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Introduction and main results

The thin film Muskat problem is the strongly coupled degenerate parabolic system

∂ t f = div[f ∇((1 + R)f + Rg)], ∂ t g = µR div[g∇(f + g)], (t, x) ∈ (0, ∞) × R d , d ≥ 1, (1.1) 
which describes the motion of two thin fluid layers on an impermeable horizontal bottom, identified with the plane {x d+1 = 0}, under the influence of gravity. Here f (t, x) ≥ 0 is the thickness of the layer which has density ρ -and viscosity µ -and g(t, x) ≥ 0 is the thickness of the layer with density ρ + and viscosity µ + . In particular, (1.1) is a model for the spreading of two fluid blobs of different fluids on an impermeable surface. We assume that ρ -> ρ + > 0, the positive constants in (1.1) being given by the relations R := ρ + ρ --ρ + and µ := µ - µ + .

The system (1.1) is derived in [START_REF] Escher | Modelling and analysis of the Muskat problem for thin fluid layers[END_REF][START_REF] Jazar | Derivation of seawater intrusion models by formal asymptotics[END_REF][START_REF] Woods | The dynamics of two-layer gravity-driven flows in permeable rock[END_REF] in a one-dimensional setting and most of the analysis devoted so far to this problem, which we review now, is restricted to the one-dimensional case d = 1.

The well-posedness of (1.1) in the setting of classical solutions is addressed in [START_REF] Escher | Modelling and analysis of the Muskat problem for thin fluid layers[END_REF], while nonnegative global weak solutions are constructed, by different approaches, in [START_REF] Alkhayal | Global weak solutions for a degenerate parabolic system modelling seawater intrusion in confined aquifers[END_REF][START_REF] Brüll | On the thin film Muskat and the thin film Stokes equations[END_REF][START_REF] Escher | Existence and stability of weak solutions for a degenerate parabolic system modelling two-phase flows in porous media[END_REF][START_REF]A gradient flow approach to a thin film approximation of the Muskat problem[END_REF][START_REF]Finite speed of propagation and waiting time for a thin film Muskat problem[END_REF]. The rich dynamics described by the thin film Muskat problem (1.1) is very well illustrated by the laboratory experiments described in [START_REF] Woods | The dynamics of two-layer gravity-driven flows in permeable rock[END_REF], but also by the numerical simulations reported in [START_REF] Ait | A finite volume scheme for a seawater intrusion model with cross-diffusion[END_REF][START_REF] Hammou Oulhaj | Large time behavior of a two phase extension of the porous medium equation[END_REF][START_REF]Self-similarity in a thin film Muskat problem[END_REF]. Besides, from a mathematical point of view, many of these experimental and numerical observations are rigorously established. In particular, non-negative weak solutions to (1.1) possess finite speed of propagation and solutions emanating from certain initial data feature the waiting time phenomenon, see [START_REF]Finite speed of propagation and waiting time for a thin film Muskat problem[END_REF]. However, the finite speed of propagation property for a single fluid phase, that is, when only f (0) (or g(0)) is compactly supported, is still an open problem. When the system (1.1) is posed on R, the large time behavior of weak solutions is investigated in [START_REF]Self-similarity in a thin film Muskat problem[END_REF]. More precisely, it is shown that solutions starting from even initial data converge towards the (unique) even self-similar solution, a property which is in perfect agreement with the laboratory experiments reported in [START_REF] Woods | The dynamics of two-layer gravity-driven flows in permeable rock[END_REF]. It is worthwhile to mention, as a special feature of the one-dimensional thin film Muskat problem (1.1), that, depending on the values of the parameters R and µ, there may exist a continuum of selfsimilar solutions which are not symmetric, see [START_REF]Self-similarity in a thin film Muskat problem[END_REF], and every weak solution to (1.1) converges to one of these special solutions for large times. Determining which self-similar solutions are attained in the large time limit is still an open problem, but numerical simulations performed in [START_REF]Self-similarity in a thin film Muskat problem[END_REF] seem to indicate that some of these non-symmetric self-similar solutions attract certain non-negative weak solutions. The dynamics is much simpler in dimension d = 2, as there exists only one self-similar solution to (1.1) which is radially symmetric and a global attractor, see [START_REF] Hammou Oulhaj | Large time behavior of a two phase extension of the porous medium equation[END_REF].

Though the thin film Muskat problem is formally derived as the singular limit of the Muskat problem when letting the thickness of the fluid layers vanish [START_REF] Escher | Modelling and analysis of the Muskat problem for thin fluid layers[END_REF], it is rather immediate to notice that (1.1) can be viewed as a two-phase generalization of the well-known porous medium equation

∂ t f = div(f ∇f ), (t, x) ∈ (0, ∞) × R d , (1.2) 
see [START_REF] Boussinesq | Recherches théoriques sur l'écoulement des nappes d'eau infiltrées dans le sol et sur le débit de sources[END_REF][START_REF] Vázquez | The Porous Medium Equation[END_REF]. Indeed, when g = 0, f solves, up to a multiplicative factor which can be scaled out, the equation (1.2). The goal of this paper is to establish the latter observation rigorously by performing the singular limit ρ + → 0, with µ kept constant or even letting µ → ∞, to recover the porous medium equation (1.2) in the limit, see Theorem 1.2-Theorem 1.5 below. In order to present our results, we first quantify how ρ + (and possibly also µ + ) vanishes by setting

