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We revisit the linear stability of a falling liquid film flowing through an inclined narrow8

channel in interaction with a gas phase. We focus on a particular region of parameter9

space, small inclination and very strong confinement, where we have found the gas to10

strongly stabilize the film, up to the point of fully suppressing the long-wave interfacial11

instability attributed to Kapitza (Kapitza, Zh. Eksp. Teor. Fiz. 18, 1948). The stabi-12

lization occurs both when the gas is merely subject to an aerostatic pressure difference,13

i.e. when the pressure difference balances the weight of the gas column, and when it14

flows counter-currently. In the latter case, the degree of stabilization increases with the15

gas velocity. Our investigation is based on a numerical solution of the Orr-Sommerfeld16

temporal linear stability problem as well as stability experiments that clearly confirm the17

observed effect. We quantify the degree of stabilization by comparing the linear stability18

threshold with its passive-gas limit, and perform a parametric study, varying the relative19

confinement, the Reynolds number, the inclination angle and the Kapitza number. For20

example, we find a 30% reduction of the cut-off wavenumber of the instability for a water21

film in contact with air, flowing through a channel inclined at 3 degrees and of height 2.822

times the film thickness. We also identify the critical conditions for the full suppression23

of the instability in terms of the governing parameters. The stabilization is caused by the24

strong confinement of the gas, which produces perturbations of the adverse interfacial25

tangential shear stress that are shifted by half a wavelength with respect to the wavy26

film surface. This tends to reduce flow rate variations within the film, thus attenuating27

the inertia-based driving mechanism of the Kapitza instability.28

Key words:29

1. Introduction30

We consider a liquid film falling along the bottom wall of an inclined narrow channel,31

under the action of gravity and in interaction with a laminar gas flow (see figure 1). We32

distinguish two scenarios for the gas flow: (i) either the gas is subject to an aerostatic33

pressure gradient, i.e. a pressure difference which balances the weight of the gas column;34

(ii) or the gas flows counter-currently to the liquid film at an imposed flow rate. Examples35

of the velocity profiles corresponding to these two scenarios are depicted in figure 2.36

We revisit the linear stability of this flow by numerically solving the Orr-Sommerfeld37

temporal linear stability problem and by performing stability experiments. We are38

† Email address for correspondence: gianluca.lavalle@limsi.fr
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Figure 1. Sketch of the considered problem: a liquid film falling down an inclined wall whilst
interacting with a strongly-confined gas phase. The gas is either subject to an aerostatic pressure
difference or flows counter-currently at an imposed flow rate. The flow rates ql and qg and the
heights h, h0 and H are dimensionless.

particularly interested in how the stability of the falling film is affected by the gas phase39

in the case of strong confinement. Among the susceptible instability modes of the film40

(Boomkamp & Miesen 1996), we focus solely on the convective long-wave interfacial mode41

(Trifonov 2017) known as Kapitza instability (Kapitza 1948). For example, short-wave42

modes occurring in the liquid (Floryan et al. 1987) and/or gas (Schmidt et al. 2016) do43

not play a role in our study.44

We start by recalling some theoretical results for the case of a liquid film falling45

in a passive atmosphere. Benjamin (1957) and Yih (1963) solved the associated Orr-46

Sommerfeld temporal linear stability problem and proved that a vertical liquid film47

is always unstable to long-wave surface disturbances. Further, they determined the48

threshold of this long-wave instability in terms of the critical Reynolds number Recr =49

5/6 cotβ, which depends on the inclination angle β. The instability mechanism is due to50

inertia, while the role of the longitudinal component of gravity is to advect and steepen51

the wave, whereas surface tension stabilizes the film. The way inertia destabilizes the film52

has been explained either via the shift between the vorticity and the displacement of the53

interface (Kelly et al. 1989; Smith 1990; Kalliadasis et al. 2012), following the argument54

introduced by Hinch (1984) for two-layer Couette flows, or via the inertia-related lag of55

flow-rate perturbations with respect to film-thickness perturbations (Dietze 2016).56

Investigations of the effect of an active outer phase on the stability of the film started57

with works dedicated to a slightly different configuration. Yih (1967) investigated the58

pressure-driven channel flow of two co-current fluid layers and showed that a viscosity59

contrast between layers of equal density and thickness causes a long-wave interfacial60

instability. This work was extended by Yiantsios & Higgins (1988), who accounted for61

a density contrast and a non-unity thickness ratio, and included gravity as well as62

surface tension. More recently, spatio-temporal linear stability analysis was applied to63

this problem (Valluri et al. 2010; Ó Náraigh et al. 2013).64

By additionally accounting for an inclination of the channel, Tilley et al. (1994) were65

able to investigate (among other scenarios) the stability of a falling water film in contact66

with air, which is the configuration we are interested in. In fact, their temporal Orr-67

Sommerfeld linear stability problem is exactly the same as the one we solve here (see §2).68

The authors argued that confining the gas phase by an upper wall is likely to stabilize69

the falling film through an adverse shear stress at the liquid/gas interface. However, their70

calculations for the water-air system led them to conclude that this effect is negligible.71
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Suppression of the Kapitza instability in confined falling liquid films 3

Indeed, the minimum cut-off wavenumber upon varying the total flow rate changed72

only slightly with the channel height. In our current study, we have come to a different73

conclusion. We find that the cut-off wavenumber can be reduced up to the point of fully74

suppressing the Kapitza instability by diminishing the channel height at a fixed liquid75

flow rate. This holds both when the gas is subject to an aerostatic pressure difference76

and when it flows counter-currently.77

A number of studies have investigated the effect of a turbulent counter-current gas flow78

on the stability of a falling liquid film. By applying a spatio-temporal analysis, Vellingiri79

et al. (2015) found a convective/absolute/upward-convective transition of the instability80

when increasing the interfacial shear stress exerted by the gas (conditions studied in our81

current manuscript are far removed from this transition). The authors also found that82

the cut-off wavenumber of the convective instability may either diminish, increase, or83

display a non-monotonic behaviour with increasing gas shear stress. Trifonov (2017) made84

similar observations (also for turbulent gas flow) based on extensive temporal stability85

calculations, where the inclination angle, confinement, and liquid Reynolds number where86

additionally varied. For the strong confinement levels on which we mainly focus in our87

current study, we have observed only a monotonic decrease of the cut-off wavenumber88

with increasing gas shear stress. However, we have checked that we recover the same89

qualitative behaviour as Trifonov (2017) and Vellingiri et al. (2015) when the confinement90

level is decreased, notwithstanding that the gas flow in our case is laminar and not91

turbulent.92

We proceed by discussing several related experimental works that have focused on93

the linear stability of falling liquid films. Krantz & Goren (1971) studied liquid films94

flowing down a strongly inclined plane at low Reynolds numbers. They imposed inlet95

disturbances of controlled amplitude and frequency, and measured wave celerities as well96

as spatial growth rates. Later, Pierson & Whitaker (1977) and Alekseenko et al. (1985)97

studied liquid films flowing down the outside of a vertical cylinder. They measured98

the wavelength, wave celerity and spatial growth rate for the fastest growing waves99

over a large range of Reynolds numbers, showing reasonable agreement with the theory100

developed in previous studies (Pierson & Whitaker 1977; Whitaker 1964).101

Liu et al. (1993) studied liquid films falling down a weakly inclined plane at moderate102

Reynolds numbers. By imposing a small-amplitude perturbation of controlled frequency103

on the liquid flow rate, the authors were able to measure the critical Reynolds number104

in terms of the inclination angle, the cut-off wavenumber as a function of the Reynolds105

number, and the dispersion curves of the spatial growth rate and wave celerity. Their106

experimental data agreed with the neutral stability curve of Anshus & Goren (1966).107

Alekseenko et al. (2009) investigated the additional effect of an active gas phase by108

measuring the spatial growth rate of small-amplitude surface waves excited on a liquid109

film falling down the inner surface of a vertical tube in interaction with a co- or counter-110

current turbulent gas flow. In particular, the authors found that increasing the counter-111

current gas flow reduces the cut-off wavenumber of the Kapitza instability, while the112

maximal growth rate is increased. Thus, shorter waves are stabilized while longer waves113

are amplified. Nonlinearly, this manifests itself in the attenuation of the precursory114

capillary ripples typically forming on wavy falling liquid films (Trifonov 2010). This115

has been also detected experimentally by Kofman et al. (2017). We observe a different116

behaviour in our current study. For the strong confinement levels considered, we find that117

the linear growth rate is decreased at all unstable wavenumbers when the counter-current118

gas velocity is increased. However, in the case of a weaker confinement, we recover the119

same qualitative behaviour as Alekseenko et al. (2009) for the laminar gas flow conditions120

studied here (see section 4.3).121
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Our manuscript is structured as follows. In §2, we write the Orr-Sommerfeld temporal122

linear stability eigenvalue problem governing the stability of the falling film; the set-up123

and measurement methodology for the linear stability experiments are presented in §3;124

in §4 we present the results of our stability analysis focusing on the stabilizing effect of125

confinement in terms of the liquid Reynolds number, the inclination angle, the Kapitza126

number, and the velocity of a counter-current gas flow; the mechanism responsible for the127

stabilization induced by the confinement is presented in §5; finally, concluding remarks128

are presented in §6.129

2. Governing equations and linear stability problem130

For the configuration depicted in figure 1, the governing equations in dimensionless131

form read as (subscripts l and g are phase indicators):132

∇ · ul = 0, ∇ · ug = 0, (2.1a)

