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Coherence and flow-maximization of a one-way valve

Introduction

This paper aims at improving the modeling of a gas flow through a one-way valve, thus carrying on the research on the same subject in [START_REF] Corli | Coupling conditions for isothermal gas flow and applications to valves[END_REF][START_REF] Corli | Coherence and chattering of a one-way valve[END_REF][START_REF] Corli | Coherence of coupling Riemann solvers for gas flows through flux-maximizing valves[END_REF]. The motivation of these studies is to provide an analytic modeling of such flows, which we base on hyperbolic systems of conservation laws and their Riemann solvers. Two related issues are considered here. First, how to remove the chattering (the fast switch on and off) of a valve in correspondence of some threshold states [START_REF] Hős | Grazing bifurcations and chatter in a pressure relief valve model[END_REF][START_REF] Ulanicki | Why PRVs tends to oscillate at low flows[END_REF], by slightly modifying the design of the valve. Second, the maximization of the flow through the new valve, according to a characteristic parameter of the valve and time.

Since we focus on the behavior of the valve, we make some simplifying assumptions on the flow. The gas flow takes place along two straight pipes having equal and constant cross-sections; the position along the pipes is denoted by x ∈ R and they are joint by a valve at x = 0. Thus we neglect the wall deformation of the pipes under pressure loads. The flow is characterized by the mass density ρ > 0 and the velocity v of the gas; we assume that it is isothermal and so we take p(ρ) . = a 2 ρ as pressure law, where the constant a > 0 is the sound speed. The flow is governed by the Euler equations

∂ t ρ + ∂ x (ρ v) = 0, ∂ t (ρ v) + ∂ x ρ v 2 + p(ρ) = 0, (1.1) 
where t > 0 is the time. The initial-value problem for system (1.1) when the initial data are constant, apart for a single jump, is called Riemann problem and is well understood [START_REF] Leveque | Numerical methods for conservation laws[END_REF]. The solution is autosimilar and provided by a Riemann Solver RS p ; it consists of constant states separated by shock or rarefaction waves. The solver RS p satisfies several properties but in particular it is coherent; in a few words, this means that, for any solution u . = (ρ, q) provided by RS p , with q . = ρ v being the momentum, the Riemann problem having for initial data the traces u(t, x ± ) and solved by RS p leads to a function having the same local behavior of u in a neighborhood of (t, x). This property can be understood as a sort of interior stability of RS p .

The modeling, maximization, and control of gas flows through networks of pipes have been recently considered in several papers; we refer to [START_REF] Gugat | Modeling, control and numerics of gas networks[END_REF] for a comprehensive survey on the subject and just quote some relevant references. Among the first papers dealing with a rigorous mathematical modeling of gas flows in networks we quote [START_REF] Banda | Coupling conditions for gas networks governed by the isothermal Euler equations[END_REF][START_REF] Banda | Gas flow in pipeline networks[END_REF]. There, the authors use system (1.1) and require that only positive velocities are admitted; moreover, at each junction, either the pressure is continuous or the flow is subsonic. We refer to Proposition 2.6 below for a discussion of the latter issue. Then, they find a unique solution under the additional condition that the flow is maximal at each junction. They also provide some simple numerical modelings of two valves, which have either maximal [START_REF] Banda | Coupling conditions for gas networks governed by the isothermal Euler equations[END_REF] or zero [START_REF] Banda | Gas flow in pipeline networks[END_REF] flux on the outgoing pipe. Optimization and control problems are considered in [START_REF] Banda | Towards a space mapping approach to dynamic compressor optimization of gas networks[END_REF][START_REF] Gugat | Existence of classical solutions and feedback stabilization for the flow in gas networks[END_REF][START_REF] Gugat | Flow control in gas networks: exact controllability to a given demand[END_REF][START_REF] Herty | Modeling, simulation and optimization of gas networks with compressors[END_REF][START_REF] Herty | Adjoint calculus for optimization of gas networks[END_REF] for gas flows with compressors; in [START_REF] Gugat | MIP-based instantaneous control of mixed-integer PDE-constrained gas transport problems[END_REF][START_REF] Gugat | Towards simulation based mixed-integer optimization with differential equations[END_REF][START_REF] Martin | Mixed integer models for the stationary case of gas network optimization[END_REF]] also valves are present, and the problem is solved by suitable discretisations of the modeling equations. We emphasize that in the latter papers the treatment of valves is very different from ours because it is based on the supply and demand functions.

In this paper we pursue the analysis started in [START_REF] Corli | Coherence and chattering of a one-way valve[END_REF] and focus again on flow-control valve: roughly speaking, for a fixed flow value q * , the valve keeps the flow equal to q * if possible, otherwise it closes. As in [START_REF] Corli | Coupling conditions for isothermal gas flow and applications to valves[END_REF][START_REF] Corli | Coherence and chattering of a one-way valve[END_REF][START_REF] Corli | Coherence of coupling Riemann solvers for gas flows through flux-maximizing valves[END_REF], the effect of a valve is reproduced by enforcing a coupling between the ingoing and the outgoing flow at x = 0. This is encoded by the so-called coupling Riemann solver, c-Riemann solver for short, that gives solutions to the Riemann problem at x = 0 for (1.1) for the coupling problem induced by the valve. The analysis of coupled Riemann solvers has a long history, starting from the seminal paper [START_REF] Godlewski | The numerical interface coupling of nonlinear hyperbolic systems of conservation laws. I. The scalar case[END_REF]; we refer the reader to the recent article [START_REF] Boutin | Coupling techniques for nonlinear hyperbolic equations. II. Resonant interfaces with internal structure[END_REF] for general information and detailed references. We point out, however, that most of the papers in the literature either deal with scalar equations (we consider a system of two equations) or require stricter coupling condition than ours, for example the continuity of the traces at x = 0 (in our case this will only hold for the momentum component of the solution). From a mathematical point of view, our modeling rather lies in the framework of constrained Riemann problems: see [START_REF] Colombo | A well posed conservation law with a variable unilateral constraint[END_REF] for scalar conservation laws, [START_REF] Garavello | The Aw-Rascle traffic model with locally constrained flow[END_REF] for a 2 × 2 system, and [START_REF] Andreianov | One-dimensional conservation laws with nonlocal point constraints on the flux[END_REF] for recent advances. We also point out that, with respect to [START_REF] Banda | Coupling conditions for gas networks governed by the isothermal Euler equations[END_REF][START_REF] Banda | Gas flow in pipeline networks[END_REF], we neither require the continuity of the pressure nor that flows are subsonic at the valve.

Different valves correspond to different c-Riemann solvers, see [START_REF] Corli | Coupling conditions for isothermal gas flow and applications to valves[END_REF][START_REF] Corli | Coherence and chattering of a one-way valve[END_REF][START_REF] Corli | Coherence of coupling Riemann solvers for gas flows through flux-maximizing valves[END_REF] and Sections 2, 3 for some examples. A key analytic feature of the modeling is the possible incoherence of the corresponding c-Riemann solver, which is related to chattering. Clearly, incoherence leads to the numerical instability of the solution, see for instance the central column in Figure 4.

In this paper we slightly modify the c-Riemann solver RS v introduced in [13, Section 4]; the motivation is that RS v is incoherent. Incoherent states for RS v are supersonic, indeed. In most real gas-flows through pipe networks, supersonic states do not occur, and the reason is attributed to friction terms [START_REF] Banda | Coupling conditions for gas networks governed by the isothermal Euler equations[END_REF], [33, pages 45 and 49] and safety reasons. Supersonic flows do occur in particular circumstances, indeed, see for example [START_REF] Modesti | Direct numerical simulation of supersonic pipe flow at moderate Reynolds number[END_REF] and references therein. Moreover, from a mathematical point of view, the invariant domains for the Riemann solver RS p always contain supersonic states (see [START_REF] Leveque | Numerical methods for conservation laws[END_REF]) and, as a consequence, these states can appear even if they are not present initially; the latter happens as well for RS v , as we show in Proposition 2.6 (ii). The issue is how to modify RS v to recover coherence. The new proposed c-Riemann solver RS h

• is coherent;

• differs from RS v only for the states that lead RS v to lose coherence;

• for incoherent initial data, it selects the unique solution that maximizes the flow through the valve among all c-Riemann solvers.

