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Abstra
t

There are three di�erent representations for dis
rete planes in a 3-dimensional spa
e whi
h are

often used for geometri
 modeling, image analysis and image re
ognition: dis
rete analyti
al rep-

resentation based on analyti
al geometry, dis
rete morphologi
al representation based on general

topology, and dis
rete 
ombinatorial representation based on 
ombinatorial and algebrai
 topology.

In this paper, we present the equivalen
e relations of the representations and derive some new aspe
ts

of properties for dis
rete planes from the equivalen
e.

1 Introdu
tion

For analysis, re
ognition and modeling of two- or three-dimensional obje
ts for 
omputer imagery, several

shape representations have been introdu
ed and used in di�erent approa
hes and tasks. Ea
h representa-

tion has its own 
hara
teristi
s with 
onsideration on topology or geometry of an obje
t and we sometimes

need some of these 
hara
teristi
s of several di�erent representations simultaneously. For example, we

may need topologi
al properties whi
h give us the guarantee su
h that our obje
t of interest is a 2-manifold

and geometri
 properties whi
h enable us to 
al
ulate the 
urvatures for our shape representation. In this

paper, we fo
us on planes whi
h is one of simple geometri
 obje
ts in a 3-dimensional spa
e and dis
uss

the di�eren
es and relations between several geometri
 and topologi
al representations for su
h planes.

Let Z

3

be the 3-dimensional dis
rete spa
e where Z is the set of all integers. We 
onsider the following

three dis
rete representations in Z

3

for a plane in the 3-dimensional Eu
lidean spa
e R

3

.

1. Dis
rete analyti
al planes (DAP): DAPs were �rst introdu
ed by Reveill�es [12℄. For ea
h

Eu
lidean plane, a DAP is obtained su
h as a set of points in Z

3

whi
h are between two parallel

�
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Eu
lidean planes given by two inequations. Depending on the width between the two Eu
lidean

planes, we have two di�erent types ofDAPs: standard planes (SP) [5℄ and naive planes (NP) [12℄.

The geometri
 and topologi
al properties of DAPs were dis
ussed in [4, 12, 13℄ and [2, 3, 5, 6℄,

respe
tively.

2. Dis
rete morphologi
al planes (DMP): DMPs are based on the de�nition of border points in

general topology and point set theory inR

3

. Any Eu
lidean plane separates Z

3

into two regions. For

one of the regions, we de�ne a set of border points by using one of the 6-, 18- and 26-neighborhood

systems, su
h that the neighborhood of a border point 
ontains at least one point of the 
omplement

of the region. As a set of border points, we obtain a DMP

m

for ea
h m = 6; 18; 26. The de�nitions

of border points of obje
ts in Z

3

and the related dis
ussions are found in [10, 14, 16℄.

3. Dis
rete 
ombinatorial planes (DCP): Similarly to DMP

m

, we 
onstru
t a dis
rete 
ombina-

torial plane DCP

m

for ea
h m = 6; 18; 26 as the 
ombinatorial boundary of a polyhedral 
omplex

for one of the dis
rete regions whi
h are separated by a Eu
lidean plane. In [9℄, we give the de�nition

and the 
onstru
tion algorithm for 
ombinatorial boundaries of obje
ts in Z

3

. Su
h a 
ombinatorial

boundary is 
onsidered to be a triangulation of border points. Thus, DCP

m

s have 
ombinatorial

topologi
al stru
tures.

The DAP is the most similar representation to the analyti
al form of an original Eu
lidean plane

among the above representations. Thus, on
e we have a DAP in Z

3

, we 
an easily obtain the geometri


features su
h as the normal ve
tor of a DAP. The re
ognition problem of a plane for a given set of

points in Z

3

by using a DAP is studied in [4, 6℄. However, it is obvious that we 
annot expli
itly obtain

topologi
al properties of a DAP. Although some topologi
al study for DAPs has been presented in

[2, 3, 5, 6, 12℄, the additional topologi
al tools su
h as the notions of digital topology or 
ombinatorial

topology are ne
essary.

The de�nition of DMPs is one of the simplest 
onstru
tive de�nitions for border points of obje
ts in

Z

3

. It is well known and often used in the �eld of medi
al image analysis. However, a DMP

m


ontain

no 
ombinatorial topologi
al stru
ture; the 
onne
tivity of DMP

m

is studied in [11℄ and it is shown

that DMP

m

is m

0

-
onne
ted for (m;m

0

) = (6; 18); (18; 6); (26;6). In order to have the 
ombinatorial

topologi
al stru
tures, we need to apply an additional triangulation algorithm after obtaining a DMP

m

.

The de�nition of DCPs is also 
onstru
tive, so that DCPs are obtained by tra
king border points of

obje
ts in Z

3

with 
ombinatorial topologi
al stru
tures. In our re
ent work [9℄, we derived the in
lusion

relations between DMP

m

and the set of verti
es of DCP

m

0

whi
h is 
alled the skeleton Sk(DCP

m

0

) for

(m;m

0

) = (6; 18); (6; 26); (18;6); (26;6). There are two type of DAPs: naive planes NP and standard

planes SP. In [8℄, we have shown the equivalen
e relations between NP and either Sk(DCP

18

) or

Sk(DCP

26

).

