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Suppression of the Kapitza instability in confined falling liquid films

We revisit the linear stability of a falling liquid film flowing through an inclined narrow channel in interaction with a gas phase. We focus on a particular region of parameter space, small inclination and very strong confinement, where we have found the gas to strongly stabilize the film, up to the point of fully suppressing the long-wave interfacial instability attributed to Kapitza (Kapitza, Zh. Eksp. Teor. Fiz. 18, 1948). The stabilization occurs both when the gas is merely subject to an aerostatic pressure difference, i.e. when the pressure difference balances the weight of the gas column, and when it flows counter-currently. In the latter case, the degree of stabilization increases with the gas velocity. Our investigation is based on a numerical solution of the Orr-Sommerfeld temporal linear stability problem as well as stability experiments that clearly confirm the observed effect. We quantify the degree of stabilization by comparing the linear stability threshold with its passive-gas limit, and perform a parametric study, varying the relative confinement, the Reynolds number, the inclination angle and the Kapitza number. For example, we find a 30% reduction of the cut-off wavenumber of the instability for a water film in contact with air, flowing through a channel inclined at 3 degrees and of height 2.8 times the film thickness. We also identify the critical conditions for the full suppression of the instability in terms of the governing parameters. The stabilization is caused by the strong confinement of the gas, which produces perturbations of the adverse interfacial tangential shear stress that are shifted by half a wavelength with respect to the wavy film surface. This tends to reduce flow rate variations within the film, thus attenuating the inertia-based driving mechanism of the Kapitza instability.

Introduction

We consider a liquid film falling along the bottom wall of an inclined narrow channel, under the action of gravity and in interaction with a laminar gas flow (see figure 1). We distinguish two scenarios for the gas flow: (i) either the gas is subject to an aerostatic pressure gradient, i.e. a pressure difference which balances the weight of the gas column;

(ii) or the gas flows counter-currently to the liquid film at an imposed flow rate. Examples of the velocity profiles corresponding to these two scenarios are depicted in figure 2.

We revisit the linear stability of this flow by numerically solving the Orr-Sommerfeld temporal linear stability problem and by performing stability experiments. We are † Email address for correspondence: gianluca.lavalle@limsi.fr Figure 1. Sketch of the considered problem: a liquid film falling down an inclined wall whilst interacting with a strongly-confined gas phase. The gas is either subject to an aerostatic pressure difference or flows counter-currently at an imposed flow rate. The flow rates q l and qg and the heights h, h0 and H are dimensionless.

particularly interested in how the stability of the falling film is affected by the gas phase in the case of strong confinement. Among the susceptible instability modes of the film [START_REF] Boomkamp | Classification of instabilities in parallel two-phase flow[END_REF], we focus solely on the convective long-wave interfacial mode [START_REF] Trifonov | Instabilities of a gas-liquid flow between two inclined plates analyzed using the NavierStokes equations[END_REF]) known as Kapitza instability [START_REF] Kapitza | Wave flow of a thin viscous fluid layers[END_REF]. For example, short-wave modes occurring in the liquid [START_REF] Floryan | Instabilities of a liquid film flowing down a slightly inclined plane[END_REF]) and/or gas [START_REF] Schmidt | Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows[END_REF] do not play a role in our study.

We start by recalling some theoretical results for the case of a liquid film falling in a passive atmosphere. [START_REF] Benjamin | Wave formation in laminar flow down an inclined plane[END_REF] and [START_REF] Yih | Stability of Liquid Flow down an Inclined Plane[END_REF] solved the associated Orr-Sommerfeld temporal linear stability problem and proved that a vertical liquid film is always unstable to long-wave surface disturbances. Further, they determined the threshold of this long-wave instability in terms of the critical Reynolds number Re cr = 5/6 cot β, which depends on the inclination angle β. The instability mechanism is due to inertia, while the role of the longitudinal component of gravity is to advect and steepen the wave, whereas surface tension stabilizes the film. The way inertia destabilizes the film has been explained either via the shift between the vorticity and the displacement of the interface [START_REF] Kelly | The mechanism for surface wave instability in film flow down an inclined plane[END_REF][START_REF] Schmidt | Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows[END_REF][START_REF] Kalliadasis | Falling Liquid Films[END_REF], following the argument introduced by [START_REF] Hinch | A note on the mechanism of the instability at the interface between two shearing fluids[END_REF] for two-layer Couette flows, or via the inertia-related lag of flow-rate perturbations with respect to film-thickness perturbations [START_REF] Dietze | On the Kapitza instability and the generation of capillary waves[END_REF].

Investigations of the effect of an active outer phase on the stability of the film started with works dedicated to a slightly different configuration. [START_REF] Yih | Instability due to viscosity stratification[END_REF] investigated the pressure-driven channel flow of two co-current fluid layers and showed that a viscosity contrast between layers of equal density and thickness causes a long-wave interfacial instability. This work was extended by [START_REF] Yiantsios | Linear stability of plane Poiseuille flow of two superposed fluids[END_REF], who accounted for a density contrast and a non-unity thickness ratio, and included gravity as well as surface tension. More recently, spatio-temporal linear stability analysis was applied to this problem [START_REF] Valluri | Linear and nonlinear spatiotemporal instability in laminar two-layer flows[END_REF]Ó Náraigh et al. 2013).

By additionally accounting for an inclination of the channel, [START_REF] Tilley | Linear stability theory of two-layer fluid flow in an inclined channel[END_REF] were able to investigate (among other scenarios) the stability of a falling water film in contact with air, which is the configuration we are interested in. In fact, their temporal Orr-Sommerfeld linear stability problem is exactly the same as the one we solve here (see §2).

The authors argued that confining the gas phase by an upper wall is likely to stabilize the falling film through an adverse shear stress at the liquid/gas interface. However, their calculations for the water-air system led them to conclude that this effect is negligible.

Indeed, the minimum cut-off wavenumber upon varying the total flow rate changed only slightly with the channel height. In our current study, we have come to a different conclusion. We find that the cut-off wavenumber can be reduced up to the point of fully suppressing the Kapitza instability by diminishing the channel height at a fixed liquid flow rate. This holds both when the gas is subject to an aerostatic pressure difference and when it flows counter-currently.

A number of studies have investigated the effect of a turbulent counter-current gas flow on the stability of a falling liquid film. By applying a spatio-temporal analysis, [START_REF] Vellingiri | Absolute and convective instabilities in counter-current gasliquid film flows[END_REF] found a convective/absolute/upward-convective transition of the instability when increasing the interfacial shear stress exerted by the gas (conditions studied in our current manuscript are far removed from this transition). The authors also found that the cut-off wavenumber of the convective instability may either diminish, increase, or display a non-monotonic behaviour with increasing gas shear stress. [START_REF] Trifonov | Instabilities of a gas-liquid flow between two inclined plates analyzed using the NavierStokes equations[END_REF] made similar observations (also for turbulent gas flow) based on extensive temporal stability calculations, where the inclination angle, confinement, and liquid Reynolds number where additionally varied. For the strong confinement levels on which we mainly focus in our current study, we have observed only a monotonic decrease of the cut-off wavenumber with increasing gas shear stress. However, we have checked that we recover the same qualitative behaviour as [START_REF] Trifonov | Instabilities of a gas-liquid flow between two inclined plates analyzed using the NavierStokes equations[END_REF] and [START_REF] Vellingiri | Absolute and convective instabilities in counter-current gasliquid film flows[END_REF] when the confinement level is decreased, notwithstanding that the gas flow in our case is laminar and not turbulent.

