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Abstract

There are three different representations for discrete planes in a 3-dimensional space which are
often used for geometric modeling, image analysis and image recognition: discrete analytical rep-
resentation based on analytical geometry, discrete morphological representation based on general
topology, and discrete combinatorial representation based on combinatorial and algebraic topology.
In this paper, we present the equivalence relations of the representations and derive some new aspects

of properties for discrete planes from the equivalence.

1 Introduction

For analysis, recognition and modeling of two- or three-dimensional objects for computer imagery, several
shape representations have been introduced and used in different approaches and tasks. Each representa-
tion has its own characteristics with consideration on topology or geometry of an object and we sometimes
need some of these characteristics of several different representations simultaneously. For example, we
may need topological properties which give us the guarantee such that our object of interest is a 2-manifold
and geometric properties which enable us to calculate the curvatures for our shape representation. In this
paper, we focus on planes which is one of simple geometric objects in a 3-dimensional space and discuss
the differences and relations between several geometric and topological representations for such planes.
Let Z3 be the 3-dimensional discrete space where Z is the set of all integers. We consider the following

three discrete representations in Z3 for a plane in the 3-dimensional Euclidean space R3.

1. Discrete analytical planes (DAP): DAPs were first introduced by Reveilles [12]. For each

Euclidean plane, a DAP is obtained such as a set of points in Z3 which are between two parallel
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Euclidean planes given by two inequations. Depending on the width between the two FEuclidean
planes, we have two different types of DAPs: standard planes (SP) [5] and naive planes (NP) [12].
The geometric and topological properties of DAPs were discussed in [4, 12, 13] and [2, 3, 5, 6],

respectively.

2. Discrete morphological planes (DMP): DMPs are based on the definition of border points in
general topology and point set theory in R®. Any Euclidean plane separates Z3 into two regions. For
one of the regions, we define a set of border points by using one of the 6-, 18- and 26-neighborhood
systems, such that the neighborhood of a border point contains at least one point of the complement
of the region. As a set of border points, we obtain a DMP,, for each m = 6,18,26. The definitions

of border points of objects in Z3 and the related discussions are found in [10, 14, 16].

3. Discrete combinatorial planes (DCP): Similarly to DMP,,,, we construct a discrete combina-
torial plane DCP,, for each m = 6,18, 26 as the combinatorial boundary of a polyhedral complex
for one of the discrete regions which are separated by a Euclidean plane. In [9], we give the definition
and the construction algorithm for combinatorial boundaries of objects in Z2. Such a combinatorial
boundary is considered to be a triangulation of border points. Thus, DCP,,s have combinatorial

topological structures.

The DAP is the most similar representation to the analytical form of an original Euclidean plane
among the above representations. Thus, once we have a DAP in Z2, we can easily obtain the geometric
features such as the normal vector of a DAP. The recognition problem of a plane for a given set of
points in Z3 by using a DAP is studied in [4, 6]. However, it is obvious that we cannot explicitly obtain
topological properties of a DAP. Although some topological study for DAPs has been presented in
[2, 3, 5, 6, 12], the additional topological tools such as the notions of digital topology or combinatorial
topology are necessary.

The definition of DMPs is one of the simplest constructive definitions for border points of objects in
Z3. Tt is well known and often used in the field of medical image analysis. However, a DMP,,, contain
no combinatorial topological structure; the connectivity of DMP,, is studied in [11] and it is shown
that DMP,, is m/-connected for (m,m’) = (6,18),(18,6),(26,6). In order to have the combinatorial
topological structures, we need to apply an additional triangulation algorithm after obtaining a DMP,,,.

The definition of DCPs 1s also constructive, so that DCPs are obtained by tracking border points of
objects in Z% with combinatorial topological structures. In our recent work [9], we derived the inclusion
relations between DMP,,, and the set of vertices of DCP,,» which is called the skeleton Sk(DCP,,) for
(m,m') = (6,18),(6,26),(18,6),(26,6). There are two type of DAPs: naive planes NP and standard
planes SP. TIn [8], we have shown the equivalence relations between NP and either Sk(DCPg) or
Sk(DCP ).