In this paper, �rst we give the de�nitions of DAP (or SP and NP), DMP and DCP and present
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their properties whi
h have been already obtained by several authors in Se
tions 2, 3 and 4, respe
tively.

We then show the relations of DAP, DMP and DCP su
h as the equivalen
e relations between SP and

DMP

26

,NP andDMP

6

,DMP

26

and Sk(DCP

6

), andDMP

6

and Sk(DCP

26

) in Se
tion 5. From the

equivalen
e relations we su

eed to derive some new aspe
ts of properties for dis
rete planes. In Se
tion 6,

for example, we show that any dis
rete plane is 
on
eivable to be a 2-dimensional 
ombinatorial manifold.

2 Dis
rete Analyti
al Planes

2.1 De�nitions

A plane P in the 3-dimensional Eu
lidean spa
e R

3

is given by an analyti
al form su
h as

P = f(x; y; z) 2 R

3

: ax+ by + 
z + d = 0g (1)

where a; b; 
; d are real numbers. The analyti
al form of dis
rete planes in Z

3

was introdu
ed and studied

by Reveill�es [12℄. The de�nition of dis
rete analyti
al plane with respe
t to P is given by

DAP = f(x; y; z) 2 Z

3

: 0 � ax+ by + 
z + d < wg (2)

where w is the width of DAP. If w = jaj + jbj + j
j, DAP is 
alled a standard plane SP [5℄, and if

w = maxfjaj; jbj; j
jg,DAP is 
alled a naive plane NP [12℄.

2.2 Properties

2.2.1 Conne
tivities

Some digital topologi
al properties su
h as 
onne
tivities of DAPs were 
onsidered by several authors.

In Z

n

for n = 2; 3 the m-neighborhoods are de�ned by

N

m

(x) = fy 2 Z

n

: kx � yk

2

� tg (3)

setting t = 1; 2 for ea
h m = 4; 8 if n = 2, and t = 1; 2; 3 for ea
h m = 6; 18; 26 if n = 3. A subset A � Z

n

is said to be m-
onne
ted if any pair of elements a; b 2 A has a path a

1

= a;a

2

;a

3

; : : : ;a

p

= b su
h

that a

i+1

2N

m

(a

i

) and a

i

2 A for every i = 1; 2; : : : ; p� 1. In two dimensions, dis
rete analyti
al lines

DAL = f(x; y) 2 Z

2

: 0 � ax+ by + 
 < wg

are given similarly toDAP [12℄ and it was shown thatDAL is 4-
onne
ted if w = jaj+jbj and 8-
onne
ted

if w = maxfjaj; jbjg [12℄. For DAPs in three dimensions, Andr�es derived the property su
h that any

NP is 18-
onne
ted without 6-
onne
ted holes [2℄. The following more general properties are also given

in [3℄, with the de�nitions of k-tunnel and k-separating

1

If the 
omplement DAP of DAP in Z

3

is not

1

In [3℄, k is set to be 0;1; 2. In this paper we set k = 26;18;6 instead to avoid the 
onfusion.
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Figure 1: Five bi
ubes for naive planes.

k-
onne
ted, DAP is said to be k-separating for k = 6; 18; 26. Considering the two regions su
h as

A = f(x; y; z) 2 Z

3

: ax+ by + 
z + d < 0g;

B = f(x; y; z) 2 Z

3

: ax+ by + 
z + d � wg;

if there are two k-neighboring points a and b su
h that a 2 A, b 2 B, DAP is said to have a k-tunnel

for k = 6; 18; 26. The 
onne
tivities of SPs are also studied in [5℄.

Property 1 A standard plane SP is tunnel free [3℄, and 6-
onne
ted [3, 5℄.

Property 2 [3℄ A naive plane NP may have 18-tunnel but no 6-tunnel, and is 6-separating, i.e. NP is

18-
onne
ted but not 6-
onne
ted.

2.2.2 Bi
ubes and Tri
ubes for Naive Planes

The geometri
 properties su
h as lo
al 
on�gurations of latti
e points are also investigated in [4, 5, 6, 13℄,

but the properties were obtained only for naive planes NP. Let us 
onsider the 
on�gurations of latti
e

points at lo
al regions whi
h proje
t on the 
oordinate plane z = 0 as a re
tangle whose sizes are �� �.

If � = � = 2, su
h lo
al 
on�gurations are 
alled bi
ubes and if � = � = 3, they are 
alled tri
ubes.

Property 3 [6℄ There exist �ve di�erent bi
ubes in NPs with respe
t to Ps su
h that 0 � a � b � 
,


 > 0 as shown in Figure 1.

Property 4 [6, 13℄ At most four di�erent bi
ubes are 
ontained in an NP.

Property 5 [4℄ There exist forty di�erent tri
ubes in NPs with respe
t to Ps su
h that 0 � a � b � 
,


 > 0 as shown in Figure 2.

Property 6 [13℄ At most nine di�erent tri
ubes are 
ontained in an NP.

