXi is the final state of ΩA at the end of the
interaction with eT .

Let us now consider a membership judgement test in which each participant is asked to judge
membership of the item X with respect to the concept A. In the SCoP formalism, such test corresponds
to a measurement with only two outcomes, or “yes-no measurement”, performed by means of
a membership measurement context eM, in which a property aX of the conceptual entity ΩA is
tested. Hence, the probability of membership, or membership weight, of the item X with respect to the
concept A is formalized by means of a property-applicability probability ν(pA, aX).

Let us now come to the representation in Hilbert space and start by a membership judgement
test. The conceptual entity ΩA is associated with an abstract Hilbert spaceH, and the initial state pA
of A is represented by a unit vector |A〉 ∈ H. The membership measurement context eM is represented
by a hermitian operator or, equivalently, by a spectral family {M,1−M}, where M is an orthogonal
projection operator over H and 1 is the identity operator. Then, the membership weight µ(A) of X
with respect to A coincides with the probability that the outcome “yes” is obtained in the interaction of
ΩA in the state pA with eM, and is calculated through the Born rule of quantum probability, that is,
µ(A) = ‖M|A〉‖2.

The Born rule also applies to measurements with more than two outcomes. For example,
in a typicality judgement test involving the typicality of a family {X1, . . . , Xn} of n distinct items with
respect to the concept A, the typicality measurement context eT is represented by the spectral measure
{M1, . . . , Mn}, where ∑n

i=1 Mi = 1 and Mi Mj = δij Mi, i, j = 1, . . . , n, and the probability µi(A) that
the item Xi is judged as a typical example of the concept A is given by the quantum probability
µi(A) = ‖Mi|A〉‖2, i = 1, . . . , n.

An interesting aspect concerns the final state of a conceptual entity ΩA after a judgement test.
We assume the existence of a non-empty class of cognitive tests that correspond to ideal first kind
measurements in the standard quantum sense, that is, measurements that satisfy the “Lüders postulate”.
Suppose for example that the item Xi, i = 1, . . . , n, was judged as a typical example of the concept
A in the typicality test above. Then, we assume that the final state pXi of ΩA immediately after the

interaction with the typicality measurement context eT is represented by the unit vector |Ai〉 = Mi |A〉
‖Mi |A〉‖

.
Of course, we agree that cognitive tests exist which do not correspond to ideal first kind measurements
of quantum theory. Nevertheless, it is reasonable to assume that such an ideal first kind state transition
occurs at least in some cases, like the ones discussed here [69].

Coming to a more concrete Hilbert space construction, in a judgement test with n distinct outcomes,
we associate ΩA with a n-dimensional complex Hilbert space H , which can be chosen to be (isomorphic
to) the space Cn, that is, the Hilbert space of all ordered triples of complex numbers. Then, the states of
ΩA are represented by unit vectors of Cn and each orthogonal projection operator Mi projects onto the
one-dimensional subspace generated by the i-th vector of the canonical orthonormal (ON) basis of Cn,
i = 1, . . . , n.

The mathematical construction we have put forward here provides a general framework allowing
in principle to represent any probability judgement test in Hilbert space. We will apply the present
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quantum-theoretic framework to over- and under-extension effects and conjunctive and disjunctive
fallacies and the disjunction effect in Sections 7, 7.1 and 7.2, respectively.

6.2. Application of the SCoP Formalism to Human Decisions

We apply in this section the realistic-operational description of a conceptual entity to the DM tests
studied in Section 5 and sketch how a Hilbert space representation can be constructed in these cases.

Let us consider a decision problem where n mutually exclusive and exhaustive elementary events,
E1, . . . , En may occur and the decision-maker has to take a decision between pairs of acts giving
different payoffs which depend on the occurrence of E1, . . . , En. If the required decision has to be taken
in the form of a written answer on a questionnaire, a story is preliminarily presented to each individual
participating in the test. What each individual reads in the questionnaire, interacts with and decides
on defines a preparation of a conceptual entity, which we call “DM entity”, ΩDM.

A state p of ΩDM has a conceptual, not physical, nature and incorporates aspects of uncertainty
(e.g., ambiguity). A context e does not pertain to ΩDM but can interact with it. The interaction of ΩDM
with a context e may determine a change of the state of ΩDM from p to a different state q. The probability
of such a state transition is given by the state-transition probability µ(q, e, p), in agreement with the
prescriptions in Section 6. We can also complete the SCoP description of ΩDM introducing properties
and property-applicability probabilities, which is not relevant to Ellsberg-type situations but may play
a role in more complex decision problems.

A first cognitive context eC relevant to ΩDM is the context associated with the the n mutually
exclusive and exhaustive elementary events E1, . . . , En. It corresponds to a measurement that can be
performed on ΩDM in a given state p and has n distinct outcomes, or eigenvalues. Each eigenvalue
is associated with a final state pi of ΩDM, which is an eigenstate of eC, as it satisfies the condition
µ(pi, eC, pi) = 1. Thus, the context eC is connected with the elementary event Ei by the fact that the
(subjective) probability µ(Ei, p) that the event Ei occurs when the conceptual entity ΩDM is in the state
p is formalized by means of the state-transition probability µ(pi, eC, p), i = 1, . . . , n. Then, in analogy
with SEUT, we can define an act f = (E1, x1; . . . , En, xn) by associating the monetary payoff xi to the
event Ei, i = 1, . . . , n.