In this paper, first we give the definitions of DAP (or SP and NP), DMP and DCP and present



their properties which have been already obtained by several authors in Sections 2, 3 and 4, respectively.
We then show the relations of DAP, DMP and DCP such as the equivalence relations between SP and
DMPss, NP and DMPg, DMP3g and Sk(DCPs), and DMPg and Sk(DCP ) in Section 5. From the
equivalence relations we succeed to derive some new aspects of properties for discrete planes. In Section 6,

for example, we show that any discrete plane is conceivable to be a 2-dimensional combinatorial manifold.

2 Discrete Analytical Planes

2.1 Definitions

A plane P in the 3-dimensional Euclidean space R3 is given by an analytical form such as
P={(x,y,2) €ER® : ax+by+cz+d=0} (1)

where «, b, ¢, d are real numbers. The analytical form of discrete planes in Z2 was introduced and studied

by Reveillés [12]. The definition of discrete analytical plane with respect to P is given by
DAP = {(z,y,2) € 2% : 0<ar+by+cz+d < w} (2)

where w is the width of DAP. If w = |a| + |6 + |¢|, DAP is called a standard plane SP [5], and if
w = maz{|al, [b], |c|}, DAP is called a naive plane NP [12].

2.2 Properties
2.2.1 Connectivities

Some digital topological properties such as connectivities of DAPs were considered by several authors.

In Z7” for n = 2,3 the m-neighborhoods are defined by
No(x) ={y € 2" : ||z —y|* <t} (3)

setting ¢t = 1,2 foreach m =4,8ifn =2, and ¢t = 1,2, 3 for each m = 6, 18,26 if n = 3. A subset A C 2"
is said to be m-connected if any pair of elements a@,b € A has a path a; = a,a,a3,...,a, = b such

that a;41 € Ny (a;) and a; € A for every i = 1,2,...,p— 1. In two dimensions, discrete analytical lines
DAL = {(z,y) € 2% : 0 < ax+by+c < w}

are given similarly to DAP [12] and it was shown that DAL is 4-connected if w = |a|+|b| and 8-connected
if w = max{lal,|b|} [12]. For DAPs in three dimensions, Andrés derived the property such that any
NP is 18-connected without 6-connected holes [2]. The following more general properties are also given

in [3], with the definitions of k-tunnel and k-separating! If the complement DAP of DAP in Z? is not

n [3], k is set to be 0,1,2. In this paper we set k = 26,18, 6 instead to avoid the confusion.



U Of A0 0

Figure 1: Five bicubes for naive planes.

k-connected, DAP is said to be k-separating for k = 6, 18, 26. Considering the two regions such as

= {(x,y,2) € 2° ax + by+cz +d < 0},

B = {(v,4,2)€ 2% ax+by+cr+d>w},

if there are two k-neighboring points @ and b such that a € A, b € B, DAP is said to have a k-tunnel
for k = 6,18,26. The connectivities of SPs are also studied in [5].

Property 1 A standard plane SP is tunnel free [3], and 6-connected [3, 5].

Property 2 [3] A naive plane NP may have 18-tunnel but no 6-tunnel, and is 6-separating, i.c. NP is

18-connected but not 6-connected.

2.2.2 Bicubes and Tricubes for Naive Planes

The geometric properties such as local configurations of lattice points are also investigated in [4, 5, 6, 13],
but the properties were obtained only for naive planes NP. Let us consider the configurations of lattice
points at local regions which project on the coordinate plane z = 0 as a rectangle whose sizes are A x p.

If X = p =2, such local configurations are called bicubes and if A = g = 3, they are called tricubes.

Property 3 [6] There exist five different bicubes in NPs with respect to Ps such that 0 < a < b < ¢,

¢ > 0 as shown in Figure 1.
Property 4 [6, 13] At most four different bicubes are contained in an NP.

Property 5 [/] There exist forty different tricubes in NPs with respect to Ps such that 0 < a <b < ¢,

¢ > 0 as shown in Figure 2.
Property 6 [13] At most nine different tricubes are contained in an NP.

Note that bicubes and tricubes for other NPs with any real numbers a, b, ¢, d, which may not satisfy
0 <a<b<e ec>0,can be obtained by rotations of the five bicubes and forty tricubes in Figures 1 and

2. In Section 6, we succeed to obtain bicubes and tricubes for standard planes SPs.
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Figure 2: Forty tricubes for naive planes.