We proceed by discussing several related experimental works that have focused on the linear stability of falling liquid films. [START_REF] Krantz | Stability of thin liquid films flowing down a plane[END_REF] studied liquid films flowing down a strongly inclined plane at low Reynolds numbers. They imposed inlet disturbances of controlled amplitude and frequency, and measured wave celerities as well as spatial growth rates. Later, [START_REF] Pierson | Some theoretical and experimental observations of the wave structure of falling liquid films[END_REF] and [START_REF] Alekseenko | Wave formation on a vertical falling liquid film[END_REF] studied liquid films flowing down the outside of a vertical cylinder. They measured the wavelength, wave celerity and spatial growth rate for the fastest growing waves over a large range of Reynolds numbers, showing reasonable agreement with the theory developed in previous studies [START_REF] Pierson | Some theoretical and experimental observations of the wave structure of falling liquid films[END_REF][START_REF] Whitaker | Effect of surface active agents on the stability of falling liquid films[END_REF]. [START_REF] Liu | Absolute linear instability in laminar and turbulent gasliquid two-layer channel flow[END_REF] studied liquid films falling down a weakly inclined plane at moderate Reynolds numbers. By imposing a small-amplitude perturbation of controlled frequency on the liquid flow rate, the authors were able to measure the critical Reynolds number in terms of the inclination angle, the cut-off wavenumber as a function of the Reynolds number, and the dispersion curves of the spatial growth rate and wave celerity. Their experimental data agreed with the neutral stability curve of [START_REF] Anshus | A method of getting approximate solutions to the orrsommerfeld equation for flow on a vertical wall[END_REF]. [START_REF] Alekseenko | Primary instabilities of liquid film flow sheared by turbulent gas stream[END_REF] investigated the additional effect of an active gas phase by measuring the spatial growth rate of small-amplitude surface waves excited on a liquid film falling down the inner surface of a vertical tube in interaction with a co-or countercurrent turbulent gas flow. In particular, the authors found that increasing the countercurrent gas flow reduces the cut-off wavenumber of the Kapitza instability, while the maximal growth rate is increased. Thus, shorter waves are stabilized while longer waves are amplified. Nonlinearly, this manifests itself in the attenuation of the precursory capillary ripples typically forming on wavy falling liquid films [START_REF] Trifonov | Counter-current gas-liquid wavy film flow between the vertical plates analyzed using the Navier-Stokes equations[END_REF]. This has been also detected experimentally by [START_REF] Kofman | Characteristics of solitary waves on a falling liquid film sheared by a turbulent counter-current gas flow[END_REF]. We observe a different behaviour in our current study. For the strong confinement levels considered, we find that the linear growth rate is decreased at all unstable wavenumbers when the counter-current gas velocity is increased. However, in the case of a weaker confinement, we recover the same qualitative behaviour as [START_REF] Alekseenko | Primary instabilities of liquid film flow sheared by turbulent gas stream[END_REF] for the laminar gas flow conditions studied here (see section 4.3).

Our manuscript is structured as follows. In §2, we write the Orr-Sommerfeld temporal linear stability eigenvalue problem governing the stability of the falling film; the set-up and measurement methodology for the linear stability experiments are presented in §3; in §4 we present the results of our stability analysis focusing on the stabilizing effect of confinement in terms of the liquid Reynolds number, the inclination angle, the Kapitza number, and the velocity of a counter-current gas flow; the mechanism responsible for the stabilization induced by the confinement is presented in §5; finally, concluding remarks are presented in §6.

Governing equations and linear stability problem

For the configuration depicted in figure 1, the governing equations in dimensionless form read as (subscripts l and g are phase indicators):

∇ • u l = 0, ∇ • u g = 0,
(2.1a)

D t u l = -Π ρ ∇p l + B + ∆u l , (2.1b) D t u g = -∇p g + B + Π µ Π -1 ρ ∆u g , (2.1c) 
where Π ρ = ρ g /ρ l and Π µ = µ g /µ l designate the density and viscosity ratios. Here u is the velocity vector of components (u, v) along (x, y), p the pressure, ∆ the Laplace operator, D t the material derivative, and B = (sin β, -cos β) the inclination vector with the inclination angle β. For non-dimensionalization, we have employed reference scales obtained from balancing viscous drag and gravity, i.e. L = ν 2/3 l g -1/3 , U = (ν l g) 1/3 and T = L/U for length, velocity, and time, and ρ g U 2 for pressure. The reader is warned that the full gravitational acceleration g rather than its streamwise projection g x = g sin β is used here, in contrast to [START_REF] Ruyer-Quil | Improved modeling of flows down inclined planes[END_REF]. This way, the scales are independent of the control parameters. As a result of our scaling, the Reynolds and Froude numbers do not appear explicitly in (2.1). We thus introduce the following definition for the Reynolds number in the liquid and gas:

Re l = ql ν l , Re g = qg ν g , (2.2) 
where ql and qg are the dimensional liquid and gas flow rates per unit width (the tilde will denote dimensional quantities throughout the manuscript).

The boundary conditions at the walls read:

u(0) = 0, u(H) = 0. (2.3)
The kinematic and dynamic coupling conditions at the interface y = h are:

u l = u g , (2.4a) (S l • n) • t = Π µ (S g • n) • t, (2.4b) (S l • n) • n + κWe = Π ρ (S g • n) • n, (2.4c)
where We = γ(ρ l LU 2 ) -1 is the Weber number with surface tension γ. Note that, due to the chosen scaling, our Weber number is identical to the Kapitza number Ka = γ(ρ l g 1/3 ν 4/3 l

) -1 which prevails in the literature on falling films. In (2.4b) and (2.4c), S = T -pI is the stress tensor, T the viscous stress tensor and I the identity matrix.

The normal and tangential vectors to the interface are defined as:

n = [-∂ x h, 1] 1 + (∂ x h) 2 , t = [1, ∂ x h] 1 + (∂ x h) 2 , (2.5) whereas κ = ∇•n = -∂ xx h[1+(∂ x h) 2 ] -3/2
is the curvature of the interface. The kinematic condition at the interface reads:

∂ t h + u l ∂ x h = v l .
(2.6)

In our analysis, we will vary the relative confinement of the film, which is defined as:

η = H h 0 , (2.7)
where h 0 designates the film thickness of the primary flow and H the gap height. It constitutes one of the control parameters of the problem, together with the inclination angle β and the flow rates q l and q g . We perform a temporal stability analysis following the works of [START_REF] Yih | Instability due to viscosity stratification[END_REF], [START_REF] Yiantsios | Linear stability of plane Poiseuille flow of two superposed fluids[END_REF] and [START_REF] Tilley | Linear stability theory of two-layer fluid flow in an inclined channel[END_REF]. We start by writing the base flow velocity profiles:

U l = K l y 2 2 -h 0 y + Π ρ T t y, (2.8a) U g = K g h 2 0 2 η - y h 0 2 -η - y h 0 - Π ρ Π µ T t h 0 η - y h 0 .
(2.8b)

The constants K l and K g are defined as:

K l = Π ρ ∂ x P -sin β(1 -Π ρ M ), (2.9a) K g = Π ρ Π -1 µ [∂ x P -sin β(1 -M )], (2.9b) 
where ∂ x P is the driving pressure gradient and M = ∆p/∆p a relates the driving pressure difference ∆p to the aerostatic pressure difference ∆p a = Λ sin β, Λ designating the (dimensionless) wavelength. The coefficient M allows to distinguish between the two studied scenarios for the gas phase (see figure 2): (i) an aerostatic pressure difference, where M = 1; (ii) a counter-current gas flow, where M > 1.

The interfacial tangential shear stress appearing in (2.8) is scaled with ρ g U 2 and reads:

T t = h 0 2Π ρ K l -K g η -1 2 1 + 1 Π µ η -1 -1 , (2.10)
while the pressure profiles read:

P l = P | h0 (x = 0) + x ∂ x P + Π -1 ρ cos β(h 0 -y), (2.11a) P g = P | h0 (x = 0) + x ∂ x P + cos β(h 0 -y),
(2.11b)

where P | h0 (x = 0) is an arbitrary reference pressure at y = h 0 and x = 0.

We linearly perturb the primary flow as follows:

u = U + u ⋆ , v = v ⋆ , p = P + p ⋆ , (2.12)
where upper case letters refer to the base flow, while the star symbol denotes a smallamplitude perturbation. We introduce the stream-function perturbations φ ⋆ in the liquid phase and ψ ⋆ in the gas phase, satisfying:

u ⋆ l = ∂ y φ ⋆ , v ⋆ l = -∂ x φ ⋆ , (2.13a) u ⋆ g = ∂ y ψ ⋆ , v ⋆ g = -∂ x ψ ⋆ , (2.13b)
and seek solutions of the form:

{φ ⋆ , p ⋆ l } = { φ(y), pl (y)} exp[iα(x -ct)],
(2.14a) where α ∈ R is the wavenumber and c = c r +ic i the complex wave celerity, whereas the hat symbol denotes the amplitudes of the corresponding perturbations. Substituting (2.14) into (2.1) linearized around the base flow, and eliminating the pressure in (2.1b) by substituting (2.1c), we obtain the well-known Orr-Sommerfeld equations:

{ψ ⋆ , p ⋆ g } = { ψ(y), pg (y)} exp[iα(x -ct)], ( 
φ′′′′ -2α 2 φ′′ + α 4 φ = iα[(U l -c)( φ′′ -α 2 φ) -U ′′ l φ], (2.15a) ψ′′′′ -2α 2 ψ′′ + α 4 ψ = iα[(U g -c)( ψ′′ -α 2 ψ) -U ′′ g ψ],
(2.15b) subject to the boundary conditions: φ(0) = 0, φ′ (0) = 0, (2.16) ψ(H) = 0, ψ′ (H) = 0, (2.17)

where the prime symbol denotes differentiation with respect to y. Linearization of the coupling conditions (2.4) must account for the perturbation of the variable fields as well as a perturbation of the position at which the condition is applied, i.e. at the interface.