Let us now come to the realistic-operational description of the DM process and consider a decision
between acts f1 and f2 and a decision between acts f3 and f4 in Table 4, Section 5, for the sake of
simplicity. Suppose that the meaning content of the questionnaire has prepared the conceptual entity
ΩDM in the initial state p0. Whenever an individual starts pondering between f1 and f2, before a decision
is taken, the individual’s attitude towards ambiguity, for example, ambiguity aversion, is described as
a new cognitive context e12 operating on ΩDM in the initial state p0 and changing p0 to a new state p12.
The (subjective) probability that the event Ei occurs in the state p12 is thus µ(Ei, p12) = µ(pi, eC, p12),
i = 1, . . . , n. Similarly, whenever the individual starts pondering between f3 and f4, before a decision is
taken, the individual’s attitude towards ambiguity, for example, again ambiguity aversion, is described
as another cognitive context e34 operating on ΩDM in the initial state p0 and changing p0 to a new state
p34. The (subjective) probability that the event Ei occurs in the state p34 is thus µ(Ei, p34) = µ(pi, eC, p34),
i = 1, . . . , n. The ambiguity averse final states p34 and p34 are responsible of the “inversion of preferences”
which occur in Ellsberg-type situations [70].

Finally, the actual decision between acts f1 and f2 is operationally described as a decision measurement
context eD1 acting on ΩDM in the ambiguity averse state p12, with possible outcomes “yes” and “no”.
Similarly, the actual decision between acts f3 and f4 is operationally described as a decision measurement
context eD2 acting on ΩDM in the ambiguity averse state p34, with possible outcomes “yes” and “no”.
These contexts give rise of the statistics of outcomes in Ellsberg-type DM tests.

The representation of the DM situation above is straightforward. The DM entity ΩDM is associated
with an abstract Hilbert space H . The presence of n mutually exclusive and exhaustive elementary
events suggests choosing H in such a way that it is (isomorphic to) the the complex Hilbert space Cn.
Hence, a state pv of ΩDM is represented by a unit vector |v〉 ∈ Cn. A context e is instead represented
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by a hermitian operator or, equivalently, by a spectral family, over Cn. Thus, the context eC above is
represented by the spectral family {P1, . . . , Pn}, where each Pi represents the elementary event Ei and
projects onto the one-dimensional subspace generated by the i-th vector of the canonical ON basis of Cn.
Then, the (subjective) probability µ(p, Ei) that the event Ei, represented by the orthogonal projection
operator Pi, occurs when ΩDM is in the state pv, represented by the unit vector |v〉, is obtained through
the Born rule of quantum probability, namely, µ(p, Ei) = ‖Pi|v〉‖2. An act f = (E1, x1; . . . , En, xn) is
represented by the hermitian operator F = ∑n

i=1 u(xi)Pi, where u(xi) is the utility value associated
with the payoff xi. This suggests to finally introduce a state-dependent EU functional Wv( f ) = 〈v|F|v〉.

The mathematical construction we have put forward here provides a general framework allowing
in principle to represent any DM test in Hilbert space. We will apply the present quantum-theoretic
framework to the Ellsberg three-color and two-urn examples in Section 8.

7. A Quantum Framework to Represent Concepts and Their Combinations

Relying on a one-decade research on the foundations of quantum theory (cfr., Section 6.1), we have
developed a novel framework to represent concepts and their combinations. In this framework,
a conceptual entity can be expressed in terms of the SCoP formalism, hence it admits a Hilbert space
representation [34,71,72]. As we have seen in Section 6, the main novelties can be summarised as follows.

(i) A concept is an entity in a defined state, rather than a container of items.
(ii) A context is a factor that influences the concept and generally changes its state.

(iii) Quantities as typicality, membership, and so forth can be measured on concepts and have
different probabilistic values in different states of the concept.

We have applied the mathematical formalism of quantum theory to represent conceptual entities,
states, contexts and the corresponding probabilities. The quantum-theoretic framework we have
developed successfully models membership weights of concepts and their combinations [22,31,32,34,35],
conceptual typicality [34,71,72] and borderline contradictions [73] in Section 2.

We expose now the fundamentals of the quantum-theoretic framework, starting from the conjunction
of two concepts. We refer to the membership probability judgement tests in Section 2. Let X be an item,
let A and B be two concepts, and let ‘A and B’ be their conjunction. Then, let µ(A), µ(B) and µ(A and B)
be the membership weights of X with respect to A, B and ‘A and B’, respectively.

As seen in Section 6.1, conceptual entities are represented in an abstract Hilbert space H . When a
membership judgement test is performed and a questionnaire is presented to the participants, the initial
state of the concept A is represented by the unit vector |A〉 ∈ H , ‖|A〉‖ = 1, and the initial state of
the concept B is represented by the unit vector |B〉 ∈ H , ‖|B〉‖ = 1. Suppose that |A〉 and |B〉 are
orthogonal, that is, 〈A|B〉 = 0, for the sake of simplicity. We represent the initial state of the conjunction
‘A and B’ by the unit vector |A and B〉 = 1√

2
(|A〉+ |B〉).

The judgement measurement of a person who judges the membership of X with respect to A, B and
‘A and B’ is represented by the orthogonal projection operator M over H . We calculate membership
weights by means of the Born rule of quantum probability. More precisely,

µ(A) = 〈A|M|A〉, (20)

µ(B) = 〈B|M|B〉 (21)

are the probabilities of membership, that is, membership weights, while

1− µ(A) = 〈A|1−M|A〉, (22)

1− µ(B) = 〈B|1−M|B〉 (23)
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are the probabilities of non-membership, in the initial states of concepts A and B. The probability of
membership in the initial state of ‘A and B’ is thus given by:

µ(A and B) = 〈A and B|M|A and B〉 = 1
2

(
µ(A) + µ(B)

)
+ Re(〈A|M|B〉). (24)

Equation (24) expresses the “quantum probability formula for the conjunction”. Different cases are
possible for the interference term for the conjunction Re(〈A|M|B〉), namely,

• Re(〈A|M|B〉) > 0 indicates to constructive interference;
• Re(〈A|M|B〉) = 0 indicates to absence of interference;
• Re(〈A|M|B〉) < 0 indicates to destructive interference.

We follow the same procedure for the disjunction of two concepts. Let µ(A), µ(B) and µ(A or B)
be the membership weights of the item X with respect to the concepts A, B and their disjunction
‘A and B’, respectively. When a membership judgement test is performed and a questionnaire is
presented to the participants, the initial state of the concept A is represented by the unit vector |A〉 ∈H ,
and the initial state of the concept B is represented by the unit vector |B〉 ∈H , with 〈A|B〉 = 0. Then,
the initial state of the disjunction ‘A or B’ is represented by the unit vector |A or B〉 = 1√

2
(|A〉+ |B〉).