R = ε and µ = µ(ε) = µ ε α , (1.3) 
with ε ∈ (0, 1), α ∈ [0, ∞), and a positive constant µ (we will let ε → 0). For this choice of the parameters R and µ, the system (1.1) becomes

∂ t f ε = div[f ε ∇((1 + ε)f ε + εg ε )], ∂ t g ε = µε div[g ε ∇(f ε + g ε )], (t, x) ∈ (0, ∞) × R d . (1.4) 
We supplement (1.4) with initial data

(f ε (0), g ε (0)) = (f 0 , g 0 ) ∈ K 2 , (1.5) 
where

K := h ∈ L 1 (R d , (1 + |x| 2 )dx) ∩ L 2 (R d ) : h ≥ 0 a.e. and R d h(x) dx = 1 .
We next recall that the system (1.1) is a gradient flow for the energy functional

E ε (f, g) := 1 2 R d [f 2 + ε(f + g) 2 ] dx (1.6)
with respect to the 2-Wasserstein distance, see [START_REF]A gradient flow approach to a thin film approximation of the Muskat problem[END_REF], a similar property being available for the porous medium equation (1.2) as observed earlier in [START_REF] Otto | Dynamics of labyrinthine pattern formation in magnetic fluids: a mean-field theory[END_REF][START_REF]The geometry of dissipative evolution equations: the porous medium equation[END_REF]. Additionally, the entropy functional

H ε (f, g) := R d f ln f + 1 µ(ε) g ln g dx (1.7)
is also non-increasing along solutions to (1.1). The gradient flow structure and the time monotonicity of (1.7) are used in [START_REF]A gradient flow approach to a thin film approximation of the Muskat problem[END_REF] to construct non-negative global weak solutions to (1.1). The next theorem just recalls the statement of [START_REF]A gradient flow approach to a thin film approximation of the Muskat problem[END_REF]Theorem 1.1] and provides also the corresponding results in the case d ≥ 2, as the strategy used in [START_REF]A gradient flow approach to a thin film approximation of the Muskat problem[END_REF] can be easily adapted to establish Theorem 1.1 in arbitrary space dimension d ≥ 1.

Theorem 1.1. Let ε ∈ (0, 1), (f 0 , g 0 ) ∈ K 2 , and assume (1.3). Then, there exists a pair

(f ε , g ε ) : [0, ∞) → K 2 such that (i) (f ε , g ε ) ∈ L ∞ (0, ∞; L 2 (R d ; R 2 )), (f ε , g ε ) ∈ L 2 (0, t; H 1 (R d ; R 2 )), (ii) (f ε , g ε ) ∈ C([0, ∞), (W 1 4 (R d ; R 2 )) ′ ) with (f ε , g ε )(0) = (f 0 , g 0 ), and (f ε , g ε ) is a weak solution to (1.4)-(1.5) in the sense that R d f ε (t)ξ dx - R d f 0 ξ dx + t 0 R d f ε ∇((1 + ε)f ε + εg ε ) • ∇ξ dx ds = 0, (1.8a) R d g ε (t)ξ dx - R d g 0 ξ dx + µε t 0 R d g ε ∇(f ε + g ε ) • ∇ξ dx ds = 0, (1.8b 
)

for all ξ ∈ C ∞ c (R d
) and t ≥ 0. In addition, (f ε , g ε ) satisfy the following estimates:

(a) H ε (f ε (t), g ε (t)) + t 0 R d |∇f ε | 2 + ε|∇(f ε + g ε )| 2 dx ds ≤ H ε (f 0 , g 0 ), (b) E ε (f ε (t), g ε (t)) + 1 2 t 0 R d f ε |∇((1 + ε)f ε + εg ε )| 2 + µε 2 g ε |∇(f ε + g ε )| 2 dx ds ≤ E ε (f 0 , g 0 )
for almost all t ∈ (0, ∞).

From now on f 0 and g 0 are fixed in K and (f ε , g ε ), ε ∈ (0, 1), denotes the solution to the evolution problem (1.4)-(1.5) provided by Theorem 1.1. In our first main result, see Theorem 1.2 below, we establish the convergence of the family (f ε ) ε∈(0,1) found in Theorem 1.1 towards a weak solution to the porous medium equation (1.2) as ε → 0 along a suitable sequence. Theorem 1.2. Let d ≥ 1, α ∈ [0, ∞), and assume (1.3). There exists a sequence (ε k ) k≥1 ⊂ (0, 1)

with ε k → 0 and a function f : [0, ∞) → K with f ∈ L ∞ (0, ∞; L 2 (R d )) ∩ C([0, ∞), (W 1 4 (R d )) ′ ), f ∈ L 2 (0, t; H 1 (R d )) ∩ L ∞ (0, t; L 1 (R d , |x| 2 dx)), f ∇f ∈ L 2 ((0, t) × R d ), (1.9) such that f ε k → f in L 2 ((0, t) × R d ) for all t > 0 as k → ∞.
Moreover, f is a weak solution to the porous medium equation (1.2) determined by the initial condition f 0 in the sense that it satisfies (1.9) and