Dtul = −Πρ∇pl +B+∆ul, (2.1b)

Dtug = −∇pg +B+ΠµΠ
−1

ρ ∆ug, (2.1c)

where Πρ = ρg/ρl and Πµ = µg/µl designate the density and viscosity ratios. Here u133

is the velocity vector of components (u, v) along (x, y), p the pressure, ∆ the Laplace134

operator, Dt the material derivative, and B = (sinβ,− cosβ) the inclination vector with135

the inclination angle β. For non-dimensionalization, we have employed reference scales136

obtained from balancing viscous drag and gravity, i.e. L = ν
2/3
l g−1/3, U = (νlg)

1/3 and137

T = L/U for length, velocity, and time, and ρgU
2 for pressure. The reader is warned that138

the full gravitational acceleration g rather than its streamwise projection gx = g sinβ139

is used here, in contrast to Ruyer-Quil & Manneville (2000). This way, the scales are140

independent of the control parameters. As a result of our scaling, the Reynolds and Froude141

numbers do not appear explicitly in (2.1). We thus introduce the following definition for142

the Reynolds number in the liquid and gas:143

Rel =
q̃l
νl
, Reg =

q̃g
νg
, (2.2)

where q̃l and q̃g are the dimensional liquid and gas flow rates per unit width (the tilde144

will denote dimensional quantities throughout the manuscript).145

The boundary conditions at the walls read:146

u(0) = 0, u(H) = 0. (2.3)

The kinematic and dynamic coupling conditions at the interface y = h are:147

ul = ug, (2.4a)

(Sl · n) · t = Πµ(Sg · n) · t, (2.4b)

(Sl · n) · n+ κWe = Πρ(Sg · n) · n, (2.4c)

where We = γ(ρlLU
2)−1 is the Weber number with surface tension γ. Note that, due148

to the chosen scaling, our Weber number is identical to the Kapitza number Ka =149

γ(ρlg
1/3ν

4/3
l )−1 which prevails in the literature on falling films. In (2.4b) and (2.4c),150

S = T − pI is the stress tensor, T the viscous stress tensor and I the identity matrix.151

The normal and tangential vectors to the interface are defined as:152

n =
[−∂xh, 1]

√

1 + (∂xh)2
, t =

[1, ∂xh]
√

1 + (∂xh)2
, (2.5)
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whereas κ = ∇·n = −∂xxh[1+(∂xh)
2]−3/2 is the curvature of the interface. The kinematic153

condition at the interface reads:154

∂th+ ul∂xh = vl. (2.6)

In our analysis, we will vary the relative confinement of the film, which is defined as:155

η =
H

h0
, (2.7)

where h0 designates the film thickness of the primary flow and H the gap height. It156

constitutes one of the control parameters of the problem, together with the inclination157

angle β and the flow rates ql and qg.158

We perform a temporal stability analysis following the works of Yih (1967), Yiantsios159

& Higgins (1988) and Tilley et al. (1994). We start by writing the base flow velocity160

profiles:161

Ul = Kl

(y2

2
− h0y

)

+ΠρTty, (2.8a)

Ug = Kg
h2
0

2

(

η −
y

h0

)(

2− η −
y

h0

)

−
Πρ

Πµ
Tth0

(

η −
y

h0

)

. (2.8b)

The constants Kl and Kg are defined as:162

Kl = Πρ∂xP − sinβ(1 −ΠρM), (2.9a)

Kg = ΠρΠ
−1

µ [∂xP − sinβ(1−M)], (2.9b)

where ∂xP is the driving pressure gradient andM = ∆p/∆pa relates the driving pressure163

difference ∆p to the aerostatic pressure difference ∆pa = Λ sinβ, Λ designating the164

(dimensionless) wavelength. The coefficient M allows to distinguish between the two165

studied scenarios for the gas phase (see figure 2): (i) an aerostatic pressure difference,166

where M = 1; (ii) a counter-current gas flow, where M > 1.167

The interfacial tangential shear stress appearing in (2.8) is scaled with ρgU
2 and reads:168

Tt =
h0
2Πρ

[

Kl −Kg

(

η − 1
)2][

1 +
1

Πµ

(

η − 1
)]

−1

, (2.10)

while the pressure profiles read:169

Pl = P |h0
(x = 0) + x∂xP +Π−1

ρ cosβ(h0 − y), (2.11a)

Pg = P |h0
(x = 0) + x∂xP + cosβ(h0 − y), (2.11b)

where P |h0
(x = 0) is an arbitrary reference pressure at y = h0 and x = 0.170

We linearly perturb the primary flow as follows:171

u = U + u⋆, v = v⋆, p = P + p⋆, (2.12)

where upper case letters refer to the base flow, while the star symbol denotes a small-172

amplitude perturbation. We introduce the stream-function perturbations φ⋆ in the liquid173

phase and ψ⋆ in the gas phase, satisfying:174

u⋆l = ∂yφ
⋆, v⋆l = −∂xφ

⋆, (2.13a)

u⋆g = ∂yψ
⋆, v⋆g = −∂xψ

⋆, (2.13b)

and seek solutions of the form:175

{φ⋆, p⋆l } = {φ̂(y), p̂l(y)} exp[iα(x− ct)], (2.14a)

{ψ⋆, p⋆g} = {ψ̂(y), p̂g(y)} exp[iα(x − ct)], (2.14b)
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1

Figure 2. Base-state velocity profiles for an air-water flow: β = 3◦, η = 2.8 (H̃ = 1.5 mm). The
flat dashed line represents the interface, the solid line the aerostatic case (M = 1 in (2.9)) with
Rel = 23.6, whereas the dashed-dotted line the counter-current case (M = 100 in (2.9)) with
Rel = 17.1 and Reg = −12.8.

where α ∈ R is the wavenumber and c = cr+ici the complex wave celerity, whereas the hat176

symbol denotes the amplitudes of the corresponding perturbations. Substituting (2.14)177

into (2.1) linearized around the base flow, and eliminating the pressure in (2.1b) by178

substituting (2.1c), we obtain the well-known Orr-Sommerfeld equations:179

φ̂′′′′ − 2α2φ̂′′ + α4φ̂ = iα[(Ul − c)(φ̂′′ − α2φ̂)− U ′′

l φ̂], (2.15a)

ψ̂′′′′ − 2α2ψ̂′′ + α4ψ̂ = iα[(Ug − c)(ψ̂′′ − α2ψ̂)− U ′′

g ψ̂], (2.15b)

subject to the boundary conditions:180

φ̂(0) = 0, φ̂′(0) = 0, (2.16)

ψ̂(H) = 0, ψ̂′(H) = 0, (2.17)

where the prime symbol denotes differentiation with respect to y. Linearization of the181

coupling conditions (2.4) must account for the perturbation of the variable fields as well182

as a perturbation of the position at which the condition is applied, i.e. at the interface.183

Consider the perturbed interfacial value {f} |h of the variable f(x, y, t) with base state184

F (y). This can be decomposed into:185

{f} |h = {F} |h0
+ {f⋆} |h0

+ {F ′} |h0
h⋆, (2.18)

where f⋆(x, y, t) = f̂(y) exp[iα(x− ct)] stems from the perturbation of the variable field186

and {F ′} |h0
h⋆ is the contribution from changing the position of the film surface within187

this field.188

Applying (2.18) to the coupling conditions (2.4) leads to:189

φ̂′ + U ′

l φ̂c
−1 = ψ̂′ + U ′

gφ̂c
−1, (2.19a)

φ̂′′ + U ′′

l φ̂c
−1 + α2φ̂ = Πµ[ψ̂

′′ + U ′′

g φ̂c
−1 + α2ψ̂], (2.19b)

