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THE POROUS MEDIUM EQUATION AS A SINGULAR LIMIT OF THE THIN

FILM MUSKAT PROBLEM

PHILIPPE LAURENÇOT AND BOGDAN–VASILE MATIOC

Abstract. The singular limit of the thin film Muskat problem is performed when the density (and
possibly the viscosity) of the lighter fluid vanishes and the porous medium equation is identified
as the limit problem. In particular, the height of the denser fluid is shown to converge towards
the solution to the porous medium equation and an explicit rate for this convergence is provided
in space dimension d ≤ 4. Moreover, the limit of the height of the lighter fluid is determined in a
certain regime and is given by the corresponding initial condition.

1. Introduction and main results

The thin film Muskat problem is the strongly coupled degenerate parabolic system
{

∂tf = div[f∇((1 +R)f +Rg)],

∂tg = µR div[g∇(f + g)],
(t, x) ∈ (0,∞) × R

d, d ≥ 1, (1.1)

which describes the motion of two thin fluid layers on an impermeable horizontal bottom, identified
with the plane {xd+1 = 0}, under the influence of gravity. Here f(t, x) ≥ 0 is the thickness of
the layer which has density ρ− and viscosity µ− and g(t, x) ≥ 0 is the thickness of the layer with
density ρ+ and viscosity µ+. In particular, (1.1) is a model for the spreading of two fluid blobs of
different fluids on an impermeable surface. We assume that ρ− > ρ+ > 0, the positive constants
in (1.1) being given by the relations

R :=
ρ+

ρ− − ρ+
and µ :=

µ−

µ+
.

The system (1.1) is derived in [10, 11, 23] in a one-dimensional setting and most of the analysis
devoted so far to this problem, which we review now, is restricted to the one-dimensional case d = 1.
The well-posedness of (1.1) in the setting of classical solutions is addressed in [10], while non-
negative global weak solutions are constructed, by different approaches, in [3, 8, 9, 13, 14]. The rich
dynamics described by the thin film Muskat problem (1.1) is very well illustrated by the laboratory
experiments described in [23], but also by the numerical simulations reported in [1, 2, 15]. Besides,
from a mathematical point of view, many of these experimental and numerical observations are
rigorously established. In particular, non-negative weak solutions to (1.1) possess finite speed of
propagation and solutions emanating from certain initial data feature the waiting time phenomenon,
see [14]. However, the finite speed of propagation property for a single fluid phase, that is, when
only f(0) (or g(0)) is compactly supported, is still an open problem. When the system (1.1) is posed
on R, the large time behavior of weak solutions is investigated in [15]. More precisely, it is shown that

2020 Mathematics Subject Classification. 35K45; 35K65; 35K59; 35Q35.
Key words and phrases. Thin film Muskat problem; Porous medium equation; Singular limit; Convergence.
Partially supported by DFG Research Training Group 2339 “Interfaces, Complex Structures, and Singular Limits

in Continuum Mechanics - Analysis and Numerics”.

1



2 PH. LAURENÇOT AND B.–V. MATIOC

solutions starting from even initial data converge towards the (unique) even self-similar solution,
a property which is in perfect agreement with the laboratory experiments reported in [23]. It is
worthwhile to mention, as a special feature of the one-dimensional thin film Muskat problem (1.1),
that, depending on the values of the parameters R and µ, there may exist a continuum of self-
similar solutions which are not symmetric, see [15], and every weak solution to (1.1) converges to
one of these special solutions for large times. Determining which self-similar solutions are attained
in the large time limit is still an open problem, but numerical simulations performed in [15] seem to
indicate that some of these non-symmetric self-similar solutions attract certain non-negative weak
solutions. The dynamics is much simpler in dimension d = 2, as there exists only one self-similar
solution to (1.1) which is radially symmetric and a global attractor, see [2].

Though the thin film Muskat problem is formally derived as the singular limit of the Muskat
problem when letting the thickness of the fluid layers vanish [10], it is rather immediate to notice
that (1.1) can be viewed as a two-phase generalization of the well-known porous medium equation

∂tf = div(f∇f), (t, x) ∈ (0,∞)× R
d, (1.2)

see [6, 22]. Indeed, when g = 0, f solves, up to a multiplicative factor which can be scaled out, the
equation (1.2). The goal of this paper is to establish the latter observation rigorously by performing
the singular limit

ρ+ → 0,

with µ kept constant or even letting µ → ∞, to recover the porous medium equation (1.2) in the
limit, see Theorem 1.2-Theorem 1.5 below. In order to present our results, we first quantify how ρ+
(and possibly also µ+) vanishes by setting

R = ε and µ = µ(ε) =
µ

εα
, (1.3)

with ε ∈ (0, 1), α ∈ [0,∞), and a positive constant µ (we will let ε → 0). For this choice of the
parameters R and µ, the system (1.1) becomes

{

∂tfε = div[fε∇((1 + ε)fε + εgε)],

∂tgε = µεdiv[gε∇(fε + gε)],
(t, x) ∈ (0,∞)× R

d. (1.4)

We supplement (1.4) with initial data

(fε(0), gε(0)) = (f0, g0) ∈ K2, (1.5)

where

K :=
{

h ∈ L1(R
d, (1 + |x|2)dx) ∩ L2(R

d) : h ≥ 0 a.e. and

∫

Rd

h(x) dx = 1
}

.