2.2.3 Combinatorial Topological Structures

The combinatorial topological properties are also investigated for both SP and NP.

Property 7 [5] An SP has the structure of a 2-dimensional combinatorial manifold without boundary,

whose faces are squares and vertices are points in SP.

Property 8 [6] An NP has the structure of a 2-dimensional combinatorial manifold without boundary,

whose faces are bicubes and whose umbrella are tricubes.

In Section 6, we also derive the similar properties such that SPs and NPs are 2-dimensional combi-

natorial manifolds in a different way from those in [5, 6].

3 Discrete Morphological Planes

3.1 Definitions

A plane P of (1) defines two half spaces such as

H™ = {(v,9,2) €ER? ax+by+cz+d <0},

HY = {(z,y,2) €R® :az+by+cz+d> 0}
and the digitization of H~ and HY are obtained by

Im = {(z,y,2) € 2% ax +by+cz+d <0},

It = {(z,y,2) € 2% ax +by+cz+d>0}. (4)

For each of I~ and IT, we can define the morphological border by using one of the 6-, 18- and 26-
neighborhood systems of (3). In this paper, we focus on I and consider the m-neighborhood border of
It such as

DMP,, = {x € It : N, (z) N T+ # (i} (5)

for each m = 6,18,26 where It is the complement of I* in Z3. This representation is based on the
definition of border points in general topology and point set theory in R3. It has been introduced as one
of the classical definitions for the set of border points of an object in Z3. The definitions and discussions of

border points for general objects which are not only planar-form but free-form can be found in [10, 14, 16].

3.2 Properties

The digital topological properties such as connectivities of DMP,, can be derived in the following. In

[11], it has been shown that the m-neighborhood border of any subset V' C 23 is m/-connected if V and V'



are m’- and m’’-connected, respectively, where (m,m’) = (6,18), (18, 6), (26,6)% and any m” = 6,18, 26.
Because IT and It are considered to be m/- and m//-connected for any m/, m” = 6,18, 26, we obtain the

following property.

Property 9 A DMP,, of (5) is m'-connected for the pairs (m,m') = (6,18),(18,6), (26,6).

4 Discrete Combinatorial Planes

Similarly to DMPs of (5), we obtain discrete combinatorial planes DCP to apply the combinatorial
boundary tracking algorithm introduced in [9] to It of (4). The difference between DMP and DCP is
that DCP is considered to be a triangulation of DMP, or a polygonal decomposition of DMP. We first
give the definitions of discrete convex polyhedra and discrete polyhedral complexes such that all vertices
are points in Z3 and the adjacent vertices are m-neighboring each other for m = 6,18, 26 by following
the notions of combinatorial topology [1, 15, 17]. Note that our notions are based on not simplexes [1, 15]
but convex polyhedra [17]. We then present the algorithm for construction of discrete combinatorial
planes DCP which are 2-dimensional discrete polyhedral complexes modifying the algorithm in [9]. The
details of discrete convex polyhedra, discrete polyhedral complexes and the algorithm for border tracking

of general objects in Z3 are seen in [9].

4.1 Discrete Convex Polyhedra and Discrete Polyhedral Complexes

In R™, a convex polyhedron ¢ is the convex hull of a finite set of points in some R? where d < n. The
dimension of ¢ is the dimension of its affine hull. An n-dimensional convex polyhedron o is abbreviated
to an n-polyhedron. A linear inequality a - ® < z is valid for ¢ if it is satisfied for all points ® € . A

face of o 1s then defined by any set of the form
§=cn{zcR a x<z}

where a - ® < z is valid for ¢. For example, a point is a 0-polyhedron, a line segment is 1-polyhedron,
a triangle is a 2-polyhedron, and a tetrahedron is a 3-polyhedron. The point of a 0-polyhedron, the
endpoints of a 1-polyhedron and the vertices of 2- and 3-polyhedra are called the vertices of convex

polyhedra.
Definition 1 A polyhedral complex K is a finite collection of conver polyhedra such that
1. the empty polyhedron is in K,

2. if o € K, then all faces of o are also in K,

?Precisely, the possible pairs are given such as (m,m’) = (6,18), (6,26),(18,6), (18,18), (18,26), (26,6), (26,18), (26, 26)

in [11] due to the inclusion relations of the 6-, 18- and 26-neighborhoods.



