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Abstrat

There are three di�erent representations for disrete planes in a 3-dimensional spae whih are

often used for geometri modeling, image analysis and image reognition: disrete analytial rep-

resentation based on analytial geometry, disrete morphologial representation based on general

topology, and disrete ombinatorial representation based on ombinatorial and algebrai topology.

In this paper, we present the equivalene relations of the representations and derive some new aspets

of properties for disrete planes from the equivalene.

1 Introdution

For analysis, reognition and modeling of two- or three-dimensional objets for omputer imagery, several

shape representations have been introdued and used in di�erent approahes and tasks. Eah representa-

tion has its own harateristis with onsideration on topology or geometry of an objet and we sometimes

need some of these harateristis of several di�erent representations simultaneously. For example, we

may need topologial properties whih give us the guarantee suh that our objet of interest is a 2-manifold

and geometri properties whih enable us to alulate the urvatures for our shape representation. In this

paper, we fous on planes whih is one of simple geometri objets in a 3-dimensional spae and disuss

the di�erenes and relations between several geometri and topologial representations for suh planes.

Let Z

3

be the 3-dimensional disrete spae where Z is the set of all integers. We onsider the following

three disrete representations in Z

3

for a plane in the 3-dimensional Eulidean spae R

3

.

1. Disrete analytial planes (DAP): DAPs were �rst introdued by Reveill�es [12℄. For eah

Eulidean plane, a DAP is obtained suh as a set of points in Z

3

whih are between two parallel

�
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Eulidean planes given by two inequations. Depending on the width between the two Eulidean

planes, we have two di�erent types ofDAPs: standard planes (SP) [5℄ and naive planes (NP) [12℄.

The geometri and topologial properties of DAPs were disussed in [4, 12, 13℄ and [2, 3, 5, 6℄,

respetively.

2. Disrete morphologial planes (DMP): DMPs are based on the de�nition of border points in

general topology and point set theory inR

3

. Any Eulidean plane separates Z

3

into two regions. For

one of the regions, we de�ne a set of border points by using one of the 6-, 18- and 26-neighborhood

systems, suh that the neighborhood of a border point ontains at least one point of the omplement

of the region. As a set of border points, we obtain a DMP

m

for eah m = 6; 18; 26. The de�nitions

of border points of objets in Z

3

and the related disussions are found in [10, 14, 16℄.

3. Disrete ombinatorial planes (DCP): Similarly to DMP

m

, we onstrut a disrete ombina-

torial plane DCP

m

for eah m = 6; 18; 26 as the ombinatorial boundary of a polyhedral omplex

for one of the disrete regions whih are separated by a Eulidean plane. In [9℄, we give the de�nition

and the onstrution algorithm for ombinatorial boundaries of objets in Z

3

. Suh a ombinatorial

boundary is onsidered to be a triangulation of border points. Thus, DCP

m

s have ombinatorial

topologial strutures.

The DAP is the most similar representation to the analytial form of an original Eulidean plane

among the above representations. Thus, one we have a DAP in Z

3

, we an easily obtain the geometri

features suh as the normal vetor of a DAP. The reognition problem of a plane for a given set of

points in Z

3

by using a DAP is studied in [4, 6℄. However, it is obvious that we annot expliitly obtain

topologial properties of a DAP. Although some topologial study for DAPs has been presented in

[2, 3, 5, 6, 12℄, the additional topologial tools suh as the notions of digital topology or ombinatorial

topology are neessary.

The de�nition of DMPs is one of the simplest onstrutive de�nitions for border points of objets in

Z

3

. It is well known and often used in the �eld of medial image analysis. However, a DMP

m

ontain

no ombinatorial topologial struture; the onnetivity of DMP

m

is studied in [11℄ and it is shown

that DMP

m

is m

0

-onneted for (m;m

0

) = (6; 18); (18; 6); (26;6). In order to have the ombinatorial

topologial strutures, we need to apply an additional triangulation algorithm after obtaining a DMP

m

.

The de�nition of DCPs is also onstrutive, so that DCPs are obtained by traking border points of

objets in Z

3

with ombinatorial topologial strutures. In our reent work [9℄, we derived the inlusion

relations between DMP

m

and the set of verties of DCP

m

0

whih is alled the skeleton Sk(DCP

m

0

) for

(m;m

0

) = (6; 18); (6; 26); (18;6); (26;6). There are two type of DAPs: naive planes NP and standard

planes SP. In [8℄, we have shown the equivalene relations between NP and either Sk(DCP

18

) or

Sk(DCP

26

).

In this paper, �rst we give the de�nitions of DAP (or SP and NP), DMP and DCP and present
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their properties whih have been already obtained by several authors in Setions 2, 3 and 4, respetively.