We next recall that the system (1.1) is a gradient flow for the energy functional

Eε(f, g) :=
1

2

∫

Rd

[f2 + ε(f + g)2] dx (1.6)

with respect to the 2-Wasserstein distance, see [13], a similar property being available for the porous
medium equation (1.2) as observed earlier in [18, 19]. Additionally, the entropy functional

Hε(f, g) :=

∫

Rd

[

f ln f +
1

µ(ε)
g ln g

]

dx (1.7)

is also non-increasing along solutions to (1.1). The gradient flow structure and the time monotonicity
of (1.7) are used in [13] to construct non-negative global weak solutions to (1.1). The next theorem
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just recalls the statement of [13, Theorem 1.1] and provides also the corresponding results in the
case d ≥ 2, as the strategy used in [13] can be easily adapted to establish Theorem 1.1 in arbitrary
space dimension d ≥ 1.

Theorem 1.1. Let ε ∈ (0, 1), (f0, g0) ∈ K2, and assume (1.3). Then, there exists a pair

(fε, gε) : [0,∞) → K2

such that

(i) (fε, gε) ∈ L∞(0,∞;L2(R
d;R2)), (fε, gε) ∈ L2(0, t;H

1(Rd;R2)),
(ii) (fε, gε) ∈ C([0,∞), (W 1

4 (R
d;R2))′) with (fε, gε)(0) = (f0, g0),

and (fε, gε) is a weak solution to (1.4)-(1.5) in the sense that
∫

Rd

fε(t)ξ dx−
∫

Rd

f0ξ dx+

∫ t

0

∫

Rd

fε∇((1 + ε)fε + εgε) · ∇ξ dx ds = 0, (1.8a)

∫

Rd

gε(t)ξ dx−
∫

Rd

g0ξ dx+ µε

∫ t

0

∫

Rd

gε∇(fε + gε) · ∇ξ dx ds = 0, (1.8b)

for all ξ ∈ C∞
c (Rd) and t ≥ 0. In addition, (fε, gε) satisfy the following estimates:

(a) Hε(fε(t), gε(t)) +

∫ t

0

∫

Rd

[

|∇fε|2 + ε|∇(fε + gε)|2
]

dx ds ≤ Hε(f0, g0),

(b) Eε(fε(t), gε(t)) +
1

2

∫ t

0

∫

Rd

[

fε|∇((1 + ε)fε + εgε)|2 + µε2gε|∇(fε + gε)|2
]

dx ds ≤ Eε(f0, g0)

for almost all t ∈ (0,∞).

From now on f0 and g0 are fixed in K and (fε, gε), ε ∈ (0, 1), denotes the solution to the evolution
problem (1.4)-(1.5) provided by Theorem 1.1. In our first main result, see Theorem 1.2 below, we
establish the convergence of the family (fε)ε∈(0,1) found in Theorem 1.1 towards a weak solution to
the porous medium equation (1.2) as ε → 0 along a suitable sequence.

Theorem 1.2. Let d ≥ 1, α ∈ [0,∞), and assume (1.3). There exists a sequence (εk)k≥1 ⊂ (0, 1)
with εk → 0 and a function f : [0,∞) → K with

f ∈ L∞(0,∞;L2(R
d)) ∩ C([0,∞), (W 1

4 (R
d))′),

f ∈ L2(0, t;H
1(Rd)) ∩ L∞(0, t;L1(R

d, |x|2dx)),
√

f∇f ∈ L2((0, t) × R
d),

(1.9)

such that fεk → f in L2((0, t) × R
d) for all t > 0 as k → ∞. Moreover, f is a weak solution to the

porous medium equation (1.2) determined by the initial condition f0 in the sense that it satisfies (1.9)
and

∫

Rd

f(t)ξ dx−
∫

Rd

f0ξ dx+

∫ t

0

∫

Rd

f∇f · ∇ξ dx ds = 0

for all ξ ∈ C∞
c (Rd) and t ≥ 0.

Even though there are several uniqueness results available for the porous medium equation (1.2)
in the literature, see [4, 5, 7, 17, 20, 22] and the references therein, uniqueness of a weak solution
to (1.2) in the sense of Theorem 1.2 does not seem to be dealt with and is thus reported below when
the space dimension satisfies d ≤ 4, see Theorem 1.3. In fact, Theorem 1.3 improves Theorem 1.2
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in space dimension d ≤ 4 by providing rates for the convergence of the whole family (fε)ε∈(0,1)
as ε → 0 towards the solution f to the porous medium equation.

Theorem 1.3. Let d ≤ 4, α ∈ [0,∞), and assume (1.3). Then, the porous medium equation (1.2)
with initial data f(0) = f0 has a unique solution f in the sense of Theorem 1.2 and there exists a

positive constant C = C(f0, g0, µ) such that

‖fε(t)− f(t)‖H−1 ≤ CeCtε
6d+36
11d+36 for all t ≥ 0 and ε ∈ (0, 1). (1.10)

The dimension-dependent exponent of ε featured in (1.10) is connected to the low regularity
assumed on the solutions to (1.2) and (1.4). Under the additional assumption that an ε-independent
L∞-bound is available for the solutions to (1.2) and (1.4), the outcome of Theorem 1.3 can be
improved as follows.

Corollary 1.4. Let d ≥ 1, α ∈ [0,∞), and assume (1.3). If (f0, g0) ∈ L∞(Rd;R2) and if there

exists a positive constant κ such that

‖fε(t)‖∞ + ‖f(t)‖∞ ≤ κ, (t, ε) ∈ [0,∞) × (0, 1), (1.11)

then there exists a positive constant C = C(f0, g0, µ, κ) such that

‖fε(t)− f(t)‖H−1 ≤ CeCtε for all t ≥ 0 and ε ∈ (0, 1).

The boundedness (1.11) is well-known for the solution to the porous medium equation (1.2), as
the comparison principle ensures that ‖f(t)‖∞ ≤ ‖f0‖∞ for t ≥ 0. Such a bound is far from being
obvious for solutions to (1.4) and we refer to the forthcoming paper [12] for results in that direction.