R d f (t)ξ dx - R d f 0 ξ dx + t 0 R d f ∇f • ∇ξ dx ds = 0 for all ξ ∈ C ∞ c (R d
) and t ≥ 0. Even though there are several uniqueness results available for the porous medium equation (1.2) in the literature, see [START_REF] Alt | Quasilinear elliptic-parabolic differential equations[END_REF][START_REF] Ph | Solutions of the porous medium equation in R N under optimal conditions on initial values[END_REF][START_REF] Brézis | Uniqueness of solutions of the initial-value problem for ut -∆ϕ(u) = 0[END_REF][START_REF] Otto | L 1 -contraction and uniqueness for quasilinear elliptic-parabolic equations[END_REF][START_REF] Pierre | Uniqueness of the solutions of ut -∆(φ(u)) = 0 with initial datum a measure, Nonlinear Anal[END_REF][START_REF] Vázquez | The Porous Medium Equation[END_REF] and the references therein, uniqueness of a weak solution to (1.2) in the sense of Theorem 1.2 does not seem to be dealt with and is thus reported below when the space dimension satisfies d ≤ 4, see Theorem 1.3. In fact, Theorem 1.3 improves Theorem 1.2 in space dimension d ≤ 4 by providing rates for the convergence of the whole family (f ε ) ε∈(0,1) as ε → 0 towards the solution f to the porous medium equation. ), and assume (1.3). Then, the porous medium equation (1.2) with initial data f (0) = f 0 has a unique solution f in the sense of Theorem 1.2 and there exists a positive constant C = C(f 0 , g 0 , µ) such that

Theorem 1.3. Let d ≤ 4, α ∈ [0, ∞
f ε (t) -f (t) H -1 ≤ Ce Ct ε 6d+36 11d+36
for all t ≥ 0 and ε ∈ (0, 1).

(1.10)

The dimension-dependent exponent of ε featured in (1.10) is connected to the low regularity assumed on the solutions to (1.2) and (1.4). Under the additional assumption that an ε-independent L ∞ -bound is available for the solutions to (1.2) and (1.4), the outcome of Theorem 1.3 can be improved as follows.

Corollary 1.4. Let d ≥ 1, α ∈ [0, ∞), and assume (1.3). If (f 0 , g 0 ) ∈ L ∞ (R d ; R 2 ) and if there exists a positive constant κ such that f ε (t) ∞ + f (t) ∞ ≤ κ, (t, ε) ∈ [0, ∞) × (0, 1), (1.11) 
then there exists a positive constant

C = C(f 0 , g 0 , µ, κ) such that f ε (t) -f (t) H -1 ≤ Ce Ct ε for all t ≥ 0 and ε ∈ (0, 1).
The boundedness (1.11) is well-known for the solution to the porous medium equation (1.2), as the comparison principle ensures that f (t) ∞ ≤ f 0 ∞ for t ≥ 0. Such a bound is far from being obvious for solutions to (1.4) and we refer to the forthcoming paper [12] for results in that direction.

Finally, in Theorem 1.5 we establish the convergence of the family (g ε ) ε∈(0,1) towards the initial condition g 0 in the regime where α ∈ [0, 1/(d + 2)).

Theorem 1.5. Let d ≥ 1, α ∈ [0, 1/(d + 2
)), and assume (1.3). Then, there exists a positive constant C = C(f 0 , g 0 , µ) such that

g ε (t) -g 0 H -1-d ≤ C(1 + t)ε 1 d+2 -α
for all t ≥ 0 and ε ∈ (0, 1).

The outline of the paper is as follows. In Section 2 we deduce from Theorem 1.1 a handful of estimates for the solutions (f ε , g ε ) to (1.4)-(1.5) which form the basis of the proof of the convergence result stated in Theorem 1.2. Section 3 is next devoted to the proofs of Theorem 1.3 and Corollary 1.4, which use the estimates from Section 2, a duality technique, and Gronwall's lemma. Finally, in Section 4, we establish Theorem 1.5, using once more the estimates established in Section 2.

ε-independent estimates and proof of Theorem 1.2

To begin with, we derive from Theorem 1.1 estimates for the solutions (f ε , g ε ) to (1.4)-(1.5), see Lemma 2.1. These estimates, together with Lemma 2.2 and a classical compactness result [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF]Corollary 4], enable us to establish the convergence of (f ε ) ε∈(0,1) along a sequence ε k → 0 towards the solution to the porous medium equation (1.2), see Lemma 2.3. We conclude the section with the proof of Theorem 1.2. In the following we use the shorthand notation ), and assume (1.3). Then:

h ε := f ε + g ε , ε ∈ (0, 1). Lemma 2.1. Let d ≥ 1, α ∈ [0, ∞
(i) (f ε ) ε∈(0,1) and ( √ εh ε ) ε∈(0,1) are bounded in L ∞ (0, ∞; L 1 (R d ) ∩ L 2 (R d )); (ii) √ f ε ∇(f ε + εh ε ) ε∈(0,1) is bounded in L 2 ((0, ∞) × R d ); (iii) (∇f ε ) ε∈(0,1) and ( √ ε∇h ε ) ε∈(0,1) are bounded in L 2 ((0, t) × R d ) for all t ≥ 0; (iv) (∂ t f ε ) ε∈(0,1) is bounded in L 2 (0, ∞; (W 1 4 (R d )) ′ ); (v) (f ε ) ε∈(0,1) is bounded in L ∞ (0, t; L 1 (R d , |x| 2 dx)) for all t ≥ 0.
Proof. Since ε ∈ (0, 1) and

E ε (f 0 , g 0 ) ≤ f 0 2 2 + f 0 + g 0 2 2 2 ,
the estimates (i)-(ii) directly follow from the definition of K and the energy inequality, see Theorem 1.1 (b).