The last property deserves a comment. As it has been first pointed out in [START_REF] Holden | A mathematical model of traffic flow on a network of unidirectional roads[END_REF], such a condition is understood as a sort of "entropy" condition [START_REF] Banda | Coupling conditions for gas networks governed by the isothermal Euler equations[END_REF][START_REF] Banda | Gas flow in pipeline networks[END_REF][START_REF] Garavello | Traffic flow on networks[END_REF][START_REF] Holden | A mathematical model of traffic flow on a network of unidirectional roads[END_REF], because it singles out solutions uniquely. It is interesting to observe that this property is suggested by the behavior of a valve with a positive reaction time, see Section 3. We provide some numerical simulations letting us conjecture that RS h furnishes the solution obtained by applying RS v at every time step ∆t (where chattering occurs) as ∆t → 0, see the last two columns in Figure 4. We currently miss of a general analytic proof of the latter statement; nevertheless, such simulations suggest that RS h reproduces the final effects on the gas flow of a chattering valve, without the inconvenient of the (numerical) instability caused by incoherence. This suggests a different design of the valve corresponding to RS v , replacing it with the valve corresponding to RS h . By the way, the study of the coherence of a constrained Riemann problem is surely of interest from the mathematical point of view.

Here follows an outline of the paper. In Section 2 we first introduce our notation and quickly review some basic facts about system (1.1). We emphasize that, there and in the following, the Lax curves represented in the pictures are always exact and not merely qualitative. Then we summarize the modeling of the flow through a valve, with a special focus to the above mentioned valve. Section 3 provides the definition of the modified Riemann solver RS h and the proof of its coherence. In Section 4 we first introduce the numerical scheme to be used in the following and the reasons of our choice; then we give some comparisons between exact and numerical solutions. Section 5 is the core of the paper. There, we first state the maximization problem under study; it depends both on the flow threshold q * and on the time horizon T . In same simple cases the solutions can be computed analytically, and they are compared to the numerical solutions to further validate the numerical scheme. Then we give some numerical simulations of more complicated situations, in particular dealing with the perturbation of the incoming flow of either a shock or a rarefaction.

Preliminary results and notation

In this section we first briefly recall the main facts about system (1.1) with the pressure law p(ρ) = a 2 ρ, in particular for what concerns Lax curves and their properties. All of them are well known, see [START_REF] Leveque | Numerical methods for conservation laws[END_REF] and [START_REF] Bressan | Hyperbolic systems of conservation laws[END_REF][START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF] for general information, but this avoids us to systematically refer the reader to other books or papers. Then, we summarize the modeling of a gas flow through a one-way valve [START_REF] Corli | Coherence and chattering of a one-way valve[END_REF], which is located at x = 0; we also provide some new results.

We always deal with the conservative variables u . = (ρ, q), where q . = ρ v is the momentum, so that system (1.1) can be written as

   ∂ t ρ + ∂ x q = 0, ∂ t q + ∂ x q 2
ρ + a 2 ρ = 0.

(2.1)

We denote Ω . = {(ρ, q) ∈ R 2 : ρ > 0}. The eigenvalues of (2.1) are λ 1 (u) . = q ρa, and λ 2 (u) .

= q ρ + a; system (2.1) is strictly hyperbolic in Ω and λ 1 , λ 2 are genuinely nonlinear. The Riemann problem for (2.1) is the Cauchy problem with initial condition

u(0, x) = u if x < 0, u r if x 0, (2.2) 
where u , u r ∈ Ω are constant states. Solutions to (2.1), (2.2) are meant in the weak sense as follows.

Definition 2.1. A function u ∈ C 0 0 0 ([0, ∞); L 1 1 1 loc (R; Ω)) is a weak solution to the Riemann problem (2.1), (2.2) in [0, ∞) × R if for any ϕ ∈ C ∞ c ([0, ∞) × R; R) we have ∞ 0 R ρ ∂ t ϕ + q ∂ x ϕ dx dt + ρ 0 -∞ ϕ(0, x) dx + ρ r ∞ 0 ϕ(0, x) dx = 0, ∞ 0 R q ∂ t ϕ + q 2 ρ 2 + a 2 ρ ∂ x ϕ dx dt + q 0 -∞ ϕ(0, x) dx + q r ∞ 0 ϕ(0, x) dx = 0.
If x = γ(t) is a smooth curve along which a weak solution u is discontinuous, then the following Rankine-Hugoniot conditions must be satisfied, where u ± (t) . = u(t, γ(t) ± ) are the traces of u along x = γ(t):

ρ + -ρ -γ = q + -q -, (2.3) 
q + -q -γ = (q + ) 2 ρ + + a 2 ρ + - (q -) 2 ρ -+ a 2 ρ -. (2.4) 
For u o ∈ Ω we define FL uo i , BL uo i : (0, ∞) → R, i ∈ {1, 2}, by

FL uo 1 (ρ) . = R uo 1 (ρ) if ρ ∈ (0, ρ o ], S uo 1 (ρ) if ρ ∈ (ρ o , ∞), FL uo 2 (ρ) . = S uo 2 (ρ) if ρ ∈ (0, ρ o ), R uo 2 (ρ) if ρ ∈ [ρ o , ∞), BL uo 1 (ρ) . = S uo 1 (ρ) if ρ ∈ (0, ρ o ), R uo 1 (ρ) if ρ ∈ [ρ o , ∞), BL uo 2 (ρ) . = R uo 2 (ρ) if ρ ∈ (0, ρ o ], S uo 2 (ρ) if ρ ∈ (ρ o , ∞),
where S uo i , R uo i : (0, ∞) → R, i ∈ {1, 2}, are defined by

S uo i (ρ) . = ρ   q o ρ o + (-1) i a ρ ρ o - ρ o ρ   , R uo i (ρ) . = ρ q o ρ o + (-1) i a ln ρ ρ o . (2.5)
The graphs of the functions FL uo i and BL uo i are the forward FL uo i and backward BL uo i Lax curves, respectively, of the i-th family through u o , see Figure 1. Analogously, the shock S uo i and rarefaction R uo i curves through u o are the graphs of the functions S uo i and R uo i . The shock speeds are s uo 1 (ρ)

. = v o -a ρ/ρ o and s uo 2 (ρ) . = v o + a ρ/ρ o . A state (ρ, q) ∈ Ω is subsonic if |v| <
a and supersonic if |v| > a; the sonic lines are q = ±a ρ.

We introduce the following notations, see Figure 1 on right for an illustration.

Definition 2.2. For u , u r ∈ Ω we denote:

• ū(u ) is the element of FL u 1 with the maximum q-coordinate; • ũ(u , u r ) is the (unique) element of FL u 1 ∩ BL ur 2 ; • û(q o , u ), for any q o q(u ), is the intersection of FL u 1 and q = q o with the largest ρ-coordinate; • ǔ(q o , u r ), for any q o 0, is the intersection of BL ur 2 and q = q o with the largest ρ-coordinate. Now, we briefly recall the modeling of a gas flow through a one-way valve [START_REF] Corli | Coherence and chattering of a one-way valve[END_REF]. One-way valves are characterized by letting the flow occur (at x = 0) in a single direction; we fix the positive one for definiteness.

