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ABSTRACT   

MIR spectroscopy is becoming an increasingly important tool potentially useful for diagnosis
purposes  especially  by  studying  body  fluids.  Indeed,  diseases  induce  changes  in  the
composition of fluids modifying the MIR spectra. However, such changes can be difficult to
capture if the structure of the data is not considered. Our objective was to improve MIR
spectra  analysis  by  using  approximation of  the  spectra  by  B-splines  at  different  specific
resolutions and to combine these spectra representations with a machine learning model to
predict hepatic steatosis  from serum study.  The different resolutions make it  possible to
identify changes in shape over bands of various widths. The multiresolution model helps to
improve the hepatic steatosis prediction compared to conventional approaches where the
absorbances are considered as unstructured variables.  In addition, B-splines provide both
localized and compressed information that can be translated into biochemical terms more
easily than with other classical approximation methods (wavelets, Fourier transforms).

1. Introduction

The  MIR  spectroscopy  is  becoming  an  ever-increasing  tool  to  provide  health  and
environmental companion diagnostics due to its ease of use, lack or few needs for sample
conditioning and automated protocols [1-3]. A major application in health is dedicated to
predictive models intended for rapid, non-invasive diagnostics that can be achieved at the
patient’s bedside within minutes or through a secured transmission line (e-diagnostic) to
benefit UpToDate, evolutive predictive models from some central resource. Such models are
built  from a calibration spectral  data set for  a particular  disease,  such as pre neoplastic
states, septic arthritis [4] or NASH [5]. A typical MIR spectrum is made of about 1600 useful
absorbance values in the 4 000-800 cm-1 frequency range. After different pre-treatments (as
for instance multiplicative scatter correction or derivation and vector normalization) [6], MIR
spectra feed algorithms for identification of discriminant spectral variables by using Genetic
algorithms, Random Forest (RF), and/or Penalized regression.

Raw or derivative spectra are mathematically structured as vectors or matrices where one
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thousand  of  absorbance  values  are  considered  as  distinct  ones  with  no  regard  to  any
information connecting them. Instead, redundancy is emphasized and makes algorithms like
principal component analysis (PCA)  valuable in drastically reducing the spectrum dimension.
Actually, a MIR spectral envelope is made of a linear sum of vibrators, each one featured by
a more or less wide spectral distribution. Consequently, in complex samples such as biofluids
(sera, synovial fluids or cerebro-spinal fluid), the thousands of distinct biomolecules yield
numerous strongly overlapping absorption bands resulting in complex curvatures depending
on intensity,  width and position band parameters.  That  is  why local  tiny changes in the
spectral  envelope  often hold  significant  information  for  diagnostic  purposes  rather  than
discrete  variations  at  any  particular  frequency  position.  To  cope  with  such  a  partial
information,  Dynamic  Network  Biomarkers  (DNB)  have  been  proposed  to  merge  and
correlate  in  a  single  network  all  the  bands  or  spectral  positions  that  are  observed  to
discriminate a particular health status [7,8].

Here  we describe  a  new multi-resolution application  of  the  well-known B-spline [9,  10]
functions to modelize MIR spectra local  curvatures in a way that is close to the wavelet
approaches [11,12], getting rid of the constraints that bear Fourier Transforms that do not
have  local  features  in  its  regular  formulation.  The  underlying  rationale  is  to  no  longer
consider thousands of discrete  individual absorbance values to build a predictive model, a
spectral fingerprint, but rather a network of patterns that locally describe, or approach, the
spectral curvatures at different spectral windows. As quoted previously [13], the ordering of
the variables has significance. The analogy with pictures captured at different resolutions
makes  sense  to  understand  how  the  B-spline  approach  could  bring  different  but
complementary information [14, 10]. The second idea is not to choose a particular resolution
but  rather  to benefit  from the information that  can be gathered from various  (typically
three) spectral resolutions. Low resolution, i.e. wide spectral windows, will be more sensitive
to  “large”  spectral  variations  i.e. low frequencies,  whereas  high  resolution will  be  more
sensitive to very local intensity changes i.e high frequencies. As each B-spline can be defined
by a unique coefficient that wears all the information of the local curvature, the pattern, in
the considered frequency span, regression algorithms can be fed from these coefficients to
identify the relevant frequency domains of the biological signature. Such an approach has
been  successfully  used  in  Humans  and  rodent  models  for  Metabolic  syndrome  and
NonAlcoholic Steatohepatitis (NASH) determination.