Consider the perturbed interfacial value {f } | h of the variable f (x, y, t) with base state F (y). This can be decomposed into:

{f } | h = {F } | h0 + {f ⋆ } | h0 + {F ′ } | h0 h ⋆ , (2.18)
where f ⋆ (x, y, t) = f (y) exp[iα(x -ct)] stems from the perturbation of the variable field and {F ′ } | h0 h ⋆ is the contribution from changing the position of the film surface within this field.

Applying (2.18) to the coupling conditions (2.4) leads to:

φ′ + U ′ l φc -1 = ψ′ + U ′ g φc -1 , (2.19a) φ′′ + U ′′ l φc -1 + α 2 φ = Π µ [ ψ′′ + U ′′ g φc -1 + α 2 ψ], (2.19b) 2α 2 φ′ -iαΠ ρ [p l + P ′ l φc -1 ] + We iα 3 φc -1 = 2α 2 Π µ ψ′ -iαΠ ρ [p g + P ′ g φc -1 ], (2.19c)
where all quantities are evaluated at y = h 0 and where we have introduced c = c -U | h0 and used the relation:

h -h 0 = h ⋆ = φc -1 exp[iα(x -ct)],
(2.20) which follows directly from (2.6) together with (2.18). The pressure perturbation amplitudes pl and pg in (2.19c), evaluated at y = h 0 , can be recovered directly from (2.1):

pl = Π -1 ρ [c φ′ + U ′ l φ] + (iαΠ ρ ) -1 ( φ′′′ -α 2 φ′ ), (2.21a) pg = [c ψ′ + U ′ g ψ] + Π µ (iαΠ ρ ) -1 ( ψ′′′ -α 2 ψ′ ).
(2.21b)

The Orr-Sommerfeld problem (2.15)-(2.21) is identical to the problem studied by [START_REF] Tilley | Linear stability theory of two-layer fluid flow in an inclined channel[END_REF]. We solve it by means of continuation using a code based on the continuation software AUTO-07p [START_REF] Doedel | AUTO-07p: continuation and bifurcation software for ordinary differential equations[END_REF]. This code was previously used in [START_REF] Dietze | Wavy liquid films in interaction with a confined laminar gas flow[END_REF]. The continuation is started from the asymptotic limit α = 0, for which c r and c i = 0 are known analytically, and continued by varying one of the control parameters while calculating c r and c i . We have validated our numerical procedure by comparing stability results with those of [START_REF] Brevdo | Linear pulse structure and signalling in a film flow on an inclined plane[END_REF] for falling films in a passive atmosphere, those of [START_REF] Yiantsios | Erratum: "Linear stability of plane Poiseuille flow of two superposed fluids[END_REF] in the asymptotic limit of long waves, and those of [START_REF] Yiantsios | Linear stability of plane Poiseuille flow of two superposed fluids[END_REF] and [START_REF] Tilley | Linear stability theory of two-layer fluid flow in an inclined channel[END_REF] for a pressure-driven horizontal liquid-gas flow. These validations are presented in the appendix A.

We point out that the considered gas flow rates are far from the convective-absolute transition studied by [START_REF] Vellingiri | Absolute and convective instabilities in counter-current gasliquid film flows[END_REF], [START_REF] Schmidt | Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows[END_REF], and Lavalle et al.

(2017), thus no spatio-temporal analysis is required here. For additional security, we have validated our stability calculations with our own experiments, which are described in the next section 3. Due to the convective nature of the instability, we measure a spatial growth rate in our experiments, whereas our stability calculations yield temporal growth rates (in a reference frame moving at the wave celerity). Both approaches yield the same stability threshold and most of our comparisons between experiments and linear stability analysis concern this stability threshold. However, in one instance (figure 9b), we compare experimental and numerical growth rate dispersion curves and for this we apply the so-called Gaster transformation [START_REF] Gaster | A note on the relation between temporally increasing and spatially increasing disturbances in hydrodynamic stability[END_REF]) that relates temporal and spatial growth rates:

α r c i = -ζ(c r + α r ∂ αr c r ),
(2.22) where ζ is the spatial growth rate and α r c i the temporal one. This transformation is valid when the spatial and temporal growth rates are small. This is generally the case for falling liquid films, as shown by [START_REF] Brevdo | Linear pulse structure and signalling in a film flow on an inclined plane[END_REF], who compared spatial growth rates obtained directly from a spatio-temporal analysis with values obtained by applying the Gaster transformation to temporal stability results, and showed that the error is smaller than 0.1%. In the single instance where we have applied the Gaster transformation (figure 9b), flow conditions are comparable to those in [START_REF] Brevdo | Linear pulse structure and signalling in a film flow on an inclined plane[END_REF].

Experiments

Our experimental apparatus, sketched in figure 3, has been employed in previous studies [START_REF] Kofman | Films liquides tombants avec ou sans contre-coulement de gaz : application au problme de l'engorgement dans les colonnes de distillation[END_REF][START_REF] Kofman | Characteristics of solitary waves on a falling liquid film sheared by a turbulent counter-current gas flow[END_REF] and has been modified here to impose a much stronger confinement of the gas phase above the falling liquid film (figure 4). The liquid film flows down an inclined glass plate (150 cm long, 27 cm wide, 5 mm thick) fixed in a framework mounted on rubber feet to reduce the influence of environmental vibrations. The inclination angle β can be changed in the range 0 • -20 • and is measured using an inclinometer with a precision of 0.05 • .

A gear pump conveys the liquid from a collection tank located at the end of the plate to an inlet tank, from which the liquid overflows onto the glass plate. The inlet tank is filled with several layers of glass beads in order to homogenize the entering flow. A temporal periodic forcing of the film is introduced at the inlet to trigger sinusoidal surface waves of prescribed frequency and amplitude. This is achieved by a vibrating aluminum plate, which is fixed to the membrane of two loudspeakers and generates harmonic vibrations above the liquid surface over the whole width of the film [START_REF] Kofman | Characteristics of solitary waves on a falling liquid film sheared by a turbulent counter-current gas flow[END_REF].

At a position 5 cm from the inlet, the falling film enters a region where the gas phase is confined by an upper 5 mm thick glass plate of length 70 cm and width 27 cm (see figure 3). In our study, the gap height H of the channel formed between the two glass plates was set to two different values: (i) H = 5.1 mm ±0.1 mm, which we call the confined case; (ii) H = 18 mm, which we loosely refer to as the "unconfined" case. The shift from one case to the other is achieved by raising the top glass plate upon supporting rods (see figure 4). For the confined configuration, the uniformity of the gap height was verified both in the streamwise and the transverse directions.

Water is used as working liquid. The temperature of the liquid is measured in the inlet and downstream tanks, and the surface tension is regularly monitored by measuring a water sample in a pending drop tensiometer. The liquid flow rate is fixed large enough that the film is unstable but small enough that the film surface without inlet excitation is virtually flat in the measurement section (i.e. surface waves are undetectable). The experimental control parameters and the range of variation of the physical parameters are specified in tables 1 and 2.