Note that bi
ubes and tri
ubes for other NPs with any real numbers a; b; 
; d, whi
h may not satisfy

0 � a � b � 
, 
 > 0, 
an be obtained by rotations of the �ve bi
ubes and forty tri
ubes in Figures 1 and

2. In Se
tion 6, we su

eed to obtain bi
ubes and tri
ubes for standard planes SPs.
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Figure 2: Forty tri
ubes for naive planes.
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2.2.3 Combinatorial Topologi
al Stru
tures

The 
ombinatorial topologi
al properties are also investigated for both SP and NP.

Property 7 [5℄ An SP has the stru
ture of a 2-dimensional 
ombinatorial manifold without boundary,

whose fa
es are squares and verti
es are points in SP.

Property 8 [6℄ An NP has the stru
ture of a 2-dimensional 
ombinatorial manifold without boundary,

whose fa
es are bi
ubes and whose umbrella are tri
ubes.

In Se
tion 6, we also derive the similar properties su
h that SPs and NPs are 2-dimensional 
ombi-

natorial manifolds in a di�erent way from those in [5, 6℄.

3 Dis
rete Morphologi
al Planes

3.1 De�nitions

A plane P of (1) de�nes two half spa
es su
h as

H

�

= f(x; y; z) 2 R

3

: ax+ by + 
z + d � 0g;

H

+

= f(x; y; z) 2 R

3

: ax+ by + 
z + d � 0g

and the digitization of H

�

and H

+

are obtained by

I

�

= f(x; y; z) 2 Z

3

: ax+ by + 
z + d � 0g;

I

+

= f(x; y; z) 2 Z

3

: ax+ by + 
z + d � 0g: (4)

For ea
h of I

�

and I

+

, we 
an de�ne the morphologi
al border by using one of the 6-, 18- and 26-

neighborhood systems of (3). In this paper, we fo
us on I

+

and 
onsider the m-neighborhood border of

I

+

su
h as

DMP

m

= fx 2 I

+

:N

m

(x) \ I

+

6= ;g (5)

for ea
h m = 6; 18; 26 where I

+

is the 
omplement of I

+

in Z

3

. This representation is based on the

de�nition of border points in general topology and point set theory in R

3

. It has been introdu
ed as one

of the 
lassi
al de�nitions for the set of border points of an obje
t in Z

3

. The de�nitions and dis
ussions of

border points for general obje
ts whi
h are not only planar-form but free-form 
an be found in [10, 14, 16℄.

3.2 Properties

The digital topologi
al properties su
h as 
onne
tivities of DMP

m


an be derived in the following. In

[11℄, it has been shown that the m-neighborhood border of any subset V � Z

3

ism

0

-
onne
ted ifV andV
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are m

0

- and m

00

-
onne
ted, respe
tively, where (m;m

0

) = (6; 18); (18; 6); (26;6)

2

and any m

00

= 6; 18; 26.

Be
ause I

+

and I

+

are 
onsidered to be m

0

- and m

00

-
onne
ted for any m

0

;m

00

= 6; 18; 26, we obtain the

following property.

Property 9 A DMP

m

of (5) is m

0

-
onne
ted for the pairs (m;m

0

) = (6; 18); (18; 6); (26; 6).

4 Dis
rete Combinatorial Planes

Similarly to DMPs of (5), we obtain dis
rete 
ombinatorial planes DCP to apply the 
ombinatorial

boundary tra
king algorithm introdu
ed in [9℄ to I

+

of (4). The di�eren
e between DMP and DCP is

that DCP is 
onsidered to be a triangulation ofDMP, or a polygonal de
omposition of DMP. We �rst

give the de�nitions of dis
rete 
onvex polyhedra and dis
rete polyhedral 
omplexes su
h that all verti
es

are points in Z

3

and the adja
ent verti
es are m-neighboring ea
h other for m = 6; 18; 26 by following

the notions of 
ombinatorial topology [1, 15, 17℄. Note that our notions are based on not simplexes [1, 15℄

but 
onvex polyhedra [17℄. We then present the algorithm for 
onstru
tion of dis
rete 
ombinatorial

planes DCP whi
h are 2-dimensional dis
rete polyhedral 
omplexes modifying the algorithm in [9℄. The

details of dis
rete 
onvex polyhedra, dis
rete polyhedral 
omplexes and the algorithm for border tra
king

of general obje
ts in Z

3

are seen in [9℄.

4.1 Dis
rete Convex Polyhedra and Dis
rete Polyhedral Complexes

In R

n

, a 
onvex polyhedron � is the 
onvex hull of a �nite set of points in some R

d

where d � n. The

dimension of � is the dimension of its aÆne hull. An n-dimensional 
onvex polyhedron � is abbreviated

to an n-polyhedron. A linear inequality a � x � z is valid for � if it is satis�ed for all points x 2 �. A

fa
e of � is then de�ned by any set of the form

Æ = � \ fx 2 R

d

: a � x � zg

where a � x � z is valid for �. For example, a point is a 0-polyhedron, a line segment is 1-polyhedron,

a triangle is a 2-polyhedron, and a tetrahedron is a 3-polyhedron. The point of a 0-polyhedron, the

endpoints of a 1-polyhedron and the verti
es of 2- and 3-polyhedra are 
alled the verti
es of 
onvex

polyhedra.