Thus this note presents a spectral characterization of MIR spectrum variations and how the
B-splines fit the corresponding structure of the signal and finally the improvement of the
method in establishing a diagnostic is demonstrated from a MIR data set earlier published. 

2. Material and Methods

Data set

Data set was previously used and published [15]. Briefly, it described the liver steatosis stage
of 68 mice with its corresponding MIR serum. Steatosis has been evaluated histologically
with  two  different  scores:  expansion  of  micro-vacuolar  steatosis  and  macro-vacuolar
steatosis. Both parameters are returned in percentage of expansion compared to the global
liver surface. NAFLD (steatosis) is clinically defined as positive when macro-vacuole of lipids
are present in the liver even in small percentages [16]. In this case, we chose a very low
threshold (> 1.5%) to detect all mice presenting steatosis. Then, the NAFLD stage is specified
by a higher  threshold of macro-steatosis (> 5%). 
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Signal analysis

The signal used for health status fingerprinting is presented (Fig. 1). Usually, the analyzed
signal is the MIR second derivative spectrum, smoothed and vector normalized [6]. Fig. 1
presents a typical MIR raw spectrum along with its inverted second derivative (D2). This pre-
treatment is useful  in emphasizing spectral  shoulders that originate in band overlapping.
Therefore  the  second  derivative  contains  all  the  information  about  the  molecular
composition, meaning functional biochemical groups, present in the studied samples. 

Figure 1. Typical serum MIR spectrum with its second derivative (inverted)

A MIR spectrum results from the linear combination of absorption bands that can be fitted
as  Voigtian distributions that  are  themselves  a  convolution of  a  Lorentzian  band with a
gaussian factor to consider the chemical and physical environment of any vibrator [17]. Fig. 2
shows  an  example  of  such  a  spectral  decomposition  in  the  1300-1800  cm -1 frequency
domain. Such a spectrum displays the importance to focus on band widths and overlaps.
Obviously, the small variations within those bands impose tiny changes in the D2 spectral
curvatures. The boxplot on the right of Fig. 2 shows the distribution of Full Width at Half
Maximum (FWHM) of the 11 recovered bands from spectral curve fitting. The band’s width
distribution median is 32 cm-1 (mean = 31 ± 10 cm-1). 

Figure2. MIR Spectrum (red)  decomposition as a linear sum of voigtians (blue).

Model set-up

MIR spectra were pre-processed in the 3500-800 cm−1 frequency domain. Second derivatives
were calculated, smoothed using a 13-point Savitzky–Golay algorithm, and normalized by
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vector normalization over the whole spectral  range.  A principal  component analysis  was
performed on the set of MIR spectra. The 1st plan individual plot shows that there was no
outlier. Results are provided in supplement material (Figure S1). Random Forest (RF) models
are  fitted for  hepatic steatosis  prediction.  Cross-validation was used in  this  study.  More
precisely, the model fitting was repeated 30 times. At each iteration, 85% of the data set was
used to learn the model. Then, the remaining 15% was used to validate the model.  The
algorithm performance was evaluated by the Area Under Receiver Operating Characteristic
(AUROC)  from  the  30  validation  sets.  Boxplots  of  AUROC  are  plotted  to  highlight  the
variability of the model validation on an independent set. Significant variables were selected
as the most important variables returned by the RF (computed as the mean decrease in Gini
index) and used as the biochemical signature of each mouse serum.

When spectra are used in prediction models, a dimension reduction usually helps to improve
the performances [9].  One simple and effective solution to reduce the dimension of  the
spectral data set while preserving the important variation scales is to replace each curve by
B-spline approximations. The approximation is a piecewise polynomial representation of the
spectra. In practice, the original frequency range is split into psub-intervals, defined by p+1
values, t 0≤…≤  t p, called knots. In this paper, we consider equal length sub-intervals. A spline
of order d is a function  f  such that: 

● f  is a polynomial of order d in each subinterval [ t k,  t k+1] 
● f  is continuous and has continuous derivatives up to order d-2.  
● Each  B-spline  is  a  spline  with  localized  support:  it  is  positive  only  on  at  most  d

consecutive intervals. 
● The  B-spline  basis  can  be  used  to  define  n=p-1+d new  variables  which  are

characterized by the position of the knots. 
● In the sequel, we propose to combine B-splines of order 3 associated with different

sets of knots  i.e.  different values of  p in order to capture different variation scales
(from low, mid to high frequencies) that we refer to as B-spline resolutions. 