ρ q FL uo 1 ∪ FL uo 2 R uo 1 R uo 2 S uo 2 S uo 1 u o ρ q BL uo 1 ∪ BL uo 2 S uo 1 S uo 2 R uo 2 R uo 1 u o ρ q BL ur 2 FL u 1 û(0, u ) ǔ(0, u r ) û(q o , u ) q o ũ(u , u r ) ǔ(q o , u r ) u r ū(u ) u q = a ρ q = -a ρ
We denote by BV(R; Ω) the space of Ω-valued functions with bounded variation. We define D .

= Ω × Ω. The Lax Riemann solver RS p : D → BV(R; Ω), whose action is denoted for (u , u r ) ∈ D by (t, x) → RS p [u , u r ](x/t), provides the unique entropic solution to Riemann problem (2.1), (2.2), see [START_REF] Leveque | Numerical methods for conservation laws[END_REF]. We denote for brevity, when the dependence on initial data is clear,

u p . = RS p [u , u r ], u ± p . = u p (0 ± ). (2.6)
Remark 2.3. If the 1-wave in u p is a shock with positive speed, then we have v > a by (2.5) 1 . If the 1-wave is a rarefaction, then it enters the region x > 0 if and only if v r > a; if also a < v < v r , then the whole rarefaction enters the region x > 0. An analogous remark holds for 2-waves. As a consequence, subsonic states u , u r never produce waves moving to the same direction.

Solutions to (2.1) for x = 0 will always be given by RS p ; at x = 0 we model the flow through the valve by a c-Riemann solver RS ("c" for coupling), as we are going to define. First, for each (u , u r ) ∈ D we assign the flow

Q = Q(u , u r ) ∈ [0, Q(u )] through the valve, where Q : Ω → R is given by Q(u) . = q(u) = a ρ e exp v a if v a, q if v > a.
(2.7)

We observe that Q ∈ C 1 1 1 (Ω). The introduction of Q(u) is needed to select the values of the flow across the valve, in order that the Riemann solver RS c defined below provides at most one wave (a 1-rarefaction or a 1-shock) on the left of the valve; see Remark 2.5 (v) below.

Definition 2.4. Let Q : D → R be such that Q(u , u r ) ∈ [0, Q(u )] for every (u , u r ) ∈ D. The corresponding c-Riemann solver RS c : D → BV(R; Ω) is defined by RS c [u , u r ](ξ) . =      RS p u , û Q(u , u r ), u (ξ) if ξ < 0, RS p ǔ Q(u , u r ), u r , u r (ξ) if ξ 0. (2.8) Analogously to (2.6) we denote u c . = RS c [u , u r ] and u ± c . = u c (0 ± ).
Remark 2.5. We now give several explanations of the previous definition and introduce some notations.

(i) A c-Riemann solver RS c is characterized by Q. For brevity we omit the dependence on Q.

(ii) The conservation of the mass (which corresponds to the first Rankine-Hugoniot condition (2.3)) must hold at x = 0. This condition is automatically satisfied by u c : if u c has a stationary discontinuity at x = 0, then γ = 0 but q c (0 -) = Q(u , u r ) = q c (0 + ) because of the definitions of ǔ and û, and so (2.3) holds. On the contrary, the conservation of momentum is lost at x = 0, in general; hence the second Rankine-Hugoniot condition (2.4), which encodes this property, cannot be required. Indeed, definition (2.8) does not imply (2.4). As a consequence, u c may fail to be a weak solution of (2.1)

at x = 0. (iii) We say that for (u , u r ) ∈ D the valve is closed if Q(u , u r ) = 0 and open if Q(u , u r ) = 0. (iv) By Definition 2.2 and (2.7) we deduce that Q(u ) q and 0 < Q(u ) q(u ). So, if Q ∈ [0, Q(u )]
, then û(Q, u ) and ǔ(Q, u r ) are well defined. We denote for short

û = û(u , u r ) . = û Q(u , u r ), u , ǔ = ǔ(u , u r ) . = ǔ Q(u , u r ), u r .
By Definition 2.2 we deduce ρ ρ(u ) and q = Q(u , u r ) = q. (v) The states û = û(u , u r ) and ǔ = ǔ(u , u r ) are well defined by assuming Q(u , u r ) ∈ [0, q(u )]. However, it is easy to check that the stricter condition Q(u , u r )

Q(u ) required in Definition 2.4 is needed in order that ξ → RS p [u , û](ξ) ∈ FL u
1 represents a single wave with negative ( 0) speed, and then let (2.8) make sense for ξ < 0. Analogously, condition Q(u , u r ) 0 ensures that ξ → RS p [ǔ, u r ](ξ) ∈ FL ǔ 2 represents a single wave with positive ( 0) speed (so that (2.8) makes sense for ξ 0) and it is needed in order that q

(RS c [u , u r ](0)) = q(RS p [u , û](0)) = q(RS p [ǔ, u r ](0)) 0.
We now discuss the occurrence of subsonic states for the solver RS c .

Proposition 2.6. Let (u , u r ) ∈ D and u c . = RS c [u , u r ].
Then: (i) The restriction to ξ < 0 of u c attains supersonic values if and only if u is supersonic. (ii) The restriction to ξ 0 of u c may attain supersonic values even if neither u nor u r are supersonic.

Proof. First, we prove (i). If u is subsonic, i.e. |v | a, then Q(u ) = q(u ) and ū(u ) is a sonic state by [START_REF] Corli | Coherence and chattering of a one-way valve[END_REF]Lemma 2.6]. Therefore for any ξ < 0

u c (ξ) = RS p u , û Q(u , u r ), u (ξ) ∈ u ∈ FL u 1 : |v| a , because by assumption Q(u , u r ) ∈ [0, Q(u )].
The converse is trivial: if u is supersonic, then u c attains a supersonic value at least at u . About (ii), it is sufficient to choose Q(u , u r ) sufficiently large in order that ǔ Q(u , u r ), u r is supersonic.

We can now give the definition of a coherent coupling Riemann solver.

Definition 2.7. A c-Riemann solver RS c : D → BV(R; Ω) is coherent at (u , u r ) ∈ D if the traces u ± c . = RS c [u , u r ](0 ± ) satisfy RS c [u -, u + ](ξ) = u - c if ξ < 0, u + c if ξ 0.
(2.9)

The coherence domain CH of RS c is the set of all pairs (u , u r ) ∈ D where RS c is coherent. The set CH . = D \ CH is the incoherence domain. A c-Riemann solver RS c is coherent at an initial datum (u , u r ) ∈ D if the ordered pair of the traces of the corresponding solution RS c [u , u r ](0 -), RS c [u , u r ](0 + )
is, in a sense, a fixed point of RS c . Hence, coherence may be thought as a stability property. On the contrary, the incoherence of a c-Riemann solver is understood as modeling the chattering of a valve and may yield analytical and numerical instabilities, see for instance the central column in Figure 4.

The Riemann solver RS p is coherent in D [12, Proposition 2.5]. On the contrary, coherence may fail for RS c because of the presence of a valve. Indeed this is the case for the c-Riemann solver RS v introduced in [START_REF] Corli | Coherence and chattering of a one-way valve[END_REF] and that we are going to briefly recall. Fix q * > 0, then RS v corresponds to the valve that keeps the flow at x = 0 equal to q * if possible, otherwise it closes. This motivates the way Q = Q v is defined in (2.10) below. Definition 2.8. We denote by RS v the c-Riemann solver corresponding to

Q v (u ) . = q * if Q(u ) q * , 0 if Q(u ) < q * . (2.10)
Notice that Q v in (2.10) only depends on u (and q * , but for the moment we keep it fixed) and not on u r . We denote

u v . = RS[u , u r ] and u ± v . = u v (0 ± ).
The function Q v is discontinuous along some curve in Ω; we explicitly find such a curve in the following Lemma 2.9.