2α2φ̂′ − iαΠρ[p̂l + P ′

l φ̂c
−1] +We iα3φ̂c−1 = 2α2Πµψ̂

′ − iαΠρ[p̂g + P ′

gφ̂c
−1],(2.19c)

where all quantities are evaluated at y = h0 and where we have introduced c = c− U |h0
190
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Suppression of the Kapitza instability in confined falling liquid films 7

and used the relation:191

h− h0 = h⋆ = φ̂c−1 exp[iα(x− ct)], (2.20)

which follows directly from (2.6) together with (2.18). The pressure perturbation ampli-192

tudes p̂l and p̂g in (2.19c), evaluated at y = h0, can be recovered directly from (2.1):193

p̂l = Π−1

ρ [cφ̂′ + U ′

l φ̂] + (iαΠρ)
−1(φ̂′′′ − α2φ̂′), (2.21a)

p̂g = [cψ̂′ + U ′

gψ̂] +Πµ(iαΠρ)
−1(ψ̂′′′ − α2ψ̂′). (2.21b)

The Orr-Sommerfeld problem (2.15)-(2.21) is identical to the problem studied by Tilley194

et al. (1994). We solve it by means of continuation using a code based on the continuation195

software AUTO-07p (Doedel 2008). This code was previously used in Dietze & Ruyer-196

Quil (2013). The continuation is started from the asymptotic limit α = 0, for which cr197

and ci = 0 are known analytically, and continued by varying one of the control parameters198

while calculating cr and ci. We have validated our numerical procedure by comparing199

stability results with those of Brevdo et al. (1999) for falling films in a passive atmosphere,200

those of Yiantsios & Higgins (1989) in the asymptotic limit of long waves, and those201

of Yiantsios & Higgins (1988) and Tilley et al. (1994) for a pressure-driven horizontal202

liquid-gas flow. These validations are presented in the appendix A.203

We point out that the considered gas flow rates are far from the convective-absolute204

transition studied by Vellingiri et al. (2015), Schmidt et al. (2016), and Lavalle et al.205

(2017), thus no spatio-temporal analysis is required here. For additional security, we206

have validated our stability calculations with our own experiments, which are described207

in the next section 3. Due to the convective nature of the instability, we measure a208

spatial growth rate in our experiments, whereas our stability calculations yield temporal209

growth rates (in a reference frame moving at the wave celerity). Both approaches yield210

the same stability threshold and most of our comparisons between experiments and linear211

stability analysis concern this stability threshold. However, in one instance (figure 9b),212

we compare experimental and numerical growth rate dispersion curves and for this we213

apply the so-called Gaster transformation (Gaster 1962) that relates temporal and spatial214

growth rates:215

αrci = −ζ(cr + αr∂αr
cr), (2.22)

where ζ is the spatial growth rate and αrci the temporal one. This transformation is216

valid when the spatial and temporal growth rates are small. This is generally the case217

for falling liquid films, as shown by Brevdo et al. (1999), who compared spatial growth218

rates obtained directly from a spatio-temporal analysis with values obtained by applying219

the Gaster transformation to temporal stability results, and showed that the error is220

smaller than 0.1%. In the single instance where we have applied the Gaster transformation221

(figure 9b), flow conditions are comparable to those in Brevdo et al. (1999).222

3. Experiments223

Our experimental apparatus, sketched in figure 3, has been employed in previous224

studies (Kofman 2014; Kofman et al. 2017) and has been modified here to impose a225

much stronger confinement of the gas phase above the falling liquid film (figure 4). The226

liquid film flows down an inclined glass plate (150 cm long, 27 cm wide, 5 mm thick)227

fixed in a framework mounted on rubber feet to reduce the influence of environmental228

vibrations. The inclination angle β can be changed in the range 0◦ - 20◦ and is measured229

using an inclinometer with a precision of 0.05◦.230

A gear pump conveys the liquid from a collection tank located at the end of the plate to231
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Pump Downstream tank

Upstream tank

Loudspeakers

1.5 m

0.7 m

H̃

x̃

ỹ

z̃
~g

Figure 3. Sketch of the experimental set-up.

(a)

Screw-nut system

Aluminium

framework

Glass plate

Aluminium rod

(b)

Screw-nut system

Aluminium

framework

Glass plate

Supporting rod

Figure 4. Sketch of the channel cross-section: (a) confined and (b) “unconfined” configuration.

an inlet tank, from which the liquid overflows onto the glass plate. The inlet tank is filled232

with several layers of glass beads in order to homogenize the entering flow. A temporal233

periodic forcing of the film is introduced at the inlet to trigger sinusoidal surface waves234

of prescribed frequency and amplitude. This is achieved by a vibrating aluminum plate,235

which is fixed to the membrane of two loudspeakers and generates harmonic vibrations236

above the liquid surface over the whole width of the film (Kofman et al. 2017).237

At a position 5 cm from the inlet, the falling film enters a region where the gas phase238

is confined by an upper 5 mm thick glass plate of length 70 cm and width 27 cm (see239

figure 3). In our study, the gap height H̃ of the channel formed between the two glass240

plates was set to two different values: (i) H̃ = 5.1 mm ±0.1 mm, which we call the241

confined case; (ii) H̃ = 18 mm, which we loosely refer to as the “unconfined” case. The242

shift from one case to the other is achieved by raising the top glass plate upon supporting243

rods (see figure 4). For the confined configuration, the uniformity of the gap height was244

verified both in the streamwise and the transverse directions.245

Water is used as working liquid. The temperature of the liquid is measured in the inlet246

and downstream tanks, and the surface tension is regularly monitored by measuring a247

water sample in a pending drop tensiometer. The liquid flow rate is fixed large enough248

that the film is unstable but small enough that the film surface without inlet excitation249

is virtually flat in the measurement section (i.e. surface waves are undetectable). The250

experimental control parameters and the range of variation of the physical parameters251

are specified in tables 1 and 2.252

To experimentally characterize the interfacial instability of the falling film, a one-253

point measurement of the film thickness time trace is performed using the CCI (Confocal254

Chromatic Imaging) technique (Cohen-Sabban et al. 2001). The sensor model used in255

our experiments (STIL CCS-PRIMA CL4) allows us to detect two interface locations256
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Suppression of the Kapitza instability in confined falling liquid films 9

Control parameter Notation Domain of variation

Inclination angle β 1.69 ◦ and 3.05 ◦

Reynolds number Rel 17.7− 41.6

Forcing frequency f̃ 1.8 − 8.4 Hz

Table 1. Range of variation of the control parameters for the experiments.

Physical property Notation Range of variation

Density ρl 997 − 999 kg/m3

Kinematic viscosity νl 8.9− 11.1 × 10−7 m2/s
Surface tension γ 71.1 − 71.7 mN/m

Table 2. Physical properties of water at ambient temperature and their range of variation
during our experiments.

simultaneously (the glass-water and the water-air interface) with a precision of 250 nm257

and an acquisition frequency up to 2 kHz. The CCI probe is mounted on a linear258

translation stage in order to enable measurements along the streamwise axis of the259

channel. The film thickness is measured at mid-width of the channel and at different260

longitudinal locations from the inlet. Measurements in the transverse direction were also261

carried out to check the uniformity of the film thickness, at sufficient distance from the262

lateral boundaries.263

Figure 5 displays the streamwise evolution of the time-averaged film thickness h̃m along264

the central axis of the channel, in the unconfined configuration. Two wave regimes are265

represented: (i) a virtually flat film, observed without inlet excitation (empty circles),266

and (ii) periodically-excited waves, observed with inlet forcing (filled triangles).267

The actual flow rate of the falling liquid film is deduced from a film thickness mea-268

surement without inlet excitation, i.e. when the film surface is virtually flat. Indeed,269

for a fully-developed waveless film, the film thickness h0 and the Reynolds number Rel270

are linked through the base flow velocity profile (2.8) subject to an aerostatic pressure271

difference:272

Rel = −Kl
h30
3

+ Tt
h20
2
, (3.1)

where Kl is defined in (2.9a) (usingM = 1 for the aerostatic scenario) and the interfacial273

tangential shear stress Tt in (2.10). By measuring the film thickness without inlet274

excitation in the developed region of the film (where h̃m in figure 5 no longer changes),275

we obtain Rel from (3.1) with h0 = hm.276

The same waveless signal also serves a second purpose. It is compared to the film thickness277

measured with inlet excitation to determine an upper limit for the excitation amplitude278

below which the excited surface waves can be considered linear, i.e. governed by the279

linearized Navier-Stokes equations (2.15). In that case, the film thickness perturbation280

is sinusoidal in time (2.20) and thus the time-average of the perturbed film thickness281

h0 + h⋆ corresponds to the thickness of the waveless film h0. The excitation amplitude282

in the experiments was limited to values where this condition was satisfied in order to283

allow comparisons with the linear stability analysis.284

Consequently, the waves excited in our experiments were sinusoidal (see also inset in285

figure 6a), and their amplitude Ã, defined here as the peak-to-peak value of the time286
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Figure 5. Streamwise evolution of the time-averaged film thickness h̃m along the central axis
of the channel, with inlet excitation (f̃ = 4.2 Hz, filled triangles) and without inlet excitation