Table 1: All discrete n-polyhedra for n = 0,1, 2, 3 such that the vertices are all lattice points in Z2 and

the adjacent vertices are m-neighboring for m = 6, 18, 26.

_ discrete convex polyhedra
dim. Nig N26
P1 P1
o Jyui! fyui
P2a P2b P2a P2b P2c
1 fdodp Ao dp dn.
Paay a
z riske ,@
3

3. the intersection o N\ 1 of two convex polyhedra o, 7 € K is a face both of o and of 7.

The dimension of K is the largest dimension of a convex polyhedron in K.

In Z3, we consider all convex polyhedra such that the vertices are all lattice points and any adjacent
vertices are m-neighboring each other for m = 6,18,26. We call such convex polyhedra discrete convex
polyhedra. Such convex polyhedra are obtained in the following. Let us consider all possible convex
polyhedra in a unit cubic region such that the vertices of each convex polyhedron are vertices of a unit
cube. A unit cube has eight lattice points for the vertices. Each lattice point is assigned a value of either
1 or 0 and called a 1- or O-point. There are 256 configurations of 1- and 0-points for the eight lattice
points in a unit cubic region which can be reduced to 23 with considering the congruent configurations by
rotations. For each configuration, we obtain a convex polyhedron such that the vertices of the polyhedron
are 1-points. We then classify each convex polyhedron into a set of discrete convex polyhedra with the
dimension of n = 0,1,2,3 and with the m-neighborhood relations between the adjacent vertices for
m = 6, 18,26 as shown in Table 1. From Table 1, we see that there are a finite number of discrete convex
polyhedra for each neighborhood system and for each dimension from 0 to 3. For the abbreviation, we
call the n-dimensional discrete convex polyhedra in Table 1 discrete n-polyhedra hereafter.

In Table 1, we see that every n’-dimensional face of any discrete n-polyhedron for n’ < n is also
a discrete n/-polyhedron for each m-neighborhood system, m = 6,18,26. This is important because
it enables us to construct a discrete polyhedral complex which is a finite collection of discrete convex

polyhedra satisfying the three conditions in Definition 1 for each m-neighborhood system. We abbreviate



Figure 3: Examples of (a) a pure discrete 3-complex and (b) a non-pure discrete 3-complex for the

26-neighborhood system.

n-dimensional discrete polyhedral complexes discrete n-complexes hereafter.

4.2 Combinatorial Boundaries of Discrete Polyhedral Complexes

We give some topological notions for discrete polyhedral complexes [1]. A discrete n-complex K is said
to be pure if every discrete n’-polyhedron of K where n’ < n is a face of some discrete n-polyhedron.
Figure 3 illustrates examples of pure and non-pure discrete 3-complexes for the 26-neighborhood system.
If Kg is any subcomplex of K, the complex consisting of all the elements of Ky and of all the elements
of K each of which is a face of at least one element of Ky is called the combinatorial closure CI(Kg) of
Ky; in K.

We consider a discrete polyhedral complex C as a topological representation of any subset V C
Z3 i.e. a topological space by topologizing V. Because we would like to have combinatorial surface
structures in our boundary representation, we consider a pure discrete 3-subcomplex O C C and define

the combinatorial boundary dO of O. The notion of such combinatorial boundary JO is based on

algebraic topology [15].

Definition 2 Let O be a pure discrete 3-complex and G be the set of all discrete 2-polyhedra in O each
of which is a face of exactly one discrete 3-polyhedron in O. The combinatorial boundary of O s defined
such that

90 = Cl(G).

From Definition 2, we obtain the following proposition.
Proposition 1 The boundary 0O of a pure discrete 3-complex O is a pure discrete 2-subcomplex of O.