We then show the relations of DAP, DMP and DCP suh as the equivalene relations between SP and

DMP

26

,NP andDMP

6

,DMP

26

and Sk(DCP

6

), andDMP

6

and Sk(DCP

26

) in Setion 5. From the

equivalene relations we sueed to derive some new aspets of properties for disrete planes. In Setion 6,

for example, we show that any disrete plane is oneivable to be a 2-dimensional ombinatorial manifold.

2 Disrete Analytial Planes

2.1 De�nitions

A plane P in the 3-dimensional Eulidean spae R

3

is given by an analytial form suh as

P = f(x; y; z) 2 R

3

: ax+ by + z + d = 0g (1)

where a; b; ; d are real numbers. The analytial form of disrete planes in Z

3

was introdued and studied

by Reveill�es [12℄. The de�nition of disrete analytial plane with respet to P is given by

DAP = f(x; y; z) 2 Z

3

: 0 � ax+ by + z + d < wg (2)

where w is the width of DAP. If w = jaj + jbj + jj, DAP is alled a standard plane SP [5℄, and if

w = maxfjaj; jbj; jjg,DAP is alled a naive plane NP [12℄.

2.2 Properties

2.2.1 Connetivities

Some digital topologial properties suh as onnetivities of DAPs were onsidered by several authors.

In Z

n

for n = 2; 3 the m-neighborhoods are de�ned by

N

m

(x) = fy 2 Z

n

: kx � yk

2

� tg (3)

setting t = 1; 2 for eah m = 4; 8 if n = 2, and t = 1; 2; 3 for eah m = 6; 18; 26 if n = 3. A subset A � Z

n

is said to be m-onneted if any pair of elements a; b 2 A has a path a

1

= a;a

2

;a

3

; : : : ;a

p

= b suh

that a

i+1

2N

m

(a

i

) and a

i

2 A for every i = 1; 2; : : : ; p� 1. In two dimensions, disrete analytial lines

DAL = f(x; y) 2 Z

2

: 0 � ax+ by +  < wg

are given similarly toDAP [12℄ and it was shown thatDAL is 4-onneted if w = jaj+jbj and 8-onneted

if w = maxfjaj; jbjg [12℄. For DAPs in three dimensions, Andr�es derived the property suh that any

NP is 18-onneted without 6-onneted holes [2℄. The following more general properties are also given

in [3℄, with the de�nitions of k-tunnel and k-separating

1

If the omplement DAP of DAP in Z

3

is not

1

In [3℄, k is set to be 0;1; 2. In this paper we set k = 26;18;6 instead to avoid the onfusion.
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Figure 1: Five biubes for naive planes.

k-onneted, DAP is said to be k-separating for k = 6; 18; 26. Considering the two regions suh as

A = f(x; y; z) 2 Z

3

: ax+ by + z + d < 0g;

B = f(x; y; z) 2 Z

3

: ax+ by + z + d � wg;

if there are two k-neighboring points a and b suh that a 2 A, b 2 B, DAP is said to have a k-tunnel

for k = 6; 18; 26. The onnetivities of SPs are also studied in [5℄.

Property 1 A standard plane SP is tunnel free [3℄, and 6-onneted [3, 5℄.

Property 2 [3℄ A naive plane NP may have 18-tunnel but no 6-tunnel, and is 6-separating, i.e. NP is

18-onneted but not 6-onneted.

2.2.2 Biubes and Triubes for Naive Planes

The geometri properties suh as loal on�gurations of lattie points are also investigated in [4, 5, 6, 13℄,

but the properties were obtained only for naive planes NP. Let us onsider the on�gurations of lattie

points at loal regions whih projet on the oordinate plane z = 0 as a retangle whose sizes are �� �.

If � = � = 2, suh loal on�gurations are alled biubes and if � = � = 3, they are alled triubes.

Property 3 [6℄ There exist �ve di�erent biubes in NPs with respet to Ps suh that 0 � a � b � ,

 > 0 as shown in Figure 1.

Property 4 [6, 13℄ At most four di�erent biubes are ontained in an NP.

Property 5 [4℄ There exist forty di�erent triubes in NPs with respet to Ps suh that 0 � a � b � ,

 > 0 as shown in Figure 2.

Property 6 [13℄ At most nine di�erent triubes are ontained in an NP.

Note that biubes and triubes for other NPs with any real numbers a; b; ; d, whih may not satisfy

0 � a � b � ,  > 0, an be obtained by rotations of the �ve biubes and forty triubes in Figures 1 and

2. In Setion 6, we sueed to obtain biubes and triubes for standard planes SPs.
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Figure 2: Forty triubes for naive planes.
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2.2.3 Combinatorial Topologial Strutures

The ombinatorial topologial properties are also investigated for both SP and NP.