(empty circles). Parameters: β = 1.69◦, Rel = 41.5, unconfined configuration H̃ = 18 mm.

signal, can be obtained in a statistically robust manner by performing a discrete Fourier287

transform of the film thickness time trace measured with the CCI system.288

The frequency resolution ∆f = fp/Np of the discrete Fourier analysis is limited by the289

acquisition frequency fp and the number of sampling points Np. In all our measurements,290

a minimum of 5 series of at least 80 periods of the forcing mode was acquired. Thereby,291

fp and Np were chosen such that ∆f 6 0.025 Hz. An example of the CCI signal and292

the corresponding modulus of the discrete Fourier transform are shown in panels 6a and293

6b. Here the forcing frequency is 3 Hz (β = 1.69◦, Rel = 34.8). The predominant peak294

appearing in figure 6b indicates that the signal is mono-periodic with a frequency equal295

to the forcing frequency, as expected. The amplitude of this mode is directly obtained296

from the peak height, provided that the signal contains an integer number of periods of297

the relevant mode (Bergé et al. 1988). Under this condition, the amplitude is four times298

the height of the peak (here Ã = 4× 4.4 = 17.6 µm).299

In panels 6c and 6d we have additionally represented a CCI signal and the corresponding300

spectrum obtained without inlet forcing for the same angle and Reynolds number as in301

panels 6a and 6b. The spectrum exhibits peaks of very small amplitude (the scale has302

been divided by 10 compared to panel 6b) that are the signature of the intrinsic noise of303

the set-up. The bump around 3 Hz and the low-frequency peaks are intrinsic to the set-up304

as they are present in all our signals. The peak observed at 4.2 Hz is most-probably due305

to the pump, the frequency of which increases with the Reynolds number, i.e. with the306

flow rate delivered by the pump. The noise level is low enough that the quality of the307

signal measured with inlet forcing is not deteriorated.308

To investigate the linear stability of the film, we measure the spatial evolution of the309

wave amplitude along the channel. This allows us to obtain: (i) the spatial growth rate310

of the instability as a function of the forcing frequency for a given inclination angle and311

Reynolds number, i.e. the dispersion relation; (ii) the cut-off frequency of the instability,312

f̃c, as a function of the Reynolds number for a given angle β, i.e. the neutral stability313

curve f̃c(Rel).314

The spatial growth rate for a given frequency at a fixed (supercritical) Reynolds number315

is determined as follows. In the linear regime, the wave amplitude grows exponentially as316

a function of x̃, Ã(x̃) ∝ exp(ζ̃x̃) where ζ̃ is the spatial growth rate and x̃ is the streamwise317

location of the measurement point. The spatial growth rate ζ̃ is obtained by performing318
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Figure 6. Examples of measurement signals with and without inlet forcing: β = 1.69◦,
Rel = 34.8, unconfined configuration H̃ = 18 mm. (a) Time trace of the film thickness measured
by the CCI system at a fixed longitudinal location x̃ = 63 cm and enlarged inset. Forcing
frequency: f̃ = 3 Hz. (b) Corresponding modulus of the discrete Fourier transform. (c) Time
evolution of the film thickness without inlet forcing. (d) Corresponding modulus of the discrete
Fourier transform (the scale is divided by 10 compared to panel 6b).

a linear regression on the logarithm of Ã(x̃). The precision of ζ̃, i.e. ∆ζ̃, depends on the319

standard deviation of the residual of the regression, σres, and on the length∆x̃ over which320

the measurements are conducted: ∆ζ̃ = 2σres∆x̃
−1. These experiments require extremely321

precise amplitude measurements at several positions along the channel, especially when322

the growth rate is weak. Figure 7a shows an example of the streamwise spatial evolution323

of the wave amplitude. Here, ζ̃ is obtained by a fitting from x̃ = 10 to 30 cm. We324

observe that for x̃ > 30 cm the spatial evolution of the wave amplitude is no longer325

exponential. The region of exponential growth varies depending on the experimental326

parameters (inclination angle, Reynolds number, forcing frequency). Accordingly, the327

amplitude of the inlet excitation is optimized for each experimental run so that the wave328

amplitude is large enough to be detected over the length of the channel while remaining329

in the linear regime.330

The neutral stability curve f̃c(Rel) is determined as follows. The wave amplitude is331

measured at two locations along the channel (amplitude Ã1 at x̃1 = 54 cm and amplitude332

Ã2 at x̃2 = 63 cm), within the exponential growth region. Fixing β and the forcing333

frequency f̃ , we compare the two amplitudes for several Reynolds numbers to find the334
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,Ã

2
(µ

m
)
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Figure 7. Determining the growth rate and stability threshold from experiments. (a)

Streamwise evolution of the wave amplitude along the channel (f̃ = 2.6 Hz, β = 3.05◦,

Rel = 34.9, unconfined configuration H̃ = 18 mm). Experimental points (symbols) are fitted
using an exponential curve (solid line) in the range x̃ = 10− 30 cm to obtain the spatial growth

rate: ζ̃ = 6.3 (1/m) ± 0.4 (1/m). (b) Determination of the critical Reynolds number from the

change in wave amplitude at two streamwise locations x̃1 and x̃2 when varying Rel (f̃ = 4.2 Hz,

β = 1.69 ◦, unconfined configuration H̃ = 18 mm). Filled squares: amplitude Ã1 at x̃1 = 54 cm,

empty diamonds: amplitude Ã2 at x̃2 = 63 cm. The downward triangle marks the intersection,
yielding the critical Reynolds number.

critical Reynolds number at which the spatial growth rate ζ̃ changes sign. This threshold335

is determined by fitting curves to the Ãi(Rel) data for the two locations and locating336

their intersection, as illustrated in figure 7b. The two curves in figure 7b represents the337

wave amplitudes Ã1 and Ã2 measured at two different locations x̃1 and x̃2 > x̃1 as a338

function of Rel. At the value of Rel where the two curves intersect, i.e. where Ã1 = Ã2,339

the spatial growth rate is zero and thus Rel = Recr. To the left of the intersection, the340

downstream amplitude is smaller than the upstream one (Ã1 > Ã2) and thus the film341

is stable. To the right of the intersection, the downstream amplitude is larger than the342

upstream one (Ã1 < Ã2) and thus the film is unstable. This measurement of the critical343

Reynolds number is performed for several forcing frequencies, thus obtaining different344

points on the neutral stability curve f̃c(Rel). Subsequently, in order to cross-validate345

these points, the Reynolds number is fixed at the critical value corresponding to a given346

forcing frequency, and frequencies slightly above and below this value are scanned to347

verify that the film indeed changes from stable to unstable.348

4. Results349

In this section, we present our experimental and numerical linear stability results for350

three existing fluid combinations: (i) water in contact with air, which we mainly focus351

on; (ii) aqueous solution of dymethylsulfoxide (DMSO) in contact with air; (iii) aqueous352

solution of glycerin in contact with air. The fluid properties and the range of variation353

of the control parameters used for the numerical stability calculations are summarized354

in tables 3 and 4.355

Page 12 of 30



Suppression of the Kapitza instability in confined falling liquid films 13

Fluid system ρl (kg/m
3) ρg (kg/m3) νl (m

2/s) νg (m2/s) γ (mN/m)

Water-air 1000.0 1.185 1.00 × 10−6 15.58 × 10−6 76.9
DMSO(83.11%)-air 1098.3 1.185 2.85 × 10−6 15.58 × 10−6 48.4
Glycerin(50%)-air 1130.0 1.185 5.02 × 10−6 15.58 × 10−6 69.0

Table 3. Physical properties of the fluid systems considered in the numerical stability
calculations. The working liquids are: water, an aqueous solution of dymethylsulfoxide (DMSO)
at 83.11% by weight, and an aqueous solution of glycerin at 50% by weight. The outer phase is
air in all cases.

Control parameter Notation Range of variation

Inclination angle β 1.65◦ − 20◦

Relative confinement η 1.4 − 25.5
Liquid Reynolds number Rel 17− 70
Gas Reynolds number Reg -250 − 4.8
Kapitza number Ka 331.8 − 3592

Table 4. Range of variation of the control parameters for the numerical stability calculations.