De�nition 1 A polyhedral 
omplex K is a �nite 
olle
tion of 
onvex polyhedra su
h that

1. the empty polyhedron is in K,

2. if � 2K, then all fa
es of � are also in K,

2

Pre
isely, the possible pairs are given su
h as (m;m

0

) = (6;18); (6;26);(18;6); (18;18); (18;26); (26;6); (26;18); (26;26)

in [11℄ due to the in
lusion relations of the 6-, 18- and 26-neighborhoods.
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Table 1: All dis
rete n-polyhedra for n = 0; 1; 2; 3 su
h that the verti
es are all latti
e points in Z

3

and

the adja
ent verti
es are m-neighboring for m = 6; 18; 26.

discrete convex polyhedra
N 6 N18 N26

P8

3

P4b

P6a P6b P6c

P4e P4g P5b P5c

P7

P4c P4d P4e P4g

P5a P5b P5c

P4a P4a P4a P4fP4f

2

1

P3a P3c P3a P3b P3c

P2a P2a P2b P2a P2b P2c

P1

0

dim.

P6a P6b

P6c P8P7

P1 P1

P8

3. the interse
tion � \ � of two 
onvex polyhedra �; � 2K is a fa
e both of � and of � .

The dimension of K is the largest dimension of a 
onvex polyhedron in K.

In Z

3

, we 
onsider all 
onvex polyhedra su
h that the verti
es are all latti
e points and any adja
ent

verti
es are m-neighboring ea
h other for m = 6; 18; 26. We 
all su
h 
onvex polyhedra dis
rete 
onvex

polyhedra. Su
h 
onvex polyhedra are obtained in the following. Let us 
onsider all possible 
onvex

polyhedra in a unit 
ubi
 region su
h that the verti
es of ea
h 
onvex polyhedron are verti
es of a unit


ube. A unit 
ube has eight latti
e points for the verti
es. Ea
h latti
e point is assigned a value of either

1 or 0 and 
alled a 1- or 0-point. There are 256 
on�gurations of 1- and 0-points for the eight latti
e

points in a unit 
ubi
 region whi
h 
an be redu
ed to 23 with 
onsidering the 
ongruent 
on�gurations by

rotations. For ea
h 
on�guration, we obtain a 
onvex polyhedron su
h that the verti
es of the polyhedron

are 1-points. We then 
lassify ea
h 
onvex polyhedron into a set of dis
rete 
onvex polyhedra with the

dimension of n = 0; 1; 2; 3 and with the m-neighborhood relations between the adja
ent verti
es for

m = 6; 18; 26 as shown in Table 1. From Table 1, we see that there are a �nite number of dis
rete 
onvex

polyhedra for ea
h neighborhood system and for ea
h dimension from 0 to 3. For the abbreviation, we


all the n-dimensional dis
rete 
onvex polyhedra in Table 1 dis
rete n-polyhedra hereafter.

In Table 1, we see that every n

0

-dimensional fa
e of any dis
rete n-polyhedron for n

0

< n is also

a dis
rete n

0

-polyhedron for ea
h m-neighborhood system, m = 6; 18; 26. This is important be
ause

it enables us to 
onstru
t a dis
rete polyhedral 
omplex whi
h is a �nite 
olle
tion of dis
rete 
onvex

polyhedra satisfying the three 
onditions in De�nition 1 for ea
h m-neighborhood system. We abbreviate

8



(b)(a)

Figure 3: Examples of (a) a pure dis
rete 3-
omplex and (b) a non-pure dis
rete 3-
omplex for the

26-neighborhood system.

n-dimensional dis
rete polyhedral 
omplexes dis
rete n-
omplexes hereafter.

4.2 Combinatorial Boundaries of Dis
rete Polyhedral Complexes

We give some topologi
al notions for dis
rete polyhedral 
omplexes [1℄. A dis
rete n-
omplex K is said

to be pure if every dis
rete n

0

-polyhedron of K where n

0

< n is a fa
e of some dis
rete n-polyhedron.

Figure 3 illustrates examples of pure and non-pure dis
rete 3-
omplexes for the 26-neighborhood system.

If K

0

is any sub
omplex of K, the 
omplex 
onsisting of all the elements of K

0

and of all the elements

of K ea
h of whi
h is a fa
e of at least one element of K

0

is 
alled the 
ombinatorial 
losure Cl(K

0

) of

K

0

in K.

We 
onsider a dis
rete polyhedral 
omplex C as a topologi
al representation of any subset V �

Z

3

, i.e. a topologi
al spa
e by topologizing V. Be
ause we would like to have 
ombinatorial surfa
e

stru
tures in our boundary representation, we 
onsider a pure dis
rete 3-sub
omplex O � C and de�ne

the 
ombinatorial boundary �O of O. The notion of su
h 
ombinatorial boundary �O is based on

algebrai
 topology [15℄.

De�nition 2 Let O be a pure dis
rete 3-
omplex and G be the set of all dis
rete 2-polyhedra in O ea
h

of whi
h is a fa
e of exa
tly one dis
rete 3-polyhedron in O. The 
ombinatorial boundary of O is de�ned

su
h that

�O = Cl(G):

From De�nition 2, we obtain the following proposition.