To experimentally characterize the interfacial instability of the falling film, a onepoint measurement of the film thickness time trace is performed using the CCI (Confocal simultaneously (the glass-water and the water-air interface) with a precision of 250 nm and an acquisition frequency up to 2 kHz. The CCI probe is mounted on a linear translation stage in order to enable measurements along the streamwise axis of the channel. The film thickness is measured at mid-width of the channel and at different longitudinal locations from the inlet. Measurements in the transverse direction were also carried out to check the uniformity of the film thickness, at sufficient distance from the lateral boundaries. The actual flow rate of the falling liquid film is deduced from a film thickness measurement without inlet excitation, i.e. when the film surface is virtually flat. Indeed, for a fully-developed waveless film, the film thickness h 0 and the Reynolds number Re l are linked through the base flow velocity profile (2.8) subject to an aerostatic pressure difference:

Re l = -K l h 3 0 3 + T t h 2 0 2 , (3.1)
where K l is defined in (2.9a) (using M = 1 for the aerostatic scenario) and the interfacial tangential shear stress T t in (2.10). By measuring the film thickness without inlet excitation in the developed region of the film (where hm in figure 5 no longer changes), we obtain Re l from (3.1) with h 0 = h m .

The same waveless signal also serves a second purpose. It is compared to the film thickness measured with inlet excitation to determine an upper limit for the excitation amplitude below which the excited surface waves can be considered linear, i.e. governed by the linearized Navier-Stokes equations (2.15). In that case, the film thickness perturbation is sinusoidal in time (2.20) and thus the time-average of the perturbed film thickness h 0 + h ⋆ corresponds to the thickness of the waveless film h 0 . The excitation amplitude in the experiments was limited to values where this condition was satisfied in order to allow comparisons with the linear stability analysis.

Consequently, the waves excited in our experiments were sinusoidal (see also inset in figure 6a), and their amplitude Ã, defined here as the peak-to-peak value of the time appearing in figure 6b indicates that the signal is mono-periodic with a frequency equal to the forcing frequency, as expected. The amplitude of this mode is directly obtained from the peak height, provided that the signal contains an integer number of periods of the relevant mode [START_REF] Bergé | L'ordre dans le chaos[END_REF]. Under this condition, the amplitude is four times the height of the peak (here à = 4 × 4.4 = 17.6 µm).

In panels 6c and 6d we have additionally represented a CCI signal and the corresponding spectrum obtained without inlet forcing for the same angle and Reynolds number as in panels 6a and 6b. The spectrum exhibits peaks of very small amplitude (the scale has precise amplitude measurements at several positions along the channel, especially when the growth rate is weak. Figure 7a shows an example of the streamwise spatial evolution of the wave amplitude. Here, ζ is obtained by a fitting from x = 10 to 30 cm. We observe that for x > 30 cm the spatial evolution of the wave amplitude is no longer exponential. The region of exponential growth varies depending on the experimental parameters (inclination angle, Reynolds number, forcing frequency). Accordingly, the amplitude of the inlet excitation is optimized for each experimental run so that the wave amplitude is large enough to be detected over the length of the channel while remaining in the linear regime.

The neutral stability curve fc (Re l ) is determined as follows. The wave amplitude is measured at two locations along the channel (amplitude Ã1 at x1 = 54 cm and amplitude Ã2 at x2 = 63 cm), within the exponential growth region. Fixing β and the forcing frequency f , we compare the two amplitudes for several Reynolds numbers to find the the spatial growth rate is zero and thus Re l = Re cr . To the left of the intersection, the downstream amplitude is smaller than the upstream one ( Ã1 > Ã2 ) and thus the film is stable. To the right of the intersection, the downstream amplitude is larger than the upstream one ( Ã1 < Ã2 ) and thus the film is unstable. This measurement of the critical Reynolds number is performed for several forcing frequencies, thus obtaining different points on the neutral stability curve fc (Re l ). Subsequently, in order to cross-validate these points, the Reynolds number is fixed at the critical value corresponding to a given forcing frequency, and frequencies slightly above and below this value are scanned to verify that the film indeed changes from stable to unstable.

Results

In this section, we present our experimental and numerical linear stability results for three existing fluid combinations: (i) water in contact with air, which we mainly focus on; (ii) aqueous solution of dymethylsulfoxide (DMSO) in contact with air; (iii) aqueous solution of glycerin in contact with air. The fluid properties and the range of variation of the control parameters used for the numerical stability calculations are summarized in tables 3 and 4. 

Unconfined gas phase

We start by validating our temporal linear stability calculations with our experiments in the "unconfined" configuration of figure 4b ( H = 18 mm). We do this comparison for two types of curves: the neutral stability curve fc (Re l ) and the dispersion curve of the spatial growth rate ζ( f ). In the latter case, we use the Gaster transformation (2.22) to transform the temporal growth rate from our numerical calculations into a spatial growth rate.

Figure 8 shows the neutral stability curve fc (Re l ) for an inclination angle of β = 1.69 • .

Therein, different types of symbols, which represent measurements, indicate the stability of the investigated point: downward-pointing triangles for stable, upward-pointing triangles for unstable, and circles for neutral conditions. The solid line corresponds to the stability calculation. We point out that the precision of the inclination angle measurement using the inclinometer was not sufficient to obtain such good agreement between the two data sets. Instead, β, which is the same for all points on the neutral stability curve, was adjusted in the stability calculation until the numerical curve best matched the experimental one.

For the case of figure 8, where the inclinometer measurement yielded β = 1.70 • with a precision of 0.05 • , we computed numerical curves for inclination angles ranging from 1.67 • panels. Agreement between the experimental and numerical dispersion curves confirms that the Gaster transformation is applicable here (see also [START_REF] Brevdo | Linear pulse structure and signalling in a film flow on an inclined plane[END_REF]).

Confined gas phase: aerostatic pressure difference

We now study how the stability of the falling liquid film changes when the gas phase is significantly confined. To quantify the degree of confinement, we use the ratio η (2.7) relating the gap height H and the thickness of the primary film flow h 0 . To quantify the effect of η on film stability, we will compare our stability results with the limiting case of a passive gas (Π µ , Π ρ → 0), where the confinement plays no role. This limit will be denoted with the superscript ∞.

We first study the situation where the gas is subject to an aerostatic pressure gradient. In that case, the gas moves only as a reaction to the film's motion. We start by validating our temporal stability calculations with our own experiments in the confined configuration H = 5.1 mm (panel 4a) and the "unconfined" configuration H = 18 mm (panel 4b) at an inclination angle β = 1.69 • , using water as working liquid.

The two leftmost curves in figure 10 represent the calculated neutral stability curves fc (Re l ) for these two configurations, while symbols represent the corresponding experimental data. Both data sets evidence a clear stabilization of the falling film due to increased confinement of the gas phase (dashed curve, open circles), and their agreement is gratifying.

The dimensional gap height H along the curves in figure 10 is constant, meaning that the relative confinement η changes, as h0 changes with Re l . Nonetheless, a representative value for η can be given for each curve by evaluating it at the critical Reynolds number

Re cr (where the curve intersects the x-axis), i.e. η cr = η(α c = 0), α c being the cut-off wavenumber. The quantity η cr is quite large for the two leftmost curves in figure 10 (η cr > 7), and this explains why the observed confinement-induced stabilization is rather weak (experimental wave amplitudes are reported in figure 24 of appendix C).

However, when decreasing η cr , the confinement-induced stabilization becomes much stronger, as evidenced by the three additional curves in figure 10 obtained from our stability calculations. For example, at η cr = 2.23 (thick solid line), the critical Reynolds number number Re cr , below which the film is always stable, is increased by over 50% compared to the "unconfined" configuration (thin solid line).

This means that the confinement can fully stabilize the Kapitza instability at a given Reynolds number. We now investigate this suppression of the instability in further detail based on our stability calculations. In figure 11a that the unstable range, i.e. where the wavenumber α is smaller than the cut-off value α c (intersection of the curves with c i α = 0) decreases with η and entirely disappears at η = 2. At this point, the Kapitza instability has been fully suppressed.

The critical relative confinement η cr for the suppression of the instability is plotted in figure 12 against the liquid Reynolds number Re l (panel 12a) and the inclination angle β (panel 12b), respectively. We see that it is easier to suppress the falling film instability the smaller Re l and β.

No such curve can be obtained for the remaining control parameter, the Kapitza number Ka, as the onset of the long-wave instability is unaffected by surface tension. Instead, we have plotted in figure 13 the cut-off wavenumber (panel 13a) and the corresponding wave celerity (panel 13b) as a function of η for the three studied liquids, which display a substantial variation of Ka. In both panels, the plotted quantity is related to its value in the limit of a passive gas. We see that the stabilizing effect of confinement is felt earlier for water (Ka = 3592) compared to aqueous solutions of dymethylsulfoxide (Ka = 509.5) and glycerol (Ka = 331.8). Panel 13b shows that the confinement-induced stabilization of the liquid film is accompanied by a decrease of the wave celerity.