Property 7 [5℄ An SP has the struture of a 2-dimensional ombinatorial manifold without boundary,

whose faes are squares and verties are points in SP.

Property 8 [6℄ An NP has the struture of a 2-dimensional ombinatorial manifold without boundary,

whose faes are biubes and whose umbrella are triubes.

In Setion 6, we also derive the similar properties suh that SPs and NPs are 2-dimensional ombi-

natorial manifolds in a di�erent way from those in [5, 6℄.

3 Disrete Morphologial Planes

3.1 De�nitions

A plane P of (1) de�nes two half spaes suh as

H

�

= f(x; y; z) 2 R

3

: ax+ by + z + d � 0g;

H

+

= f(x; y; z) 2 R

3

: ax+ by + z + d � 0g

and the digitization of H

�

and H

+

are obtained by

I

�

= f(x; y; z) 2 Z

3

: ax+ by + z + d � 0g;

I

+

= f(x; y; z) 2 Z

3

: ax+ by + z + d � 0g: (4)

For eah of I

�

and I

+

, we an de�ne the morphologial border by using one of the 6-, 18- and 26-

neighborhood systems of (3). In this paper, we fous on I

+

and onsider the m-neighborhood border of

I

+

suh as

DMP

m

= fx 2 I

+

:N

m

(x) \ I

+

6= ;g (5)

for eah m = 6; 18; 26 where I

+

is the omplement of I

+

in Z

3

. This representation is based on the

de�nition of border points in general topology and point set theory in R

3

. It has been introdued as one

of the lassial de�nitions for the set of border points of an objet in Z

3

. The de�nitions and disussions of

border points for general objets whih are not only planar-form but free-form an be found in [10, 14, 16℄.

3.2 Properties

The digital topologial properties suh as onnetivities of DMP

m

an be derived in the following. In

[11℄, it has been shown that the m-neighborhood border of any subset V � Z

3

ism

0

-onneted ifV andV
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are m

0

- and m

00

-onneted, respetively, where (m;m

0

) = (6; 18); (18; 6); (26;6)

2

and any m

00

= 6; 18; 26.

Beause I

+

and I

+

are onsidered to be m

0

- and m

00

-onneted for any m

0

;m

00

= 6; 18; 26, we obtain the

following property.

Property 9 A DMP

m

of (5) is m

0

-onneted for the pairs (m;m

0

) = (6; 18); (18; 6); (26; 6).

4 Disrete Combinatorial Planes

Similarly to DMPs of (5), we obtain disrete ombinatorial planes DCP to apply the ombinatorial

boundary traking algorithm introdued in [9℄ to I

+

of (4). The di�erene between DMP and DCP is

that DCP is onsidered to be a triangulation ofDMP, or a polygonal deomposition of DMP. We �rst

give the de�nitions of disrete onvex polyhedra and disrete polyhedral omplexes suh that all verties

are points in Z

3

and the adjaent verties are m-neighboring eah other for m = 6; 18; 26 by following

the notions of ombinatorial topology [1, 15, 17℄. Note that our notions are based on not simplexes [1, 15℄

but onvex polyhedra [17℄. We then present the algorithm for onstrution of disrete ombinatorial

planes DCP whih are 2-dimensional disrete polyhedral omplexes modifying the algorithm in [9℄. The

details of disrete onvex polyhedra, disrete polyhedral omplexes and the algorithm for border traking

of general objets in Z

3

are seen in [9℄.

4.1 Disrete Convex Polyhedra and Disrete Polyhedral Complexes

In R

n

, a onvex polyhedron � is the onvex hull of a �nite set of points in some R

d

where d � n. The

dimension of � is the dimension of its aÆne hull. An n-dimensional onvex polyhedron � is abbreviated

to an n-polyhedron. A linear inequality a � x � z is valid for � if it is satis�ed for all points x 2 �. A

fae of � is then de�ned by any set of the form

Æ = � \ fx 2 R

d

: a � x � zg

where a � x � z is valid for �. For example, a point is a 0-polyhedron, a line segment is 1-polyhedron,

a triangle is a 2-polyhedron, and a tetrahedron is a 3-polyhedron. The point of a 0-polyhedron, the

endpoints of a 1-polyhedron and the verties of 2- and 3-polyhedra are alled the verties of onvex

polyhedra.