Using the symbols in Equations (20)–(24), we get that the probability of membership, or membership
weight, of X with respect to ‘A or B’ is given by the following “quantum probability formula for
the disjunction”

µ(A or B) =
1
2

(
µ(A) + µ(B)

)
+ Re(〈A|M|B〉), (25)

where Re(〈A|M|B〉) is the interference term for the disjunction. The orthogonal projection operator
M in Equation (24) actually depends on the item X and the conjunction ‘and’, whereas the projection
operator M in Equation (25) actually depends on the item X and the disjunction ‘or’. We have omitted
such dependence here, which actually makes Equations (24) and (25) different, for the sake of simplicity.

Let us now construct an explicit representation for the conjunction and the disjunction of two
concepts in the complex Hilbert space C3. Let {(1, 0, 0), (0, 1, 0), (0, 0, 1)} be the canonical ON basis of
C3 (details can be found in References [22,34,35]).

Let us again start by the conjunction case. Let X be an item and let µ(A), µ(B) and µ(A and B)
be the membership weights of X with respect to A, B and ‘A and B’, respectively. We introduce the
following quantities:

a =

{
1− µ(A) if µ(A) + µ(B) ≤ 1

µ(A) if µ(A) + µ(B) > 1

b =

{
1− µ(B) if µ(A) + µ(B) ≤ 1

µ(B) if µ(A) + µ(B) > 1

γ =

{
180◦ if µ(A) + µ(B) ≤ 1

0 if µ(A) + µ(B) > 1
.

(26)

The quantum probability formula for the conceptual conjunction in Equation (24) becomes

µ(A and B) =
1
2

(
µ(A) + µ(B)

)
+
√
(1− a)(1− b) cos θc, (27)
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where θc is the “interference angle for the conjunction”. One can easily verify that the unit vectors

|A〉 =
(√

a, 0,
√

1− a
)

, (28)

|B〉 =

ei(θc+γ)
(√

(1−a)(1−b)
a ,

√
a+b−1

a ,−
√

1− b
)

if µ(A) 6= 0

ei(θc+γ)(0, 1, 0) if µ(A) = 0
(29)

satisfy Equations (20)–(24). Indeed, if µ(A) + µ(B) > 1, these equations are satisfied by choosing the
orthogonal projection operator M to project onto the subspace generated by the unit vectors (1, 0, 0)
and (0, 1, 0) of the canonical ON basis of C3. If instead µ(A) + µ(B) ≤ 1, the equations are satisfied by
choosing M to project onto the subspace generated by the unit vector (0, 0, 1) of the same basis [22].

Let us finally study the disjunction case. Let X be an item and let µ(A), µ(B) and µ(A or B) be the
membership weights of X with respect to A, B and ‘A or B’, respectively. We introduce the quantities
a, b and γ as in Equation (26). The quantum probability formula for the conceptual disjunction in
Equation (25) then becomes

µ(A or B) =
1
2

(
µ(A) + µ(B)

)
+
√
(1− a)(1− b) cos θd, (30)

where θd is the “interference angle for the conjunction”. The unit vectors |A〉 and |B〉 are obtained
from Equations (28) and (29) by replacing θc with θd.

The quantum models above enable faithful representation of several data sets, including those in
References [7,8]. While a quantum-theoretic framework that models all existing cases of conceptual
combinations requires an extension in Fock spaces (see, e.g., References [22,34,74]), the models
presented here are anyway falsifiable, as they provide precise predictions on the empirical relationships
between membership weights. We focus on conceptual conjunctions, for the sake of brevity. Let us set

∆AB = µ(A and B)− 1
2

(
µ(A) + µ(B)

)
and distinguish two cases, as follows.

If µ(A) + µ(B) ≤ 1, µ(A), µ(B) 6= 1, then,

−
√

µ(A)µ(B) ≤ ∆AB ≤
√

µ(A)µ(B). (31)

If µ(A) + µ(B) > 1, µ(A), µ(B) 6= 1, then,

−
√
(1− µ(A))(1− µ(B)) ≤ ∆AB ≤

√
(1− µ(A))(1− µ(B)). (32)

Similar constraints have to be satisfied in the disjunction case for the quantum model to be able to
represent empirical data.

Let us now consider some relevant examples. In the case of Razor with respect to Weapons,
Tools and their conjunction Weapons and Tools, in Section (2), the quantum model gives

θc = 64.02◦, (33)

|A〉 = (0.79, 0, 0.61), (34)

|B〉 = ei64.02◦(0.36, 0.81,−0.47). (35)

that is, the concepts A and B “constructively interfere” in the conjunction ‘A and B’.
In the case of Curry with respect to Spices, Herbs and their disjunction Spices or Herbs, in Section (2),

the quantum model gives

θd = 65.91◦, (36)

|A〉 = (0.95, 0, 0.32), (37)

|B〉 = ei65.91◦(0.26, 0.58,−0.77). (38)
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Also in this case, the concepts A and B “constructively interfere” in the disjunction ‘A or B’.
The quantum model also works in other cases that are classically highly problematical. For example,

Hampton measured the membership weights of the item Mint with respect to Food, Plant and their
conjunction Food and Plant, finding µ(A) = 0.87, µ(B) = 0.81 and µ(A and B) = 0.90, that is, a case of
double overextension [7]. These data are modelled by

θc = 67.56◦, (39)

|A〉 = (0.93, 0, 0.36), (40)

|B〉 = ei67.56◦(0.17, 0.88,−0.44). (41)

Furthermore, Hampton measured the membership weights of Ashtray with respect to Home
Furnishing, Furniture and their disjunction Home Furnishing or Furniture, finding µ(A) = 0.70,
µ(B) = 0.30 and µ(A or B) = 0.25, that is, a case of double underextension [8]. These data are
modelled by

θd = 123.06◦, (42)

|A〉 = (0.84, 0, 0.55), (43)

|B〉 = ei123.06◦(0.26, 0.58,−0.77). (44)

We conclude this section with two remarks which allow us to understand the effectiveness of the
quantum-theoretic framework presented here, together with its predictive and explanatory capacity.