Confined gas phase: counter-current flow

We now investigate how confinement affects the stability of the falling liquid film when it is sheared by a counter-current gas flow. For this, we apply an adverse pressure difference ∆p > 0, which is larger than the aerostatic pressure difference ∆p a = Λ sin β.

The strength of the gas flow is quantified by the pressure difference ratio M = ∆p/∆p a . Figure 14 represents stability calculations for a falling water film at β = 3 • and Re l = 23.9. The relative confinement is fixed to η = 3.6 and the adverse pressure difference is increased. Panel 14a shows that increasing the counter-current gas flow increasingly stabilizes the film until the point of fully suppressing the Kapitza instability (dash-dotteddotted line). Panel 14b shows that this stabilization is accompanied by a decrease in wave celerity.

The level of stabilization strongly depends on the inclination angle β, as shown in panels 15a and 15b, which represent contours of the cut-off wavenumber (for Re l = 23.9) and critical Reynolds number related to their aerostatic limit as a function of β and M . At low inclination angles and relatively high adverse pressure gradients, the cut-off wavenumber is reduced by up to 70% with respect to the aerostatic case and the critical Reynolds number is increased by up to 40%.

The dispersion curves in figure 14 exhibit a number of features that seem to contradict the stability results of [START_REF] Alekseenko | Primary instabilities of liquid film flow sheared by turbulent gas stream[END_REF], [START_REF] Vellingiri | Absolute and convective instabilities in counter-current gasliquid film flows[END_REF][START_REF] Trifonov | Instabilities of a gas-liquid flow between two inclined plates analyzed using the NavierStokes equations[END_REF], which were obtained for a weakly-confined turbulent gas flow (η = 24 -260 in [START_REF] Trifonov | Instabilities of a gas-liquid flow between two inclined plates analyzed using the NavierStokes equations[END_REF]). Firstly, increasing the gas flow, monotonically reduces our unstable range of wavenumbers, whereas [START_REF] Vellingiri | Absolute and convective instabilities in counter-current gasliquid film flows[END_REF] and [START_REF] Trifonov | Instabilities of a gas-liquid flow between two inclined plates analyzed using the NavierStokes equations[END_REF] found that the G. Lavalle, Y. Li, S. Mergui, N. Grenier and G. F. Dietze cut-off wavenumber can first decrease and then increase with the gas velocity magnitude.

Secondly, our growth rate is reduced at all wavenumbers, whereas [START_REF] Alekseenko | Primary instabilities of liquid film flow sheared by turbulent gas stream[END_REF] found that increasing the gas velocity magnitude may reduce the cut-off wavenumber but increase the maximal growth rate at the same time. In that case, long waves are amplified and short waves are stabilized.

It turns out that these differences are not due to the laminar gas flow conditions, but to the strong confinement levels studied here. Indeed, for weaker confinement levels, we recover the same qualitative behaviour as [START_REF] Alekseenko | Primary instabilities of liquid film flow sheared by turbulent gas stream[END_REF], [START_REF] Vellingiri | Absolute and convective instabilities in counter-current gasliquid film flows[END_REF][START_REF] Trifonov | Instabilities of a gas-liquid flow between two inclined plates analyzed using the NavierStokes equations[END_REF], notwithstanding that the gas flow is laminar in our case. This is shown in figures 16, where we consider a significantly weaker confinement (η 7). Fig-

ure 16a shows that the cut-off wavenumber (filled circles) now varies non-monotonically with increasing gas flow. Interestingly, this curve displays an additional local maximum in addition to the local minimum reported by [START_REF] Vellingiri | Absolute and convective instabilities in counter-current gasliquid film flows[END_REF] and [START_REF] Trifonov | Instabilities of a gas-liquid flow between two inclined plates analyzed using the NavierStokes equations[END_REF].

In the same graph, we have also plotted the maximally-amplified wavenumber (filled triangles), which varies in the same manner. Panel 16b shows the corresponding curve for the maximum growth rate, which displays only a local minimum.

In panel 16c, we have plotted growth rate dispersion curves for three representative points from panel 16a. In contrast to the dispersion curves in panel 14a (where η = 3.6), we see that increasing the gas flow can now stabilize short waves while amplifying long waves (compare solid and dot-dashed lines), in accordance with [START_REF] Alekseenko | Primary instabilities of liquid film flow sheared by turbulent gas stream[END_REF].

For an even weaker confinement level (η = 9), we find that an increased gas flow can destabilize the film at all wavenumbers, as shown in figure 17a 

Explanation of the stabilization mechanism

To identify the mechanism responsible for the confinement-induced stabilization of the Kapitza instability, we focus on three representative cases for which linear stability data were reported in §4 (the two points marked by plus symbols in figure 11 and the single point also marked by a plus symbol in figure 14). In all three cases, we have Re l = 23.9

and β = 3 • , whereas the conditions for the gas differ as follows: (i) aerostatic gas with weak relative confinement η = 12.4; (ii) aerostatic gas with strong relative confinement η = 3.6; (iii) counter-current gas with Re g = -17.1 and strong relative confinement η = 3.6.

For each case, we evaluate the linear perturbation of different interfacial quantities based on a representative unstable mode fixed by the wavenumber α = 0.0025 (situated on the ascending branch of the growth rate curves in figures 11 and 14). These perturbations can all be expressed in terms of the streamfunction perturbation amplitudes φ and ψ (2.14), which are the eigenfunctions of the Orr-Sommerfeld problem (2.15). For example, the film thickness perturbation h ⋆ (2.20) can be written as:

h ⋆ = ĥ exp[iα(x -ct) + iΘ h ], ĥ = φ Re {1/c} 2 + Im {1/c} 2 , Θ h = arctan [Im {1/c} /Re {1/c}] , (5.1) 
where Θ h designates the phase shift with respect to the stream-function perturbation

(2.14a). Further, we are interested in the perturbed adverse tangential shear stress τ t exerted by the gas on the film surface:

τ t = T t + τ ⋆ t , (5.2) 
where T t < 0 is the tangential interfacial shear stress of the primary flow and the shear stress perturbation τ ⋆ t subsumes the two contributions associated with interfacial quantities defined by the last two terms in (2.18):

τ ⋆ t = τt exp[iα(x -ct) + iΘ τ ], τt = Re {Z τ } 2 + Im {Z τ } 2 , Θ τ = arctan [Im {Z τ } /Re {Z τ }] , Z τ = Π ρ -1 [ φ′′ + U ′′ l φc -1 + α 2 φ],
(5.3)

where the purely real amplitude τt of the perturbation and its phase shift Θ τ follow from the complex amplitude Z τ . Similarly, and with the help of (2.21b), we obtain for the perturbed interfacial gas pressure p ⋆ g :

p ⋆ g = pg exp[iα(x -ct) + iΘ p ], pg = Re {Z p } 2 + Im {Z p } 2 , Θ p = arctan [Im {Z p } /Re {Z p }] , Z p = c ψ′ + U ′ g ψ Z ρ p + Π µ (iαΠ ρ ) -1 ( ψ′′′ -α 2 ψ′ ) Z µ p -cos β φc -1 Z β p , (5.4) 
where the components Z ρ p and Z µ p of the complex amplitude Z p , through (2.21b), can be traced directly to the inertial and viscous contributions in the streamwise momentum equation, whereas Z β p comes from the last term in (2.18).

Figures 18b and18c represent the perturbation profiles of the shear stress (5.3) and pressure (5.4) for the three studied cases, allowing to discern their phase shifts Θ τ -Θ h and Θ p -Θ h with respect to the film thickness perturbation profile (panel 18a). These profiles have been scaled differently for the three cases, in order to facilitate a comparison within the same graph. The respective perturbation amplitudes τt and pg and that of the gas-side normal viscous stress τn are given in table 5. In addition, table 6 compares the weight of the inertial and viscous contributions to the pressure perturbation's phase shift Θ p via the arguments Im Z ρ p /Re {Z p } and Im Z µ p /Re {Z p }.

From these data, we may conclude: (i) the perturbation of the normal viscous stress is negligible compared to that of the pressure; (ii) the perturbation amplitudes τt and pg increase both with confinement and gas velocity; (iii) for strong confinement, the phase shift with respect to the film thickness perturbation is fixed to Θ τ -Θ h ≈ π for the shear stress perturbation and Θ p -Θ h ≈ π/2 for the pressure perturbation, and this does not change significantly when the gas velocity is increased; (iv) for strong confinement, the phase shift Θ p is entirely governed by viscous effects and inertia plays no role.