Finally, in Theorem 1.5 we establish the convergence of the family (gε)ε∈(0,1) towards the initial
condition g0 in the regime where α ∈ [0, 1/(d + 2)).

Theorem 1.5. Let d ≥ 1, α ∈ [0, 1/(d + 2)), and assume (1.3). Then, there exists a positive

constant C = C(f0, g0, µ) such that

‖gε(t)− g0‖H−1−d ≤ C(1 + t)ε
1

d+2−α
for all t ≥ 0 and ε ∈ (0, 1).

The outline of the paper is as follows. In Section 2 we deduce from Theorem 1.1 a handful of
estimates for the solutions (fε, gε) to (1.4)-(1.5) which form the basis of the proof of the convergence
result stated in Theorem 1.2. Section 3 is next devoted to the proofs of Theorem 1.3 and Corol-
lary 1.4, which use the estimates from Section 2, a duality technique, and Gronwall’s lemma. Finally,
in Section 4, we establish Theorem 1.5, using once more the estimates established in Section 2.

2. ε-independent estimates and proof of Theorem 1.2

To begin with, we derive from Theorem 1.1 estimates for the solutions (fε, gε) to (1.4)-(1.5),
see Lemma 2.1. These estimates, together with Lemma 2.2 and a classical compactness result [21,
Corollary 4], enable us to establish the convergence of (fε)ε∈(0,1) along a sequence εk → 0 towards
the solution to the porous medium equation (1.2), see Lemma 2.3. We conclude the section with
the proof of Theorem 1.2. In the following we use the shorthand notation

hε := fε + gε, ε ∈ (0, 1).
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Lemma 2.1. Let d ≥ 1, α ∈ [0,∞), and assume (1.3). Then:

(i) (fε)ε∈(0,1) and (
√
εhε)ε∈(0,1) are bounded in L∞(0,∞;L1(R

d) ∩ L2(R
d));

(ii)
(√

fε∇(fε + εhε)
)

ε∈(0,1)
is bounded in L2((0,∞) × R

d);

(iii) (∇fε)ε∈(0,1) and (
√
ε∇hε)ε∈(0,1) are bounded in L2((0, t) × R

d) for all t ≥ 0;

(iv) (∂tfε)ε∈(0,1) is bounded in L2(0,∞; (W 1
4 (R

d))′);

(v) (fε)ε∈(0,1) is bounded in L∞(0, t;L1(R
d, |x|2 dx)) for all t ≥ 0.

Proof. Since ε ∈ (0, 1) and

Eε(f0, g0) ≤
‖f0‖22 + ‖f0 + g0‖22

2
,

the estimates (i)-(ii) directly follow from the definition of K and the energy inequality, see Theo-
rem 1.1 (b).

In order to prove (iii), let us consider, for each n ∈ N, the function ξn : Rd → R defined by

ξn(x) :=







|x|2 , |x| ≤ n,
4n|x| − |x|2 − 2n2 , n ≤ |x| ≤ 2n,

2n2 , |x| ≥ 2n.

We point out that ξn − 2n2 is continuously differentiable and has compact support, hence it can be
approximated in the W 1

∞-norm by functions in C∞
c (R). Moreover, the properties of the solutions

to (1.4)-(1.5) listed in Theorem 1.1 enable us to show that

lim
n→∞

∫

Rd

fε(t, x)ξn(x) dx =

∫

Rd

fε(t, x)|x|2 dx,

lim
n→∞

∫

Rd

gε(t, x)ξn(x) dx =

∫

Rd

gε(t, x)|x|2 dx,

lim
n→∞

∫ t

0

∫

Rd

fε∇(fε + εhε) · ∇ξn dx ds = 2

∫ t

0

∫

Rd

fε∇(fε + εhε) · x dx,

lim
n→∞

∫ t

0

∫

Rd

gε∇hε · ∇ξn dx ds = 2

∫ t

0

∫

Rd

gε∇hε · x dx ds, t ≥ 0.

Hence, using ξn−2n2, n ∈ N, as test functions in (1.8), these convergences yield in the limit n → ∞
that

∫

Rd

(

fε(t) +
1

µ
gε(t)

)

|x|2 dx− d

∫ t

0

∫

Rd

(

f2
ε + εh2ε

)

dx ds =

∫

Rd

(

f0 +
1

µ
g0

)

|x|2 dx, t ≥ 0.

In particular, it follows from (1.3) and Theorem 1.1 (b) that there exists a constant C = C(f0, g0, µ) > 0
such that

∫

Rd

(

fε(t) +
1

µ
gε(t)

)

|x|2 dx ≤ C(1 + t), t ≥ 0. (2.1)

Taking advantage of [13, Lemma A.1], we find a positive universal constant CE such that

−Hε(fε(t), gε(t)) ≤ CE

(

1 +
1

µ

)

+

∫

Rd

(

fε(t) +
1

µ
gε(t)

)

|x|2 dx, t ≥ 0,
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which, together with (2.1) and the entropy estimate in Theorem 1.1 (a), shows that
∫ t

0

∫

Rd

[

|∇fε|2 + ε|∇hε|2
]

dx ds ≤ Hε(f0, g0) + C(1 + t), t ≥ 0.