3. Results and discussion

To  highlight  matching  the  B-splines  patterns  with  D2  local  curvatures,  the  signal  was
approached with conventional frequency tools used for waves analysis or more generally
time series. In the present B-spline approach, three resolution levels were empirically chosen
as they yielded the best discrimination results in the considered application (see below).
These frequency frames encompass 7, 5, and 3 points that range, for a 2 cm -1 discretization
sampling, 14, 10, and 6 cm-1 spans. To better estimate these ranges, it is useful to recall that
absorbance MIR bands usually exhibit half-height widths around 30 cm-1 (see boxplots of Fig.
1).  To relate  these B-splines (7,  5,  3)  with the D2 structure,  the partial  auto-correlation
functions (R core  pacf function) of D2 spectra and their reconstructions by using each B-
spline are displayed for the ten first auto-correlation factors (Fig. 3).
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Figure 3. Spectral auto-correlations coefficients of second derivative
(red) and splines approximations.

This plot clearly shows that, as expected, coherent information is conveyed by D2 signals and
by the B-splines that locally approach the signal. To get a better insight of the D2 intrinsic
frequency modes that constitute the signal, individual periodograms of the data set were
calculated (R core spectrum function from stats package) and averaged (Fig. 4).

Figure  4.  Averaged  periodograms  of  the  68  D2  spectra. (red:  mean;  blue:  standard
deviation);  vertical  lines  and  numbers  point  to  the  five  first  frequency  modes  and  their
corresponding periods T = 1/f). In the time series analogy, the 2 cm -1 signal discretization
corresponds to a 0.5 Hz data sampling.

Fig.4 firstly shows that the main modulation modes of D2 signals are rather stable for a given
data set since they present only small  oscillations,  if  any,  that allow defining a common
frequency pattern for all individuals considered in a particular study. In this case, the main
signal modulations are observed at periods of 14, 5, 4, 3, and 2.5 cm -1 which closely match
the optimized spline’s frames of 7, 5 et 3 cm-1. The “14” mode is the exact harmonic of “7”,
the “5” and “3” modes exactly match those which have been selected for their predicting
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efficiency, while the “2.5” is half the “5” mode. These agreements between the modulation
modes of D2 signals and the B-splines widths give consistency for the B-splines approach for
reducing D2 spectra from B-splines coefficients that map any D2 spectrum as a network of
patterns that enfold the signal modulations as soon as the B-splines frames are tuned to the
signal intrinsic frequency modes. Therefore a mere frequency analysis (periodograms) would
reveal  the  frequency modes present in the D2 signals set and allow tuning the B-splines
frames (here: “7”, “5” and “3”) to further perform reconstructions and regression analyses.
Note that frequency (in italic) refers to intrinsic D2 modulation modes, not to wavenumbers.

As  a  test  for  the  efficiency  of  B-splines  coefficients  to  reveal  spectral  biomarkers  from
patterns  (the  B-splines),  a  previously  published data  set  was  used  that  were  mice  sera
exhibiting different levels of steatosis in a nutritional context (High fat +/- high carbohydrate,
or control diet) [15]. 

A combination of B-spline resolutions (7, 5, and 3 here) increases hepatic steatosis prediction
power whatever the chosen threshold. Indeed AUROC of prediction > 1.5% macro-steatosis
increases from 0.91 (using D2 as input) to 0.94 (using 3 combined B-spline resolutions as
input) (Fig. 5A).  For sake of comparison, figures including results for approximations based
on discrete wavelets and Fourier transform are provided in Supplementary Material.  The
mean  AUROC  is  about  0.91  for  the  wavelets  and  0.82  for  the  Fourier  transform. Then
prediction > 5% macro-steatosis is improved by combining B-spline resolutions (7, 5, and 3):
AUROC is closed to 0.92 using combined B-splines as input compared to an AUROC closed to
0.88 using D2 as input. 