Proposition 1 The boundary �O of a pure dis
rete 3-
omplex O is a pure dis
rete 2-sub
omplex of O.

Be
ause dis
rete 
onvex polyhedra are de�ned for ea
h m-neighborhood system where m = 6; 18; 26,

a dis
rete polyhedral 
omplex C, a dis
rete pure 3-polyhedron O and the 
ombinatorial boundary �O

9



Table 2: A 2-dimensional polyhedral 
omplex C

m

(i; j; k) for ea
h of ten possible 
on�gurations H(i; j; k)

of 1- and 0-points for m = 6; 18; 26. In the table, we 
onsider P su
h that 0 � a � b � 
, 
 > 0.

Cm(i,j,k)  
a 1-point
a 0-point

N6

N18

N26

config. of 
1-points

a possible P 

H0 H1 H2 H3 H4 H5 H6 H7 H8 H9

x 
y 

z 

H9’

are also de�ned for ea
h m-neighborhood system. When we insist a m-neighborhood system 
onsidering

for them, they are denoted by C

m

, O

m

and �O

m

instead.

4.3 Constru
tion of Dis
rete Combinatorial Planes by Combinatorial Bound-

ary Tra
king

In [9℄, we show how to 
onstru
t a pure dis
rete 2-
omplex �O

m

from any given subset V � Z

3

for

m = 6; 18; 26. By applying the same algorithm in [9℄ to I

+

of (4) as a subset of Z

3

, we 
an obtain a

dis
rete 
ombinatorial plane DCP

m

whi
h is a pure dis
rete 2-
omplex �O

m

with respe
t to a Eu
lidean

plane P of (1). The details and dis
ussion for general boundary tra
king are found in [9℄.

We assign a value of 1 (resp. 0) to every point in I

+

(resp. the 
omplement I

+

= Z

3

n I

+

), and it

is 
alled a 1-point (resp. a 0-point). Considering a set of 1-points at a unit 
ubi
 region of (i; j; k) 2 Z

3

su
h as

H(i; j; k) = I

+

\ f(x; y; z) 2 Z

3

: i � x � i+ 1; j � y � j + 1; k � z � k + 1g;

the number of all possible 1-point 
on�gurations of H(i; j; k) is ten as shown in the �rst line of Table

2 if we 
onsider Eu
lidean planes Ps of (1) su
h that 0 � a � b � 
, 
 > 0. In Table 2, we also show

a dis
rete polyhedral 
omplex C

m

(i; j; k) with respe
t to ea
h H(i; j; k) su
h that we put as many and

large dis
rete 
onvex polyhedra 
hosen from Table 1 as possible into a unit 
ube and all the verti
es of

dis
rete 
onvex polyhedra are points of H(i; j; k). Note that the 
on�guration H0 appears for H(i; j; k)

whi
h is empty, and thus all points in the unit 
ube are in I

+

. The 
on�guration H9 appears in a unit


ube whose eight points are all in I

+

.

Combining C

m

(i; j; k) for all (i; j; k) 2 Z

3

su
h that

C

m

= [

(i;j;k)2Z

3

C

m

(i; j; k);

10



now we have to prove that C

m

be
omes a dis
rete polyhedral 
omplex, satisfying the 
onditions in

De�nition 1. The proof is obtained in a similar way to the proof for more general 
ases in [9℄. In fa
t this


ase is mu
h simpler than the 
ase in [9℄ be
ause the number of 1-point 
on�gurations is mu
h smaller

than that in [9℄; we have ten in Table 2 while 23 in [9℄. If we 
onsider any pair of adja
ent C

m

(x) and

C

m

(y) su
h that x 2 N

6

(y), then we see that C

m

(x) [C

m

(y) be
omes a dis
rete polyhedral 
omplex

ex
ept for an adja
ent pair of C

18

(i; j; k) of H6 and C

18

(i; j; k+1) of H9. In this 
ase, we have to 
onsider

C

18

(i; j; k+ 1) of H9

0

instead of H9 as shown in Table 2.

Following the pro
edure in [9℄, after obtaining a dis
rete 3-
omplex C

m

, we make a pure dis
rete

3-
omplex O

m

from C

m

. In this paper, we show the following lemma whi
h does not hold generally.

Lemma 1 If we obtain a dis
rete 3-
omplex C

m

for ea
h m = 6; 18; 26 by referring to Table 2 with

respe
t to I

+

, then the relation

C

m

= O

m

always holds.