In order to prove (iii), let us consider, for each n ∈ N, the function ξ n : R d → R defined by

ξ n (x) :=    |x| 2 , |x| ≤ n, 4n|x| -|x| 2 -2n 2 , n ≤ |x| ≤ 2n, 2n 2 , |x| ≥ 2n.
We point out that ξ n -2n 2 is continuously differentiable and has compact support, hence it can be approximated in the

W 1 ∞ -norm by functions in C ∞ c (R).
Moreover, the properties of the solutions to (1.4)-(1.5) listed in Theorem 1.1 enable us to show that

lim n→∞ R d f ε (t, x)ξ n (x) dx = R d f ε (t, x)|x| 2 dx, lim n→∞ R d g ε (t, x)ξ n (x) dx = R d g ε (t, x)|x| 2 dx, lim n→∞ t 0 R d f ε ∇(f ε + εh ε ) • ∇ξ n dx ds = 2 t 0 R d f ε ∇(f ε + εh ε ) • x dx, lim n→∞ t 0 R d g ε ∇h ε • ∇ξ n dx ds = 2 t 0 R d g ε ∇h ε • x dx ds, t ≥ 0.
Hence, using ξ n -2n 2 , n ∈ N, as test functions in (1.8), these convergences yield in the limit n → ∞ that

R d f ε (t) + 1 µ g ε (t) |x| 2 dx -d t 0 R d f 2 ε + εh 2 ε dx ds = R d f 0 + 1 µ g 0 |x| 2 dx, t ≥ 0.
In particular, it follows from (1.3) and Theorem 1.1 (b) that there exists a constant

C = C(f 0 , g 0 , µ) > 0 such that R d f ε (t) + 1 µ g ε (t) |x| 2 dx ≤ C(1 + t), t ≥ 0. (2.1)
Taking advantage of [13, Lemma A.1], we find a positive universal constant C E such that

-H ε (f ε (t), g ε (t)) ≤ C E 1 + 1 µ + R d f ε (t) + 1 µ g ε (t) |x| 2 dx, t ≥ 0,
which, together with (2.1) and the entropy estimate in Theorem 1.1 (a), shows that

t 0 R d |∇f ε | 2 + ε|∇h ε | 2 dx ds ≤ H ε (f 0 , g 0 ) + C(1 + t), t ≥ 0.
Since (f 0 , g 0 ) ∈ K 2 and r ln r ≤ r + r 2 for r ≥ 0, we conclude, together with (1.3), that there exists a constant C = C(f 0 , g 0 , µ) > 0 with the property that

t 0 R d |∇f ε | 2 + ε|∇h ε | 2 dx ds ≤ C(1 + t), t ≥ 0, (2.2) 
and (iii) follows from the above inequality.

Next, a classical consequence of Theorem 1.1 (see Lemma 3.1 below for a related result) ensures that (f ε , g ε ) solves (1.4) in distributional sense; that is,

∂ t f ε = divJ fε and ∂ t g ε = divJ gε in D ′ ((0, ∞) × R d ), (2.3) 
where the fluxes J fε and J gε are given by

J fε := f ε ∇(f ε + εh ε ) and J gε := µεg ε ∇h ε .
The estimates (i)-(ii) from Theorem 1.1, along with Hölder's inequality, lead us to

J fε 2 L 2 (0,∞;L 4/3 (R d )) = ∞ 0 R d f ε ∇(f ε + εh ε ) 4/3 dx 3/2 dt = ∞ 0 R d f 2 ε 1/3 f ε ∇(f ε + εh ε ) 4/3 dx 3/2 dt ≤ ∞ 0 f ε 2 f ε ∇(f ε + εh ε ) 2 2 dt ≤ f ε L∞(0,∞;L 2 (R d )) f ε ∇(f ε + εh ε ) 2 L 2 ((0,∞)×R d )
,

which shows that (J fε ) ε∈(0,1) is bounded in L 2 (0, ∞; L 4/3 (R d ))
. This property immediately implies (iv) by a duality argument. Finally, the bound (v) is a straightforward consequence of (2.1).

The next step is the continuity and compactness of some embeddings involving weighted L p -spaces, which will serve when establishing the convergence of the family (f ε ) ε∈(0,1) (along a suitable sequence

ε k → 0). Lemma 2.2. (i) Given p ∈ (2, ∞], the embedding L p (R d ) ∩ L 1 (R d , |x| 2 dx) ֒→ L 2 (R d , |x| 2(p-2) p-1 dx) is continu- ous. (ii) The embedding H 1 (R d ) ∩ L 1 (R d , |x| 2 dx) ֒→ L 1 (R d ) ∩ L 2 (R d ) is compact.
Proof. The claim (i) with p = ∞ is obvious. For p ∈ (2, ∞), Hölder's inequality leads us to