De�nition 1 A polyhedral omplex K is a �nite olletion of onvex polyhedra suh that

1. the empty polyhedron is in K,

2. if � 2K, then all faes of � are also in K,

2

Preisely, the possible pairs are given suh as (m;m

0

) = (6;18); (6;26);(18;6); (18;18); (18;26); (26;6); (26;18); (26;26)

in [11℄ due to the inlusion relations of the 6-, 18- and 26-neighborhoods.
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Table 1: All disrete n-polyhedra for n = 0; 1; 2; 3 suh that the verties are all lattie points in Z

3

and

the adjaent verties are m-neighboring for m = 6; 18; 26.

discrete convex polyhedra
N 6 N18 N26

P8

3

P4b

P6a P6b P6c

P4e P4g P5b P5c

P7

P4c P4d P4e P4g

P5a P5b P5c

P4a P4a P4a P4fP4f

2

1

P3a P3c P3a P3b P3c

P2a P2a P2b P2a P2b P2c

P1

0

dim.

P6a P6b

P6c P8P7

P1 P1

P8

3. the intersetion � \ � of two onvex polyhedra �; � 2K is a fae both of � and of � .

The dimension of K is the largest dimension of a onvex polyhedron in K.

In Z

3

, we onsider all onvex polyhedra suh that the verties are all lattie points and any adjaent

verties are m-neighboring eah other for m = 6; 18; 26. We all suh onvex polyhedra disrete onvex

polyhedra. Suh onvex polyhedra are obtained in the following. Let us onsider all possible onvex

polyhedra in a unit ubi region suh that the verties of eah onvex polyhedron are verties of a unit

ube. A unit ube has eight lattie points for the verties. Eah lattie point is assigned a value of either

1 or 0 and alled a 1- or 0-point. There are 256 on�gurations of 1- and 0-points for the eight lattie

points in a unit ubi region whih an be redued to 23 with onsidering the ongruent on�gurations by

rotations. For eah on�guration, we obtain a onvex polyhedron suh that the verties of the polyhedron

are 1-points. We then lassify eah onvex polyhedron into a set of disrete onvex polyhedra with the

dimension of n = 0; 1; 2; 3 and with the m-neighborhood relations between the adjaent verties for

m = 6; 18; 26 as shown in Table 1. From Table 1, we see that there are a �nite number of disrete onvex

polyhedra for eah neighborhood system and for eah dimension from 0 to 3. For the abbreviation, we

all the n-dimensional disrete onvex polyhedra in Table 1 disrete n-polyhedra hereafter.

In Table 1, we see that every n

0

-dimensional fae of any disrete n-polyhedron for n

0

< n is also

a disrete n

0

-polyhedron for eah m-neighborhood system, m = 6; 18; 26. This is important beause

it enables us to onstrut a disrete polyhedral omplex whih is a �nite olletion of disrete onvex

polyhedra satisfying the three onditions in De�nition 1 for eah m-neighborhood system. We abbreviate

8



(b)(a)

Figure 3: Examples of (a) a pure disrete 3-omplex and (b) a non-pure disrete 3-omplex for the

26-neighborhood system.

n-dimensional disrete polyhedral omplexes disrete n-omplexes hereafter.

4.2 Combinatorial Boundaries of Disrete Polyhedral Complexes

We give some topologial notions for disrete polyhedral omplexes [1℄. A disrete n-omplex K is said

to be pure if every disrete n

0

-polyhedron of K where n

0

< n is a fae of some disrete n-polyhedron.

Figure 3 illustrates examples of pure and non-pure disrete 3-omplexes for the 26-neighborhood system.

If K

0

is any subomplex of K, the omplex onsisting of all the elements of K

0

and of all the elements

of K eah of whih is a fae of at least one element of K

0

is alled the ombinatorial losure Cl(K

0

) of

K

0

in K.

We onsider a disrete polyhedral omplex C as a topologial representation of any subset V �

Z

3

, i.e. a topologial spae by topologizing V. Beause we would like to have ombinatorial surfae

strutures in our boundary representation, we onsider a pure disrete 3-subomplex O � C and de�ne

the ombinatorial boundary �O of O. The notion of suh ombinatorial boundary �O is based on

algebrai topology [15℄.

De�nition 2 Let O be a pure disrete 3-omplex and G be the set of all disrete 2-polyhedra in O eah

of whih is a fae of exatly one disrete 3-polyhedron in O. The ombinatorial boundary of O is de�ned

suh that

�O = Cl(G):

From De�nition 2, we obtain the following proposition.

Proposition 1 The boundary �O of a pure disrete 3-omplex O is a pure disrete 2-subomplex of O.