The Θ p -Θ h ≈ π/2 phase shift of the pressure perturbation means that its second derivative ∂ xx p ⋆ g vanishes at the film thickness extrema. As a result, its effect on stability is neutral, i.e. it neither reinforces nor attenuates the film thickness perturbation. This phase shift follows directly from the dominance of viscous effects in the gas flow, i.e. Im Z µ p ≫ Im Z ρ p . Indeed, in this inertialess limit, the pressure gradient is proportional to one over the third power of the local gas layer thickness (locally developed Poiseuille-Couette flow). Conversely, in the case of inertia-dominated flow, the pressure would be proportional to the square of the local gas velocity (following the Bernoulli equation) and thus its minimum would arise at the maximum of the film thickness perturbation, giving an anti-cyclic (Θ p -Θ h = π) phase shift. This would have a destabilizing effect. However, for our case of strongly-confined gas flow, Θ p -Θ h ≈ π/2 and the pressure perturbation plays no role in determining the state of stability. This is in agreement with [START_REF] Trifonov | Instabilities of a gas-liquid flow between two inclined plates analyzed using the NavierStokes equations[END_REF], who, in his stability analysis, did not find any unstable mode related to the Kelvin-Helmholtz instability for flow conditions similar to those studied here.

Thus, it is the perturbation of the interfacial tangential shear stress that is responsible for the confinement-related stabilization of the falling liquid film, as suggested by [START_REF] Tilley | Linear stability theory of two-layer fluid flow in an inclined channel[END_REF]. In particular, this results from the Θ τ -Θ h ≈ π phase shift of the shear stress perturbation with respect to the film thickness perturbation h ⋆ , which remains virtually unchanged over a wide range of confinement levels and gas velocities (see panels 19a and 19b). Due to this, the adverse tangential shear stress τ t (5.2) is more negative at the wave hump and less negative at the wave trough. This is principally caused by the change in cross section for the gas flow, which is smaller above the wave hump and greater above the wave trough.

So, how does the profile of the tangential stress perturbation τ ⋆ t in figure 18b stabilize the film? First, we recall that the driving mechanism of the Kapitza instability is inertia, which causes the liquid flow rate q l (x, t) to lag behind its inertialess target value:

q(x, t) = -K l h 3 3 + τ t h 2 2 , (5.5)
where K l is defined in (2.9a). Just upstream of the wave hump, where q decreases in time as the wave passes by, the actual flow rate q l is slightly too high, while it is slightly too low just downstream of the hump, where q increases in time. The resulting discrepancy in flow into and out of the hump causes it to grow. The effect is stronger the more the actual flow rate q l lags behind its target value q, and that depends on how steeply q changes within the wavy film.

According to (5.5), the effect of gravity (through the h 3 term in (5.5)) tends to increase variations in q between the wave hump and wave trough as a result of the change in film thickness h. The adverse tangential interfacial stress τ t , through its perturbation τ ⋆ t (figure 18b), counter-acts this effect. Indeed, τ ⋆ t acts to homogenize the flow rate within the film, slowing the flow in the wave hump to a greater extent than underneath the wave trough. This is a direct result of the phase lag observed between the film thickness and the shear stress perturbation (figure 18), and the effect increases with the relevance of the second term in (5.5). We quantify this by considering the linear perturbation amplitude of the inertialess flow rate (5.5) and by evaluating the contributions due to gravity qg (actually, this term also subsumes the effect of pressure) and shear stress qτ :

q = -K l h 2 0 ĥ qg + 1 2 h 2 0 τt + h 0 T t ĥ qτ .
(5.6) Panels (c) and (d ) of figure 19 show that the ratio |q τ /q| increases with confinement and gas velocity, which is in accordance with the increase in stabilization observed in figures 11 and 14.

The tangential shear stress also produces an indirect stabilizing effect. It is known that an adverse interfacial shear stress diminishes the celerity c of surface waves traveling on falling films [START_REF] Alekseenko | Primary instabilities of liquid film flow sheared by turbulent gas stream[END_REF][START_REF] Samanta | Shear-imposed falling film[END_REF]). This can be explicitly shown in the limit of infinitely-long waves (α → 0):

c| α→0 = -K l h 2 0 + T t h 0 .
(5.7)

The wave celerity c determines how fast the flow rate within the film would change in the inertialess limit as a wave passes by and reducing it weakens the inertial instability mechanism. In our stability results (figures 11b and 14b), we have observed c to diminish with increasing confinement and gas velocity, coinciding with an increased stabilization of the film.

Conclusion

Using linear stability calculations and experiments, we have revisited the stability of a falling liquid film flowing down an incline in interaction with a strongly-confined laminar gas flow and subject to the Kapitza instability. The gas is either subject to an aerostatic pressure gradient or flows counter-currently. [START_REF] Tilley | Linear stability theory of two-layer fluid flow in an inclined channel[END_REF] suggested that confining the gas phase should stabilize the Kapitza instability, but concluded that this effect is small for water films in contact with air in the studied parameter range. For the same fluid combination, we have found a parameter range where the confinement-related stabilization is very strong, up to the point of suppressing the Kapitza instability altogether. We have shown that the stabilizing effect of confinement is stronger when the inclination is small (β = 1 • -8 • ) and/or the Reynolds number is small, and we have determined the critical confinement necessary to fully stabilize the film as a function of these two parameters (figure 12). For example, a water film of 0.5 mm thickness flowing down a wall inclined at 3 • can be fully stabilized by placing a confining plate at a distance of 1 mm from the incline. Water films, which have a high Kapitza number, are found to feel earlier the confinement-induced stabilization than other working fluids with lower Kapitza number, such as aqueous solutions of glycerin or dymethylsulfoxide. The suppression of the Kapitza instability is observed both when the gas is subject to an aerostatic pressure gradient and when it flows counter-currently.

In the latter case, at the strong confinement levels we have focused on, the stabilization is monotonically intensified with increasing gas flow velocity and occurs over the entire range of unstable wavenumbers. This is different from observations by Alekseenko et al.

(2009), [START_REF] Vellingiri | Absolute and convective instabilities in counter-current gasliquid film flows[END_REF][START_REF] Trifonov | Instabilities of a gas-liquid flow between two inclined plates analyzed using the NavierStokes equations[END_REF], who found a non-monotonic effect of the gas velocity and an only partial destabilization of the wave spectrum for weaklyconfined turbulent gas flows. We have recovered these results also for the laminar gas flow conditions considered here, when reducing the confinement level. In this context, we have identified a confinement threshold above which the gas destabilizes the film at all wavenumbers (see figure 17).

We have identified the mechanism responsible for the instability suppression. As suggested by [START_REF] Tilley | Linear stability theory of two-layer fluid flow in an inclined channel[END_REF], viscous stresses in the gas play a decisive role. In particular, it is the tangential viscous stress exerted by the gas on the film surface that is decisive. The key of the stabilization mechanism is that there is a phase shift of almost exactly half a wavelength between the film thickness perturbation and the associated shear stress perturbation. Consequently, the adverse shear stress is greater at a wave hump than at a wave trough. This tends to homogenize the local-equilibrium flow rate within the liquid film, thus counter-acting the effect of gravity, which acts to force larger flow rates where the film is thick (wave hump) and smaller ones where the film is thin (wave trough). As a result, the inertia-related lag between the actual local flow rate and its equilibrium value is reduced and this weakens the inertia-driven mechanism of the Kapitza instability.

The stabilization mechanism increases whenever the contribution of the interfacial shear stress in the equilibrium flow rate becomes stronger with respect to that of gravity (and pressure). This is the case when the inclination is weak, the film is thin (Re l is small) and the counter-current gas flow is strong. It is under those conditions that our stability calculations and experiments display the strongest stabilization.

We point out that confining the gas phase also contributes to the observed stabilization through an indirect effect, i.e. by reducing the wave celerity. Reducing the wave speed reduces inertia-induced flow rate imbalances within the liquid film, which again weakens the Kapitza instability. (horizontal pressure-driven two-layer flow with Π ρ = 1) as obtained by [START_REF] Yiantsios | Erratum: "Linear stability of plane Poiseuille flow of two superposed fluids[END_REF], in comparison with our calculations (circles).