4.1. Unconfined gas phase356

We start by validating our temporal linear stability calculations with our experiments357

in the “unconfined” configuration of figure 4b (H̃ = 18 mm). We do this comparison for358

two types of curves: the neutral stability curve f̃c(Rel) and the dispersion curve of the359

spatial growth rate ζ̃(f̃). In the latter case, we use the Gaster transformation (2.22) to360

transform the temporal growth rate from our numerical calculations into a spatial growth361

rate.362

Figure 8 shows the neutral stability curve f̃c(Rel) for an inclination angle of β = 1.69◦.363

Therein, different types of symbols, which represent measurements, indicate the stability364

of the investigated point: downward-pointing triangles for stable, upward-pointing tri-365

angles for unstable, and circles for neutral conditions. The solid line corresponds to the366

stability calculation. We point out that the precision of the inclination angle measurement367

using the inclinometer was not sufficient to obtain such good agreement between the two368

data sets. Instead, β, which is the same for all points on the neutral stability curve,369

was adjusted in the stability calculation until the numerical curve best matched the370

experimental one.371

For the case of figure 8, where the inclinometer measurement yielded β = 1.70◦ with a372

precision of 0.05◦, we computed numerical curves for inclination angles ranging from 1.67◦373

to 1.73◦ with a 0.01◦ increment. The numerical curve fitting best with the experimental374

data yielded an inclination angle of β = 1.69◦. When varying β, not only the numerical375

curve changes but also the experimental points, because the flow rate is obtained from376

equation (3.1), where Kl depends on β. To demonstrate the sensitivity of the comparison377

in figure 8 w.r.t. to the inclination angle β, we have included two additional figures in378

appendix B, showing the comparison for β = 1.68◦ and β = 1.70◦.379

Figure 9 compares numerical and experimental data for a larger inclination angle.380

Panel 9a represents the neutral stability curve for β = 3◦, and panel 9b the dispersion381

curve of the spatial growth rate for β = 3.08◦ and Rel = 31. As experimental data were382

not acquired on the same day, the precise value of β is slightly different for the two383
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Figure 8. Comparison of numerical (line) and experimental (symbols) stability results at
β = 1.69◦ in the “unconfined” configuration (figure 4b): neutral stability curve. Symbols indicate
the stability of the investigated point: downward-pointing triangles for stable, upward-pointing
triangles for unstable, and circles for neutral conditions.
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Figure 9. Comparison of numerical (solid line) and experimental (filled circles) stability results:
unconfined configuration. (a) Neutral stability curve for β = 3◦; (b) dispersion curve of the
spatial growth rate for β = 3.08◦ and Rel = 31. The precise value of β is slightly different for
the two panels as experimental data were obtained from experimental runs on different days.

panels. Agreement between the experimental and numerical dispersion curves confirms384

that the Gaster transformation is applicable here (see also Brevdo et al. (1999)).385

4.2. Confined gas phase: aerostatic pressure difference386

We now study how the stability of the falling liquid film changes when the gas phase387

is significantly confined. To quantify the degree of confinement, we use the ratio η (2.7)388

relating the gap height H and the thickness of the primary film flow h0. To quantify the389

effect of η on film stability, we will compare our stability results with the limiting case390

of a passive gas (Πµ, Πρ → 0), where the confinement plays no role. This limit will be391

denoted with the superscript ∞.392

We first study the situation where the gas is subject to an aerostatic pressure gradient.393
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Figure 10. Neutral stability curves of a water film (Ka = 3592) inclined at β = 1.69◦ in contact
with aerostatic air at different confinement levels ηcr = η(αc = 0). Filled symbols: “unconfined”

experiment with ηcr = 25.5 (panel 4b, H̃ = 18 mm); open symbols: confined experiment with

ηcr = 7.54 (panel 4a, H̃ = 5.1 mm). Stability calculations are represented with lines. Thin solid:

“unconfined” (ηcr = 25.5, H̃ = 18 mm); dashed line: confined at H̃ = 5.1 mm (ηcr = 7.54);

dash-dotted line: H̃ = 2.5 mm (ηcr = 3.60); dotted line: H̃ = 2 mm (ηcr = 2.80); thick solid

line: H̃ = 1.7 mm (ηcr = 2.23).

In that case, the gas moves only as a reaction to the film’s motion. We start by394

validating our temporal stability calculations with our own experiments in the confined395

configuration H̃ = 5.1 mm (panel 4a) and the “unconfined” configuration H̃ = 18 mm396

(panel 4b) at an inclination angle β = 1.69◦, using water as working liquid.397

The two leftmost curves in figure 10 represent the calculated neutral stability curves398

f̃c(Rel) for these two configurations, while symbols represent the corresponding exper-399

imental data. Both data sets evidence a clear stabilization of the falling film due to400

increased confinement of the gas phase (dashed curve, open circles), and their agreement401

is gratifying.402

The dimensional gap height H̃ along the curves in figure 10 is constant, meaning that403

the relative confinement η changes, as h̃0 changes with Rel. Nonetheless, a representative404

value for η can be given for each curve by evaluating it at the critical Reynolds number405

Recr (where the curve intersects the x-axis), i.e. ηcr = η(αc = 0), αc being the cut-off406

wavenumber. The quantity ηcr is quite large for the two leftmost curves in figure 10407

(ηcr > 7), and this explains why the observed confinement-induced stabilization is408

rather weak (experimental wave amplitudes are reported in figure 24 of appendix C).409

However, when decreasing ηcr, the confinement-induced stabilization becomes much410

stronger, as evidenced by the three additional curves in figure 10 obtained from our411

stability calculations. For example, at ηcr = 2.23 (thick solid line), the critical Reynolds412

number number Recr, below which the film is always stable, is increased by over 50%413

compared to the “unconfined” configuration (thin solid line).414

This means that the confinement can fully stabilize the Kapitza instability at a given415

Reynolds number. We now investigate this suppression of the instability in further detail416

based on our stability calculations. In figure 11a, we have plotted the temporal growth417

rate for a water film at Rel = 23.9 and β = 3◦ as a function of the wavenumber α for418

different values of η (panel 11b represents the corresponding wave celerity cr). We see419
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Figure 11. Stability calculations for a water film (Ka = 3592) at Rel = 23.9 and β = 3◦ in
contact with aerostatic air. Effect of confinement on (a) temporal growth rate and (b) wave
celerity. Solid line: passive-gas limit; dashed line: η = 3.6; dotted line: η = 2.8; dash-dotted line:
η = 2. The + symbol marks data points that will be discussed in §5. The filled and open circles
correspond to the cut-off wavenumber αc for the confined and passive-gas configurations.
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Figure 12. Numerical calculation of the critical confinement ηcr = η(αc = 0) below which a
water film (Ka = 3592) in contact with aerostatic air is fully stabilized (FS). (a) Effect of the
liquid Reynolds number Rel at β = 3◦. The vertical dashed line marks the critical Reynolds
number in the passive-gas limit Re∞

cr = 5/6 cot β = 15.9; (b) effect of the inclination angle
β at Rel = 23.9. The vertical dashed line marks the critical angle in the passive-gas limit
β∞

cr = arctan (5/6/Re l) = 2◦.

that the unstable range, i.e. where the wavenumber α is smaller than the cut-off value420

αc (intersection of the curves with ciα = 0) decreases with η and entirely disappears at421

η = 2. At this point, the Kapitza instability has been fully suppressed.422

The critical relative confinement ηcr for the suppression of the instability is plotted in423

figure 12 against the liquid Reynolds number Rel (panel 12a) and the inclination angle424

β (panel 12b), respectively. We see that it is easier to suppress the falling film instability425

the smaller Rel and β.426

No such curve can be obtained for the remaining control parameter, the Kapitza427

number Ka, as the onset of the long-wave instability is unaffected by surface tension.428
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Figure 13. Stabilization due to confinement for different working liquids at Rel = 23.9 and
β = 3◦ in contact with aerostatic air. (a) Cut-off wavenumber and (b) cut-off wave celerity
compared to their passive-gas limits α∞

c and c∞c (open circles in panels 11a and 11b). Solid line:
water (Ka = 3592); dashed line: aqueous solution of dymethylsulfoxide at 83.11% by weight
(Ka = 509.5); dash-dotted line: aqueous solution of glycerin at 50% by weight (Ka = 331.8).