(Proof) In order to prove this, we have to show that any dis
rete n-polyhedron in C

m

(n < 3) is a

fa
e of some dis
rete 3-polyhedron of C

m

. We �rst 
onsider the 
ase of m = 6. Let us 
onsider a dis
rete

2-polyhedron �

2

in Table 2, for example, H4. From the 1-point 
on�guration H(i; j; k) of H4, we see

that H(i; j; k + 1) 
an be only H9 whi
h has a 3-polyhedron �

3

. Thus �

2

is a fa
e of �

3

; the fa
es of �

2

are also fa
es of �

3

. Similarly, we 
an show that other dis
rete 2-polyhedra of H6, H7 and H8 are also

fa
es of some dis
rete 3-polyhedra of H9 if we 
onsider the possible 1-point 
on�gurations of the adja
ent


ubes. Let us 
onsider dis
rete 1-polyhedra whi
h are not fa
es of dis
rete 2-polyhedra in Table 2, for

example, a dis
rete 1-polyhedron �

1

of H2 From the 1-point 
on�guration H(i; j; k) of H2, we see that

H(i; j; k+1) 
an be only H7 and �

1

is a fa
e of the right-side dis
rete 2-polyhedron �

2

. Su
h �

2

is a fa
e

of some dis
rete 3-polyhedron of H9 as we have already shown in the above. Similarly, we 
an show that

other dis
rete 1-polyhedra of H3, H5 and H6 are also fa
es of some dis
rete 2-polyhedra whi
h are fa
es of

some dis
rete 3-polyhedra of H9. Finally, let us 
onsider dis
rete 0-polyhedra whi
h are not fa
es of any

dis
rete 1-polyhedra in Table 2, su
h as a dis
rete 0-polyhedron �

0

of H1. From the 1-point 
on�guration

H(i; j; k) of H1, we see that H(i; j; k + 1) 
an be H5 or H6 whi
h has a dis
rete 1-polyhedron �

1

su
h

that �

0

is a fa
e of �

1

and �

1

is a fa
e of some dis
rete 3-polyhedron of H9.

Let us 
onsider the 
ases of m = 18; 26. In this 
ase, we need to 
he
k only dis
rete 0-, 1- and 2-

polyhedra of H1, H2, H3 and H4 for m = 18; 26, and H6 only for m = 18. Similarly to the 
ase of m = 6,

we �nd possible 
on�gurations H(i; j; k + 1) adja
ent to H(i; j; k) of H1, H2, H3 and H4: H(i; j; k + 1)


an be only H5 or H6 for H(i; j; k) of H1, H7 for H2, H8 for H3, and H6 or H9 for H4. For H(i; j; k) of

H6 with m = 18, we have the spe
ial 
on�guration H(i; j; k+ 1) of H9

0

. Therefore, all dis
rete 0-, 1- and

2-polyhedra are fa
es of some dis
rete 3-polyhedra. (Q.E.D.)
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Table 3: A pure dis
rete 2-
omplex DCP

m

(i; j; k) for ea
h of ten possible 
on�gurations H(i; j; k) of 1-

and 0-points for m = 6; 18; 26. In the table, we 
onsider P su
h that 0 � a � b � 
, 
 > 0.

DCPm(i,j,k)  
a 1-point
a 0-point

N6

N18

N26

config. of 
1-points

P 

H0 H1 H2 H3 H4 H5 H6 H7 H8 H9

x 
y 

z 

We obtain the 
ombinatorial boundary �O

m

of a pure dis
rete 3-
omplex O

m

following De�nition 2.

From Lemma 1, we 
an obtain �O

m

more easily and dire
tly from I

+

without 
onsidering O

m

or C

m

. As

shown in [9℄, we prepare Table 3 instead of Table 2 for referring a pure dis
rete 2-
omplexDCP

m

(i; j; k)

whi
h 
onstitutes a part of DCP

m

= �O

m

at ea
h unit 
ube of H(i; j; k).

Algorithm 1

input: I

+

.

output: DCP

m

for ea
h m = 6; 18; 26.

begin

1. for ea
h (i; j; k) 2 Z

3

, refer a pure dis
rete 2-
omplex DCP

m

(i; j; k) to Table 3;

2. obtain

DCP

m

= [

(i;j;k)2Z

3

DCP

m

(i; j; k) :

end

4.4 Properties

From Lemma 1, we obtain the next property.

Property 10 A DCP

m

for ea
h m = 6; 18; 26 is uniquely obtained from I

+

by Algorithm 1 and is a

pure dis
rete 2-
omplex.

Let Sk(DCP

m

) be the set of all verti
es of dis
rete 
onvex polyhedra in DCP

m

. By 
omparing

Sk(DCP

m

(i; j; k)) for all m = 6; 18; 26 at ea
h (i; j; k) 2 Z

3

in Table 3, we obtain the following in
lusion

relations; the 
omplete proof is found in [8℄.
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Property 11 For any plane P, we have the in
lusion and equality relation

Sk(DCM

6

) � Sk(DCM

18

) = Sk(DCM

26

):

5 Equivalen
e Relations of Dis
rete Planes

The aim of this se
tion is to prove the following relations of DAP, namely SP and NP, DMP

m

for

m = 6; 18; 26 and DCP

m

0

for m

0

= 6; 18; 26.

Theorem 1 Let us 
onsider SP, NP, DMP

m

for m = 6; 18; 26 and DCP

m

0

for m

0

= 6; 18; 26 with

respe
t to any P. Then we have

SP = DMP

26

= Sk(DCP

6

); (6)

NP = DMP

6

= Sk(DCP

18

) = Sk(DCP

26

): (7)

A part of the above equivalen
e relations has been already proved in [8℄: the equivalen
e relation

between NP and Sk(DCP

26

) (or Sk(DCP

18

)). In this paper, we give a di�erent proof in the following

steps; �rst, we show the equivalen
e relations between DMP

26

and Sk(DCP

6

) and between DMP

6

and Sk(DCP

26

) or Sk(DCP

18

), and then show the equivalen
e relations between SP and DMP

26

, and

between NP and DMP

6

.