Beause disrete onvex polyhedra are de�ned for eah m-neighborhood system where m = 6; 18; 26,

a disrete polyhedral omplex C, a disrete pure 3-polyhedron O and the ombinatorial boundary �O

9



Table 2: A 2-dimensional polyhedral omplex C

m

(i; j; k) for eah of ten possible on�gurations H(i; j; k)

of 1- and 0-points for m = 6; 18; 26. In the table, we onsider P suh that 0 � a � b � ,  > 0.

Cm(i,j,k)  
a 1-point
a 0-point

N6

N18

N26

config. of 
1-points

a possible P 

H0 H1 H2 H3 H4 H5 H6 H7 H8 H9

x 
y 

z 

H9’

are also de�ned for eah m-neighborhood system. When we insist a m-neighborhood system onsidering

for them, they are denoted by C

m

, O

m

and �O

m

instead.

4.3 Constrution of Disrete Combinatorial Planes by Combinatorial Bound-

ary Traking

In [9℄, we show how to onstrut a pure disrete 2-omplex �O

m

from any given subset V � Z

3

for

m = 6; 18; 26. By applying the same algorithm in [9℄ to I

+

of (4) as a subset of Z

3

, we an obtain a

disrete ombinatorial plane DCP

m

whih is a pure disrete 2-omplex �O

m

with respet to a Eulidean

plane P of (1). The details and disussion for general boundary traking are found in [9℄.

We assign a value of 1 (resp. 0) to every point in I

+

(resp. the omplement I

+

= Z

3

n I

+

), and it

is alled a 1-point (resp. a 0-point). Considering a set of 1-points at a unit ubi region of (i; j; k) 2 Z

3

suh as

H(i; j; k) = I

+

\ f(x; y; z) 2 Z

3

: i � x � i+ 1; j � y � j + 1; k � z � k + 1g;

the number of all possible 1-point on�gurations of H(i; j; k) is ten as shown in the �rst line of Table

2 if we onsider Eulidean planes Ps of (1) suh that 0 � a � b � ,  > 0. In Table 2, we also show

a disrete polyhedral omplex C

m

(i; j; k) with respet to eah H(i; j; k) suh that we put as many and

large disrete onvex polyhedra hosen from Table 1 as possible into a unit ube and all the verties of

disrete onvex polyhedra are points of H(i; j; k). Note that the on�guration H0 appears for H(i; j; k)

whih is empty, and thus all points in the unit ube are in I

+

. The on�guration H9 appears in a unit

ube whose eight points are all in I

+

.

Combining C

m

(i; j; k) for all (i; j; k) 2 Z

3

suh that

C

m

= [

(i;j;k)2Z

3

C

m

(i; j; k);

10



now we have to prove that C

m

beomes a disrete polyhedral omplex, satisfying the onditions in

De�nition 1. The proof is obtained in a similar way to the proof for more general ases in [9℄. In fat this

ase is muh simpler than the ase in [9℄ beause the number of 1-point on�gurations is muh smaller

than that in [9℄; we have ten in Table 2 while 23 in [9℄. If we onsider any pair of adjaent C

m

(x) and

C

m

(y) suh that x 2 N

6

(y), then we see that C

m

(x) [C

m

(y) beomes a disrete polyhedral omplex

exept for an adjaent pair of C

18

(i; j; k) of H6 and C

18

(i; j; k+1) of H9. In this ase, we have to onsider

C

18

(i; j; k+ 1) of H9

0

instead of H9 as shown in Table 2.

Following the proedure in [9℄, after obtaining a disrete 3-omplex C

m

, we make a pure disrete

3-omplex O

m

from C

m

. In this paper, we show the following lemma whih does not hold generally.

Lemma 1 If we obtain a disrete 3-omplex C

m

for eah m = 6; 18; 26 by referring to Table 2 with

respet to I

+

, then the relation

C

m

= O

m

always holds.

(Proof) In order to prove this, we have to show that any disrete n-polyhedron in C

m

(n < 3) is a

fae of some disrete 3-polyhedron of C

m

. We �rst onsider the ase of m = 6. Let us onsider a disrete

2-polyhedron �

2

in Table 2, for example, H4. From the 1-point on�guration H(i; j; k) of H4, we see

that H(i; j; k + 1) an be only H9 whih has a 3-polyhedron �

3

. Thus �

2

is a fae of �

3

; the faes of �

2

are also faes of �

3

. Similarly, we an show that other disrete 2-polyhedra of H6, H7 and H8 are also

faes of some disrete 3-polyhedra of H9 if we onsider the possible 1-point on�gurations of the adjaent

ubes. Let us onsider disrete 1-polyhedra whih are not faes of disrete 2-polyhedra in Table 2, for