Figure  5.  Performance  of  hepatic  steatosis  predictions  depending  on  macrosteatosis
threshold. A) Low threshold > 1.5% of macro-steatosis. AUROC of validation sets (n = 30 x
12).  B)  High threshold > 5% of  macro-steatosis.  AUROC of  validation sets  (n = 30 x 12).
Combined B-spline resolutions (orange boxplot)  are statistically  different  compared to all
other  groups.  Similar  scores  obtained  from  discrete  wavelet  and  Fourier  transform
approximations are provided In supplementary material (Figure S2). 

Moreover, prediction of the disease by MIR metabolic fingerprint informs about important
spectral bands, yielding relevant biological information about the disease.  Figure 6 shows
the importance of the variables for the different models. Remark that about 15 variables
have an importance that is significantly higher than the others. In this context,  we have
confirmed that combined B-spline resolutions improve clinical understanding of the disease
compared to raw data or a single B-spline resolution. Based on a previous study [18], we
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might associate bands in the region of ester C=O stretching mode provided by resolutions 3,
5,  and  7  to  distinct  molecules.   Indeed,  the  large  bands  detected  by  resolution  7  are
associated with a phospholipid, while medium width bands (detected by resolution 5) are
more likely related to unsaturated lipids (i.e. Triolein) or LDL (i.e. cholesteryl linoleate)  and
low width bands (detected by resolution 3) are associated to saturated lipids (i.e. Tripalmitin,
cholesteryl palmitate). Therefore, B-spline resolutions provide an advanced comprehension
of the disease, in particular of the bands in the region of ester C=O stretching mode.

Figure 6. Combined splines resolution and important variables for steatosis low threshold
prediction. A) Discriminative spectral bands selected from varible importance outputs of RF
algorithm in 4 different single B-spline resolutions (D2 , 3, 5 or 7).  B) Important spectral
bands from RF algorithm for combined B-spline resolutions (7, 5, and 3 B-spline resolutions of
the  same  Data  set).  Gradient  color  displays  the  weight  of  each  spectral  domain.  In
Supplementary Material, important variables are provided for the models based on discrete
wavelets and Fourier transform (Figure S3).
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Fig.7 Biomarker’s networks as identified from raw spectra (A) and from 3 resolutions B-
splines  reconstructions (B).  The edges  represent  the most  significant partial  correlations
between variables. Green edges show positive partial correlations, red ones negative partial
correlations; the width of the lines is a function of the partial correlation values.

Using D2 spectra or 3 B-splines resolutions leads to variable selections where lipids esters,
glucids and a protein biomarker  (1636 cm-1) show up.  Fig.  7  highlights  the dependency
structure of these spectral biomarkers. More precisely, the graphs, obtained from Graphical
Lasso [18],  represent the significant partial correlations of the 15 most important variables.
Partial  correlation  measures  the  degree  of  association  between two  variables,  with  the
effect of the other random variables removed.

In the case of D2 spectra (Fig. 7A) it is obvious that the edges mainly represent redundancy
of information, due to the proximity of the variables. Indeed, the variables, especially in the
lipid esters cluster,  are contiguous.  In  contrast,  the network that  emerges from B-spline
reconstruction  (Fig.7B)  captures  the  dependencies  between  more  distant  variables,
indicating thereby meaningful correlations between different classes of molecules. 

4. Conclusion

The novel approach for data compression that we developed allows us to unveil networks of
biomarkers  from  B-splines  reconstruction  that  significantly  improve  the  sensibility  and
specificity  of  MIR  spectroscopy  approach  to  discriminate  clinical  situations  by  studying
serum.  Moreover,  a  frequency  analysis  through  a  time  series  analysis  of  the  second
derivative signals shows that particular B-splines are preferentially tuned to the inherent D2
periodograms. A few modulations arise in the second derivative that appear to be steady
among a particular data set. The developed multi-dimensional resolution matches - is tuned
on-  these  frequency modes and benefits  from the information that  is  carried on by the
signal’s continuity, which is not the case of algorithms that only consider spectral variables
individually. AUROCs demonstrate that multi-resolution improve the discrimination between
cases and controls. Multi-resolution B-splines also improve the understanding of the disease
by showing that the main differences between control and cases groups are in saturated and
unsaturated ester lipid absorbance bands. This B spline process opens new perspectives in
patient management.
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