Firstly, we have recently generalized Hampton’s tests, extending them to conjunctions and negations of
two concepts [74]. More precisely, we have tested membership weights of items with respect to two concepts
A and B, their negations ‘not A’ and ‘not B’, and all possible conjunctions ‘A and B’, ‘A and not B’,
‘not A and B’, and ‘not A and not B’. We have found systematic overextension in all conjunctions, cases
of double overextension, deviations from classicality in conceptual negations, and a new unexpected and
significant deviation from the marginal law. For example, we have found that

µ(A and B) + µ(A and not B)− µ(A) ≈ 0.5. (45)

Looking at data in Reference [74], the left side of Equation (45) is systematically different from 0,
whereas a value of 0 is what one would expect in a Kolmogorovian probability framework. But, the value
is also roughly constant and independent of the item and the pair of concepts. This non-classical result
is exactly predicted by the Fock space model in References [22,34,74], which thus allows to obtain new
classically unexplainable results [75,76].

Secondly, the quantum-theoretic framework presented here reveals the presence of genuine
quantum effects in the formation and combination of natural concepts, namely, contextuality,
interference, superposition, and emergence. In particular, to grasp the importance of the latter,
let two compare the following experimental results in References [8,74] for the item Olive with respect
to the natural concepts Fruits, Vegetables, Fruits and Vegetables, and Fruits or Vegetables. Hampton found
µ(A) = 0.50, µ(B) = 0.10 and µ(A or B) = 0.80 in his test [8], whereas we found µ(A) = 0.56,
µ(B) = 0.63 and µ(A and B) = 0.65 in ours [74].

Despite individual numerical differences, which can however be explained [74], both data exhibit
non-classicality, namely, violation of Equation (16) in the disjunction and double overextension in the
conjunction. More important, Olive scores similar membership weights in the disjunction and the
conjunction case, that is, its membership weight is substantially independent of the combination that is
considered. This clearly indicates that situations exist where people do not really take into account whether
two concepts are combined through the connective ‘or’ or the connective ‘and’, but they actually judge
whether the given item is a member of the new emergent concept, meant as a standalone entity, regardless
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of the way it is obtained. This is a form of “conceptual emergence” and reveals the presence of a conceptual,
or emergent, reasoning, which acts simultaneously with logical reasoning, in human thought [34].

We believe that it is this conceptual, or emergent, reasoning that is responsible of the other
probability judgement errors studied in Section 3. In fact, the quantum conceptual framework
presented here enables modelling of more general probability judgements, as we will explicitly
see in the next two sections.

7.1. An Application to Conjunctive and Disjunctive Fallacies

We present in this section the quantum conceptual explanation we have recently elaborated for
conjunctive and disjunctive fallacies—the observed empirical deviations from classicality can be interpreted
as overextension effects and underextension effects, respectively. Hence, they can modelled using the
quantum-theoretic framework we have developed in Section 7 for conceptual combinations. As such, these
fallacies are not real errors but, rather, genuine expressions of quantum structures, in human reasoning,
namely, conceptual emergence and an underlying conceptual reasoning.

We will now elaborate quantum models for the conjunction and the disjunction fallacy borrowing
terminology, methods and the formalism we have developed to model conceptual conjunctions
and disjunctions.

We refer to the probability judgement tests in Section 3. Let us denote by X the item Linda, by A
the concept Feminist, by B the concept Bank Teller, by ‘A and B’ the conjunction Feminist and Bank Teller,
and by ‘A or B’ the disjunction Feminist or Bank Teller. Moreover, let us denote by µ(A), µ(B), µ(A and B),
and µ(A or B), the probability that Linda is judged as feminist, bank teller, feminist and bank teller,
and feminist or bank teller, respectively. Finally, we use the terminology of concept theory: thus, µ(A)

becomes the membership weight of Linda with respect to Feminist, µ(B) the membership weight of Linda
with respect to Bank Teller, µ(A and B) the membership weight of Linda with respect to Feminist and Bank
Teller, and µ(A or B) the membership weight of Linda with respect to Feminist or Bank Teller.

We start by the conjunction fallacy and represent conceptual entities in an abstract Hilbert
space H . Concepts A and B are represented by the mutually orthogonal unit vectors |A〉 ∈ H

and |B〉 ∈ H , respectively. The conjunction ‘A and B’ is instead represented by the unit vector
|A and B〉 = 1√

2
(|A〉+ |B〉). Then, we use the quantum probability formula for the conjunction of

two concepts in Equation (24) and rewrite it in the following:

µ(A and B) =
1
2

(
µ(A) + µ(B)

)
+ Re(〈A|M|B〉). (46)

In Reference [10], µ(A) + µ(B) = 0.83 + 0.26 = 1.09 > 1. Hence, in the C3 representation,
M projects onto the subspace generated by (1, 0, 0) and (0, 1, 0), the unit vectors become

|A〉 =
(√

µ(A), 0,
√

1− µ(A)
)

, (47)

|B〉 = eiθc
(√ (1− µ(A))(1− µ(B))

µ(A)
,

√
µ(A) + µ(B)− 1

µ(A)
,−
√

1− µ(B)
)

, (48)

and the quantum probability formula can be written as

µ(A and B) =
1
2

(
µ(A) + µ(B)

)
+
√
(1− µ(A))(1− µ(B)) cos θc, (49)

where θc is the interference angle for the conjunction. From the data in Reference [10]:

µ(A) = 0.83, (50)

µ(B) = 0.26, (51)

µ(A and B) = 0.36, (52)
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we get

θc = 121.44◦, (53)

|A〉 = (0.91, 0, 0.41), (54)

|B〉 = ei121.44◦(0.39, 0.33,−0.86), (55)

that is, the concepts A and B “destructively interfere” in the conjunction ‘A and B’.
Let us then come to the disjunction fallacy and follow the same steps we implemented

for conceptual disjunction. In the Hilbert space H representation, formulas are the same as
in the conjunction fallacy modelling, with the symbol ‘or’ replacing the symbol ‘and’. In the
specific C3 representation, formulas for the disjunction fallacy are instead obtained by replacing
in Equations (48) and (49) the angle θc with the interference angle for the disjunction θd.