example, a disrete 1-polyhedron �

1

of H2 From the 1-point on�guration H(i; j; k) of H2, we see that

H(i; j; k+1) an be only H7 and �

1

is a fae of the right-side disrete 2-polyhedron �

2

. Suh �

2

is a fae

of some disrete 3-polyhedron of H9 as we have already shown in the above. Similarly, we an show that

other disrete 1-polyhedra of H3, H5 and H6 are also faes of some disrete 2-polyhedra whih are faes of

some disrete 3-polyhedra of H9. Finally, let us onsider disrete 0-polyhedra whih are not faes of any

disrete 1-polyhedra in Table 2, suh as a disrete 0-polyhedron �

0

of H1. From the 1-point on�guration

H(i; j; k) of H1, we see that H(i; j; k + 1) an be H5 or H6 whih has a disrete 1-polyhedron �

1

suh

that �

0

is a fae of �

1

and �

1

is a fae of some disrete 3-polyhedron of H9.

Let us onsider the ases of m = 18; 26. In this ase, we need to hek only disrete 0-, 1- and 2-

polyhedra of H1, H2, H3 and H4 for m = 18; 26, and H6 only for m = 18. Similarly to the ase of m = 6,

we �nd possible on�gurations H(i; j; k + 1) adjaent to H(i; j; k) of H1, H2, H3 and H4: H(i; j; k + 1)

an be only H5 or H6 for H(i; j; k) of H1, H7 for H2, H8 for H3, and H6 or H9 for H4. For H(i; j; k) of

H6 with m = 18, we have the speial on�guration H(i; j; k+ 1) of H9

0

. Therefore, all disrete 0-, 1- and

2-polyhedra are faes of some disrete 3-polyhedra. (Q.E.D.)
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Table 3: A pure disrete 2-omplex DCP

m

(i; j; k) for eah of ten possible on�gurations H(i; j; k) of 1-

and 0-points for m = 6; 18; 26. In the table, we onsider P suh that 0 � a � b � ,  > 0.

DCPm(i,j,k)  
a 1-point
a 0-point

N6

N18

N26

config. of 
1-points

P 

H0 H1 H2 H3 H4 H5 H6 H7 H8 H9

x 
y 

z 

We obtain the ombinatorial boundary �O

m

of a pure disrete 3-omplex O

m

following De�nition 2.

From Lemma 1, we an obtain �O

m

more easily and diretly from I

+

without onsidering O

m

or C

m

. As

shown in [9℄, we prepare Table 3 instead of Table 2 for referring a pure disrete 2-omplexDCP

m

(i; j; k)

whih onstitutes a part of DCP

m

= �O

m

at eah unit ube of H(i; j; k).

Algorithm 1

input: I

+

.

output: DCP

m

for eah m = 6; 18; 26.

begin

1. for eah (i; j; k) 2 Z

3

, refer a pure disrete 2-omplex DCP

m

(i; j; k) to Table 3;

2. obtain

DCP

m

= [

(i;j;k)2Z

3

DCP

m

(i; j; k) :

end

4.4 Properties

From Lemma 1, we obtain the next property.

Property 10 A DCP

m

for eah m = 6; 18; 26 is uniquely obtained from I

+

by Algorithm 1 and is a

pure disrete 2-omplex.

Let Sk(DCP

m

) be the set of all verties of disrete onvex polyhedra in DCP

m

. By omparing

Sk(DCP

m

(i; j; k)) for all m = 6; 18; 26 at eah (i; j; k) 2 Z

3

in Table 3, we obtain the following inlusion

relations; the omplete proof is found in [8℄.
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Property 11 For any plane P, we have the inlusion and equality relation

Sk(DCM

6

) � Sk(DCM

18

) = Sk(DCM

26

):

5 Equivalene Relations of Disrete Planes

The aim of this setion is to prove the following relations of DAP, namely SP and NP, DMP

m

for

m = 6; 18; 26 and DCP

m

0

for m

0

= 6; 18; 26.

Theorem 1 Let us onsider SP, NP, DMP

m

for m = 6; 18; 26 and DCP

m

0

for m

0

= 6; 18; 26 with

respet to any P. Then we have

SP = DMP

26

= Sk(DCP

6

); (6)

NP = DMP

6

= Sk(DCP

18

) = Sk(DCP

26

): (7)

A part of the above equivalene relations has been already proved in [8℄: the equivalene relation

between NP and Sk(DCP

26

) (or Sk(DCP

18

)). In this paper, we give a di�erent proof in the following

steps; �rst, we show the equivalene relations between DMP

26

and Sk(DCP

6

) and between DMP

6

and Sk(DCP

26

) or Sk(DCP

18

), and then show the equivalene relations between SP and DMP

26

, and

between NP and DMP

6

.