R d |f (x)| 2 |x| 2(p-2) p-1 dx ≤ R d |f (x)| |x| 2 dx p-2 p-1 f p p-1 p (2.4) and (i) follows. With respect to (ii), let (f n ) n≥1 be a bounded sequence in H 1 (R d ) ∩ L 1 (R d , |x| 2 dx) and set M := sup n≥1 f n H 1 + f n L 1 (R d ,|x| 2 dx) .
Owing to the compactness of the embedding of H 1 (B R (0)) in L 2 (B R (0)) for any R > 0, where we set B R (0) := {x ∈ R d : |x| < R}, it follows from a standard Cantor diagonal procedure that there exist a function

f ∈ H 1 (R d ) ∩ L 1 (R d , |x| 2 dx) and a subsequence of (f n ) n≥1 (not relabeled) such that f n → f in L 2 (B R (0)) for all R > 0 and f H 1 + f L 1 (R d ,|x| 2 dx) ≤ M.
Choosing p ∈ (2, ∞) such that p < 2d/(d -2) when d ≥ 3, Sobolev's embedding and (2.4) then lead us to

f n -f 2 2 ≤ B R (0) |f n (x) -f (x)| 2 dx + R -2(p-2) p-1 {|x|>R} |f n (x) -f (x)| 2 |x| 2(p-2) p-1 dx ≤ f n -f 2 L 2 (B R (0)) + R -2(p-2) p-1 f n -f p-2 p-1 L 1 (R d ,|x| 2 dx) f n -f p p-1 p ≤ f n -f 2 L 2 (B R (0)) + CR -2(p-2) p-1 (2M ) p-2 p-1 f n -f p p-1 H 1 ≤ f n -f 2 L 2 (B R (0)) + CM 2 R -2(p-2) p-1 for all n ∈ N and R > 1. Letting first n → ∞ and then R → ∞, we deduce that f n → f in L 2 (R d ).
Finally, for R > 1,

f n -f 1 ≤ f n -f L 1 (B R (0)) + R -2 f n -f L 1 (R d ,|x| 2 dx) ≤ |B R (0)| f n -f L 2 (B R (0)) + 2M R -2 .
Arguing as before completes the proof of (ii).

We now use the estimates derived in Lemma 2.1 and the previous result to deduce the following convergences.

Lemma 2.3. Let d ≥ 1, α ∈ [0, ∞),

and assume (1.3). There exists a sequence (ε

k ) k≥1 ⊂ (0, 1) with ε k → 0 and a function f ∈ L 2 (0, t; H 1 (R d )) ∩ L ∞ (0, ∞; L 2 (R d )) for all t > 0 such that (i) f ε k → f in L 2 ((0, t) × R d ) and in C([0, t], (W 1 4 (R d )) ′ ) for all t > 0; (ii) ∇f ε k ⇀ ∇f in L 2 ((0, t) × R d ) for all t > 0; (iii) ∂ t f ε k ⇀ ∂ t f in L 2 (0, ∞; (W 1 4 (R d )) ′ ); (iv) f ε k ∇(f ε k + ε k h ε k ) ⇀ √ f ∇f in L 2 ((0, t) × R d ) for all t > 0.
Proof. Let t > 0 be fixed. In view of Lemma 2.1 (i), (iii), and (v), we obtain the boundedness of (f ε ) ε∈(0,1) in L 2 (0, t; H 1 (R d )) and in L ∞ (0, t; L 1 (R d , |x| 2 dx)), as well as that of

(∂ t f ε ) ε∈(0,1) in L 2 (0, t; (W 1 4 (R d )) ′ ). Hence, the family (f ε ) ε∈(0,1) is bounded in L 2 (0, t; H 1 (R d ) ∩ L 1 (R d , |x| 2 dx)). Since H 1 (R d ) ∩ L 1 (R d , |x| 2 dx) ֒→ L 1 (R d ) ∩ L 2 (R d ) ֒→ (W 1 4 (R d ))
′ and the first embedding is compact according to Lemma 2.2 (ii), we infer from a classical compactness result, see [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF]Corollary 4], and a Cantor diagonal argument that there exist a sequence ε k → 0 and a function f such that

f ε k → f in L 2 ((0, t) × R d ) and in C([0, t], (W 1 4 (R d )) ′ ) for all t > 0. Note that Lemma 2.1 (i) now immediately implies that f ∈ L ∞ (0, ∞; L 1 (R d ) ∩ L 2 (R d )).
Next, the convergence (ii) is a straightforward consequence of Lemma 2.1 (iii) and the just established Lemma 2.3 (i), from which we also deduce that f ∈ L 2 (0, t; H 1 (R d )) for all t > 0.

Recalling Lemma 2.1 (iv), the convergence

∂ t f ε k ⇀ ∂ t f in L 2 (0, t; (W 1 4 (R)) ′
) (after possibly extracting a further subsequence) follows from Lemma 2.3 (i) and the reflexivity of L 2 (0, t; (W 1 4 (R d )) ′ ). With respect to (iv), due to Lemma 2.1 (ii), we may assume that there is

F ∈ L 2 ((0, ∞) × R d ) such that f ε k ∇(f ε k + ε k h ε k ) ⇀ F in L 2 ((0, ∞) × R d ).
(2.5)

Moreover, the bounds in Lemma 2.1 (iii), along with Lemma 2.3 (ii), imply that

∇(f ε k + ε k h ε k ) ⇀ ∇f in L 2 ((0, t) × R d ),
while Lemma 2.3 (i) leads us to

f ε k → f in L 4 ((0, t) × R d ). (2.6)
Combining the last two convergences we find

f ε k ∇(f ε k + ε k h ε k ) ⇀ f ∇f in L 4/3 ((0, t) × R d ).
Recalling (2.5), we conclude that F = √ f ∇f and therewith establish (iv).