Because discrete convex polyhedra are defined for each m-neighborhood system where m = 6,18, 26,

a discrete polyhedral complex C, a discrete pure 3-polyhedron O and the combinatorial boundary 0O



Table 2: A 2-dimensional polyhedral complex C,, (4, j, k) for each of ten possible configurations H(, j, k)
of 1- and 0-points for m = 6,18,26. In the table, we consider P such that 0 <a <b<¢, ¢ > 0.

Ho H: H: Hs H:« H> Hs H7 Hs Hos

Tt L3 Y LR R SR LI KT R
@@@@@@Iﬁl a

Ns

Nis

Nzs

a 1-point .
o a o-goint @ Cm(ij,k) < a possible

are also defined for each m-neighborhood system. When we insist a m-neighborhood system considering

for them, they are denoted by C,,, O, and 90O, instead.

4.3 Construction of Discrete Combinatorial Planes by Combinatorial Bound-

ary Tracking

In [9], we show how to construct a pure discrete 2-complex 90, from any given subset V. C Z3 for
m = 6,18,26. By applying the same algorithm in [9] to It of (4) as a subset of Z3 we can obtain a
discrete combinatorial plane DCP,,, which is a pure discrete 2-complex 90O,,, with respect to a Euclidean
plane P of (1). The details and discussion for general boundary tracking are found in [9].

We assign a value of 1 (resp. 0) to every point in It (resp. the complement I+ = 23\ It), and it
is called a 1-point (resp. a 0-point). Considering a set of 1-points at a unit cubic region of (i, j, k) € Z3
such as

H(i,j k) =15 0 {(r,9,2) € 2% i<e<i+1,j<y<j+1k<z<k+1},

the number of all possible 1-point configurations of H(Z, j, k) is ten as shown in the first line of Table
2 if we consider Euclidean planes Ps of (1) such that 0 < a < b < ¢, ¢ > 0. In Table 2, we also show
a discrete polyhedral complex Cy, (i, j, k) with respect to each H({, j, k) such that we put as many and
large discrete convex polyhedra chosen from Table 1 as possible into a unit cube and all the vertices of
discrete convex polyhedra are points of H(i, j, k). Note that the configuration HO appears for H(, j, k)
which is empty, and thus all points in the unit cube are in IT. The configuration H9 appears in a unit
cube whose eight points are all in It.
Combining C,, (i, j, k) for all (i, j, k) € Z3 such that

Cm = U Cm ia .ak )
(i,4,k)e2® (3,4 k)

10



now we have to prove that C,, becomes a discrete polyhedral complex, satisfying the conditions in
Definition 1. The proof is obtained in a similar way to the proof for more general cases in [9]. In fact this
case is much simpler than the case in [9] because the number of 1-point configurations is much smaller
than that in [9]; we have ten in Table 2 while 23 in [9]. If we consider any pair of adjacent C,,(#) and
Cp, (y) such that @ € Ng(y), then we see that Cp, () U C,, (y) becomes a discrete polyhedral complex
except for an adjacent pair of Cyg(i, j, k) of H6 and Cy5(4, 7, k+1) of HI. In this case, we have to consider
Cis(i, 4,k + 1) of HY instead of H9 as shown in Table 2.

Following the procedure in [9], after obtaining a discrete 3-complex C,,, we make a pure discrete

3-complex O, from C,,. In this paper, we show the following lemma which does not hold generally.

Lemma 1 If we obtain a discrete 3-complex C,, for each m = 6,18,26 by referring to Table 2 with

respect to I, then the relation

always holds.