5.1 Relations between DMP

m

and DCP

m

0

From Theorem 1 in [9℄, we have

DMP

6

= Sk(DCP

26

) [ (Sk(C

26

) n Sk(O

26

));

DMP

26

= Sk(DCP

6

) [ (Sk(C

6

) n Sk(O

6

)):

From Lemma 1 and Property 11, we obtain the following relations.

Lemma 2 For any plane P, we have

DMP

6

= Sk(DCP

18

) = Sk(DCP

26

);

DMP

26

= Sk(DCP

6

):

5.2 Relations between DAP and DMP

m

Lemma 3 For any plane P, we have

SP = DMP

26

: (8)
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In order to prove this lemma, we need the following lemma.

Lemma 4 For any plane P suh that 0 � a � b � ,  > 0, if a point (u� 1; v � 1; w � 1) 2 I

+

, then

N

26

(u; v; w) � I

+

:

(Proof) Beause (u� 1; v � 1; w� 1) 2 I

+

,

a(u� 1) + b(v � 1) + (w � 1) + d � 0

from (4). Setting (u

0

; v

0

; w

0

) 2N

26

(u; v; w), we have u� 1 � u

0

, v � 1 � v

0

, w � 1 � w

0

, thus

au

0

+ bv

0

+ w

0

+ d � a(u� 1) + b(v � 1) + (w � 1) + d � 0

beause a; b;  are not negative. (Q.E.D.)

(Proof of Lemma 3) For simpli�ation, we set w = a + b +  for SP of (2) and give the proof for P

suh that 0 � a � b � ,  > 0. The similar proof is easily derived for other Ps. Let us onsider two

Eulidean planes P of (1) and

P

0

= f(x; y; z) 2 R

3

: ax+ by + z + d = a+ b+ g: (9)

We see that SP is a set of lattie points between P and P

0

. From (1) and (9), it is obvious that a point

(p; q; r) 2 R

3

is on P

0

if (p� 1; q� 1; r� 1) 2 R

3

is on P. Geometrially, this means that there is a unit

ube between P and P

0

suh that the two verties (p; q; r) and (p � 1; q � 1; r � 1) of the unit ube are

on P and P

0

, respetively.

Taking a point (u; v; w) 2 SP, i.e. a point (u; v; w) between P and P

0

(an be on P but not be on

P

0

), we have

0 � au+ bv + w + d < a+ b+ 

from (2). Thus,

�(a + b+ ) � a(u� 1) + b(v � 1) + (w � 1) + d < 0;

so that (u� 1; v � 1; w� 1) 2 I

+

. Beause (u� 1; v � 1; w� 1) 2 N

26

(u; v; w), we have

N

26

(u; v; w)\ I

+

6= ; (10)

for any (u; v; w) 2 SP.

Taking a point (u; v; w) 2 I

+

n SP, we have

au+ bw + w + d � a+ b+ ;
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thus

a(u� 1) + b(v � 1) + (w � 1) + d � 0:

Therefore we say (u� 1; v � 1; w� 1) 2 I

+

and obtain

N

26

(u; v; w)\ I

+

= ; (11)

for any (u; v; w) 2 I

+

n SP from Lemma 4.

From (10) and (11), we have (8). (Q.E.D.)

Similarly to the above, we show the following lemma for naive planes.

Lemma 5 For any plane P, we have

NP = DMP

6

: (12)

In order to prove this lemma, we need the following lemma.

Lemma 6 For any plane P suh that 0 � a � b � ,  > 0, if a point (u; v; w � 1) 2 I

+

, then

N

6

(u; v; w) � I

+

:

(Proof) Beause (u; v; w� 1) 2 I

+

,

au+ bv + (w � 1) + d � 0

from (4), thus

a(u� 1) + bv + w + d � au+ b(v � 1) + w + d � au+ bv + (w � 1) + d � 0

beause 0 � a � b � . Setting (u

0

; v

0

; w

0

) 2 N

6

(u; v; w), so that u� 1 � u

0

, v � 1 � v

0

, w � 1 � w

0

, we

then obtain

au

0

+ bv

0

+ w

0

+ d � au+ bv + (w � 1) + d � 0:

(Q.E.D.)