We denote

u a * . = (ρ a * , q * ) . = (q * /a, q * ), u 0 * . = (ρ 0 * , 0) . = (e q * /a, 0), (2.11) 
see Figure 2. Notice that u a * is the intersection of the line {u ∈ Ω : q = q * } with the sonic line {u ∈ Ω : v = a}. Moreover, u 0 * is the unique intersection of the curve BL u a Lemma 2.9. The valve is closed if and only if one of the following equivalent conditions is satisfied:

(i) Q v (u ) = 0; (ii) Q(u ) < q * ; (iii) u belongs to the set C . = (0, ρ a * ] × (-∞, q * ) ∪ u ∈ Ω : ρ > ρ a * , q < R u a * 1 (ρ) .
(2.12)

ρ q q = a ρ q * BL u a * 1 u a * u 0 * C Figure 2:
The shaded region represents the set C of left states u such that the valve corresponding to (2.10) is closed. We now introduce the states u sup * and u sub * , see Figure 3 on the left. Notice that BL

ρ q q * u 0 * BL u 0 * 1 u sup * u sub * v = v sup * v = a ρ q q * C H , 2 CH ,1 CH ,3 v = v sup * v = a CH
u 0 * 1 = S u 0 * 1 if q 0.
It is easy to see that the curve BL u 0 * 1 intersects the line q = q * at the two points u sup * . = (ρ sup * , q * ) and u sub * . = (ρ sub * , q * ). The state u sup * is supersonic, the state u sub * is subsonic with constant speeds

v sup * ≈ 1.63 • a, v sub * ≈ 0.81 • a. (2.13) 
The next theorem characterizes the incoherence domain CH of RS v . Since Q v only depends on the upstream states, it is clear that

CH = CH × Ω, CH = CH × Ω,
where both CH ⊆ Ω and CH .

= Ω \ CH only contain left states u .

Theorem 2.10 (Incoherence). The incoherence domain of RS v is CH = CH × Ω, where

CH = u ∈ Ω : v > v sup * , S u 0 * 1 (ρ) q < q * . (2.14)
We refer to Figure 3 on the left for a representation of CH . By (2.14) we deduce CH = CH ,1 ∪ CH ,2 ∪ CH ,3 where, see Figure 3 on the right,

CH ,1 . = u ∈ Ω : v v sup * , CH ,2 . = u ∈ Ω : v > v sup * , q < S u 0 * 1 (ρ) , CH ,3 . = u ∈ Ω : v > v sup * , q q * . (2.15) 
Notice that CH ,1 is independent of q * by the definition (2.13) of v sup * . We now show that if RS v is not coherent at (u , u r ) then the valve is closed.

Corollary 2.11. We have CH ⊂ C and RS v [CH , Ω](0 -) ⊆ Ω \ C ⊂ CH . In other words, Corollary 2.11 means that if (u , u r ) ∈ CH = CH × Ω, then in the solution u v = RS v [u , u r ] the valve is closed, while in the solution RS v [u - v , u + v ] the valve is open and then (u - v , u + v ) ∈ CH = CH × Ω; as a consequence by (2.9) we have RS v [u - v , u + v ](0 ± ) = u ± v .
3 The coherent c-Riemann solver RS h A drawback of incoherence is that it leads to instabilities. For instance, numerical solutions obtained by exploiting RS v at each time step may substantially differ from the exact solution u v in correspondence of incoherent initial data, see for instance the first two columns in Figure 4. This difficulty motivates the design of a new valve, which reproduces the behavior of the valve modeled in Definition 2.8 for coherent initial data but that gives rise to a coherent solver. We introduce such a valve in Definition 3.1 through its Riemann solver RS h ("h" for coherent). The solver RS h , roughly speaking, is uniquely determined by the following conditions:

(I) RS h is coherent in the whole of D . = Ω × Ω; (II) RS h coincides with RS v in the coherence region CH of RS v ; (III) if (u , u r ) ∈ CH , then RS h [u , u r ] maximizes the flow across x = 0, that is q(RS h [u , u r ](0)) q(RS c [u , u r ](0))
for any c-Riemann solver RS c .

As we commented in the Introduction, condition (III) resembles an entropy condition. It has been already exploited in the framework of gas networks, see for instance [4, (28)], [5, (15a)].

Because of (II), the issue is then how to define RS h in CH . A hint comes from [14, §6], where a valve with a reaction time and based on RS v is considered. For (u , u r ) ∈ CH , a solution is constructed there by applying a front-tracking algorithm. Rather surprisingly, the reaction time leads to the periodic appearance of a flow q at x = 0, even if q differs from both 0 and q * .

We are then led to prescribe a new value Q = Q h of the flow at x = 0, which equals q in the incoherent region CH = CH × Ω of RS v , see (2.14), and coincides with Q v in CH, as stated in the following definition. Definition 3.1. We denote by RS h the c-Riemann solver corresponding to

Q h (u ) . =        q * if Q(u ) q * , 0 if Q(u ) < q * and u ∈ CH , q if u ∈ CH , (3.1) 
where Q is defined as in (2.7) and CH × Ω is the incoherence domain of RS v , see (2.14).

Remark 3.2. Observe that if Q(u ) q * then u ∈ CH , or equivalently, if u ∈ CH then Q(u ) < q * .
Numerical simulations based on RS h reproduce the same effect on the gas flow of RS v after the chattering, at least in the case considered in Figure 4, see the last two columns. We currently miss of a rigorous proof of this fact. x → q ∆ (0.2, x) -1 -0.5 0 0.5 1 0 5 10

x → q ∆ (0.2, x) -1 -0.5 0 0.5 1 5 10

x → q ∆ (0.2, x) = RSv[u , ur](x/t). Left column: we computed Qv(u ) and kept it as flow through the valve for any time. Center column: we applied RSv at x = 0 at each time step, namely, we updated the flow through the valve according to the left traces of the solution computed at each time step. Right column: u(t, x) . = RS h [u , ur](x/t). Here ρ = 0.25, q = 2.5, ρr = 6, qr = 11, a = 2 and q * = 3, so that u ∈ CH .

By Corollary 2.11 we have CH ⊂ C , hence C = CH \ C . This, and Lemma 2.9 (ii), implies

u ∈ Ω : Q(u ) < q * = C , u ∈ Ω : Q(u ) q * = CH \ C , (3.2) 
and therefore

Q h (u ) =        q * if u ∈ CH \ C , 0 if u ∈ CH ∩ C , q if u ∈ CH . (3.3) 
Now, we collect the main properties of RS h . About (III), we notice that it is a consequence of the explicit definition (3.1) and not, as in [START_REF] Banda | Coupling conditions for gas networks governed by the isothermal Euler equations[END_REF][START_REF] Banda | Gas flow in pipeline networks[END_REF], an implicit consequence of a maximization process. Proposition 3.3. For any u , u r ∈ Ω the following holds:

(i) if (u , u r ) ∈ CH × Ω, then RS h [u , u r ] ≡ RS v [u , u r ]; (3.4) (ii) if (u , u r ) ∈ CH × Ω, then RS h [u , u r ](ξ) = u if ξ < 0, RS p [ǔ(q , u r ), u r ](ξ) if ξ 0, (3.5) 
and for every c-Riemann solver RS c we have

q(RS c [u , u r ])(0) q(RS h [u , u r ])(0) ∈ (0, q * ); (3.6) (iii) RS h is coherent in D.
Proof. About (i), formula (3.4) directly follows from Definition 3.1 and by comparing (2.10) with (3.1). We now prove (ii). About (3.5), if (u , u r ) ∈ CH × Ω, then by (2.8) and (3.1) we deduce that

RS h [u , u r ](ξ) = RS p u , û(q , u ) (ξ) if ξ < 0, RS p [ǔ(q , u r ), u r ](ξ) if ξ 0.
Then, we have two possibilities: either û(q , u ) = u and so RS p u , û(q , u ) ≡ u , or else û(q , u ) = u and so RS p u , û(q , u ) consists of constant states u and û(q , u ) separated by a stationary shock. In both cases (3.5) immediately follows. To prove (3.6), we first recall (2.8), (3.3) and observe that if (u , u r ) ∈ CH × Ω then

q(RS h [u , u r ])(0) = Q h (u ) = q .
By the definition (2.14) of CH we have that both q ∈ (0, q * ) and v > a; thus by (2.7) we have

q = Q(u ) = max u∈Ω q(RS p [u , u])(0) ∈ (0, q * ).
At last, to prove (iii), notice that from (3.5) we have for any (u , u r ) ∈ CH × Ω that

RS h [u , u r ](0 -), RS h [u , u r ](0 + ) = u , ǔ(q , u r ) ∈ CH × Ω.
Moreover ǔ(q , ǔ(q , u r )) = ǔ(q , u r ) because q > 0, and then RS h is coherent in D.