Since (f0, g0) ∈ K2 and r ln r ≤ r+ r2 for r ≥ 0, we conclude, together with (1.3), that there exists
a constant C = C(f0, g0, µ) > 0 with the property that

∫ t

0

∫

Rd

[

|∇fε|2 + ε|∇hε|2
]

dx ds ≤ C(1 + t), t ≥ 0, (2.2)

and (iii) follows from the above inequality.
Next, a classical consequence of Theorem 1.1 (see Lemma 3.1 below for a related result) ensures

that (fε, gε) solves (1.4) in distributional sense; that is,

∂tfε = divJfε and ∂tgε = divJgε in D′((0,∞) × R
d), (2.3)

where the fluxes Jfε and Jgε are given by

Jfε := fε∇(fε + εhε) and Jgε := µεgε∇hε.

The estimates (i)-(ii) from Theorem 1.1, along with Hölder’s inequality, lead us to

‖Jfε‖2L2(0,∞;L4/3(Rd)) =

∫ ∞

0

(

∫

Rd

∣

∣fε∇(fε + εhε)
∣

∣

4/3
dx
)3/2

dt

=

∫ ∞

0

(

∫

Rd

∣

∣f2
ε

∣

∣

1/3∣
∣

√

fε∇(fε + εhε)
∣

∣

4/3
dx
)3/2

dt

≤
∫ ∞

0
‖fε‖2

∥

∥

∥

√

fε∇(fε + εhε)
∥

∥

∥

2

2
dt

≤ ‖fε‖L∞(0,∞;L2(Rd))

∥

∥

∥

√

fε∇(fε + εhε)
∥

∥

∥

2

L2((0,∞)×Rd)
,

which shows that (Jfε)ε∈(0,1) is bounded in L2(0,∞;L4/3(R
d)). This property immediately im-

plies (iv) by a duality argument.
Finally, the bound (v) is a straightforward consequence of (2.1). �

The next step is the continuity and compactness of some embeddings involving weighted Lp-spaces,
which will serve when establishing the convergence of the family (fε)ε∈(0,1) (along a suitable se-
quence εk → 0).

Lemma 2.2.

(i) Given p ∈ (2,∞], the embedding Lp(R
d) ∩ L1(R

d, |x|2dx) →֒ L2(R
d, |x|

2(p−2)
p−1 dx) is continu-

ous.

(ii) The embedding H1(Rd) ∩ L1(R
d, |x|2dx) →֒ L1(R

d) ∩ L2(R
d) is compact.

Proof. The claim (i) with p = ∞ is obvious. For p ∈ (2,∞), Hölder’s inequality leads us to
∫

Rd

|f(x)|2|x|
2(p−2)
p−1 dx ≤

(

∫

Rd

|f(x)| |x|2 dx
)

p−2
p−1‖f‖

p
p−1
p (2.4)

and (i) follows.
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With respect to (ii), let (fn)n≥1 be a bounded sequence in H1(Rd) ∩ L1(R
d, |x|2dx) and set

M := sup
n≥1

{

‖fn‖H1 + ‖fn‖L1(Rd,|x|2 dx)

}

.

Owing to the compactness of the embedding of H1(BR(0)) in L2(BR(0)) for any R > 0, where
we set BR(0) := {x ∈ R

d : |x| < R}, it follows from a standard Cantor diagonal procedure that
there exist a function f ∈ H1(Rd) ∩ L1(R

d, |x|2dx) and a subsequence of (fn)n≥1 (not relabeled)
such that fn → f in L2(BR(0)) for all R > 0 and

‖f‖H1 + ‖f‖L1(Rd,|x|2 dx) ≤ M.

Choosing p ∈ (2,∞) such that p < 2d/(d − 2) when d ≥ 3, Sobolev’s embedding and (2.4) then
lead us to

‖fn − f‖22 ≤
∫

BR(0)
|fn(x)− f(x)|2 dx+R

− 2(p−2)
p−1

∫

{|x|>R}
|fn(x)− f(x)|2|x|

2(p−2)
p−1 dx

≤ ‖fn − f‖2L2(BR(0)) +R−
2(p−2)
p−1 ‖fn − f‖

p−2
p−1

L1(Rd,|x|2 dx)
‖fn − f‖

p
p−1
p

≤ ‖fn − f‖2L2(BR(0)) + CR
− 2(p−2)

p−1 (2M)
p−2
p−1‖fn − f‖

p
p−1

H1

≤ ‖fn − f‖2L2(BR(0)) + CM2R−
2(p−2)
p−1

for all n ∈ N and R > 1. Letting first n → ∞ and then R → ∞, we deduce that fn → f in L2(R
d).

Finally, for R > 1,

‖fn − f‖1 ≤ ‖fn − f‖L1(BR(0)) +R−2‖fn − f‖L1(Rd,|x|2 dx)

≤
√

|BR(0)|‖fn − f‖L2(BR(0)) + 2MR−2.

Arguing as before completes the proof of (ii). �

We now use the estimates derived in Lemma 2.1 and the previous result to deduce the following
convergences.

Lemma 2.3. Let d ≥ 1, α ∈ [0,∞), and assume (1.3). There exists a sequence (εk)k≥1 ⊂ (0, 1)
with εk → 0 and a function f ∈ L2(0, t;H

1(Rd)) ∩ L∞(0,∞;L2(R
d)) for all t > 0 such that

(i) fεk → f in L2((0, t) × R
d) and in C([0, t], (W 1

4 (R
d))′) for all t > 0;

(ii) ∇fεk ⇀ ∇f in L2((0, t) ×R
d) for all t > 0;

(iii) ∂tfεk ⇀ ∂tf in L2(0,∞; (W 1
4 (R

d))′);

(iv)
√

fεk∇(fεk + εkhεk) ⇀
√
f∇f in L2((0, t) × R

d) for all t > 0.