(Proof of Lemma 5) For simpli�ation, we set w =  for NP of (2) and give the proof for P suh that

0 � a � b � ,  > 0. The similar proof is easily derived for other Ps. Let us onsider two Eulidean

planes P of (1) and

P

00

= f(x; y; z) 2 R

3

: ax+ by + z + d = g: (13)

We see that NP is a set of lattie points between P and P

00

. From (1) and (13), it is obvious that a

point (p; q; r) 2 R

3

is on P

00

if (p; q; r� 1) 2 R

3

is on P.
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Taking a point (u; v; w) 2 NP, i.e. a point (u; v; w) between P and P

00

(an be on P but not be on

P

00

), we have

0 � au+ bv + w + d < 

from (2), thus,

� � au+ bv + (w � 1) + d < 0;

so that (u; v; w� 1) 2 I

+

. Beause (u; v; w� 1) 2 N

6

(u; v; w), we have

N

6

(u; v; w) \ I

+

6= ; (14)

for any (u; v; w) 2NP.

Taking a point (u; v; w) 2 I

+

nNP, we have

au+ bw + w + d � ;

thus

au+ bv + (w � 1) + d � 0:

Therefore we say (u� 1; v � 1; w� 1) 2 I

+

and then obtain

N

6

(u; v; w) \ I

+

= ; (15)

for any (u; v; w) 2 I

+

nNP from Lemma 6.

From (14) and (15), we have (12). (Q.E.D.)

6 New Aspets of Properties for Disrete Planes

From Theorem 1, all properties whih are presented for eah of NP, SP, DMP

m

and DCP

m

0

for

m;m

0

= 6; 18; 26 are onsidered for any disrete planes. Biubes and triubes of Properties 3 and 5 are,

for example, presented for NP. Beause NP = Sk(DCP

18

) = Sk(DCP

26

) from Theorem 1, we an

obtain disrete ombinatorial planes DCP

18

and DCP

26

for biubes and triubes as shown in Figure 4

(a) and (b), and Figures 5 and 6. From Table 3, we also know aDCP

6

whih orresponds to eah DCP

18

or DCP

26

for a 1-point on�guration at a unit ubi region. Therefore, we an also obtain biubes and

triubes for DCP

6

, namely SP in Figures 4 () and 7.

Let K be a polyhedral omplex. For eah vertex v 2 Sk(K), the subomplex onsisting of all onvex

polyhedra � of K whih ontain v suh that v 2 Sk(f�g) is alled the star St(v) of v in K [1℄. For eah

triube in Figures 5, 6 and 7, we also draw the star of a white vertex whih is the entral point of the

triube. We then obtain the following property whih is similar to Properties 7 and 8.

Property 12 Any DCP

m

for m = 6; 18; 26 is a 2-dimensional ombinatorial manifold.
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x
y

z(c)(a) (b)

a point 
in I   +

Figure 4: Disrete ombinatorial planes DCP

18

(a), DCP

26

(b) and DCP

6

() for all �ve biubes in

Figure 1.

The total number of di�erent on�gurations of stars is less than the number of triubes, i.e. 40,

beause the same on�gurations of stars learly appear in Figures 5, 6 and 7. Preisely, there are 4, 29

and 34 di�erent on�gurations of stars for m = 6; 18; 26 respetively. The same 4 on�gurations of stars

for m = 6, i.e. stars for SP, are also presented in [5℄.

7 Conlusions

In this paper, we onsider the three di�erent representations for disrete planes in Z

3

, DAP, or SP

and NP, DMP

m

for m = 6; 18; 26 and DCP

m

0

for m

0

= 6; 18; 26 and show their equivalene relations

in Theorem 1. Thus, afterwards, we sueeded to view all properties whih had been obtained for eah

representation of disrete planes as the properties for the other equivalent representations. For example,

biubes and triubes had been presented only for NPs [4, 6℄ and in this paper we extended biubes and

triubes for SPs. In addition, we also sueeded to show that disrete planes are 2-dimensional ombi-

natorial manifolds in Property 12, beause DCP

m

0

s enable us to investigate ombinatorial topologial

strutures of disrete planes.

From the equivalene relations, we an also transform the representation of a disrete plane from one

to another. Therefore, we an hoose one or more than one representations whose properties are suitable

for our task. For example, given a subset V � Z

3

, let us onsider global polyhedrization of V [7℄, i.e.

looking for a olletion of piees of disrete planes whose half spaes ontain V suh that a set of lattie

points of disrete plane piees is equivalent to the set of border points of V. The goal of this problem

is to obtain a set of DAPs from V. The proedure will be in the following; �rst we extrat the border

points of V as the initial set whih is onsidered as a set of DMP

6

s (resp. DMP

26

s), and then takle

the reognition problem whih orresponds to the transformation fromDMP

6

s (resp. DMP

26

s) toNPs

(resp. SPs). The equivalene relations guarantee the orrespondene between di�erent representations

of disrete planes during suh transformation.
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