Instead, we have plotted in figure 13 the cut-off wavenumber (panel 13a) and the429

corresponding wave celerity (panel 13b) as a function of η for the three studied liquids,430

which display a substantial variation of Ka. In both panels, the plotted quantity is related431

to its value in the limit of a passive gas. We see that the stabilizing effect of confinement432

is felt earlier for water (Ka = 3592) compared to aqueous solutions of dymethylsulfoxide433

(Ka = 509.5) and glycerol (Ka = 331.8). Panel 13b shows that the confinement-induced434

stabilization of the liquid film is accompanied by a decrease of the wave celerity.435

4.3. Confined gas phase: counter-current flow436

We now investigate how confinement affects the stability of the falling liquid film437

when it is sheared by a counter-current gas flow. For this, we apply an adverse pressure438

difference ∆p > 0, which is larger than the aerostatic pressure difference ∆pa = Λ sinβ.439

The strength of the gas flow is quantified by the pressure difference ratio M = ∆p/∆pa.440

Figure 14 represents stability calculations for a falling water film at β = 3◦ and Rel =441

23.9. The relative confinement is fixed to η = 3.6 and the adverse pressure difference442

is increased. Panel 14a shows that increasing the counter-current gas flow increasingly443

stabilizes the film until the point of fully suppressing the Kapitza instability (dash-dotted-444

dotted line). Panel 14b shows that this stabilization is accompanied by a decrease in wave445

celerity.446

The level of stabilization strongly depends on the inclination angle β, as shown in447

panels 15a and 15b, which represent contours of the cut-off wavenumber (for Rel = 23.9)448

and critical Reynolds number related to their aerostatic limit as a function of β and449

M . At low inclination angles and relatively high adverse pressure gradients, the cut-off450

wavenumber is reduced by up to 70% with respect to the aerostatic case and the critical451

Reynolds number is increased by up to 40%.452

The dispersion curves in figure 14 exhibit a number of features that seem to contradict453

the stability results of Alekseenko et al. (2009), Vellingiri et al. (2015), and Trifonov454

(2017), which were obtained for a weakly-confined turbulent gas flow (η = 24 − 260455

in Trifonov (2017)). Firstly, increasing the gas flow, monotonically reduces our unstable456

range of wavenumbers, whereas Vellingiri et al. (2015) and Trifonov (2017) found that the457
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Figure 14. Influence of an increasingly strong counter-current air flow on the stability of a
falling water film (Ka = 3592) at β = 3◦, Rel = 23.9 and η = 3.6. (a) Temporal growth rate;
(b) wave celerity. Solid line: M = 1 (Reg = 3.0); dashed line: M = 10 (Reg = −0.94); dotted
line: M = 25 (Reg = −7.2); dash-dotted line: M = 50 (Reg = −17.1); thick dash-dotted line:
M = 70 (Reg = −24.4). The + symbol marks data points that will be discussed in §5. The filled
circle in (a) marks the cut-off wavenumber αa

c for the aerostatic configuration.

cut-off wavenumber can first decrease and then increase with the gas velocity magnitude.458

Secondly, our growth rate is reduced at all wavenumbers, whereas Alekseenko et al. (2009)459

found that increasing the gas velocity magnitude may reduce the cut-off wavenumber but460

increase the maximal growth rate at the same time. In that case, long waves are amplified461

and short waves are stabilized.462

It turns out that these differences are not due to the laminar gas flow conditions, but463

to the strong confinement levels studied here. Indeed, for weaker confinement levels, we464

recover the same qualitative behaviour as Alekseenko et al. (2009), Vellingiri et al. (2015),465

and Trifonov (2017), notwithstanding that the gas flow is laminar in our case. This is466

shown in figures 16, where we consider a significantly weaker confinement (η > 7). Fig-467

ure 16a shows that the cut-off wavenumber (filled circles) now varies non-monotonically468

with increasing gas flow. Interestingly, this curve displays an additional local maximum in469

addition to the local minimum reported by Vellingiri et al. (2015) and Trifonov (2017).470

In the same graph, we have also plotted the maximally-amplified wavenumber (filled471

triangles), which varies in the same manner. Panel 16b shows the corresponding curve472

for the maximum growth rate, which displays only a local minimum.473

In panel 16c, we have plotted growth rate dispersion curves for three representative474

points from panel 16a. In contrast to the dispersion curves in panel 14a (where η = 3.6),475

we see that increasing the gas flow can now stabilize short waves while amplifying long476

waves (compare solid and dot-dashed lines), in accordance with Alekseenko et al. (2009).477

For an even weaker confinement level (η = 9), we find that an increased gas flow can478

destabilize the film at all wavenumbers, as shown in figure 17a. Panel 17b, which plots479

different characteristic points of the growth rate dispersion curve as a function of η, allows480

to identify the critical confinement at which this transition occurs (η = 8 for Rel = 17481

and β = 3◦). Just before the transition (η = 7.5− 8), the cut-off wavenumber is reduced482

w.r.t. the aerostatic limit while the maximum growth rate is increased, similarly to what483

was observed by Alekseenko et al. (2009).484
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Figure 15. Effect of an increasingly strong counter-current air flow (M = ∆p/∆pa) on the
stability of a falling water film (Ka = 3592) at β = 3◦ and η = 2.8. (a) Deviation of the cut-off
wavenumber αc from its aerostatic limit αa

c at Rel = 23.9; (b) deviation of the critical Reynolds
number Recr from its aerostatic limit Rea

cr. Darker regions correspond to a greater stabilization.
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Figure 16. Effect of an increasingly strong counter-current air flow (M = ∆p/∆pa) on the
stability of a falling water film (Ka = 3592) at β = 3◦, η = 7 and Rel = 17. (a) Deviation of
the cut-off wavenumber αc (filled circles) and most unstable wavenumber αM (filled triangles)
from their respective aerostatic limits (superscript a); (b) deviation of the maximum growth
rate (αci)M from the corresponding aerostatic limit (αcai )M . The horizontal solid line denotes
(αci)M = (αcai )M ; (c) temporal growth rate. Solid line: M = 1 (Reg = 5.0); dashed line: M = 20
(Reg = −67.5); dash-dotted line: M = 50 (Reg = −175).

5. Explanation of the stabilization mechanism485

To identify the mechanism responsible for the confinement-induced stabilization of the486

Kapitza instability, we focus on three representative cases for which linear stability data487
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Figure 17. Effect of the relative confinement η on the stability of a falling water film
(Ka = 3592) at β = 3◦, Rel = 17 and Reg = −67.5. (a) temporal growth rate. Solid line:
M = 1 and η = 9; dashed line: Reg = −67.5 (M = 9.1) and η = 9; (b) deviation of the cut-off
wavenumber αc (filled circles), most unstable wavenumber αM (filled triangles) and maximum
growth rate (αci)M (filled squares) from their respective aerostatic limits. The grey area marks
the unstable region compared to the aerostatic scenario.

were reported in §4 (the two points marked by plus symbols in figure 11 and the single488

point also marked by a plus symbol in figure 14). In all three cases, we have Rel = 23.9489

and β = 3◦, whereas the conditions for the gas differ as follows: (i) aerostatic gas with490

weak relative confinement η = 12.4; (ii) aerostatic gas with strong relative confinement491

η = 3.6; (iii) counter-current gas with Reg = −17.1 and strong relative confinement492

η = 3.6.493

For each case, we evaluate the linear perturbation of different interfacial quantities494

based on a representative unstable mode fixed by the wavenumber α = 0.0025 (situated495

on the ascending branch of the growth rate curves in figures 11 and 14). These pertur-496

bations can all be expressed in terms of the streamfunction perturbation amplitudes φ̂497

and ψ̂ (2.14), which are the eigenfunctions of the Orr-Sommerfeld problem (2.15). For498

example, the film thickness perturbation h⋆ (2.20) can be written as:499

h⋆ = ĥ exp[iα(x− ct) + iΘh],

ĥ = φ̂

√

Re {1/c}2 + Im {1/c}2, Θh = arctan [Im {1/c} /Re {1/c}] ,

(5.1)

where Θh designates the phase shift with respect to the stream-function perturbation500

(2.14a). Further, we are interested in the perturbed adverse tangential shear stress τt501

exerted by the gas on the film surface:502

τt = Tt + τ⋆t , (5.2)

where Tt < 0 is the tangential interfacial shear stress of the primary flow and the503

shear stress perturbation τ⋆t subsumes the two contributions associated with interfacial504
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quantities defined by the last two terms in (2.18):505

τ⋆t = τ̂t exp[iα(x− ct) + iΘτ ],

τ̂t =

√

Re {Zτ}
2
+ Im {Zτ}

2
, Θτ = arctan [Im {Zτ} /Re {Zτ}] ,

Zτ = Πρ
−1[φ̂′′ + U ′′

l φ̂c
−1 + α2φ̂],

(5.3)

where the purely real amplitude τ̂t of the perturbation and its phase shift Θτ follow from506

the complex amplitude Zτ . Similarly, and with the help of (2.21b), we obtain for the507

perturbed interfacial gas pressure p⋆g:508

p⋆g = p̂g exp[iα(x − ct) + iΘp],

p̂g =

√

Re {Zp}
2
+ Im {Zp}

2
, Θp = arctan [Im {Zp} /Re {Zp}] ,

Zp = c ψ̂′ + U ′

gψ̂
︸ ︷︷ ︸

Zρ
p

+Πµ(iαΠρ)
−1(ψ̂′′′ − α2 ψ̂′)