Finally, table 7 compares our stability data to those of [START_REF] Yiantsios | Linear stability of plane Poiseuille flow of two superposed fluids[END_REF] and [START_REF] Tilley | Linear stability theory of two-layer fluid flow in an inclined channel[END_REF] for a pressure-driven two-layer flow through a horizontal channel, in the absence of gravity. In addition to the numerical punctual values of table 7, we also present in figure 22 the real and imaginary part of the wave celerity as a function of the wavenumber for the case at Q T = 1.6 and We T = 0.2 (forth and seventh row of table 7). α T Q T We T (cr, ci) T (YH) (cr, ci) T (TDB) (cr, ci)HL -1 (this work) 20 0.32 0.016 (0.399984 , -0.0066148) (0.399986 , -0.0066151) (0.399984 , -0.0066151) 20 0.32 0.008 (0.399992 , -0.0032796) (0.399992 , -0.0032796) (0.399991 , -0.0032798) 20 1.6 0.4

(1.99814 , -0.166982 ) (1.99815 , -0.166982 ) (1.99814 , -0.166982 ) 20 1.6 0.2

(1.99912 , -0.082368 ) (1.99912 , -0.082369 ) (1.99912 , -0.082369 ) 40 0.32 0.008 (0.3999976, -0.003325 ) (0.3999977, -0.003325 ) (0.3999974, -0.003325 ) 40 0.32 0.004 (0.3999988, -0.001658 ) (0.3999989, -0.001658 ) (0.3999985, -0.001658 ) 40 1.6 0.2

(1.99971 , -0.083328 ) (1.99971 , -0.083329 ) (1.99971 , -0.083328 ) 40 1.6 0.1

(1.999858 , -0.04150 ) (1.999859 , -0.04150 ) (1.999857 , -0.04150 ) Table 7. Real and imaginary part of the wave celerity c: Πµ = 1/5, Πρ = 1 and η = 2. Comparison between our work and results of [START_REF] Yiantsios | Linear stability of plane Poiseuille flow of two superposed fluids[END_REF] (table I there) and Tilley et al. (1994) (table I there). Scales used in [START_REF] Tilley | Linear stability theory of two-layer fluid flow in an inclined channel[END_REF] are related to ours as: α T = αHL -1 , (cr, ci) T = (cr, ci)HL -1 , Q T = Re l + Reg, We T = WeHL -1 .

To demonstrate the sensitivity of this comparison w.r. Appendix C. Measured streamwise evolution of the wave-amplitude 

Figure 2 .

 2 Figure2. Base-state velocity profiles for an air-water flow: β = 3 • , η = 2.8 ( H = 1.5 mm). The flat dashed line represents the interface, the solid line the aerostatic case (M = 1 in (2.9)) with Re l = 23.6, whereas the dashed-dotted line the counter-current case (M = 100 in (2.9)) with Re l = 17.1 and Reg = -12.8.

Figure 3 .Figure 4 .

 34 Figure 3. Sketch of the experimental set-up.

Figure 5

 5 Figure 5 displays the streamwise evolution of the time-averaged film thickness hm along the central axis of the channel, in the unconfined configuration. Two wave regimes are represented: (i) a virtually flat film, observed without inlet excitation (empty circles), and (ii) periodically-excited waves, observed with inlet forcing (filled triangles).

Figure 5 .

 5 Figure 5. Streamwise evolution of the time-averaged film thickness hm along the central axis of the channel, with inlet excitation ( f = 4.2 Hz, filled triangles) and without inlet excitation (empty circles). Parameters: β = 1.69 • , Re l = 41.5, unconfined configuration H = 18 mm.

Figure 6 .

 6 Figure 6. Examples of measurement signals with and without inlet forcing: β = 1.69 • , Re l = 34.8, unconfined configuration H = 18 mm. (a) Time trace of the film thickness measured by the CCI system at a fixed longitudinal location x = 63 cm and enlarged inset. Forcing frequency: f = 3 Hz. (b) Corresponding modulus of the discrete Fourier transform. (c) Time evolution of the film thickness without inlet forcing. (d ) Corresponding modulus of the discrete Fourier transform (the scale is divided by 10 compared to panel 6b).

Figure 7 .

 7 Figure 7. Determining the growth rate and stability threshold from experiments. (a) Streamwise evolution of the wave amplitude along the channel ( f = 2.6 Hz, β = 3.05 • , Re l = 34.9, unconfined configuration H = 18 mm). Experimental points (symbols) are fitted using an exponential curve (solid line) in the range x = 10 -30 cm to obtain the spatial growth rate: ζ = 6.3 (1/m) ± 0.4 (1/m). (b) Determination of the critical Reynolds number from the change in wave amplitude at two streamwise locations x1 and x2 when varying Re l ( f = 4.2 Hz, β = 1.69 • , unconfined configuration H = 18 mm). Filled squares: amplitude Ã1 at x1 = 54 cm, empty diamonds: amplitude Ã2 at x2 = 63 cm. The downward triangle marks the intersection, yielding the critical Reynolds number.

Figure 8 .Figure 9 .

 89 Figure 9 compares numerical and experimental data for a larger inclination angle. Panel 9a represents the neutral stability curve for β = 3 • , and panel 9b the dispersion curve of the spatial growth rate for β = 3.08 • and Re l = 31. As experimental data were not acquired on the same day, the precise value of β is slightly different for the two

Figure 10 .

 10 Figure 10. Neutral stability curves of a water film (Ka = 3592) inclined at β = 1.69 • in contact with aerostatic air at different confinement levels ηcr = η(αc = 0). Filled symbols: "unconfined" experiment with ηcr = 25.5 (panel 4b, H = 18 mm); open symbols: confined experiment with ηcr = 7.54 (panel 4a, H = 5.1 mm). Stability calculations are represented with lines. Thin solid: "unconfined" (ηcr = 25.5, H = 18 mm); dashed line: confined at H = 5.1 mm (ηcr = 7.54); dash-dotted line: H = 2.5 mm (ηcr = 3.60); dotted line: H = 2 mm (ηcr = 2.80); thick solid line: H = 1.7 mm (ηcr = 2.23).

Figure 11 .Figure 12 .

 1112 Figure11. Stability calculations for a water film (Ka = 3592) at Re l = 23.9 and β = 3 • in contact with aerostatic air. Effect of confinement on (a) temporal growth rate and (b) wave celerity. Solid line: passive-gas limit; dashed line: η = 3.6; dotted line: η = 2.8; dash-dotted line: η = 2. The + symbol marks data points that will be discussed in §5. The filled and open circles correspond to the cut-off wavenumber αc for the confined and passive-gas configurations.

Figure 13 .

 13 Figure 13. Stabilization due to confinement for different working liquids at Re l = 23.9 and β = 3 • in contact with aerostatic air. (a) Cut-off wavenumber and (b) cut-off wave celerity compared to their passive-gas limits α ∞ c and c ∞ c (open circles in panels 11a and 11b). Solid line: water (Ka = 3592); dashed line: aqueous solution of dymethylsulfoxide at 83.11% by weight (Ka = 509.5); dash-dotted line: aqueous solution of glycerin at 50% by weight (Ka = 331.8).

Figure 14 .

 14 Figure 14. Influence of an increasingly strong counter-current air flow on the stability of a falling water film (Ka = 3592) at β = 3 • , Re l = 23.9 and η = 3.6. (a) Temporal growth rate; (b) wave celerity. Solid line: M = 1 (Reg = 3.0); dashed line: M = 10 (Reg = -0.94); dotted line: M = 25 (Reg = -7.2); dash-dotted line: M = 50 (Reg = -17.1); thick dash-dotted line: M = 70 (Reg = -24.4). The + symbol marks data points that will be discussed in §5. The filled circle in (a) marks the cut-off wavenumber α a c for the aerostatic configuration.

  . Panel 17b, which plots different characteristic points of the growth rate dispersion curve as a function of η, allows to identify the critical confinement at which this transition occurs (η = 8 for Re l = 17 and β = 3 • ). Just before the transition (η = 7.5 -8), the cut-off wavenumber is reduced w.r.t. the aerostatic limit while the maximum growth rate is increased, similarly to what was observed by[START_REF] Alekseenko | Primary instabilities of liquid film flow sheared by turbulent gas stream[END_REF].