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. Let (ε k ) k ⊂ (0, 1) and f be as found in Lemma 2.3. As a direct consequence of Lemma 2.1 (v) and Lemma 2.3 (i), which in particular implies that

f ε k (t) → f (t) in L 2 (R d )
for almost all t > 0, we deduce that f ∈ L ∞ (0, t; L 1 (R d , (1 + |x| 2 )dx)) for all t > 0. Taking also into account that f ∈ C([0, ∞), (W 1 4 (R d )) ′ ), it follows that f (t) ≥ 0 a.e. in R d for all t ≥ 0. Moreover, in view of Lemma 2.3 (i) and (iv), it is straightforward to pass to the limit k → ∞ in (1.8a) with ε = ε k and obtain

R d f (t)ξ dx - R d f 0 ξ dx + t 0 R d f ∇f • ∇ξ dx ds = 0 for all ξ ∈ C ∞ c (R d
) and all t ≥ 0, thereby establishing (1.2). Finally, choosing ζ n : R d → R with

ζ n (x) :=    1 , |x| ≤ n, n + 1 -|x| , n ≤ |x| ≤ n + 1, 0 , |x| ≥ n + 1, n ∈ N, as test function in (1.
2), we find that f (t) 1 = f 0 1 = 1 for all t ≥ 0. Therefore f (t) ∈ K for all t ≥ 0.

Estimating the error f

ε (t) -f (t) H -1
In this section we restrict our arguments to the case when the space dimension satisfies d ≤ 4. The main goal is to provide an estimate for the error f ε (t) -f (t) H -1 with t ≥ 0, cf. Theorem 1.3. In particular, we also prove that the porous medium equation (1.2) with initial data f 0 ∈ K has a unique solution in the sense of Theorem 1.2. Hence, this improves Theorem 1.2 in the sense that now the whole family (f ε ) ε∈(0,1) converges for ε → 0 towards the corresponding solution to the porous medium equation. In order to prepare the proof of Theorem 1.3, which we postpone to the end of the section, we first introduce some notation. We recall that 1 -∆ :

W 2 p (R d ) → L p (R d ) is an isomorphism for all p ∈ (1, ∞) and f H -1 = (1 -∆) -1 [f ] H 1 for all f ∈ L 2 (R d ).
Theorem 1.3 then amounts to estimate the norm F ε (t) -F (t) H 1 , where

F ε := (1 -∆) -1 [f ε ] and F := (1 -∆) -1 [f ].
Testing the equations (1.8a) and (1.2) by (1

-∆) -1 [ξ], with ξ ∈ C ∞ c (R d
) and using the selfadjointness of (1 -∆) -1 , we arrive at

R d F ε (t)ξ dx - R d F 0 ξ dx + 1 2 t 0 R d f 2 ε ξ -ξ(1 -∆) -1 [f 2 ε ] + 2ε(1 -∆) -1 [f ε ∇h ε ] • ∇ξ dx ds = 0, R d F (t)ξ dx - R d F 0 ξ dx + 1 2 t 0 R d f 2 ξ -ξ(1 -∆) -1 [f 2 ] dx ds = 0,
where

F 0 := (1 -∆) -1 [f 0 ]. Hence, letting d ε = f ε -f and D ε := F ε -F = (1 -∆) -1 [d ε ],
we have d ε (0) = D ε (0) = 0 and, subtracting the above identities, we deduce that

R d D ε (t)ξ dx + 1 2 t 0 R d d ε (f ε + f )ξ -ξ(1 -∆) -1 [d ε (f ε + f )] dx ds + ε t 0 R d (1 -∆) -1 [f ε ∇h ε ] • ∇ξ dx ds = 0. (3.1) 
As a consequence of (3.1), Theorem 1.1, and Theorem 1.2, we obtain the following result.

Lemma 3.1. Let t > 0 and ξ ∈ C ∞ c ([0, t] × R d ). Then R d D ε (t)ξ(t) dx - t 0 R d D ε ∂ t ξ dx ds = - 1 2 t 0 R d d ε (f ε + f )ξ -ξ(1 -∆) -1 [d ε (f ε + f )] + 2ε(1 -∆) -1 [f ε ∇h ε ] • ∇ξ dx ds (3.2) 
and

R d d ε (t)ξ(t) dx - t 0 R d d ε ∂ t ξ dx ds = t 0 R d f ∇f -f ε ∇(f ε + εh ε ) • ∇ξ dx ds (3.3)
for all ε ∈ (0, 1).

Proof. This is a classical result and therefore we omit its proof.