︸ ︷︷ ︸

Zµ
p

− cosβ φ̂c−1

︸ ︷︷ ︸

Zβ
p

,

(5.4)

where the components Zρ
p and Zµ

p of the complex amplitude Zp, through (2.21b), can509

be traced directly to the inertial and viscous contributions in the streamwise momentum510

equation, whereas Zβ
p comes from the last term in (2.18).511

Figures 18b and 18c represent the perturbation profiles of the shear stress (5.3) and512

pressure (5.4) for the three studied cases, allowing to discern their phase shifts Θτ −Θh513

and Θp − Θh with respect to the film thickness perturbation profile (panel 18a). These514

profiles have been scaled differently for the three cases, in order to facilitate a comparison515

within the same graph. The respective perturbation amplitudes τ̂t and p̂g and that of516

the gas-side normal viscous stress τ̂n are given in table 5. In addition, table 6 compares517

the weight of the inertial and viscous contributions to the pressure perturbation’s phase518

shift Θp via the arguments Im
{
Zρ
p

}
/Re {Zp} and Im

{
Zµ
p

}
/Re {Zp}.519

From these data, we may conclude: (i) the perturbation of the normal viscous stress is520

negligible compared to that of the pressure; (ii) the perturbation amplitudes τ̂t and p̂g521

increase both with confinement and gas velocity; (iii) for strong confinement, the phase522

shift with respect to the film thickness perturbation is fixed to Θτ −Θh ≈ π for the shear523

stress perturbation and Θp −Θh ≈ π/2 for the pressure perturbation, and this does not524

change significantly when the gas velocity is increased; (iv) for strong confinement, the525

phase shift Θp is entirely governed by viscous effects and inertia plays no role.526

The Θp − Θh ≈ π/2 phase shift of the pressure perturbation means that its second527

derivative ∂xxp
⋆
g vanishes at the film thickness extrema. As a result, its effect on stability528

is neutral, i.e. it neither reinforces nor attenuates the film thickness perturbation. This529

phase shift follows directly from the dominance of viscous effects in the gas flow,530

i.e. Im
{
Zµ
p

}
≫ Im

{
Zρ
p

}
. Indeed, in this inertialess limit, the pressure gradient is531

proportional to one over the third power of the local gas layer thickness (locally developed532

Poiseuille-Couette flow). Conversely, in the case of inertia-dominated flow, the pressure533

would be proportional to the square of the local gas velocity (following the Bernoulli534

equation) and thus its minimum would arise at the maximum of the film thickness535

perturbation, giving an anti-cyclic (Θp − Θh = π) phase shift. This would have a536

destabilizing effect. However, for our case of strongly-confined gas flow, Θp − Θh ≈ π/2537

and the pressure perturbation plays no role in determining the state of stability. This538

is in agreement with Trifonov (2017), who, in his stability analysis, did not find any539
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η H̃ (mm) M τ̂t/τ̂
(η=12.4)
t p̂g/p̂

(η=12.4)
g τ̂n/p̂g

12.4 6.43 1 1.0 1.0 0.09227
3.6 1.87 1 5.30231 17.2737 0.00531
3.6 1.98 50 12.5435 61.1488 0.04583

Table 5. Ratio between the perturbation amplitudes (computed through (2.18)) of the stresses
exerted by an air flow on a water film inclined at β = 3◦ with Rel = 23.9: tangential shear stress
τ̂t, static pressure p̂g and normal viscous stress τ̂n. Wavenumber: α = 0.0025.

η H̃ (mm) M Im{Zρ
p}/Re{Zp} Im{Zµ

p }/Re{Zp} Im{Zβ
p }/Re{Zp}

12.4 6.43 1 0.08325 0.99695 0.05462
3.6 1.87 1 0.04240 14.7428 0.02596
3.6 1.98 50 0.00324 7.68910 0.00021

Table 6. Different contribution to the pressure perturbation’s phase shift according to (5.4).
Flow conditions as in table 5.

unstable mode related to the Kelvin-Helmholtz instability for flow conditions similar to540

those studied here.541

Thus, it is the perturbation of the interfacial tangential shear stress that is responsible542

for the confinement-related stabilization of the falling liquid film, as suggested by Tilley543

et al. (1994). In particular, this results from the Θτ−Θh ≈ π phase shift of the shear stress544

perturbation with respect to the film thickness perturbation h⋆, which remains virtually545

unchanged over a wide range of confinement levels and gas velocities (see panels 19a and546

19b). Due to this, the adverse tangential shear stress τt (5.2) is more negative at the wave547

hump and less negative at the wave trough. This is principally caused by the change in548

cross section for the gas flow, which is smaller above the wave hump and greater above549

the wave trough.550

So, how does the profile of the tangential stress perturbation τ⋆t in figure 18b stabilize551

the film? First, we recall that the driving mechanism of the Kapitza instability is inertia,552

which causes the liquid flow rate ql(x, t) to lag behind its inertialess target value:553

q(x, t) = −Kl
h3

3
+ τt

h2

2
, (5.5)

where Kl is defined in (2.9a). Just upstream of the wave hump, where q decreases in time554

as the wave passes by, the actual flow rate ql is slightly too high, while it is slightly too555

low just downstream of the hump, where q increases in time. The resulting discrepancy556

in flow into and out of the hump causes it to grow. The effect is stronger the more the557

actual flow rate ql lags behind its target value q, and that depends on how steeply q558

changes within the wavy film.559

According to (5.5), the effect of gravity (through the h3 term in (5.5)) tends to increase560

variations in q between the wave hump and wave trough as a result of the change in film561

thickness h. The adverse tangential interfacial stress τt, through its perturbation τ⋆t562

(figure 18b), counter-acts this effect. Indeed, τ⋆t acts to homogenize the flow rate within563

the film, slowing the flow in the wave hump to a greater extent than underneath the564

wave trough. This is a direct result of the phase lag observed between the film thickness565

and the shear stress perturbation (figure 18), and the effect increases with the relevance566

of the second term in (5.5).567
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Figure 18. Water film at β = 3◦: linear perturbation of (a) film thickness (5.1), (b) tangential
stress (5.3) and (c) interfacial gas pressure (5.4) associated with a particular eigenmode, i.e.
α = 0.0025 (wavelength Λ = 2π/α). Solid line: η = 12.4 aerostatic (M = 1); dashed line:
η = 3.6 aerostatic (M = 1); dash-dotted line: η = 3.6 counter-current gas (M = 50). Triangles
in panels (b) and (c) mark the location of the maximum. Pressure perturbations are scaled with
different coefficients to facilitate the representation: 60 for η = 12.4; 600 for η = 3.6 aerostatic;
1500 for η = 3.6 with M = 50.

We quantify this by considering the linear perturbation amplitude of the inertialess568

flow rate (5.5) and by evaluating the contributions due to gravity q̂
g (actually, this term569

also subsumes the effect of pressure) and shear stress q̂τ :570

q̂ = −Klh
2

0ĥ
︸ ︷︷ ︸

q̂g

+
1

2
h20τ̂t + h0Ttĥ

︸ ︷︷ ︸

q̂τ

. (5.6)

Panels (c) and (d) of figure 19 show that the ratio |q̂τ/q̂| increases with confinement571

and gas velocity, which is in accordance with the increase in stabilization observed in572

figures 11 and 14.573

The tangential shear stress also produces an indirect stabilizing effect. It is known that574

an adverse interfacial shear stress diminishes the celerity c of surface waves traveling on575

falling films (Alekseenko et al. 2009; Samanta 2014). This can be explicitly shown in the576

limit of infinitely-long waves (α → 0):577

c|α→0
= −Klh

2

0
+ Tth0. (5.7)

The wave celerity c determines how fast the flow rate within the film would change in578

the inertialess limit as a wave passes by and reducing it weakens the inertial instability579
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Figure 19. Water film at β = 3◦: phase lag Θτ −Θh of the perturbations of the film thickness
and interfacial tangential shear stress. (a) Variation with η with aerostatic gas (M = 1); (b)

variation with M at H̃ = 1.87 mm (η = 3.3 − 3.6). Contribution of the interfacial tangential
shear stress to the inertialess flow rate (5.6): (c) variation with η under aerostatic gas (M = 1);

(d) variation with M at H̃ = 1.87 mm (η = 3.3− 3.6). The vertical dash-dotted lines mark the
three cases represented in figure 18; the vertical dashed line in (a) and (c) marks cr = U |h0