Proof. Let t > 0 be fixed. In view of Lemma 2.1 (i), (iii), and (v), we obtain the boundedness
of (fε)ε∈(0,1) in L2(0, t;H

1(Rd)) and in L∞(0, t;L1(R
d, |x|2 dx)), as well as that of (∂tfε)ε∈(0,1) in

L2(0, t; (W
1
4 (R

d))′). Hence, the family (fε)ε∈(0,1) is bounded in L2(0, t;H
1(Rd) ∩ L1(R

d, |x|2 dx)).
Since

H1(Rd) ∩ L1(R
d, |x|2 dx) →֒ L1(R

d) ∩ L2(R
d) →֒ (W 1

4 (R
d))′

and the first embedding is compact according to Lemma 2.2 (ii), we infer from a classical compact-
ness result, see [21, Corollary 4], and a Cantor diagonal argument that there exist a sequence εk → 0
and a function f such that fεk → f in L2((0, t)×R

d) and in C([0, t], (W 1
4 (R

d))′) for all t > 0. Note
that Lemma 2.1 (i) now immediately implies that f ∈ L∞(0,∞;L1(R

d) ∩ L2(R
d)).
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Next, the convergence (ii) is a straightforward consequence of Lemma 2.1 (iii) and the just
established Lemma 2.3 (i), from which we also deduce that f ∈ L2(0, t;H

1(Rd)) for all t > 0.
Recalling Lemma 2.1 (iv), the convergence ∂tfεk ⇀ ∂tf in L2(0, t; (W

1
4 (R))

′) (after possibly ex-
tracting a further subsequence) follows from Lemma 2.3 (i) and the reflexivity of L2(0, t; (W

1
4 (R

d))′).
With respect to (iv), due to Lemma 2.1 (ii), we may assume that there is F ∈ L2((0,∞) × R

d)
such that

√

fεk∇(fεk + εkhεk) ⇀ F in L2((0,∞) × R
d). (2.5)

Moreover, the bounds in Lemma 2.1 (iii), along with Lemma 2.3 (ii), imply that

∇(fεk + εkhεk) ⇀ ∇f in L2((0, t) ×R
d),

while Lemma 2.3 (i) leads us to
√

fεk →
√

f in L4((0, t) × R
d). (2.6)

Combining the last two convergences we find
√

fεk∇(fεk + εkhεk) ⇀
√

f∇f in L4/3((0, t) × R
d).

Recalling (2.5), we conclude that F =
√
f∇f and therewith establish (iv). �

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. Let (εk)k ⊂ (0, 1) and f be as found in Lemma 2.3. As a direct consequence
of Lemma 2.1 (v) and Lemma 2.3 (i), which in particular implies that fεk(t) → f(t) in L2(R

d) for
almost all t > 0, we deduce that f ∈ L∞(0, t;L1(R

d, (1 + |x|2)dx)) for all t > 0. Taking also into
account that f ∈ C([0,∞), (W 1

4 (R
d))′), it follows that f(t) ≥ 0 a.e. in R

d for all t ≥ 0. Moreover, in
view of Lemma 2.3 (i) and (iv), it is straightforward to pass to the limit k → ∞ in (1.8a) with ε = εk
and obtain

∫

Rd

f(t)ξ dx−
∫

Rd

f0ξ dx+

∫ t

0

∫

Rd

f∇f · ∇ξ dx ds = 0

for all ξ ∈ C∞
c (Rd) and all t ≥ 0, thereby establishing (1.2).

Finally, choosing ζn : Rd → R with

ζn(x) :=







1 , |x| ≤ n,
n+ 1− |x| , n ≤ |x| ≤ n+ 1,

0 , |x| ≥ n+ 1,
n ∈ N,

as test function in (1.2), we find that ‖f(t)‖1 = ‖f0‖1 = 1 for all t ≥ 0. Therefore f(t) ∈ K for
all t ≥ 0. �

3. Estimating the error ‖fε(t)− f(t)‖H−1

In this section we restrict our arguments to the case when the space dimension satisfies d ≤ 4.
The main goal is to provide an estimate for the error ‖fε(t)− f(t)‖H−1 with t ≥ 0, cf. Theorem 1.3.
In particular, we also prove that the porous medium equation (1.2) with initial data f0 ∈ K has a
unique solution in the sense of Theorem 1.2. Hence, this improves Theorem 1.2 in the sense that
now the whole family (fε)ε∈(0,1) converges for ε → 0 towards the corresponding solution to the
porous medium equation. In order to prepare the proof of Theorem 1.3, which we postpone to the
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end of the section, we first introduce some notation. We recall that 1 −∆ : W 2
p (R

d) → Lp(R
d) is

an isomorphism for all p ∈ (1,∞) and

‖f‖H−1 = ‖(1−∆)−1[f ]‖H1 for all f ∈ L2(R
d).

Theorem 1.3 then amounts to estimate the norm ‖Fε(t)− F (t)‖H1 , where

Fε := (1−∆)−1[fε] and F := (1−∆)−1[f ].

Testing the equations (1.8a) and (1.2) by (1 − ∆)−1[ξ], with ξ ∈ C∞
c (Rd) and using the self-

adjointness of (1−∆)−1, we arrive at
∫

Rd

Fε(t)ξ dx−
∫

Rd

F0ξ dx

+
1

2

∫ t

0

∫

Rd

[

f2
ε ξ − ξ(1−∆)−1[f2

ε ] + 2ε(1 −∆)−1[fε∇hε] · ∇ξ
]

dx ds = 0,

∫

Rd

F (t)ξ dx−
∫

Rd

F0ξ dx+
1

2

∫ t

0

∫

Rd

[

f2ξ − ξ(1−∆)−1[f2]
]

dx ds = 0,

where F0 := (1−∆)−1[f0]. Hence, letting

dε = fε − f and Dε := Fε − F = (1−∆)−1[dε],

we have dε(0) = Dε(0) = 0 and, subtracting the above identities, we deduce that
∫

Rd

Dε(t)ξ dx+
1

2

∫ t

0

∫

Rd

[

dε(fε + f)ξ − ξ(1−∆)−1[dε(fε + f)]
]

dx ds

+ ε

∫ t

0

∫

Rd

(1−∆)−1[fε∇hε] · ∇ξ dx ds = 0.