(Proof)  In order to prove this, we have to show that any discrete n-polyhedron in C,, (n < 3) is a
face of some discrete 3-polyhedron of C,,,. We first consider the case of m = 6. Let us consider a discrete
2-polyhedron & in Table 2, for example, H4. From the 1-point configuration H(:, j, k) of H4, we see
that H(é,j, k + 1) can be only H9 which has a 3-polyhedron o3. Thus o3 is a face of o3; the faces of o
are also faces of o3. Similarly, we can show that other discrete 2-polyhedra of H6, H7 and HS are also
faces of some discrete 3-polyhedra of H9 if we consider the possible 1-point configurations of the adjacent
cubes. Let us consider discrete 1-polyhedra which are not faces of discrete 2-polyhedra in Table 2, for
example, a discrete 1-polyhedron oy of H2 From the 1-point configuration H(Z, j, k) of H2, we see that
H(é,j, k4 1) can be only H7 and ¢ is a face of the right-side discrete 2-polyhedron 3. Such o5 is a face
of some discrete 3-polyhedron of H9 as we have already shown in the above. Similarly, we can show that
other discrete 1-polyhedra of H3, H5 and H6 are also faces of some discrete 2-polyhedra which are faces of
some discrete 3-polyhedra of H9. Finally, let us consider discrete 0-polyhedra which are not faces of any
discrete 1-polyhedra in Table 2, such as a discrete 0-polyhedron oy of H1. From the 1-point configuration
H(é, j, k) of H1, we see that H(i,j, k + 1) can be H5 or H6 which has a discrete 1-polyhedron ¢y such
that oq is a face of o1 and o is a face of some discrete 3-polyhedron of H9.

Let us consider the cases of m = 18,26. In this case, we need to check only discrete 0-, 1- and 2-
polyhedra of H1, H2, H3 and H4 for m = 18,26, and H6 only for m = 18. Similarly to the case of m = 6,
we find possible configurations H(i, j, k + 1) adjacent to H(é, j, k) of H1, H2, H3 and H4: H(:, j, k+ 1)
can be only Hb or H6 for H(, j, k) of H1, H7 for H2, H8 for H3, and H6 or H9 for H4. For H(:, j, k) of
H6 with m = 18, we have the special configuration H(, j, k + 1) of H9'. Therefore, all discrete 0-, 1- and
2-polyhedra are faces of some discrete 3-polyhedra. (Q.E.D.)

11



Table 3: A pure discrete 2-complex DCP,, (i, j, k) for each of ten possible configurations H(4, j, k) of 1-
and O-points for m = 6,18,26. In the table, we consider P such that 0 < a <b<e¢, ¢> 0.

Ho H: H3 Hs Hs H7 Hs Ho

sl TN
R st isteates T
iR Gtestontts b 0e 8- Sosill
HisGansanam: & & 8 g

® a l-point

S oo IDcPuiijk) <P

We obtain the combinatorial boundary 9O, of a pure discrete 3-complex O,,, following Definition 2.

From Lemma 1, we can obtain @0O,,, more easily and directly from IT without considering O,,, or C,,,. As
shown in [9], we prepare Table 3 instead of Table 2 for referring a pure discrete 2-complex DCP,, (4, j, k)
which constitutes a part of DCP,, = d0,, at each unit cube of H(4, j, k).

Algorithm 1

input: IT.
output: DCP,, for each m = 6,18, 26.

begin

1. for each (i,j, k) € Z3, refer a pure discrete 2-compler DCP,, (i, j, k) to Table 3;

2. obtain

DCP,,= U DCP, (i j k).
(i.d.k)ez?

end
4.4 Properties

From Lemma 1, we obtain the next property.

Property 10 A DCP,, for each m = 6,18,26 s uniquely obtained from It by Algorithm 1 and is a

pure discrete 2-complex.

Let Sk(DCP,,) be the set of all vertices of discrete convex polyhedra in DCP,,. By comparing
Sk(DCP (i, j, k)) for all m = 6, 18,26 at each (7, j, k) € Z3 in Table 3, we obtain the following inclusion

relations; the complete proof is found in [8].

12



Property 11 For any plane P, we have the inclusion and equality relation

Sk(DCMg) D Sk(DCM,s) = Sk(DCM,g).

5 Equivalence Relations of Discrete Planes

The aim of this section is to prove the following relations of DAP, namely SP and NP, DMP,, for
m = 6,18,26 and DCP,,s for m’ = 6,18, 26.

Theorem 1 Let us consider SP, NP, DMP,, for m = 6,18,26 and DCP,,; for m’ = 6,18,26 with

respect to any P. Then we have

SP = DMPy = Sk(DCPy), (6)

NP = DMP; = Sk(DCPis) = Sk(DCPay). (7)

A part of the above equivalence relations has been already proved in [8]: the equivalence relation
between NP and Sk(DCPqg) (or Sk(DCP1g)). In this paper, we give a different proof in the following
steps; first, we show the equivalence relations between DMPys and Sk(DCPs) and between DMPg
and Sk(DCPag) or Sk(DCPs), and then show the equivalence relations between SP and DMPyg, and
between NP and DMPs.