.

mechanism. In our stability results (figures 11b and 14b), we have observed c to diminish580

with increasing confinement and gas velocity, coinciding with an increased stabilization581

of the film.582

6. Conclusion583

Using linear stability calculations and experiments, we have revisited the stability of a584

falling liquid film flowing down an incline in interaction with a strongly-confined laminar585

gas flow and subject to the Kapitza instability. The gas is either subject to an aerostatic586

pressure gradient or flows counter-currently.587

Tilley et al. (1994) suggested that confining the gas phase should stabilize the Kapitza588

instability, but concluded that this effect is small for water films in contact with air in589

the studied parameter range. For the same fluid combination, we have found a parameter590

range where the confinement-related stabilization is very strong, up to the point of591
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suppressing the Kapitza instability altogether. We have shown that the stabilizing effect592

of confinement is stronger when the inclination is small (β = 1◦−8◦) and/or the Reynolds593

number is small, and we have determined the critical confinement necessary to fully594

stabilize the film as a function of these two parameters (figure 12). For example, a water595

film of 0.5 mm thickness flowing down a wall inclined at 3◦ can be fully stabilized by596

placing a confining plate at a distance of 1 mm from the incline. Water films, which have a597

high Kapitza number, are found to feel earlier the confinement-induced stabilization than598

other working fluids with lower Kapitza number, such as aqueous solutions of glycerin599

or dymethylsulfoxide. The suppression of the Kapitza instability is observed both when600

the gas is subject to an aerostatic pressure gradient and when it flows counter-currently.601

In the latter case, at the strong confinement levels we have focused on, the stabilization602

is monotonically intensified with increasing gas flow velocity and occurs over the entire603

range of unstable wavenumbers. This is different from observations by Alekseenko et al.604

(2009), Vellingiri et al. (2015), and Trifonov (2017), who found a non-monotonic effect605

of the gas velocity and an only partial destabilization of the wave spectrum for weakly-606

confined turbulent gas flows. We have recovered these results also for the laminar gas607

flow conditions considered here, when reducing the confinement level. In this context, we608

have identified a confinement threshold above which the gas destabilizes the film at all609

wavenumbers (see figure 17).610

We have identified the mechanism responsible for the instability suppression. As611

suggested by Tilley et al. (1994), viscous stresses in the gas play a decisive role. In612

particular, it is the tangential viscous stress exerted by the gas on the film surface that613

is decisive. The key of the stabilization mechanism is that there is a phase shift of almost614

exactly half a wavelength between the film thickness perturbation and the associated615

shear stress perturbation. Consequently, the adverse shear stress is greater at a wave616

hump than at a wave trough. This tends to homogenize the local-equilibrium flow rate617

within the liquid film, thus counter-acting the effect of gravity, which acts to force larger618

flow rates where the film is thick (wave hump) and smaller ones where the film is thin619

(wave trough). As a result, the inertia-related lag between the actual local flow rate and620

its equilibrium value is reduced and this weakens the inertia-driven mechanism of the621

Kapitza instability.622

The stabilization mechanism increases whenever the contribution of the interfacial623

shear stress in the equilibrium flow rate becomes stronger with respect to that of gravity624

(and pressure). This is the case when the inclination is weak, the film is thin (Rel is625

small) and the counter-current gas flow is strong. It is under those conditions that our626

stability calculations and experiments display the strongest stabilization.627

We point out that confining the gas phase also contributes to the observed stabilization628

through an indirect effect, i.e. by reducing the wave celerity. Reducing the wave speed629

reduces inertia-induced flow rate imbalances within the liquid film, which again weakens630

the Kapitza instability.631
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Appendix A. Numerical validation of the stability code635

To validate our two-phase linear stability code numerically, we have compared its636

predictions to data from the literature for three examples of interfacial instability.637
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Figure 20. Comparison of (a) temporal growth rate and (b) angular wave frequency
between our work and Brevdo et al. (1999) (figure 2 there). Parameter values: β = 4.6◦,
νl = 5.02 × 10−6 m2 s−1, γ = 69 × 10−3 N m−1, ρl = 1130 kg m−3,

Ka = γ(ρlg
1/3ν

4/3
l )−1 = 331.85. Values of the Reynolds number ReB = 3/2Re l: 10 (dashed

line), ReB
cr = 5/4 cot β (line), 20 (plus), 40 (cross), 60 (empty squares), 100 (empty triangles),

200 (filled triangles). Note that αB , (αcr)
B and (αci)

B are scaled as in Brevdo et al. (1999), i.e.
using the Nusselt film thickness and the free-surface velocity as length and velocity scales.

Figure 20 compares our stability calculations with landmark calculations of Brevdo638

et al. (1999) for the case of an inclined liquid film falling in a passive atmosphere. We639

point out that the conditions studied by Brevdo et al. (1999) concern a liquid film flowing640

in a passive atmosphere (Πµ = Πρ = 0), whereas in the present work we have considered641

an active phase.642

Figure 21 presents the neutral stability diagram for the long-wave Yih instability643

(horizontal pressure-driven two-layer flow with Πρ = 1) as obtained by Yiantsios &644

Higgins (1989), in comparison with our calculations (circles).645

Finally, table 7 compares our stability data to those of Yiantsios & Higgins (1988) and646

Tilley et al. (1994) for a pressure-driven two-layer flow through a horizontal channel, in647

the absence of gravity. In addition to the numerical punctual values of table 7, we also648

present in figure 22 the real and imaginary part of the wave celerity as a function of the649

wavenumber for the case at QT = 1.6 and WeT = 0.2 (forth and seventh row of table 7).650

651

Appendix B. Sensitivity of the comparison in figure 8 w.r.t. the652

inclination angle β653

To remedy the insufficient resolution of the inclinometer, the inclination angle β of654

the experimental setup was obtained by fine-tuning (within the precision range ±0.05◦655

of the inclinometer) the value of β in the numerical calculation of the neutral stability656

curve for the unconfined case, until this matched with the corresponding experimental657

curve. Figure 8 shows the best match of these curves for one set of conditions, obtained658

for an inclination angle of β = 1.69◦.659
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Figure 21. Neutral stability diagram for a horizontal pressure-driven two-layer flow with
Πρ = 1: comparison of our numerical results (circles) with figure 2b of Yiantsios & Higgins
(1989) (lines). Stable regions are denoted by S, unstable regions by U .

αT QT WeT (cr, ci)
T (YH) (cr, ci)

T (TDB) (cr, ci)HL−1 (this work)

20 0.32 0.016 (0.399984 , -0.0066148) (0.399986 , -0.0066151) (0.399984 , -0.0066151)
20 0.32 0.008 (0.399992 , -0.0032796) (0.399992 , -0.0032796) (0.399991 , -0.0032798)
20 1.6 0.4 (1.99814 , -0.166982 ) (1.99815 , -0.166982 ) (1.99814 , -0.166982 )
20 1.6 0.2 (1.99912 , -0.082368 ) (1.99912 , -0.082369 ) (1.99912 , -0.082369 )
40 0.32 0.008 (0.3999976, -0.003325 ) (0.3999977, -0.003325 ) (0.3999974, -0.003325 )
40 0.32 0.004 (0.3999988, -0.001658 ) (0.3999989, -0.001658 ) (0.3999985, -0.001658 )
40 1.6 0.2 (1.99971 , -0.083328 ) (1.99971 , -0.083329 ) (1.99971 , -0.083328 )
40 1.6 0.1 (1.999858 , -0.04150 ) (1.999859 , -0.04150 ) (1.999857 , -0.04150 )

Table 7. Real and imaginary part of the wave celerity c: Πµ = 1/5, Πρ = 1 and η = 2.
Comparison between our work and results of Yiantsios & Higgins (1988) (table I there) and
Tilley et al. (1994) (table I there). Scales used in Tilley et al. (1994) are related to ours as:
αT = αHL−1, (cr, ci)

T = (cr, ci)HL−1, QT = Rel + Reg, WeT = WeHL−1.

To demonstrate the sensitivity of this comparison w.r.t. the inclination angle, figure 23660

shows this comparison for two slightly different values of β, i.e. β = 1.68◦ (panel a) and661

β = 1.70◦ (panel b).662

Appendix C. Measured streamwise evolution of the wave-amplitude663

Figure 24 shows the measured streamwise evolution of the wave amplitude along the664

channel for the “unconfined” (figure 4b) and the confined (figure 4a) configurations at665

Rel = 38.7, for the same inlet forcing amplitude and frequency. The film is unstable in666

both cases. The decrease of the wave amplitude induced by strengthening the confinement667

(changing η = 22 to η = 6.65) is approximately 7%.668
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