(3.1)

As a consequence of (3.1), Theorem 1.1, and Theorem 1.2, we obtain the following result.

Lemma 3.1. Let t > 0 and ξ ∈ C∞
c ([0, t] × R

d). Then
∫

Rd

Dε(t)ξ(t) dx −
∫ t

0

∫

Rd

Dε∂tξ dx ds

= −1

2

∫ t

0

∫

Rd

[

dε(fε + f)ξ − ξ(1−∆)−1[dε(fε + f)] + 2ε(1 −∆)−1[fε∇hε] · ∇ξ
]

dx ds

(3.2)

and
∫

Rd

dε(t)ξ(t) dx −
∫ t

0

∫

Rd

dε∂tξ dx ds =

∫ t

0

∫

Rd

[

f∇f − fε∇(fε + εhε)
]

· ∇ξ dx ds (3.3)

for all ε ∈ (0, 1).

Proof. This is a classical result and therefore we omit its proof. �

The next lemma provides an integral identity, cf. (3.4), which is obtained when formally testing
with Dε in (3.3). This identity is the starting point in the proof of Theorem 1.3.

Lemma 3.2. For all t ≥ 0 and ε ∈ (0, 1),

‖dε(t)‖2H−1 = ‖Dε(t)‖2H1 =

∫ t

0

∫

Rd

[

− d2ε(fε + f) +Dεdε(fε + f) + 2εfε∇hε · ∇Dε

]

dx ds. (3.4)
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Proof. Since Dε = (1 − ∆)−1[dε] with dε ∈ L∞(0,∞;L2(R
d)), we have Dε ∈ L∞(0,∞;H2(Rd)).

Let D̃ε ∈ L∞(R;H2(Rd)) denote the even reflection of Dε with respect to the boundary {t = 0}
of (0,∞) ×R

d and choose ϕ ∈ C∞
c (Rd, [0, 1]). We then define ξδ ∈ C∞

c (Rd+1) as the convolu-

tion ξδ := ρδ ∗ (ϕD̃ε), where (ρδ)δ∈(0,1) is a standard mollifier on R
d+1. We first note that there

exists a positive integer N ∈ N with the property that supp ξδ(t) ⊂ [−N,N ]d for all δ ∈ (0, 1)
and t ≥ 0. Using ξδ as a test function in (3.3), we get

∫

Rd

dε(t)ξδ(t) dx−
∫ t

0

∫

Rd

dε∂tξδ dx ds

=

∫ t

0

∫

Rd

[

f∇f − fε∇(fε + εhε)
]

· ∇ξδ dx ds for all t > 0.

(3.5)

To pass to the limit δ → 0 in the term on the right-hand side of (3.5) we recall that

f∇f − fε∇(fε + εhε) ∈ L4/3((0, t) × R
d)

by Lemma 2.1 (i)-(ii), Theorem 1.3, and Hölder’s inequality. Moreover, the regularity of D̃ε, the

restriction to space dimension d ≤ 4, and Sobolev’s embedding ensure that ϕD̃ε ∈ L∞(R;W 1
4 (R

d)),
from which we deduce that ∇ξδ → ∇(ϕDε) in L4((0, t) × R

d) for all t > 0 when letting δ → 0. We
therewith get

lim
δ→0

∫ t

0

∫

Rd

[

f∇f − fε∇(fε + εhε)
]

· ∇ξδ dx ds

=

∫ t

0

∫

Rd

[

f∇f − fε∇(fε + εhε)
]

· ∇(ϕDε) dx ds.

To deal with the first term on the left-hand side of the equality (3.5), we note that dεξδ → ϕdεDε

in L1((0, t) × R
d) for δ → 0 and all t > 0, and therefore we may assume that

lim
δ→0

∫

Rd

dε(t)ξδ(t) dx =

∫

Rd

ϕdε(t)Dε(t) dx for almost all t > 0.

To pass to the limit δ → 0 in the second term on the left-hand side of (3.5), we note that
Lemma 2.3 (iii) guarantees that ∂tdε ∈ L2(0,∞, (W 1

4 (R
d))′). Since ∂tDε = (1 − ∆)−1[∂tdε], we

have ∂tDε ∈ L2(0,∞,W 1
4/3(R

d)) and this implies that ∂tD̃ε lies in L2(R;L4/3(R
d)). It follows

that ∂tξδ = ρδ ∗ (ϕ∂tD̃ε) in R
d+1 and therefore ∂tξδ → ϕ∂tDε in L2(0, t;L4/3(R

d)) as δ → 0. Taking

also into account that dε ∈ L2(0, t;L4(R
d)), due to Lemma 2.3 (i)-(ii) and the continuous embedding

of H1(Rd) in L4(R
d), we may now pass to the limit δ → 0 in (3.5) to conclude that the identity

∫

Rd

ϕdε(t)Dε(t) dx−
∫ t

0

∫

Rd

ϕdε∂tDε dx ds

=

∫ t

0

∫

Rd

[

f∇f − fε∇(fε + εhε)
]

· ∇(ϕDε) dx ds

is satisfied for almost all t ∈ (0,∞). Now, owing to (3.2),

∂tDε = −dε(fε + f)