5.1 Relations between DMP,, and DCP,,,

From Theorem 1 in [9], we have

DMPs = Sk(DCPas)U (Sk(Cas) \ Sk(O2)),

DMPss = Sk(DCPg) U (Sk(Cs)\ Sk(Os)).
From Lemma 1 and Property 11, we obtain the following relations.
Lemma 2 For any plane P, we have

DMPs; = Sk(DCPg) = Sk(DCPys),

DMP,; = Sk(DCPs).

5.2 Relations between DAP and DMP,,

Lemma 3 For any plane P, we have

SP = DMP-s. (8)

13



In order to prove this lemma, we need the following lemma.
Lemma 4 For any plane P such that 0 < a <b<¢, ¢ >0, if a point (u—1,v—1,w—1) € I, then

Nog(u, v, w) C IT.

(Proof)  Because (u—1,v—1,w—1) eIt

alu—1)+blv—1)+c(w—1)4+d>0

from (4). Setting (v, v', w') € Nag(u, v, w), we have u — 1 < v/, v — 1< ', w—1 < ', thus
aw' +bv' +ew' +d>alu—1)+blv—1)+c(w—1)+d >0

because a, b, ¢ are not negative. (Q.E.D.)

(Proof of Lemma 3}  For simplification, we set w = a 4+ b + ¢ for SP of (2) and give the proof for P
such that 0 < a < b < ¢, ¢ > 0. The similar proof is easily derived for other Ps. Let us consider two
Euclidean planes P of (1) and

P ={(z,y,2) ER® : ax+by+cz+d=a+b+c}. (9)

We see that SP is a set of lattice points between P and P’. From (1) and (9), it is obvious that a point
(p,q,7) ER¥ison P/ if (p—1,¢g— 1,7 —1) € R3 is on P. Geometrically, this means that there is a unit
cube between P and P’ such that the two vertices (p,¢,7) and (p — 1,4 — 1,7 — 1) of the unit cube are
on P and P’ respectively.

Taking a point (u, v, w) € SP, i.e. a point (u, v, w) between P and P’ (can be on P but not be on
P’), we have

O<au+bv+cw+d<a+b+ec

from (2). Thus,
—(a+b+c)<alu—1)+blv—1)4+c(w—-1)+d <0,

so that (u—1,v—1,w—1) € T+. Because (u — 1,v — 1,w — 1) € Nas(u, v, w), we have
Nog (u, v, w) NI+ £ (10)

for any (u, v, w) € SP.
Taking a point (u,v, w) € I \ SP, we have

av+bw+ecw+d>a+b+c,
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thus
alu—1)+bv—1)+c(w—-1)+d>0.

Therefore we say (u — 1,v — 1, w — 1) € I* and obtain

for any (u,v,w) € I \ SP from Lemma 4.
From (10) and (11), we have (8). (Q.E.D.)

Similarly to the above, we show the following lemma for naive planes.

Lemma 5 For any plane P, we have

NP = DMP;. (12)

In order to prove this lemma, we need the following lemma.
Lemma 6 For any plane P such that 0 < a <b<c¢, ¢ >0, if a point (u,v,w — 1) € I, then

Ne(u,v,w) C IT.

(Proof)  Because (u,v,w—1) €It

au+bv+ec(w—1)+d>0

from (4), thus
alu—D)+bv+ecw+d>au+bv—1)+cwt+d>aut+bv+e(w—1)+d>0

because 0 < a < b < e¢. Setting (v, v, w') € Ng(u,v,w), so that u—1 < ', v —1 <V, w—1<w, we
then obtain

au' +bv' +cw' +d > au+bv+c(w—1)+d > 0.

(Q.E.D.)