The next lemma provides an integral identity, cf. (3.4), which is obtained when formally testing with D ε in (3.3). This identity is the starting point in the proof of Theorem 1.3. Lemma 3.2. For all t ≥ 0 and ε ∈ (0, 1),

d ε (t) 2 H -1 = D ε (t) 2 H 1 = t 0 R d -d 2 ε (f ε + f ) + D ε d ε (f ε + f ) + 2εf ε ∇h ε • ∇D ε dx ds. (3.4) Proof. Since D ε = (1 -∆) -1 [d ε ] with d ε ∈ L ∞ (0, ∞; L 2 (R d )), we have D ε ∈ L ∞ (0, ∞; H 2 (R d )). Let Dε ∈ L ∞ (R; H 2 (R d )) denote the even reflection of D ε with respect to the boundary {t = 0} of (0, ∞) × R d and choose ϕ ∈ C ∞ c (R d , [0, 1]). We then define ξ δ ∈ C ∞ c (R d+1
) as the convolution ξ δ := ρ δ * (ϕ Dε ), where (ρ δ ) δ∈(0,1) is a standard mollifier on R d+1 . We first note that there exists a positive integer N ∈ N with the property that supp ξ δ (t) ⊂ [-N, N ] d for all δ ∈ (0, 1) and t ≥ 0. Using ξ δ as a test function in (3.3), we get

R d d ε (t)ξ δ (t) dx - t 0 R d d ε ∂ t ξ δ dx ds = t 0 R d f ∇f -f ε ∇(f ε + εh ε ) • ∇ξ δ dx ds for all t > 0. (3.5) 
To pass to the limit δ → 0 in the term on the right-hand side of (3.5) we recall that

f ∇f -f ε ∇(f ε + εh ε ) ∈ L 4/3 ((0, t) × R d )
by Lemma 2.1 (i)-(ii), Theorem 1.3, and Hölder's inequality. Moreover, the regularity of Dε , the restriction to space dimension d ≤ 4, and Sobolev's embedding ensure that ϕ Dε ∈ L ∞ (R; W 1 4 (R d )), from which we deduce that ∇ξ δ → ∇(ϕD ε ) in L 4 ((0, t) × R d ) for all t > 0 when letting δ → 0. We therewith get

lim δ→0 t 0 R d f ∇f -f ε ∇(f ε + εh ε ) • ∇ξ δ dx ds = t 0 R d f ∇f -f ε ∇(f ε + εh ε ) • ∇(ϕD ε ) dx ds.
To deal with the first term on the left-hand side of the equality (3.5), we note that d ε ξ δ → ϕd ε D ε in L 1 ((0, t) × R d ) for δ → 0 and all t > 0, and therefore we may assume that

lim δ→0 R d d ε (t)ξ δ (t) dx = R d ϕd ε (t)D ε (t) dx
for almost all t > 0.

To pass to the limit δ → 0 in the second term on the left-hand side of (3.5), we note that Lemma 2.3 (iii) guarantees that

∂ t d ε ∈ L 2 (0, ∞, (W 1 4 (R d )) ′ ). Since ∂ t D ε = (1 -∆) -1 [∂ t d ε ], we have ∂ t D ε ∈ L 2 (0, ∞, W 1 4/3 (R d )) and this implies that ∂ t Dε lies in L 2 (R; L 4/3 (R d )). It follows that ∂ t ξ δ = ρ δ * (ϕ∂ t Dε ) in R d+1 and therefore ∂ t ξ δ → ϕ∂ t D ε in L 2 (0, t; L 4/3 (R d )) as δ → 0. Taking also into account that d ε ∈ L 2 (0, t; L 4 (R d )), due to Lemma 2.3 (i)-(ii) and the continuous embedding of H 1 (R d ) in L 4 (R d ),
we may now pass to the limit δ → 0 in (3.5) to conclude that the identity

R d ϕd ε (t)D ε (t) dx - t 0 R d ϕd ε ∂ t D ε dx ds = t 0 R d f ∇f -f ε ∇(f ε + εh ε ) • ∇(ϕD ε ) dx ds
is satisfied for almost all t ∈ (0, ∞). Now, owing to (3.2),

∂ t D ε = - d ε (f ε + f ) 2 + (1 -∆) -1 d ε (f ε + f ) 2 + εdiv (1 -∆) -1 [f ε ∇h ε ] in D ′ ((0, ∞) × R d ).
Combining the above two identities, we end up with

R d ϕd ε (t)D ε (t) dx = t 0 R d ϕd ε - d ε (f ε + f ) 2 + (1 -∆) -1 d ε (f ε + f ) 2 + ε∇ • (1 -∆) -1 [f ε ∇h ε ] dx ds - t 0 R d ∇ d ε (f ε + f ) 2 + εf ε ∇h ε • ∇(ϕD ε ) dx ds
for almost every t ∈ (0, ∞). Choosing a suitable approximating sequence

(ϕ n ) n ⊂ C ∞ c (R d , [0, 1]
) for the constant function 1, we infer from the above identity, after passing to the limit n → ∞ and using the relation

D ε = (1 -∆) -1 [d ε ], that (3.4) holds true (for all t ≥ 0 due to the fact that D ε ∈ C([0, ∞); W 1 4/3 (R d ))
). We are now in a position to establish our second main result, see Theorem 1.3.

Proof of Theorem 1.3. Given t ≥ 0, it follows from (3.4) that

D ε (t) 2 H 1 + t 0 R d d 2 ε (f ε + f ) dx ds ≤ T 1 + T 2 , (3.6) 
where

T 1 := t 0 R d D ε d ε (f ε + f ) dx ds and T 2 := 2ε t 0 R d f ε ∇h ε • ∇D ε dx ds.
Below we estimate the terms T 1 and T 2 separately in order to obtain an integral inequality to which we may apply Gronwall's inequality and conclude in this way our claim (1.10).