2
+ (1−∆)−1

[

dε(fε + f)

2

]

+ εdiv
(

(1−∆)−1[fε∇hε]
)
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in D′((0,∞) × R
d). Combining the above two identities, we end up with

∫

Rd

ϕdε(t)Dε(t) dx

=

∫ t

0

∫

Rd

ϕdε

(

−dε(fε + f)

2
+ (1−∆)−1

[

dε(fε + f)

2

]

+ ε∇ · (1−∆)−1[fε∇hε]

)

dx ds

−
∫ t

0

∫

Rd

[

∇
(

dε(fε + f)

2

)

+ εfε∇hε

]

· ∇(ϕDε) dx ds

for almost every t ∈ (0,∞). Choosing a suitable approximating sequence (ϕn)n ⊂ C∞
c (Rd, [0, 1])

for the constant function 1, we infer from the above identity, after passing to the limit n → ∞
and using the relation Dε = (1 − ∆)−1[dε], that (3.4) holds true (for all t ≥ 0 due to the fact
that Dε ∈ C([0,∞);W 1

4/3(R
d))). �

We are now in a position to establish our second main result, see Theorem 1.3.

Proof of Theorem 1.3. Given t ≥ 0, it follows from (3.4) that

‖Dε(t)‖2H1 +

∫ t

0

∫

Rd

d2ε(fε + f) dx ds ≤ T1 + T2, (3.6)

where

T1 :=

∫ t

0

∫

Rd

Dεdε(fε + f) dx ds and T2 := 2ε

∫ t

0

∫

Rd

fε∇hε · ∇Dε dx ds.

Below we estimate the terms T1 and T2 separately in order to obtain an integral inequality to which
we may apply Gronwall’s inequality and conclude in this way our claim (1.10).

The term T1. Using Hölder’s and Young’s inequalities, we find

T1 ≤
(
∫ t

0

∫

Rd

d2ε(fε + f) dx ds

)1/2(∫ t

0

∫

Rd

D2
ε(fε + f) dx ds

)1/2

≤ 1

4

∫ t

0

∫

Rd

d2ε(fε + f) dx ds +

∫ t

0

∫

Rd

D2
ε(fε + f) dx ds. (3.7)

The first term on the right-hand of (3.7) is clearly controlled by the left-hand side of (3.6) and we are
thus left with estimating the second term. In view of the continuous embedding H1(Rd) →֒ L4(R

d)
(recall that d ≤ 4), we infer from Hölder’s inequality that

∫ t

0

∫

Rd

D2
ε(fε + f) dx ds ≤

∫ t

0
‖Dε‖24‖fε + f‖2 ds ≤ C

∫ t

0
‖fε + f‖2‖Dε‖2H1 ds.

Hence, in view of Theorem 1.2 and Lemma 2.1 (i), we have
∫ t

0

∫

Rd

D2
ε(fε + f) dx ds ≤ C

∫ t

0
‖Dε‖2H1 ds. (3.8)

The term T2. In order to estimate T2, we first observe that W 1
3 (R

d) embeds continuously in L12(R
d)

due to d ≤ 4. We then infer from Gagliardo-Nirenberg’s inequality [16] that

‖∇Dε‖12 ≤ C‖Dε‖aW 2
3
‖∇Dε‖1−a

2 ≤ C‖dε‖a3‖∇Dε‖1−a
2 , (3.9)



12 PH. LAURENÇOT AND B.–V. MATIOC

where

a :=
5d

2(d+ 6)
∈ (0, 1].

Hölder’s inequality and (3.9) now imply that

‖fε∇hε · ∇Dε‖1 ≤ ‖fε‖12/5‖∇hε‖2‖∇Dε‖12

≤ C‖fε‖12/5‖∇hε‖2‖dε‖a3‖∇Dε‖1−a
2 .

Taking advantage of Young’s inequality, we then get

2ε‖fε∇hε · ∇Dε‖1 ≤
1

4
‖dε‖33 + C

(

ε‖fε‖12/5‖∇hε‖2‖∇Dε‖1−a
2

)

3
3−a

=
1

4
‖dε‖33 + C

(

ε1/2‖∇hε‖2‖∇Dε‖2
)

3(1−a)
3−a

(

ε1/2‖∇hε‖2
)

3a
3−a

(

ε1/2‖fε‖12/5
)

3
3−a

≤ 1

4
‖dε‖33 + ε‖∇hε‖22‖∇Dε‖22 + C

(

ε1/2‖∇hε‖2
)

6a
3+a

(

ε1/2‖fε‖12/5
)

6
3+a

.

Consequently, since dε ≤ fε + f ,

T2 ≤
1

4

∫ t

0

∫

Rd

(fε + f)d2ε dx ds+ ε

∫ t

0
‖∇hε‖22‖Dε‖2H1 ds

+ Cε
3

3+a

∫ t

0

(

ε1/2‖∇hε‖2
)

6a
3+a ‖fε‖

6
3+a
12/5 ds.

Using Hölder’s inequality and (2.2), we further have

∫ t

0

(

ε1/2‖∇hε‖2
)

6a
3+a ‖fε‖

6
3+a
12/5 ds ≤

(
∫ t

0
ε‖∇hε‖22 ds

)

3a
3+a

(

∫ t

0
‖fε‖

6
3−2a
12/5 ds

)

3−2a
3+a

≤ C(1 + t)
3a
3+a

(

∫ t

0
‖fε‖

6
3−2a
12/5 ds

)

3−2a
3+a

.