5.1 Relations between DMP

m

and DCP

m

0

From Theorem 1 in [9℄, we have

DMP

6

= Sk(DCP

26

) [ (Sk(C

26

) n Sk(O

26

));

DMP

26

= Sk(DCP

6

) [ (Sk(C

6

) n Sk(O

6

)):

From Lemma 1 and Property 11, we obtain the following relations.

Lemma 2 For any plane P, we have

DMP

6

= Sk(DCP

18

) = Sk(DCP

26

);

DMP

26

= Sk(DCP

6

):

5.2 Relations between DAP and DMP

m

Lemma 3 For any plane P, we have

SP = DMP

26

: (8)
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In order to prove this lemma, we need the following lemma.

Lemma 4 For any plane P su
h that 0 � a � b � 
, 
 > 0, if a point (u� 1; v � 1; w � 1) 2 I

+

, then

N

26

(u; v; w) � I

+

:

(Proof) Be
ause (u� 1; v � 1; w� 1) 2 I

+

,

a(u� 1) + b(v � 1) + 
(w � 1) + d � 0

from (4). Setting (u

0

; v

0

; w

0

) 2N

26

(u; v; w), we have u� 1 � u

0

, v � 1 � v

0

, w � 1 � w

0

, thus

au

0

+ bv

0

+ 
w

0

+ d � a(u� 1) + b(v � 1) + 
(w � 1) + d � 0

be
ause a; b; 
 are not negative. (Q.E.D.)

(Proof of Lemma 3) For simpli�
ation, we set w = a + b + 
 for SP of (2) and give the proof for P

su
h that 0 � a � b � 
, 
 > 0. The similar proof is easily derived for other Ps. Let us 
onsider two

Eu
lidean planes P of (1) and

P

0

= f(x; y; z) 2 R

3

: ax+ by + 
z + d = a+ b+ 
g: (9)

We see that SP is a set of latti
e points between P and P

0

. From (1) and (9), it is obvious that a point

(p; q; r) 2 R

3

is on P

0

if (p� 1; q� 1; r� 1) 2 R

3

is on P. Geometri
ally, this means that there is a unit


ube between P and P

0

su
h that the two verti
es (p; q; r) and (p � 1; q � 1; r � 1) of the unit 
ube are

on P and P

0

, respe
tively.

Taking a point (u; v; w) 2 SP, i.e. a point (u; v; w) between P and P

0

(
an be on P but not be on

P

0

), we have

0 � au+ bv + 
w + d < a+ b+ 


from (2). Thus,

�(a + b+ 
) � a(u� 1) + b(v � 1) + 
(w � 1) + d < 0;

so that (u� 1; v � 1; w� 1) 2 I

+

. Be
ause (u� 1; v � 1; w� 1) 2 N

26

(u; v; w), we have

N

26

(u; v; w)\ I

+

6= ; (10)

for any (u; v; w) 2 SP.

Taking a point (u; v; w) 2 I

+

n SP, we have

au+ bw + 
w + d � a+ b+ 
;
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thus

a(u� 1) + b(v � 1) + 
(w � 1) + d � 0:

Therefore we say (u� 1; v � 1; w� 1) 2 I

+

and obtain

N

26

(u; v; w)\ I

+

= ; (11)

for any (u; v; w) 2 I

+

n SP from Lemma 4.

From (10) and (11), we have (8). (Q.E.D.)

Similarly to the above, we show the following lemma for naive planes.

Lemma 5 For any plane P, we have

NP = DMP

6

: (12)

In order to prove this lemma, we need the following lemma.

Lemma 6 For any plane P su
h that 0 � a � b � 
, 
 > 0, if a point (u; v; w � 1) 2 I

+

, then

N

6

(u; v; w) � I

+

:

(Proof) Be
ause (u; v; w� 1) 2 I

+

,

au+ bv + 
(w � 1) + d � 0

from (4), thus

a(u� 1) + bv + 
w + d � au+ b(v � 1) + 
w + d � au+ bv + 
(w � 1) + d � 0

be
ause 0 � a � b � 
. Setting (u

0

; v

0

; w

0

) 2 N

6

(u; v; w), so that u� 1 � u

0

, v � 1 � v

0

, w � 1 � w

0

, we

then obtain

au

0

+ bv

0

+ 
w

0

+ d � au+ bv + 
(w � 1) + d � 0:

(Q.E.D.)