Figure 15 .Figure 16 .

 1516 Figure 15. Effect of an increasingly strong counter-current air flow (M = ∆p/∆p a ) on the stability of a falling water film (Ka = 3592) at β = 3 • and η = 2.8. (a) Deviation of the cut-off wavenumber αc from its aerostatic limit α a c at Re l = 23.9; (b) deviation of the critical Reynolds number Recr from its aerostatic limit Re a cr . Darker regions correspond to a greater stabilization.

Figure 17 .

 17 Figure 17. Effect of the relative confinement η on the stability of a falling water film (Ka = 3592) at β = 3 • , Re l = 17 and Reg = -67.5. (a) temporal growth rate. Solid line: M = 1 and η = 9; dashed line: Reg = -67.5 (M = 9.1) and η = 9; (b) deviation of the cut-off wavenumber αc (filled circles), most unstable wavenumber αM (filled triangles) and maximum growth rate (αci)M (filled squares) from their respective aerostatic limits. The grey area marks the unstable region compared to the aerostatic scenario.

Figure 18 .

 18 Figure 18. Water film at β = 3 • : linear perturbation of (a) film thickness (5.1), (b) tangential stress (5.3) and (c) interfacial gas pressure (5.4) associated with a particular eigenmode, i.e. α = 0.0025 (wavelength Λ = 2π/α). Solid line: η = 12.4 aerostatic (M = 1); dashed line: η = 3.6 aerostatic (M = 1); dash-dotted line: η = 3.6 counter-current gas (M = 50). Triangles in panels (b) and (c) mark the location of the maximum. Pressure perturbations are scaled with different coefficients to facilitate the representation: 60 for η = 12.4; 600 for η = 3.6 aerostatic; 1500 for η = 3.6 with M = 50.

Figure 19 .

 19 Figure19. Water film at β = 3 • : phase lag Θτ -Θ h of the perturbations of the film thickness and interfacial tangential shear stress. (a) Variation with η with aerostatic gas (M = 1); (b) variation with M at H = 1.87 mm (η = 3.3 -3.6). Contribution of the interfacial tangential shear stress to the inertialess flow rate (5.6): (c) variation with η under aerostatic gas (M = 1); (d ) variation with M at H = 1.87 mm (η = 3.3 -3.6). The vertical dash-dotted lines mark the three cases represented in figure18; the vertical dashed line in (a) and (c) marks cr = U | h 0 .

Figure 20 .

 20 Figure 20. Comparison of (a) temporal growth rate and (b) angular wave frequency between our work and Brevdo et al. (1999) (figure 2 there). Parameter values: β= 4.6 • , ν l = 5.02 × 10 -6 m 2 s -1 , γ = 69 × 10 -3 N m -1 , ρ l = 1130 kg m -3 , Ka = γ(ρ l g 1/3 ν 4/3 l) -1 = 331.85. Values of the Reynolds number Re B = 3/2Re l : 10 (dashed line), Re B cr = 5/4 cot β (line), 20 (plus), 40 (cross), 60 (empty squares), 100 (empty triangles), 200 (filled triangles). Note that α B , (αcr) B and (αci) B are scaled as in[START_REF] Brevdo | Linear pulse structure and signalling in a film flow on an inclined plane[END_REF], i.e. using the Nusselt film thickness and the free-surface velocity as length and velocity scales.

Figure 20

 20 Figure 20 compares our stability calculations with landmark calculations of Brevdoet al. (1999) for the case of an inclined liquid film falling in a passive atmosphere. We point out that the conditions studied by[START_REF] Brevdo | Linear pulse structure and signalling in a film flow on an inclined plane[END_REF] concern a liquid film flowing in a passive atmosphere (Π µ = Π ρ = 0), whereas in the present work we have considered an active phase.

Figure 21

 21 Figure 21 presents the neutral stability diagram for the long-wave Yih instability

Figure 21 .

 21 Figure 21. Neutral stability diagram for a horizontal pressure-driven two-layer flow with Πρ = 1: comparison of our numerical results (circles) with figure 2b of Yiantsios & Higgins (1989) (lines). Stable regions are denoted by S, unstable regions by U .

  t. the inclination angle, figure 23 shows this comparison for two slightly different values of β, i.e. β = 1.68 • (panel a) and β = 1.70 • (panel b).

Figure 24

 24 Figure24shows the measured streamwise evolution of the wave amplitude along the channel for the "unconfined" (figure4b) and the confined (figure4a) configurations at Re l = 38.7, for the same inlet forcing amplitude and frequency. The film is unstable in both cases. The decrease of the wave amplitude induced by strengthening the confinement (changing η = 22 to η = 6.65) is approximately 7%.

Figure 22 .Figure 23 .Figure 24 .

 222324 Figure 22. (a) Real and (b) imaginary wave celerity c as a function of the wavenumber:Πµ = 1/5, Πρ = 1, η = 2, Q T = 1.6 and We T = 0.2 (same parameters as the forth and seventh row of table 7, whose numerical values corresponding to our calculations are marked with filled circles). Scales used in[START_REF] Tilley | Linear stability theory of two-layer fluid flow in an inclined channel[END_REF] are related to ours as:α T = αHL -1 , (cr, ci) T = (cr, ci)HL -1 , Q T = Re l + Reg, We T = WeHL -1 . (a)

Table 1 .

 1 Range of variation of the control parameters for the experiments.

	Control parameter Notation Domain of variation
	Inclination angle	β	1.69 • and 3.05 •
	Reynolds number Forcing frequency	Re l f	17.7 -41.6 1.8 -8.4 Hz
	Physical property	Notation	Range of variation
	Density Kinematic viscosity	ρ l ν l	997 -999 kg/m 3 8.9 -11.1 × 10 -7 m 2 /s
	Surface tension	γ	71.1 -71.7 mN/m

Chromatic Imaging) technique (Cohen-Sabban et al. 2001). The sensor model used in our experiments (STIL CCS-PRIMA CL4) allows us to detect two interface locations

Table 2 .

 2 Physical properties of water at ambient temperature and their range of variation during our experiments.

Table 3 .

 3 Fluid systemρ l (kg/m 3 ) ρg (kg/m 3 ) ν l (m 2 /s) νg (m 2 /s) γ (mN/m) Physical properties of the fluid systems considered in the numerical stability calculations. The working liquids are: water, an aqueous solution of dymethylsulfoxide (DMSO) at 83.11% by weight, and an aqueous solution of glycerin at 50% by weight. The outer phase is air in all cases.

	Water-air	1000.0	1.185	1.00 × 10 -6 15.58 × 10 -6	76.9
	DMSO(83.11%)-air	1098.3	1.185	2.85 × 10 -6 15.58 × 10 -6	48.4
	Glycerin(50%)-air	1130.0	1.185	5.02 × 10 -6 15.58 × 10 -6	69.0
	Control parameter	Notation Range of variation
	Inclination angle		β	1.65 • -20 •
	Relative confinement		η	1.4 -25.5
	Liquid Reynolds number	Re l	17 -70
	Gas Reynolds number	Reg	-250 -4.8
	Kapitza number		Ka	331.8 -3592

Table 4 .

 4 Range of variation of the control parameters for the numerical stability calculations.

Table 5 .

 5 Ratio between the perturbation amplitudes (computed through (2.18)) of the stresses exerted by an air flow on a water film inclined at β = 3 • with Re l = 23.9: tangential shear stress τt, static pressure pg and normal viscous stress τn. Wavenumber: α = 0.0025.

		η	H (mm) M τt/τ	(η=12.4) t	pg/p	(η=12.4) g	τn/pg
		12.4	6.43	1		1.0	1.0	0.09227
		3.6	1.87	1	5.30231	17.2737	0.00531
		3.6	1.98	50	12.5435	61.1488	0.04583
	η	H (mm) M Im{Z ρ p }/Re{Zp} Im{Z µ p }/Re{Zp} Im{Z β p }/Re{Zp}
	12.4	6.43	1	0.08325		0.99695	0.05462
	3.6	1.87	1	0.04240		14.7428	0.02596
	3.6	1.98	50	0.00324		7.68910	0.00021

Table 6 .

 6 Different contribution to the pressure perturbation's phase shift according to (5.4). Flow conditions as in table 5.
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Appendix A. Numerical validation of the stability code

To validate our two-phase linear stability code numerically, we have compared its predictions to data from the literature for three examples of interfacial instability.