Furthermore, by Gagliardo-Nirenberg’s inequality and Lemma 2.1 (i),

‖fε‖12/5 ≤ C‖∇fε‖b2‖fε‖1−b
2 ≤ C‖∇fε‖b2 with b =

d

12
∈ (0, 1),

which implies, together with (2.2) and the property d/(2(3 − 2a)) ≤ 2, that

(

∫ t

0
‖fε‖

6
3−2a
12/5 ds

)

3−2a
3+a

≤ C

(

∫ t

0
‖∇fε‖

d
2(3−2a)
2 ds

)

3−2a
3+a

≤ C(1 + t)
3−2a
3+a .

Recalling the definition of a, we conclude that

T2 ≤
1

4

∫ t

0

∫

Rd

(fε + f)d2ε dx ds + ε

∫ t

0
‖∇hε‖22‖Dε‖2H1 ds+ C(1 + t)ε

6d+36
11d+36 (3.10)

for all t > 0.



A SINGULAR LIMIT OF THE THIN FILM MUSKAT PROBLEM 13

Applying Gronwall’s lemma. Gathering (3.6), (3.7), (3.8), and (3.10), we arrive at

‖Dε(t)‖2H1 ≤
∫ t

0

(

C + ε‖∇hε‖22
)

‖Dε‖2H1 ds+ C(1 + t)ε
6d+36
11d+36 , t ≥ 0. (3.11)

Recalling (2.2), a direct application of Gronwall’s inequality now leads us to the desired esti-
mate (1.10).

Uniqueness of the solution to (1.2). If f1 and f2 are two solutions to (1.2) corresponding to the
same initial data f0, then we can perform similar computations as those leading to (3.11) to obtain
that

‖(1 −∆)−1[(f1 − f2)(t)]‖2H1 ≤ C

∫ t

0
‖(1−∆)−1[(f1 − f2)]‖2H1 ds, t ≥ 0,

and Gronwall’s lemma then implies f1 = f2. �

We complete this section with the proof of Corollary 1.4.

Proof of Corollary 1.4. Keeping the notation introduced in the proof of Theorem 1.3, it readily
follows from (1.11) and (3.7) that

T1 ≤
1

4

∫ t

0

∫

Rd

d2ε(fε + f) dx ds+ κ

∫ t

0
‖Dε‖22 ds. (3.12)

Using again (1.11) along with (2.2) and Hölder’s and Young’s inequality, we find

T2 ≤ 2κε

∫ t

0
‖∇hε‖2‖Dε‖2 ds ≤

∫ t

0
‖Dε‖2H1 ds+ Cε(1 + t). (3.13)

Combining (3.6), (3.12), and (3.13) gives

‖Dε(t)‖2H1 ≤ (1 + κ)

∫ t

0
‖Dε‖2H1 ds+ Cε(1 + t), t ≥ 0,

and applying Gronwall’s lemma completes the proof. �

4. The limiting behavior of gε

In this section we establish our last main result stated in Theorem 1.5. Before going on, we
point out that all the estimates for the family (gε)ε∈(0,1) provided by Theorem 1.1 involve the
function gε multiplied by a positive power of ε when α > 0, see Lemma 2.1, except the conservation
of mass ‖gε(t)‖1 = 1, which stems from gε(t) ∈ K, t ≥ 0. Nevertheless, exploiting this property, we
establish below the convergence of (gε)ε∈(0,1) towards the initial condition g0 for 0 ≤ α < 1/(d+2),
without any restriction on the space dimension d ≥ 1.

Proof of Theorem 1.5. To start, we use (1.8b) and the continuous embedding H1+d(Rd) →֒ W 1
∞(Rd)

to deduce that
∣

∣

∣

∫

Rd

(gε(t)− g0)ξ dx
∣

∣

∣
≤
∫ t

0

∫

Rd

|Jgε · ∇ξ| dx dt ≤ ‖Jgε‖L1((0,t)×Rd)‖∇ξ‖∞

≤ C‖Jgε‖L1((0,t)×Rd)‖ξ‖H1+d ,

for all t ≥ 0 and ξ ∈ C∞
c (Rd), where we recall that Jgε = µεgε∇hε. Consequently we have

‖gε(t)− g0‖H−1−d ≤ C‖Jgε‖L1((0,t)×Rd) for t ≥ 0 and ε > 0,
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and it remains to estimate the norm ‖Jgε‖L1((0,t)×Rd).

Recalling that ‖gε(t)‖1 = 1, t ≥ 0, Gagliardo-Nirenberg’s inequality yields

‖gε(t)‖2 ≤ C‖∇gε(t)‖
d

d+2
2 ‖gε(t)‖

2
2+d
1

≤ C‖∇gε(t)‖
d

d+2
2

≤ C (‖∇fε(t)‖2 + ‖∇hε(t)‖2)
d

d+2

≤ Cε
−

d
2(d+2)

(

‖∇fε(t)‖2 +
√
ε‖∇hε(t)‖2

)

d
d+2 , t ≥ 0.

Taking now advantage of (2.2), we get

ε
d

2(d+2) ‖gε‖L2(d+2)/d(0,t;L2(Rd)) ≤ C(1 + t)
d

2(d+2) , t ≥ 0,

and Hölder’s inequality leads us to

ε
d

2(d+2) ‖gε‖L2((0,t)×Rd) ≤ C(1 + t)
1
2 , t ≥ 0.

Recalling from (2.2) that

√
ε‖∇hε‖L2((0,t)×Rd) ≤ C(1 + t)

1
2 , t ≥ 0,

we obtain, by using once more Hölder’s inequality and the definition of Jgε , that

‖Jgε‖L1((0,t)×Rd) ≤ C(1 + t)ε
1

d+2−α
, t ≥ 0,

which proves the claim. �
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