The term T 1 . Using Hölder's and Young's inequalities, we find

T 1 ≤ t 0 R d d 2 ε (f ε + f ) dx ds 1/2 t 0 R d D 2 ε (f ε + f ) dx ds 1/2 ≤ 1 4 t 0 R d d 2 ε (f ε + f ) dx ds + t 0 R d D 2 ε (f ε + f ) dx ds. (3.7) 
The first term on the right-hand of (3.7) is clearly controlled by the left-hand side of (3.6) and we are thus left with estimating the second term. In view of the continuous embedding

H 1 (R d ) ֒→ L 4 (R d ) (recall that d ≤ 4
), we infer from Hölder's inequality that

t 0 R d D 2 ε (f ε + f ) dx ds ≤ t 0 D ε 2 4 f ε + f 2 ds ≤ C t 0 f ε + f 2 D ε 2 H 1 ds.
Hence, in view of Theorem 1.2 and Lemma 2.1 (i), we have

t 0 R d D 2 ε (f ε + f ) dx ds ≤ C t 0 D ε 2 H 1 ds. (3.8)
The term T 2 . In order to estimate T 2 , we first observe that W 1 3 (R d ) embeds continuously in L 12 (R d ) due to d ≤ 4. We then infer from Gagliardo-Nirenberg's inequality [START_REF] Nirenberg | On elliptic partial differential equations[END_REF] that

∇D ε 12 ≤ C D ε a W 2 3 ∇D ε 1-a 2 ≤ C d ε a 3 ∇D ε 1-a 2 , (3.9) 
where

a := 5d 2(d + 6) ∈ (0, 1].
Hölder's inequality and (3.9) now imply that

f ε ∇h ε • ∇D ε 1 ≤ f ε 12/5 ∇h ε 2 ∇D ε 12 ≤ C f ε 12/5 ∇h ε 2 d ε a 3 ∇D ε 1-a 2 .
Taking advantage of Young's inequality, we then get . Furthermore, by Gagliardo-Nirenberg's inequality and Lemma 2.1 (i),

2ε f ε ∇h ε • ∇D ε 1 ≤ 1 4 d ε 3 3 + C ε f ε 12/5 ∇h ε 2 ∇D ε 1-a 2 3 3-a = 1 4 d ε 3 3 + C ε 1/2 ∇h ε 2 ∇D ε 2 3(1-a) 3-a ε 1/2 ∇h ε 2 3a 3-a ε 1/2 f ε 12/5 3 3-a ≤ 1 4 d ε 3 3 + ε ∇h ε 2 2 ∇D ε 2 2 + C ε 1/2 ∇h ε 2 6a 3+a ε 1/2 f ε 12/5 6 3+a . Consequently, since d ε ≤ f ε + f , T 2 ≤ 1 4 t 0 R d (f ε + f )d 2 ε dx ds + ε t 0 ∇h ε 2 2 D ε 2 H 1 ds + Cε 3 3+a t 0 ε 1/2 ∇h ε 2 6a 3+a f ε
f ε 12/5 ≤ C ∇f ε b 2 f ε 1-b 2 ≤ C ∇f ε b 2 with b = d 12 ∈ (0, 1),
which implies, together with (2.2) and the property d/

(2(3 -2a)) ≤ 2, that t 0 f ε 6 3-2a 12/5 ds 3-2a 3+a ≤ C t 0 ∇f ε d 2(3-2a) 2 ds 3-2a 3+a ≤ C(1 + t) 3-2a 3+a .
Recalling the definition of a, we conclude that

T 2 ≤ 1 4 t 0 R d (f ε + f )d 2 ε dx ds + ε t 0 ∇h ε 2 2 D ε 2 H 1 ds + C(1 + t)ε 6d+36 11d+36
(3.10) for all t > 0.

Applying Gronwall's lemma. Gathering (3.6), (3.7), (3.8), and (3.10), we arrive at

D ε (t) 2 H 1 ≤ t 0 C + ε ∇h ε 2 2 D ε 2 
H 1 ds + C(1 + t)ε 6d+36 11d+36 , t ≥ 0. (3.11) 
Recalling (2.2), a direct application of Gronwall's inequality now leads us to the desired estimate (1.10).

Uniqueness of the solution to (1.2). If f 1 and f 2 are two solutions to (1.2) corresponding to the same initial data f 0 , then we can perform similar computations as those leading to (3.11) to obtain that

(1 -∆) -1 [(f 1 -f 2 )(t)] 2 H 1 ≤ C t 0 (1 -∆) -1 [(f 1 -f 2 )] 2 H 1 ds, t ≥ 0,
and Gronwall's lemma then implies f 1 = f 2 .

We complete this section with the proof of Corollary 1.4. and applying Gronwall's lemma completes the proof.

Proof of

The limiting behavior of g ε

In this section we establish our last main result stated in Theorem 1.5. Before going on, we point out that all the estimates for the family (g ε ) ε∈(0,1) provided by Theorem 1.1 involve the function g ε multiplied by a positive power of ε when α > 0, see Lemma 2.1, except the conservation of mass g ε (t) 1 = 1, which stems from g ε (t) ∈ K, t ≥ 0. Nevertheless, exploiting this property, we establish below the convergence of (g ε ) ε∈(0,1) towards the initial condition g 0 for 0 ≤ α < 1/(d + 2), without any restriction on the space dimension d ≥ 1.

Proof of Theorem 1.5. To start, we use (1.8b) and the continuous embedding H 1+d (R d ) ֒→ W 
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