(Proof of Lemma 5) For simpli�
ation, we set w = 
 for NP of (2) and give the proof for P su
h that

0 � a � b � 
, 
 > 0. The similar proof is easily derived for other Ps. Let us 
onsider two Eu
lidean

planes P of (1) and

P

00

= f(x; y; z) 2 R

3

: ax+ by + 
z + d = 
g: (13)

We see that NP is a set of latti
e points between P and P

00

. From (1) and (13), it is obvious that a

point (p; q; r) 2 R

3

is on P

00

if (p; q; r� 1) 2 R

3

is on P.
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Taking a point (u; v; w) 2 NP, i.e. a point (u; v; w) between P and P

00

(
an be on P but not be on

P

00

), we have

0 � au+ bv + 
w + d < 


from (2), thus,

�
 � au+ bv + 
(w � 1) + d < 0;

so that (u; v; w� 1) 2 I

+

. Be
ause (u; v; w� 1) 2 N

6

(u; v; w), we have

N

6

(u; v; w) \ I

+

6= ; (14)

for any (u; v; w) 2NP.

Taking a point (u; v; w) 2 I

+

nNP, we have

au+ bw + 
w + d � 
;

thus

au+ bv + 
(w � 1) + d � 0:

Therefore we say (u� 1; v � 1; w� 1) 2 I

+

and then obtain

N

6

(u; v; w) \ I

+

= ; (15)

for any (u; v; w) 2 I

+

nNP from Lemma 6.

From (14) and (15), we have (12). (Q.E.D.)

6 New Aspe
ts of Properties for Dis
rete Planes

From Theorem 1, all properties whi
h are presented for ea
h of NP, SP, DMP

m

and DCP

m

0

for

m;m

0

= 6; 18; 26 are 
onsidered for any dis
rete planes. Bi
ubes and tri
ubes of Properties 3 and 5 are,

for example, presented for NP. Be
ause NP = Sk(DCP

18

) = Sk(DCP

26

) from Theorem 1, we 
an

obtain dis
rete 
ombinatorial planes DCP

18

and DCP

26

for bi
ubes and tri
ubes as shown in Figure 4

(a) and (b), and Figures 5 and 6. From Table 3, we also know aDCP

6

whi
h 
orresponds to ea
h DCP

18

or DCP

26

for a 1-point 
on�guration at a unit 
ubi
 region. Therefore, we 
an also obtain bi
ubes and

tri
ubes for DCP

6

, namely SP in Figures 4 (
) and 7.

Let K be a polyhedral 
omplex. For ea
h vertex v 2 Sk(K), the sub
omplex 
onsisting of all 
onvex

polyhedra � of K whi
h 
ontain v su
h that v 2 Sk(f�g) is 
alled the star St(v) of v in K [1℄. For ea
h

tri
ube in Figures 5, 6 and 7, we also draw the star of a white vertex whi
h is the 
entral point of the

tri
ube. We then obtain the following property whi
h is similar to Properties 7 and 8.

Property 12 Any DCP

m

for m = 6; 18; 26 is a 2-dimensional 
ombinatorial manifold.
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x
y

z(c)(a) (b)

a point 
in I   +

Figure 4: Dis
rete 
ombinatorial planes DCP

18

(a), DCP

26

(b) and DCP

6

(
) for all �ve bi
ubes in

Figure 1.

The total number of di�erent 
on�gurations of stars is less than the number of tri
ubes, i.e. 40,

be
ause the same 
on�gurations of stars 
learly appear in Figures 5, 6 and 7. Pre
isely, there are 4, 29

and 34 di�erent 
on�gurations of stars for m = 6; 18; 26 respe
tively. The same 4 
on�gurations of stars

for m = 6, i.e. stars for SP, are also presented in [5℄.

7 Con
lusions

In this paper, we 
onsider the three di�erent representations for dis
rete planes in Z

3

, DAP, or SP

and NP, DMP

m

for m = 6; 18; 26 and DCP

m

0

for m

0

= 6; 18; 26 and show their equivalen
e relations

in Theorem 1. Thus, afterwards, we su

eeded to view all properties whi
h had been obtained for ea
h

representation of dis
rete planes as the properties for the other equivalent representations. For example,

bi
ubes and tri
ubes had been presented only for NPs [4, 6℄ and in this paper we extended bi
ubes and

tri
ubes for SPs. In addition, we also su

eeded to show that dis
rete planes are 2-dimensional 
ombi-

natorial manifolds in Property 12, be
ause DCP

m

0

s enable us to investigate 
ombinatorial topologi
al

stru
tures of dis
rete planes.

From the equivalen
e relations, we 
an also transform the representation of a dis
rete plane from one

to another. Therefore, we 
an 
hoose one or more than one representations whose properties are suitable

for our task. For example, given a subset V � Z

3

, let us 
onsider global polyhedrization of V [7℄, i.e.

looking for a 
olle
tion of pie
es of dis
rete planes whose half spa
es 
ontain V su
h that a set of latti
e

points of dis
rete plane pie
es is equivalent to the set of border points of V. The goal of this problem

is to obtain a set of DAPs from V. The pro
edure will be in the following; �rst we extra
t the border

points of V as the initial set whi
h is 
onsidered as a set of DMP

6

s (resp. DMP

26

s), and then ta
kle

the re
ognition problem whi
h 
orresponds to the transformation fromDMP

6

s (resp. DMP

26

s) toNPs

(resp. SPs). The equivalen
e relations guarantee the 
orresponden
e between di�erent representations

of dis
rete planes during su
h transformation.
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