Proposition 3.3 proofs the properties of RS h listed at the beginning of this section; in particular, formula (3.6) is the maximization of the flow at x = 0.

Numerical approximation of a c-Riemann solver RS c

In this section we introduce the numerical scheme to be used in the following and show some simulations to show its reliability in dealing cases where the valve is involved.

Description of the numerical scheme

In this subsection, we describe the scheme used to approximate the solutions provided by a given c-Riemann solver RS c . It is based on the Random Choice Method (RCM), which was introduced in [START_REF] Glimm | Solutions in the large for nonlinear hyperbolic systems of equations[END_REF] in order to prove the existence of solutions to systems of non-linear hyperbolic conservation laws. It has then been adapted and used in [START_REF] Chorin | Random choice solution of hyperbolic systems[END_REF] as a numerical scheme. We also quote [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics[END_REF] and references therein, for the description of the method as a numerical scheme to be implemented.

Let ∆x and ∆t be the constant space and time steps, respectively. We introduce the points x j+1/2 . = j ∆x, the cells K j . = [x j-1/2 , x j+1/2 ) and the cell centers x j . = (j -1/2) ∆x for j ∈ Z. We denote by j c the index such that x jc+1/2 is the location of the valve. Define N . = T /∆t and, for n ∈ Z ∩ [0, N ], introduce the time discretization t n . = n ∆t. We denote by u ∆ the approximate solution that we assume to be constant in each cell K j :

u ∆ (t, x) . = u n j ∈ R 2 , (t, x) ∈ [t n , t n+1 ) × K j .
Next, we denote by û∆ (Q(u , u r ), u ) and ǔ∆ (Q(u , u r ), u r ) the numerical approximations of û(Q(u , u r ), u ) and ǔ∆ (Q(u , u r ), u r ), respectively.

The main goal is now to compute u n j for any n ∈ N ∩ [0, N ] and j ∈ Z. We first define

u 0 j . = 1 ∆x Kj u(0, x) dx.
Now for a fixed n ∈ Z ∩ [0, N ], assume that u n j is given and for any j ∈ Z. We use the following procedure to compute u n+1 j :

• We pick up randomly or quasi-randomly a number θ n ∈ [0, 1]. Here, as in Colella [START_REF] Colella | Glimm's method for gas dynamics[END_REF] (see also [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics[END_REF]), we consider the van der Corput random sequence (θ n ) defined by

θ n . = m k=0 i k 2 -(k+1) ,
where

n . = m k=0 i k 2 k , i k ∈ {0, 1},
denotes the binary expansion of the integer n.

• The updated solution is then computed as follows, for j / ∈ {j c , j c+1 },

u n+1 j . =      RS p u n j-1 , u n j θ n ∆x/∆t if 0 θ n 1 2 , RS p u n j , u n j+1 (θ n -1)∆x/∆t if 1 2 θ n 1,
and, for j ∈ {j c , j c+1 },

u n+1 jc . =        RS p u n jc-1 , u n jc θ n ∆x/∆t if 0 θ n 1 2 , RS p u n jc , û∆ Q(u n jc-1 , u n jc ), u n jc-1 (θ n -1)∆x/∆t if 1 2 θ n 1, u n+1 jc+1 . =        RS p ǔ∆ Q(u n jc , u n jc+1 ), u n jc+1 , u n jc+1 θ n ∆x/∆t if 0 θ n 1 2 , RS p u n jc+1 , u n jc+2 (θ n -1)∆x/∆t if 1 2 θ n 1.
Let us note that, as usual, the time steps are chosen with respect to the CFL condition, that is,

∆t = C cfl ∆x max j∈Z max i∈{1,2} |λ i (u n j )|
, where the CFL coefficient C cfl satisfies 0 C cfl 1 2 . For all the simulations of this paper, we always take C cfl = 0.45.

Numerical simulations

We use the scheme to compute numerical solutions of some cases involving different configurations of the valve, and we compare them with exact solutions when available. We define the following relative L 1 1 1 -error

e t L 1 1 1 (∆x) . = u ∆ (t, •) -u(t, •) L 1 1 1 (I) u(t, •) L 1 1 1 (I) ,
where I ⊂ R is the computational domain. In the remaining part of this subsection, we take

I = [-1, 1], a = 2, q * = 3
and the final time

T = 0.2.
In the first two examples, we consider the case where u ∈ CH .

Example 4.1. We take u = (6, 1) ∈ CH \ C and u r = (1, -1). This corresponds to the case when the valve realizes the flow q * . In Figure 5 (a), we show the numerical convergence of the scheme and this result also shows that the order of convergence is approximately 1. Moreover, we can see in Figures 6 that the numerical solution is in a good agreement with the exact one. x)

-1 -0.5 0 0.5 1 q ∆ (0.2, x) q(0.2, x) Example 4.2. We take now u = (2, 2) ∈ CH ∩ C and u r = [START_REF] Banda | Towards a space mapping approach to dynamic compressor optimization of gas networks[END_REF][START_REF] Banda | Coupling conditions for gas networks governed by the isothermal Euler equations[END_REF]. This corresponds to the case when the valve is closed. As for the previous example, we can see in Figure 5 (b), the numerical convergence of the scheme and that the order of convergence is also approximately 1. Moreover, Figure 7 shows the good agreement between the numerical and the exact solutions. Remark 4.3. We now provide the main motivation to the choice of the numerical scheme we use in this paper: it lies in the fact that the RCM approximates well single discontinuities. By definition, the state ǔ = ǔ Q h (u ), u r is given by the intersection of BL ur 2 and q = Q h (u ); hence, the solution RS p [ǔ, u r ] has a single wave in ξ > 0, namely a 2-wave. It is generically impossible, from a numerical point of view, to catch exact values on a curve. For this reason we consider a numerical approximation ǔ∆ of ǔ. If ǔ∆ is subsonic, then RS p [ǔ ∆ , u r ] has only a 2-wave in ξ > 0 by Remark 2.3. On the contrary, if ǔ∆ is supersonic, then RS p [ǔ ∆ , u r ] can well have a 1-wave followed by a 2-wave in ξ > 0, because Remark 2.3 does not hold any more. Thus essentially any numerical approximation of RS p [ǔ, u r ] different from RCM, based on standard finite-volume methods (such as the Godunov scheme) has a 1-wave followed by a 2-wave in ξ > 0 if ǔ∆ is supersonic, by the stability of the scheme. The RCM avoids this sever drawback.

-1 0 -1 1 2 3 4 5 1 q ∆ (0.2, x) q(0.2, x)

Maximization of the flow

In this section we use the solver RS h to treat a maximization problem, by looking whenever possible to explicit solutions. Since we let the flow-threshold parameter q * vary, we use in the following the explicit notation Q q * h , C q * , CH q * , for Q h , C , CH given by (3.1), (2.12), (2.14), respectively. As a consequence we denote by RS q * h the c-Riemann solver corresponding to Q q * h . We fix a time horizon T > 0 and an initial datum attaining the values u i , u , u r ∈ Ω (i for "ingoing") for x belonging to (-∞, -1), [-1, 0), [0, ∞), respectively; we only let q * vary. For any q * 0, we denote by u q * (t, x) . = (ρ q * (t, x), q q * (t, x)) the solution corresponding to the initial condition

u q * (0, x) =        u i if x < -1, u if -1 x < 0, u r if x 0, (5.1)
and constructed by applying RS q * h at x = 0 and RS p elsewhere. The choice of the initial datum as in (5.1) represents a Riemann problem at the valve position with a perturbation on the left. The choice of the point -1 is for simplicity: a different value only leads to a rescaling.