From the data in Reference [10]:

µ(A) = 0.83, (56)

µ(B) = 0.26, (57)

µ(A or B) = 0.60, (58)

we get

θc = 81.08◦, (59)

|A〉 = (0.91, 0, 0.41), (60)

|B〉 = ei81.08◦(0.39, 0.33,−0.86), (61)

that is, the concepts A and B “constructively interfere” in the disjunction ‘A or B’.
The quantum-theoretic framework enables faithful representation of different data sets (see also

Tables 1 and 2 in Section 3). Then, the explanation we propose for conjunctive and disjunctive fallacies
is that, when the item Linda is considered, together with her story, the concepts Feminist and Bank
Teller destructively interfere in the conjunction Feminist and Bank Teller, meant as a newly emerging
standalone conceptual entity; the same concepts, instead constructively interfere in the disjunction
Feminist or Bank Teller, again meant as a newly emerging standalone conceptual entity [34].

Conjunctive and disjunctive fallacies in human probability judgements can be accounted for genuine
quantum effects, that is, contextuality, interference, superposition and emergence. The conjunction and
the disjunction fallacy in decision theory are respectively the decision-theoretic counterparts of over- and
under-extension effects in concept theory. In analogy with the case of double overextension in conceptual
conjunctions and double underextension in conceptual disjunctions, the quantum-theoretic framework
also predicts the presence of “double conjunction fallacies” and “double disjunction fallacies” [35].

7.2. An Application to the Disjunction Effect

We review in this section the quantum conceptual explanation that we have recently elaborated
for the disjunction effect—the empirically observed deviations from classicality can be interpreted as
underextension effects, hence the disjunction effect can be modelled by using the quantum-theoretic
framework we have developed in Section 7 for conceptual disjunctions. In the two-stage gamble,
uncertainty aversion is just one, although an important one, of the conceptual landscapes surrounding
the decision situation, playing the role of context and determining the final choice. Again, the disjunction
effect reveals the presence of genuine quantum structures in human reasoning, namely, contextuality,
interference, superposition and emergence.

The quantum-theoretic framework for conceptual disjunctions enables modelling the disjunction
effect in both the two-stage gamble and the Hawaii problem, as we have proved in Reference [35]. In this
section, we apply it to the two-stage gamble.
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We refer to the DM error studied in Section 4. Let us preliminarily introduce the terminology of
Section 7 and denote by A the conceptual situation of having won the first gamble, by B the conceptual
situation of having lost lost the first gamble, and by ‘A or B’ the conceptual situation of having won
“or” lost the first gamble. Moreover, let us denote by µ(A) the probability of playing again in the
conceptual situation A, by µ(B) the probability of playing again in the conceptual situation B, and by
µ(A or B) the probability of playing again in the conceptual situation ‘A or B’. The terminology we
use is consistent with the fact that we interpret these decision probabilities as membership weights
with respect to conceptual situations and their disjunction.

We represent conceptual entities in an abstract Hilbert space H . Conceptual situations A and
B are represented by the mutually orthogonal unit vectors |A〉 ∈ H and |B〉 ∈ H , respectively,
〈A|B〉 = 0. The disjunction ‘A or B’ is instead represented by the unit vector |A or B〉 = 1√

2
(|A〉+ |B〉).

Finally, the decision measurement about playing again is represented by the orthogonal projection operator
over H . Then, we apply to the two-stage gamble test the quantum probability formula in for conceptual
disjunctions Equation (25) and rewrite it in the following:

µ(A or B) =
1
2

(
µ(A) + µ(B)

)
+ Re(〈A|M|B〉). (62)

In Reference [11], µ(A) + µ(B) = 0.69 + 0.59 = 1.28 > 1. Hence, in the C3 representation, M
projects onto the subspace generated by (1, 0, 0) and (0, 1, 0), and we have

|A〉 =
(√

µ(A), 0,
√

1− µ(A)
)

, (63)

|B〉 = eiθd
(√ (1− µ(A))(1− µ(B))

µ(A)
,

√
µ(A) + µ(B)− 1

µ(A)
,−
√

1− µ(B)
)

, (64)

and the quantum probability formula can be written as

µ(A or B) =
1
2

(
µ(A) + µ(B)

)
+
√
(1− µ(A))(1− µ(B)) cos θd, (65)

where θd is the interference angle for the disjunction.
From the data in Reference [11]:

µ(A) = 0.69, (66)

µ(B) = 0.59, (67)

µ(A or B) = 0.36, (68)

we get

θd = 141.76◦, (69)

|A〉 = (0.83, 0, 0.56), (70)

|B〉 = ei141.76◦(0.43, 0.64,−0.64), (71)

that is, the conceptual situations A and B “destructively interfere” in the disjunction ‘A or B’.
The quantum-theoretic framework enables faithful representation of different data sets (see also

Table 3 in Section 4), explaining uncertainty aversion as one of the possible context effect produced by
the overall conceptual landscape surrounding the decision situation. In the disjunction effect, a case of
destructive interference occurs when the conceptual situations “winning the first gamble” and “losing the
first gamble” combine in the conceptual disjunction, which is responsible of the double underextension
effects observed empirically. This means that the presence of a conceptual, or emergent, reasoning can be
identified in the disjunction effect too.
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8. A Quantum Framework for Ellsberg-Type Paradoxes

We have recently developed a theoretical framework, along the lines sketched in Section 6.2,
that uses the mathematical formalism of quantum theory to model human DM under uncertainty.
The quantum-theoretic framework:

(i) provides a unitary solution for a variety of paradoxes of EUT, including Ellsberg and Machina
paradoxes [33,77,78];

(ii) enables faithful representation of various sets of empirical data on these paradoxes [33,59,77];
(iii) successfully models shifts of attitudes towards uncertainty, from ambiguity averse to ambiguity

seeking, and viceversa, as due to hope and fear effects [79];
(iv) opens the way towards a quantum-based extension of SEUT [29,33,77].