(Proof of Lemma 5)  For simplification, we set w = ¢ for NP of (2) and give the proof for P such that
0<a<b<e c¢>0. The similar proof is easily derived for other Ps. Let us consider two Euclidean
planes P of (1) and

P’ = {(x,y,2) ER® : ax +by+cz+d=c}. (13)
We see that NP is a set of lattice points between P and P”. From (1) and (13), it is obvious that a
point (p,q,7) € R? is on P if (p,q,r — 1) € R is on P.
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Taking a point (u,v,w) € NP, i.e. a point (u, v, w) between P and P (can be on P but not be on
P}, we have

O<au+bv+cwt+d<ec

from (2), thus,
—c<aut+bv+c(w—1)+d<0,

so that (u,v,w — 1) € I*. Because (u,v,w — 1) € Ng(u, v, w), we have
Ng(u,v,w) NI+ £ (14)

for any (u, v, w) € NP.
Taking a point (u,v, w) € It \ NP, we have

au+bw+ecw+d> e

thus
au+bv+c(w—1)+d>0.

Therefore we say (v — 1,v—1,w — 1) € I and then obtain

Ng(u,v,w) T+ =@ (15)
for any (u,v,w) € I* \ NP from Lemma 6.
From (14) and (15), we have (12). (Q.E.D.)

6 New Aspects of Properties for Discrete Planes

From Theorem 1, all properties which are presented for each of NP, SP, DMP,, and DCP,,: for
m, m’ = 6,18, 26 are considered for any discrete planes. Bicubes and tricubes of Properties 3 and 5 are,
for example, presented for NP. Because NP = Sk(DCPi5) = Sk(DCP26) from Theorem 1, we can
obtain discrete combinatorial planes DCP1g and DCPsg for bicubes and tricubes as shown in Figure 4
(a) and (b), and Figures 5 and 6. From Table 3, we also know a DCPg which corresponds to each DCP g
or DCPg for a 1-point configuration at a unit cubic region. Therefore, we can also obtain bicubes and
tricubes for DCPg, namely SP in Figures 4 (c) and 7.

Let K be a polyhedral complex. For each vertex v € Sk(K), the subcomplex consisting of all convex
polyhedra ¢ of K which contain v such that v € Sk({c}) is called the star St(v) of v in K [1]. For each
tricube 1n Figures 5, 6 and 7, we also draw the star of a white vertex which is the central point of the

tricube. We then obtain the following property which is similar to Properties 7 and 8.

Property 12 Any DCP,, for m = 6,18,26 is a 2-dimensional combinatorial manifold.

16



Figure 4: Discrete combinatorial planes DCP1g (a), DCPas (b) and DCPs (c) for all five bicubes in

Figure 1.

The total number of different configurations of stars is less than the number of tricubes, 1.e. 40,
because the same configurations of stars clearly appear in Figures 5, 6 and 7. Precisely, there are 4, 29
and 34 different configurations of stars for m = 6, 18, 26 respectively. The same 4 configurations of stars

for m = 6, i.e. stars for SP, are also presented in [5].

7 Conclusions

In this paper, we consider the three different representations for discrete planes in Z2, DAP, or SP
and NP, DMP,,, for m = 6,18,26 and DCP,,. for m’ = 6, 18,26 and show their equivalence relations
in Theorem 1. Thus, afterwards, we succeeded to view all properties which had been obtained for each
representation of discrete planes as the properties for the other equivalent representations. For example,
bicubes and tricubes had been presented only for NPs [4, 6] and in this paper we extended bicubes and
tricubes for SPs. In addition, we also succeeded to show that discrete planes are 2-dimensional combi-
natorial manifolds in Property 12, because DCP,,:s enable us to investigate combinatorial topological
structures of discrete planes.

From the equivalence relations, we can also transform the representation of a discrete plane from one
to another. Therefore, we can choose one or more than one representations whose properties are suitable
for our task. For example, given a subset V. C Z3, let us consider global polyhedrization of V [7], i.e.
looking for a collection of pieces of discrete planes whose half spaces contain V such that a set of lattice
points of discrete plane pieces is equivalent to the set of border points of V. The goal of this problem
is to obtain a set of DAPs from V. The procedure will be in the following; first we extract the border
points of V as the initial set which is considered as a set of DMPgs (resp. DMPags), and then tackle
the recognition problem which corresponds to the transformation from DMPgs (resp. DMPygs) to NPs
(resp. SPs). The equivalence relations guarantee the correspondence between different representations

of discrete planes during such transformation.
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