Assume for the moment that for any q * 0 the corresponding solution u q * is unique and well defined up to a fixed time T . We then study the maximization problem

max q * >0 Q(q * , T ) with Q(q * , T ) . = 1 T T 0 q q * (t, 0) dt, (5.2)
for the average Q(q * , T ). We point out that the above assumption of existence of solutions is not trivial, because of the possibility of blow up in finite time [START_REF] Baiti | Blowup in L ∞ for a class of genuinely nonlinear hyperbolic systems of conservation laws[END_REF][START_REF] Bressan | No BV bounds for approximate solutions to p-system with general pressure law[END_REF][START_REF] Jenssen | Blowup for systems of conservation laws[END_REF]; furthermore, to solve (5.2) we should also need qualitative properties of the solutions. As a consequence, analytic results for maximization problem (5.2) can hardly be proved in a general setting. For this reason, in the following Subsections 5.1 and 5.2 we focus on some particular cases where analytical results are available. These results will be crucial benchmarks for the numerical simulations in Subsections 5.2.2 and 5.2.3, which regard an example which doesn't fit in the analytical results obtained in the preceding subsections. The last Subsection 5.3 contains a further case study which is treated only numerically. For all the numerical simulations performed in the sequel, we always take ∆x = 5 × 10 -4 .

The case u i = u

In the case u i = u , problem (5.2) only concerns solutions to a fixed Riemann problem at x = 0; in particular, q q * (t, 0) = Q q * h (u ) does not depend on t. We recall that the set CH ,1 does not depend on q * , see (2.15). Proposition 5.1. Consider the maximization problem (5.2) in the case u i = u . Then for any T > 0 we have

max q * >0 Q(q * , T ) = Q(u ),
and a maximizer is q * = Q(u ). Moreover, the maximizer is unique if and only if u ∈ CH ,1 .

Proof. In the case u i = u , problem (5.2) reduces to maximize q * → Q q * h (u ) because q q * (t, 0) = Q q * h (u ) for any t > 0 and therefore Q(q * , T ) = Q q * h (u ) for any T > 0. (5.3). Right: Two states in CH ,1 , with u a ∈ CH ,1 \ C q * and u b ∈ CH ,1 ∩ C q * . The shaded region represents the set C q * . Consider first the case u ∈ CH ,1 , see Figure 8 on the right. By (3.2) and (3.3) we have (5.4). Right: Three possible elements of CH ,1 , with u a ∈ CH q * ,3 , u b ∈ CH q * , and u c ∈ CH q * ,2 .

q * Q q * h (u ) Q(u ) Q(u ) u ∈ C H , 1 \ C q * u ∈ CH ,1 ∩ C q * ρ q v = a q * BL u a * 1 u a * u 0 * C q * v = v sup * u b u a Figure 8: Left: Plot of q * → Q q * h (u ) with u ∈ CH ,1 fixed, see
Q q * h (u ) = q * if q * ∈ [0, Q(u )], 0 if q * > Q(u ). (5.3) q * Q q * h (u ) q q = Q(u ) u ∈ C H q * , 3 u ∈ CH q * , q(u ) u ∈ CH q * ,2 ρ q q * u c u b u a CH q * ,2 CH q * , CH ,1 CH q * ,3 v = v sup * v = a Figure 9: Left: Plot of q * → Q q * h (u ) with u ∈ CH ,1 fixed, see
The plot of q * → Q q * (u ) is represented in Figure 8 on the left. Assume now that u ∈ CH ,1 , see Figure 9 on the right. We denote q(u)

. = q û(0, u) = ρ 4 a e v 2 + 4 a 2 + v 2 .
Observe that in this case Q(u ) = q by (2.7). We use again (3.3) to deduce the following:

• if u ∈ CH q * ,3 ⊂ CH \ C , then we have Q q * h (u ) = q * and q * Q(u ) by (3.2) 2 ;
• if u ∈ CH q * , , then we have Q q * h (u ) = q and q * ∈ (Q(u ), q(u )] by [13, (5.1)];

• if u ∈ CH q * ,2 ⊂ CH ∩ C , then we have Q q * h (u ) = 0 and q * > Q(u ) by (3.2) 1 .
Therefore we deduce that

Q q * h (u ) =        q * if q * ∈ [0, Q(u )], q if q * ∈ (Q(u ), q(u )], 0 if q * > Q(u ).
(

See Figure 9 for the graph of q * → Q q * h (u ) in this case. This concludes the proof. In Figure 10 we show our numerical simulations corresponding to a = 2, u r = (1, -1) and left:

u i = u = (2, 2), Q(u ) = 4 √ e ≈ 2.43, (5.5) 
right:

u i = u = 1 4 , 5 2 , Q(u ) = 5 2 , q(u ) = (10 + 2 √ 29) 2 32e ≈ 4.96. (5.6) 
We notice a very good match with the analytic results, see (5.3) and (5.4). The slight deviation from the expected value 0 (for q * approximately larger than 5) in Figure 10 on the right is only due to numerical rounding errors. 
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The case RS

p [u i , u ] is a 2-shock
In this subsection we show how to construct, for small times, an explicit solution to the Cauchy problem for system (2.1) with an initial datum as in (5.1). We apply RS p , for x = 0, and RS q * h , at x = 0, at each discontinuity of the initial datum and at each wave interaction. As we mentioned above, we focus on a single explicit example; other cases can be handled similarly. We point out that the special case u = u r has the advantage of reducing the number of initial parameters; however, the property u(t, 0 -) = u(t, 0 + ) is not preserved when q * varies, because RS q * h [u , u ] may lead to solutions that do not have such property. For this reason, we do not treat explicitly this special case.

We assume that at t = 0 there is no flow on the right of the valve. On the left, instead, we have a supersonic perturbation u i which is separated from the state u by a 2-shock wave moving toward the valve. For simplicity we assume that the state u is sonic. More precisely, see Figure 11, we assume

u ∈ FL ui 2 , v r = 0 < v = a < v i , q r = 0 < q < q u i , û(0, u ) < q i < q ũ u i , û(0, u ) . (5.7) ρ u r q q q q i q û ū u u i ũ v = a FL ui 2 BL û 2 FL ũ1 1 FL ui 1 FL u 1 Figure 11:
The states ui, u and ur given in (5.10), (5.12) satisfy (5.7). We denote û . = û(0, u ), ũ . = ũ ui, û(0, u ) and ū . = ū ũ ui, û(0, u ) .

The explicit solution for small times

We now construct an exact and explicit solution to the initial-value problem (1.1), (5.1) for small times, under the assumptions in (5.7). Since an interaction involving a rarefaction wave is complicate to handle explicitly, we stop the construction when such interactions occur. We distinguish four cases; we emphasize that in the following pictures also the interaction patterns in the space (x, t) (point coordinates and slopes) are exact and not merely representative. We refer to Figure 12.