We rely on the quantum conceptual framework in Section 6.2 and assume that, in any DM process,
an interaction occurs between the conceptual entity that is the object of the decision, or DM entity, and the
cognitive context, which may include the decision-maker. This interaction changes the (conceptual) state of
the DM entity.

Let us apply the quantum-theoretic framework to the Ellsberg three-color example presented in
Section 5. The DM entity ΩDM is the urn with 30 red balls and 60 yellow and black balls in unknown
proportion, and is associated with the Hilbert space C3. Let {(1, 0, 0), (0, 1, 0), (0, 0, 1)} be the canonical
ON basis of C3. For every i = R, Y, B, the elementary event Ei is represented by the one-dimensional
orthogonal projection operator Pi = |i〉〈i|, where |R〉 = (1, 0, 0), |Y〉 = (0, 1, 0) and |B〉 = (0, 0, 1). A state
pv of ΩDM incorporates aspects of ambiguity and is represented by the unit vector |v〉 ∈ C3, ‖|v〉‖ = 1,
that is,

|v〉 = ρReiθR |R〉+ ρYeiθY |Y〉+ ρBeiθB |B〉 = (ρReiθR , ρYeiθY , ρBeiθB), (72)

where ρR, ρY, ρB ≥ 0, ρ2
R + ρ2

Y + ρ2
B = 1, θR, θY, θB ∈ R

For every i = R, Y, B, the (subjective) probability µv(Ei) that Ei occurs in the state pv of ΩDM is
obtained through the Born rule of quantum probability, that is,

µv(Ei) = 〈v|Pi|v〉 = |〈i|v〉|2 = ρ2
i . (73)

Compatibility with the three-color example requires that ρ2
R = 1

3 , hence

|v〉 = (
1√
3

eiθR , ρYeiθY , ρBeiθB) = (
1√
3

eiθR , ρYeiθY ,

√
2
3
− ρ2

yeiθB). (74)

Acts f1, f2, f3 and f4 in Table 4 are represented by the hermitian operators

F1 = u(100)PR + u(0)PY + u(0)PB, (75)

F2 = u(0)PR + u(0)PY + u(100)PB, (76)

F3 = u(100)PR + u(100)PY + u(0)PB, (77)

F4 = u(0)PR + u(100)PY + u(100)PB. (78)

Thus, for every i = 1, 2, 3, 4, the EU Wv( fi) of fi in the state pv is given by

Wv( f1) = 〈v|F1|v〉 =
1
3

u(100) +
2
3

u(0), (79)

Wv( f2) = 〈v|F2|v〉 = (
1
3
+ ρ2

Y)u(0) + (
2
3
− ρ2

Y)u(100), (80)

Wv( f3) = 〈v|F3|v〉 = (
1
3
+ ρ2

Y)u(100) + (
2
3
− ρ2

Y)u(0), (81)

Wv( f4) = 〈v|F4|v〉 =
1
3

u(0) +
2
3

u(100) (82)
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As we can see, the EUs Wv( f1) and Wv( f4) do not depend on pv, in agreement with the fact that
f1 and f4 are unambiguous acts. On the contrary, the EUs Wv( f2) and Wv( f3) do depend on pv, in
agreement with the fact that f2 and f3 are ambiguous acts.

Let us now come to the DM process. The entity ΩDM is prepared by the questionnaire in the
initial state pv0 represented by the unit vector |v0〉 = 1√

3
(1, 1, 1), which leads to uniform drawing

probabilities. However, in the pondering between f1 and f2, a first context operates on ΩDM and transforms
pv0 into a new state pv12 , depending on individual attitudes towards ambiguity; analogously, in the
pondering between f3 and f4, a second context operates on ΩDM and transforms pv0 into a new state pv34 ,
again depending on individual attitudes towards ambiguity. To reproduce Ellsberg preferences, we need
to determine two ambiguity averse final states pw1 and pw2 , represented by the unit vectors |w1〉 and |w2〉,
respectively, such that Ww1( f1) > Ww1( f2) and Ww2( f4) > Ww2( f3). One can show that, for every α > 1√

3
,

the unit vectors

|w1〉 = (
1√
3

, α,−
√

2
3
− α2) (83)

and

|w2〉 = (
1√
3

,−
√

2
3
− α2, α) (84)

reproduce Ellsberg preferences [80]. The orthogonality condition 〈w1|w2〉 = 0 implies α = ±0.7887.
We choose α = +0.7887, thus getting

|w1〉 = (0.5774, 0.7887,−0.2113), (85)

|w2〉 = (0.5774,−0.2113, 0.7887), (86)

which completes the quantum mathematical modelling of the Ellsberg three-color example.
Let us now represent in Hilbert space the data on the three-color example in Reference [59].

The decision measurement between acts f1 and f2 is represented by the spectral family {M,1−M},
M = |m〉〈m|, with ‖|m〉‖ = 1. From the data in Reference [59], we have 〈w1|M|w1〉 = 0.82, and one
can show that

M =

 0.333 0.396 0.256e−i105.07◦

0.396 0.470 0.304e−i105.07◦

0.256ei105.07◦ 0.304ei105.07◦ 0.197

 (87)

(see Reference [80]). The decision measurement between acts f3 and f4 is instead represented by the
spectral family {N,1− N}, N = |n〉〈n|, with ‖|n〉‖ = 1. From the data in Reference [59], we have
〈w2|N|w2〉 = 0.78, and one can show that

N =

 0.333 0.276e−i102.87◦ 0.382
0.276ei102.87◦ 0.229 0.317ei102.87◦

0.382 0.317e−i102.87◦ 0.438

 (88)

(see Reference [80]). We have thus completed the construction of a quantum model for the Ellsberg
three-color example, which also provides data representation of the DM test in Reference [59].
Ambiguity aversion is one of the conceptual landscapes interacting with the DM entity and changing
its state, and genuine quantum effects, namely, contextuality, interference and superposition, occur in
the DM process.