Case (a)

Assume q * ∈ [0, q ]. For notational simplicity, we denote

û1 . = û(q * , u ), ǔ1 . = ǔ(q * , u r ), ũ1 . = ũ(u i , û1 ), û2 . = û(q * , ũ1 ), ũ2 . = ũ(u i , û2 ). (5.8) 
At time t = 0 a 2-shock with positive speed s ui 2 (ρ ) starts from x = -1; a 1-shock with negative speed s u 1 (ρ 1 ), a stationary non-classical shock and a 2-shock with positive speed s ǔ1 2 (ρ r ) are generated at x = 0. The first two shocks interact at time t 1 > 0 in x = x 1 < 0: a 1-shock with speed s ui 1 (ρ 1 ) and a 2-shock with positive speed s ũ1 2 (ρ 1 ) are generated. The latter shock eventually reaches x = 0 at time t 2 . By applying RS h [ũ 1 , ǔ1 ], we deduce that a 1-shock with negative speed s ũ1 1 (ρ 2 ) and a stationary non-classical shock start from x = 0 at time t 2 ; the former shock eventually interacts at time t 3 and position x 3 with the 1-shock that was generated at time t 1 . As a result of such interaction, a 1-shock with negative speed s ui 1 (ρ 2 ) and a 2-rarefaction with positive speeds ranging in [λ 2 (ũ 2 ), λ 2 (û 2 )] start from x = x 3 at time t 3 . Because a rarefaction showed up, we stop the construction as soon as it reaches the valve; we denote such a time by T q * a . Notice that the low value of q * lets the valve open already at t = 0 + with flow q * on the right; the valve keeps open and the flow is q * at least until time T q * a .

Case (b)

Assume q * ∈ (q , q(u i , û(0, u ))]. We still use notation (5.8) with the exception of û1 . = û(0, u ). As in the previous case, at time t = 0 a 2-shock with positive speed s ui 2 (ρ ) starts from x = -1; however, because of the larger value of q * , only a 1-shock with negative speed s u 1 (ρ 1 ) and a stationary non-classical shock are generated at x = 0, and the valve is closed. At time t 1 > 0 the two classical shocks interact at x = x 1 < 0: a 1-shock with speed s ui 1 (ρ 1 ) and a 2-shock with positive speed s ũ1 2 (ρ 1 ) are generated. The latter shock eventually reaches x = 0 at time t 2 . By considering RS h [ũ 1 , u r ], we deduce that a 1-shock with negative speed s ũ1 1 (ρ 2 ), a stationary non-classical shock and a 2-shock with positive speed s ǔ1 2 (ρ r ) leave x = 0 at time t 2 . Roughly speaking, the effect of the supersonic perturbation is not much damped by the shock from x = 0 and opens the valve. The new 1-shock eventually interacts at time t 3 and position x 3 with the 1-shock appeared at time t 1 : a 1-shock with negative speed s ui 1 (ρ 2 ) and a 2-rarefaction with positive speeds ranging in [λ 2 (ũ 2 ), λ 2 (û 2 )] are generated. Then we stop the construction at time T q * b when the above 2-rarefaction reaches x = 0.

ρ ũ2 ur q q * û2 ǔ1 û1 u ui ũ1 v = a FL ui 2 BL ũ1 2 BL ur 2 BL û2 2 FL ũ1 1 FL ui 1 FL u 1 T q * a x -1 ũ2 u r t û2 ǔ1 û1 u u i ũ1 P 1 P 2 P 3
x → ρ(T q * a , x)

x → q(T q * a , x)

Case (a)

ρ ũ2 ur q q * û2 ǔ1 û1 u ui ũ1 v = a FL ui 2 BL ũ1 2 BL û2 2 BL ur 2 FL ũ1 1 FL ui 1 FL u 1 T q * b x -1 ũ2 u r t û2 ǔ1 û1 u u i ũ1 P 1 P 2 P 3
x → ρ(T q * b , x)

x → q(T q * b , x)

Case (b)

ρ ur q q * û2 ǔ1 û1 u ui ũ1 v = a FL ui 2 BL ũ1 2 BL ur 2 BL û2 2 FL ũ1 1 FL ui 1 FL u 1 T q * c x -1 u r t û2 ǔ1 û1 u u i ũ1 P 1 P 2 P 3
x → ρ(T q * c , x)

x → q(T q * c , x)

Case (c)

ρ ũ2 ur q q * û2 û1 u ui ũ1 v = a FL ui 2 BL û1 2 BL û2 2 FL ũ1 1 FL ui 1 FL u 1 T q * d x -1 ũ2 u r t û2 û1 u u i ũ1 P 1 P 2 P 3 x → ρ(T q * d , x)
x → q(T q * d , x)

Case (d) 

Case (c)

Assume q * ∈ (q(u i , û(0, u )), q(ũ(u i , û(0, u )))]. In this case and in the following one we omit some details, which are as in the two previous cases. Here, differently from Case (b), from P 2 a 1-rarefaction appears on the left of x = 0. This is a consequence of the higher value of q * , which lets more flow pass to the right. Then we stop the construction at time T q * c when such 1-rarefaction interacts with the 1-shock created at time t 1 .

Case (d)

Assume q * > q(ũ(u i , û(0, u ))). The construction is analogous to that in Case (b). The only differences are that û2 . = û(0, ũ1 ) and until time t 3 the valve is closed, so that no waves appear in x > 0. Notice that the very high value of q * lets the valve closed at least until time T q * d when a 2-rarefaction reaches x = 0.

Notice now that in Case (a) the points P 1 , P 2 , P 3 coalesce to the point P * as q * q , where P * = 0, s ui 2 (ρ ) -1 is the intersection of the t-axis and the line passing through the point (-1, 0) with slope s ui 2 (ρ ) -1 , that is the line passing through (-1, 0) and P 1 in Figure 12. Hence, by comparing the above constructions, see again Figure 12, it is now clear that the smallest time T which allows an explicit construction of the solution for any q * 0 is precisely

T = T min . = min{T a , T b , T c , T d } = s ui 2 (ρ ) -1 . (5.9) 
where

T a . = min T q * a : q * ∈ [0, q ] , T b . = inf T q * b : q * ∈ (q , q(u i , û(0, u ))] , T c . = inf T q * c : q * ∈ (q(u i , û(0, u )), q(ũ(u i , û(0, u )))] , T d . = inf T q * d : q * > q(ũ(u i , û(0, u ))) .
Then it is easy to see that max

q * >0 Q(q * , T ) = Q(u ) = q ,
and the unique maximizer is q * = Q(u ) = q . In other words, the choice of reducing the maximization process only to times prior to the first interaction involving a rarefaction leads to the same result of Subsection 5.1 for the Riemann problem, even if the construction is different. In Subsections 5.2.2 and 5.2.3 we numerically investigate two cases: u i ∈ CH ,1 and u i ∈ CH ,1 , respectively. The differences between these two cases are highlighted by comparison of Figures 14 and16.

A numerical solution of the maximization problem in the case

v i < v sup *
It is not easy to tackle the maximization problem (5.2) from an analytic point of view, even under condition (5.7) and for short times. We provide instead a numerical simulation.

We begin by plotting the numerical solutions of Subsection 5.2.1 for specific values. The states in Figure 11 and the exact solutions constructed in Figure 12 are represented below by taking a = 1,

ρ i = 3, q i = 4, ρ r = 8, q r = 0, (5.10) 
and the following values of q * for the corresponding cases .11) Notice that v i = q i /ρ i = 4/3 ≈ 1.33 > 1 = a, and then v i is supersonic; however v i < 1.63 = v sup * . Notice moreover that the above construction and the choice in (5.10) lead to

q a * = 0.2, q b * = 2.2, q c * = 3.5, q d * = 4.5. ( 5 
ρ ≈ 2.15, v = 1, q ≈ 2.15, (5.12) 
ρ(0, u ) ≈ 5.64,

v i = 4/3, q u i , û(0, u ) ≈ 2.62, (5.13) 
ρ u i , û(0, u ) ≈ 7.85, v r = 0, q ũ u i , û(0, u ) ≈ 4.03, (5.14) 
while by (5.11) and (5.9) we have

T q a * a ≈ 1.37, T q b * b ≈ 1.56, T q c * c ≈ 1.26, T q d * d ≈ 1.44, T min ≈ 0.46. ( 5 

.15)

In particular, the conditions listed in (5.7) are satisfied, see Figure 11, and q a * < q < q b * < q(u i , û(0, u )) < q c * < q(ũ(u i , û(0, u ))) < q d * . In Figure 13 we show the outputs of our numerical simulations, which highlight a very good match with the exact solution and confirm the validity of the numerical scheme. Notice, both in Case (a) and Case (d), the persistence of a negative left flow from the valve, as it was indeed forecast by the top pictures in Figure 12. x → q(T q * a , x)

Case (a), q * = 0.2 x → q(T q * b , x)

Case (b), q * = 2.2 x → q(T q * c , x)

Case (c), q * = 3.5 x → q(T q * d , x)

Case (d), q * = 4.5

Figure 13: Numerical simulations of the cases in Subsection 5.2.1 and corresponding to the values listed in (5.10), (5.12). The spikes in the ρ-profiles for the first and last case appear also in the exact solutions and correspond to a 2-rarefaction followed by a non-classical stationary shock at x = 0.

In Figure 14, we show the numerical result obtained with the same values as in (5.10), (5.12) and T = 2 > T min , see (5.15). Recall that even at time T = 2 an exact expression of the solution is not easily available. We notice, in Figure 14, that the function q * → Q(q * , T ) has up to two discontinuities, which can be interpreted as follows: q * → Q(q * , 0.5)

0 2 4 6 8 0 1 2 3 1 q * → Q(q * , 2) 0 2 4 6 8 0 2 4 1 q * → Q(q * , 10)
Figure 14: Numerical simulations corresponding to the values in (5.10), (5.12) and for different values of T .

• if q * ∈ [0, q ], then for any t 0 we have u q * (t, 0 -) ∈ Ω \ C q * and therefore q q * (t, 0) = q * ;

• if q * ∈ (q , q(ũ(u i , û(0, u )))], then for any t ∈ [0, t 2 ) we have u q * (t, 0 -) ∈ C q * ∩ CH q * and therefore q q * (t, 0) = 0, whereas for any t t 2 we have u q * (t, 0 -) ∈ Ω \ C q * and therefore q q * (t, 0) = q * ;

• if q * > q(ũ(u i , û(0, u ))), then for any t 0 we have u q * (t, 0 -) ∈ C q * ∩ CH q * and therefore q q * (t, 0) = 0.

As a further check of the simulations, we plotted in Figure 15 the numerical traces u q * ∆ (t, 0 -), t ∈ (0, T ], for the four different values of q * listed in (5.11). As a consequence, for T ∈ [0, 2] the solution of the maximization problem (5.2) Figure 15: Representation in the (ρ, q)-phase plane of the left traces at x = 0 of the solutions constructed in Subsections 5.2.1 and 5.2.2, and corresponding to the values listed in (5.10), (5.12). The stars correspond to the values obtained numerically for t ∈ (0, 2], while the circles correspond to the exact values for t respectively in [0, T q * a ], [0, T q * b ], [0, T q * c ] and [0, T q * d ]. The curves correspond to BL u a * 1 , the shaded regions to C q * , the solid lines to q = v sup * ρ and the dashed lines to q = a ρ, see (2.11), (2.12) and (2.13). Notice that the traces u and ũ1 are attained only at times t = 0 and t = t2, respectively. is

Q(q * , T ) =          q *
for q * ∈ [0, q ] and T > 0, 0 for q * ∈ (q , q(ũ(u i , û(0, u )))] and T ∈ [0, t 2 ],

T -t2 T q * for q * ∈ (q , q(ũ(u i , û(0, u )))] and T > t 2 , 0 for q * > q(ũ(u i , û(0, u ))) and T > 0, (5.16) where t 2 ≈ 0.54 corresponds to P 2 in Figure 12, Case (b) and Case (c). We observe that Figure 14 highlights a good match with the expression in (5.16) of Q(q * , 2), see (5.12), (5.13) and (5.14).

5.2.3

A numerical solution of the maximization problem in the case v i > v sup *

In this subsection we consider the case when v i > v sup * ≈ 1.63 • a. The analytic construction is similar to the one performed in Subsection 5.2.1 (which mainly aimed at checking the validity of the numerical scheme), so we do not repeat it. We guess that u i will reach the valve for T sufficiently large. In this case Figure 14 will be different/richer, see Figure 16, and we can comment it and point out the new features. q * → Q(q * , 10)

Figure 16: Numerical simulations corresponding to (5.17), (5.18) and for different values of T .

In order to have the same wave structure outlined at the beginning of Section 5.2 (namely, a supersonic perturbation u i which is separated from the state u by a 2-shock wave moving toward the valve) we now replace (5.10) with a = 1, ρ i = 3, q i = 7.5, ρ r = 8, q r = 0, (5.17) which lead to ρ ≈ 0.75, v = 1, q ≈ 0.75, ρ r ≈ 8 (5.18)

Notice that v i = 2.5 • a > v sup * ≈ 1.63 • a. The last picture in Figure 16 resembles the last picture in Figure 10. This is probably due to the fact that the solution corresponding to the initial datum (5.1) with u i , u and u r given by (5.17), (5.18) converges for t → ∞ to the solution of the Riemann problem corresponding to the states u i and u r .

The case RS p [u i , u ] is a 2-rarefaction

In this final subsection we pursue the analysis of a perturbation interacting with the valve from the left, that we began in Subsection 5.2 with the case of a 2-shock wave, by considering the case of a 2-rarefaction wave. In this case, as we mentioned above, analytically computations are too heavy to be provided, and therefore we focus on numerical simulations. More precisely we consider the data a = 1, ρ i = 3, q i = 0, ρ ≈ 8.15, q ≈ 8.15, ρ r = 8, q r = 0, (5.19) Notice that the values of a, ρ i , ρ r and q r are as in (5.10) and (5.17). The following Figure 17 shows our numerical simulations, and has to be compared with Figures 14 and16. We notice a similar behavior of the function Q(q * , T ), which is interpreted as in the previous case, see (5.16). 

Figure 1 :

 1 Figure 1: Left: forward Lax curves. Center: backward Lax curves. Right: an illustration of the quantities in Definition 2.2.

Figure 3 :

 3 Figure 3: Left: the shaded region represents the coherence domain CH , the white region the incoherence domain CH . Right: the decomposition of CH into the subsets CH ,1 , CH ,2 , CH ,3 given in (2.15).

Figure 4 :

 4 Figure 4: Different numerical simulations for u(t, x) .= RSv[u , ur](x/t). Left column: we computed Qv(u ) and kept it as flow through the valve for any time. Center column: we applied RSv at x = 0 at each time step, namely, we updated the flow through the valve according to the left traces of the solution computed at each time step. Right column: u(t, x) . = RS h [u , ur](x/t). Here ρ = 0.25, q = 2.5, ρr = 6, qr = 11, a = 2 and q * = 3, so that u ∈ CH .

Figure 5 :

 5 Figure 5: Relative L 1 1 1 -errors in log/log scale for Examples 4.1 and 4.2.

Figure 6 :

 6 Figure 6: Exact and numerical solutions for Example 4.1 with ∆x = 5 × 10 -4 .

Figure 7 :

 7 Figure 7: Exact and numerical solutions for Example 4.2 with ∆x = 5 × 10 -4

Figure 10 :

 10 Figure 10: Numerical simulations to the maximization problem (5.2) with ui = u ; the values of the parameters are as in (5.5) and (5.6), respectively.

Figure 12 :

 12 Figure 12: Cases considered in Subsection 5.2.1. Notation is as in (5.8) and in the text. The values of the involved states are listed at the end of Subsection 5.2.1.

Figure 17 :

 17 Figure 17: Numerical corresponding to (5.19) for different values of T .

with the line {u ∈ Ω : q = 0}. The following lemma characterizes the states for which the valve is closed; see Figure

The function Q v is then discontinuous along the upper boundary of the set C .
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