The quantum-theoretic framework for human DM under uncertainty can be applied straight to
the two-urn example in Section 5. In this case, we have two DM entities, entity ΩI

DM, the urn with
100 red and black balls in unknown proportion, and entity ΩI I

DM, the urn with exactly 50 red balls and
50 black balls. Both ΩI

DM and ΩI I
DM are associated with the Hilbert space C2. Let {(1, 0), (0, 1)} be the

canonical ON basis of C2.
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For every i = R, B, the elementary event Ei is represented by the one-dimensional orthogonal
projection operator Pi = |i〉〈i|, where |R〉 = (1, 0) and |B〉 = (0, 1). A state pv of both ΩI

DM and ΩI I
DM

is represented by the unit vector |v〉 ∈ C2, ‖|v〉‖ = 1, that is,

|v〉 = ρReiθR |R〉+ ρBeiθB |B〉 = (ρReiθR , ρBeiθB) (89)

where ρR, ρB ≥ 0, ρ2
R + ρ2

B = 1, θR, θB ∈ R.
For every i = R, B, the (subjective) probability µv(Ei) that the event Ei occurs in the state pv is

obtained through the Born rule of quantum probability, that is,

µv(Ei) = 〈v|Pi|v〉 = |〈i|v〉|2 = ρ2
i . (90)

Acts f1, f2, f3 and f4 in Table 5 are represented by the hermitian operators

F1 = u(100)PR + u(0)PB = F2, (91)

F3 = u(0)PR + u(100)PB = F4. (92)

The EU of f1, f2, f3 and f4 in a state pv of both ΩI
DM and ΩI I

DM is given by

Wv( f1) = 〈v|F1|v〉 = ρ2
Ru(100) + ρ2

Bu(0) = ρ2
Ru(100) + (1− ρ2

R)u(0) = Wv( f2), (93)

Wv( f3) = 〈v|F3|v〉 = ρ2
Ru(0) + ρ2

Bu(100) = ρ2
Ru(0) + (1− ρ2

R)u(100) = Wv( f4). (94)

Let us now come to the DM process. Both ΩI
DM and ΩI I

DM are prepared by the questionnaire in the
initial state pv0 represented by unit vector |v0〉 = 1√

2
|e1〉+ 1√

2
|e2〉 = 1√

2
(1, 1), which leads to uniform

drawing probabilities. Then, since f1 is ambiguous whereas f2 is unambiguous, a pondering between
f1 and f2 will determine a change of ΩI

DM from pv0 to a generally different state pw1 , whereas the
same pondering will leave ΩI I

DM in the initial state pv0 . Similarly, since f3 is ambiguous whereas f4 is
unambiguous, a pondering between f3 and f4 will determine a change of ΩI

DM from pv0 to a generally
different state pw2 , whereas the same pondering will leave ΩI I

DM in the initial state pv0 .
One can then show that, for every 0 ≤ α < 1

2 , the unit vectors

|w1〉 = (
√

α,
√

1− α), (95)

|w2〉 = (
√

1− α,−
√

α) (96)

reproduce Ellsberg preferences f2 � f1 and f4 � f3 [70]. Indeed, using Equations (93)–(96), we get

Wv0( f2) =
1
2
[u(100) + u(0)] > αu(100) + (1− α)u(0) = Ww1( f1), (97)

Wv0( f4) =
1
2
[u(100) + u(0)] > (1− α)u(0) + αu(100) = Ww2( f3). (98)

Let us finally represent in Hilbert space the data on the two-urn example in Reference [59].
The decision measurement between acts f1 and f2 is represented by the spectral family {M,1−M},
where M = |m〉〈m| and ‖|m〉‖ = 1. The decision measurement between acts f3 and f4 is instead
represented by the spectral family {N,1− N}, where N = |n〉〈n| and ‖|n〉‖ = 1.

From the data in (Aerts, Geriente, Moreira, Sozzo 2018) , we have:

〈w1|M|w1〉 = 0.82, (99)

〈w2|N|w2〉 = 0.84. (100)
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One can show that the unit vectors

|w1〉 = (0.38, 0.92), (101)

|w2〉 = (0.92,−0.38), (102)

and the one-dimensional orthogonal projection operators

M =

(
0.05 0.21i
−0.21i 0.95

)
, (103)

N =

(
0.93 −0.13i
0.13i 0.02

)
(104)

reproduce empirical data (see References [70,79] for the details). The construction of a quantum
model for the Ellsberg two-urn example, which reproduces data in Reference [59], is thus completed.
However, the quantum model also works for shifts of ambiguity attitudes, as due to hope and fear
effects, in managerial and medical decisions, as proved in Reference [79].

We conclude this section with a remark. According to SEUT, people should take decisions in
such a way to maximize EU with respect to a Kolmogorovian probability measure (cfr., Section 5).
The analysis provided here shows instead that the paradoxes of SEUT disappear in a theoretical
framework in which people actually take decisions in such a way to maximize EU with respect to
a non-Kolmogorovian, specifically quantum, probability measure. This suggests to extend EUT in
a Hilbert space formalism along the lines suggested in this paper.

9. Conclusions

In this paper, we have addressed the question of the foundations of quantum theory as a general
theory for human cognition, that is, the problem of how and why we are justified in applying quantum
models in cognitive domains independently of their empirical effectiveness. To this end, we have
worked out a unitary theoretical framework, inspired by realistic-operational foundations of quantum
physics, to represent in Hilbert space the phenomenology of human judgements and DM under
uncertainty. In it, a cognitive test is described as a two-step process which involves both a preparation
and a measurement on a conceptual entity, while the participant operates in the test as a measurement
context for the entity and changes its state. We note the problem of the measurement with respect to
the calculation in quantum theory. Consequently, both the problem of quanta observational error of the
energy measurement and the inevitable perturbation of the measurement itself arise. On the subject,
including Einsteinian objectivity–and–realism of a quantum theory are nowadays well identified from
a historical–epistemological standpoint. A differ point of view was provided by Dirac. Both scientists
essentially concluded that, at that time, the theory was not mature yet to go into a radical solution.
For example, why mathematicians and physicists did not perceive that the change of energy could
be per quanta? (see, e.g., References [81–84] and references therein). Whenever the conceptual entity,
its states, contexts, properties, and mutual statistical relations are identified in the modelling of a given
phenomenon, the quantum-theoretic framework consists in making explicit the usual Hilbert space
representation of entities, states, contexts, properties, probabilities and dynamics. We have applied
this general theory to long-standing cognitive fallacies, but the theory is in principle applicable to
any judgement and decision. The latter remark is important, because the quantum models following
from the general framework presented here work, not only in empirical situations where deviations
from classicality occur, but also in those situations which admit a classical logical and probabilistic
modelling, hence no fallacy occur (see, e.g., classical conjunction and disjunction data in concept
combinations [22,35]).

We conclude this section with some remarks that are important, in our opinion, to better grasp
the content of this paper.
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Firstly, we are aware that a SCoP formalism description contains a degree of idealization and that
the large variability in individual differences may play a fundamental role in cognitive processes, which
may even mine the Hilbert space representation of some of these processes (see, e.g., Reference [85]
for an example of a quantum model that incorporates individual differences). Nevertheless, we also
think that a refinement in the description of cognitive processes which takes into account individual
differences is not incompatible with a SCoP formalism description where (i) each individual is
confronted with a conceptual entity preliminarily prepared by a cognitive test in a defined state,
and (ii) the individual acts as a context for the entity, changing its state in a way that is uncontrollable
and unpredictable if not at a statistical level. In this regard, it is worth mentioning that we have
recently studied processes where effects of memory, evidence accumulation and response dynamics
occur in sequential judgements. In these cases, we have proved that, while a general model in
Hilbert space cannot be constructed which agrees with empirical data, however, a SCoP formalism
description can still be worked out which suggests using a non-Kolmogorovian non-quantum model
of probability, called “general tension-reduction (GTR) representation” (see, e.g., Reference [69] and
references therein).

Secondly, we do not claim that a “quantum, or quantum-like, theory in Hilbert space” is the
only possible theory for human cognition. And, indeed, some authors have proved that suitable
classical models where noise is postulated at individual level enable representing a variety of empirical
situations where cognitive fallacies occur [86]. On the other side, we also believe that in these cases of
empirical equivalence between different scientific paradigms, also epistemological arguments should
be taken into account. In this regard, the fact that the present quantum-theoretic framework enables
explaining several seemingly different cognitive phenomena in a unitary, cross-disciplinary and
coherent structure, using a minimum number of theoretical hypotheses, are serious epistemological
arguments in favour of a non-Kolmogorovian quantum, or quantum-like, paradigm.

Thirdly, there is a tendency, mainly in empirically-based disciplines, to be critical with respect
to a theory that is able to reproduce all possible situations it applies to. This is because the theory
contains additional parameters, which may lead one to think that “any type of data can be modelled
by allowing these parameters to get different values”. We agree that, in case we have to do with
an “ad hoc model”, that is, a model especially designed for the circumstance of the situation it models,
this suspicion is grounded. Adding parameters to such an “ad hoc model”, or stretching the already
contained parameters to other values, does not give rise to what we call a theory. On the other hand,
a theory needs to be well defined, its rules, the allowed procedures, its theoretical, mathematical,
and internal logical structure, “independent” of the structure of the models representing specific
situations that can be coped with by the theory. Hence, the theory needs to contain a well defined set of
instructions of “how to produce models for specific situations”. In this regard, we distinguish between
a model that is derived by a general theory, as the ones presented in this paper, and a model specifically
designed to reproduce a number of empirical situations. This is connected with the important issue
of the “predictive power” of quantum models. We refer here to the distinction between the scientific
explanation—in certain epistemological studies also identified with a prediction—and the description
of a scientific account. This distinction is linked with the presence of probabilistic models which
can assume an epistemic role both for the explanatory and the descriptive. The former deals with
experiments, observables, and so forth, the latter deals with data. Of course, within a scientific process,
the activities are connected in a double sense with data. Thus, the explanation–and–description
remains an ambiguous object to solve, especially in cognitive and social sciences where, as mentioned
above, the model plays a surrogate important role in the final decision (observable–data–information)
of the theory. For example, in quantum theory a complex wave function (space and time variables)
describes mathematically the state of a (physical complex vector space) system. For, probabilistic
models calculate (so they do not measure) the probabilities of a state in a given space and time. This was,
of course, not possible in the predictive Newtonian science until 19th century; the same remark applies
to Lagrangian formulation [87,88]. Hence, a result is that it is not possible to produce simultaneous
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measure (and so predictions) of position and momentum, as conjugate variables, to arbitrary precision
such as established by Heisenberg’s uncertainty principle. In other words, an electron probabilistically
can be located in space but without an exact (prediction of the) position. Therefore, quantum theory,
which cannot assign definite values to its variables – by a probabilistic distribution – can scientifically
calculate, so describes–and–explains, the values of certain observables. Models derived from a theory
will generally need more data from a larger set of tests to become predictive for the outcomes of other
not yet performed experiments than this is the case for “ad hoc models”. The reason is that in principle
such models have to be able to faithfully represent data of all possible tests that can be performed.
In quantum cognition, the relative exiguity of data, in particular, if compared to physics, prevents
models from having systematic and substantial predictive power. However, we also believe that the
independent applicability of the quantum-theoretic framework presented here constitutes in itself
a strong argument to support this line of the quantum cognition research programme.
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