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Most vaccines require multiple doses to induce long-lasting protective immunity in a

high frequency of vaccines, and to ensure strong both individual and herd immunity.

Repetitive immunogenic stimulations not only increase the intensity and durability of

adaptive immunity, but also influence its quality. Several vaccine parameters are known to

influence adaptive immune responses, including notably the number of immunizations,

the delay between them, and the delivery sequence of different recombinant vaccine

vectors. Furthermore, the initial effector innate immune response is key to activate

and modulate B and T cell responses. Optimization of homologous and heterologous

prime/boost vaccination strategies requires a thorough understanding of how vaccination

history affects memory B and T cell characteristics. This requires deeper knowledge of

how innate cells respond to multiple vaccine encounters. Here, we review how innate

cells, more particularly those of the myeloid lineage, sense and respond differently

to a 1st and a 2nd vaccine dose, both in an extrinsic and intrinsic manner. On one

hand, the presence of primary specific antibodies and memory T cells, whose critical

properties change with time after priming, provides a distinct environment for innate

cells at the time of re-vaccination. On the other hand, innate cells themselves can

exert enhanced intrinsic antimicrobial functions, long after initial stimulation, which is

referred to as trained immunity. We discuss the potential of trained innate cells to

be game-changers in prime/boost vaccine strategies. Their increased functionality in

antigen uptake, antigen presentation, migration, and as cytokine producers, could indeed

improve the restimulation of primary memory B and T cells and their differentiation into

potent secondary memory cells in response to the boost. A better understanding of

trained immunity mechanisms will be highly valuable for harnessing the full potential of

trained innate cells, to optimize immunization strategies.
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immunization
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INTRODUCTION

The goal of vaccination is to elicit long-lasting immune memory,
in order to mediate protection from infection, or at least to
prevent disease in case of exposure to the pathogen. Multiple
immunizations are required for most vaccine strategies, to induce
efficient protection. However, there are a few exceptions that
elicit life-long protective immunity after a single injection.
These vaccines represent the Grail for vaccinologists. These
include vaccines against yellow fever and smallpox, composed
of the yellow fever 17D virus strain (YF17D) and vaccinia virus
(VACV), respectively. Even though these are live-attenuated
vaccines, what makes them so efficient remains to be completely
understood.Mimicking their efficacy is a topic of intense research
focus, with the aim to develop new efficient vaccines against other
pathogens and diseases.

Repeat vaccinations can be necessary to increase the frequency
of responders among vaccinees, and to ensure potent individual
and herd immunity. It also enhances and modulates individual
immune memory, which is the basis for prime/boost vaccine
strategies (see Boxes 1, 2).

Although the mechanisms of differentiation of primary and
secondary B and T cells after prime and boost are getting
better understood, several outstanding questions remain (6, 7).
Less is known about the evolution of innate responses after
a primary and secondary vaccine encounter, which has likely
been overlooked. Classically, innate immunity provides a first
line of defense against invading pathogens and shapes adaptive
immunity, which takes more time to develop (8–10). However,
innate responses can differ between prime and boost, because
(1) specific antibodies (Abs), and memory T cells influence
innate cells upon re-exposure, and (2) innate cells themselves
can functionally and intrinsically differ. Most textbooks still
describe similar innate responses after one or more stimulations,
independently of the immunological history, because of the
short life span of responding innate cells, and the lack of
known immune memory in the innate compartment. However,
recent insights have challenged this paradigm (11–13). A better
understanding of the principles of memory development, of
B and T cells, without excluding innate cells, will certainly
be important for optimization of prime/boost strategies and
defining which vaccine is best to use first and second in a regime,
and how long the delay should be between immunizations.

INNATE RESPONSES IN THE PRESENCE
OF SPECIFIC ANTIBODIES AND MEMORY
T CELLS

The presence of specific primary Abs and memory T cells at the
time of re-vaccination provides a distinct environment to innate
cells, which modulates their responses.

Primary Antibodies
Ab concentration and many biophysical and functional features
of Abs are determined by the type of vaccine and vaccine strategy
used. Features include Ab affinity, isotypes and subclasses,

glycosylation profile, and functions like neutralization, and
others that depend on Fc-domain interactions with Fc receptors
(FcR) (e.g., antibody-dependent cellular cytotoxicity or antibody
dependent cellular phagocytosis). These properties also evolve
with time and Ag restimulation.

At re-vaccination, innate cells do not sense immunogens of
the vaccine as they did at the time of primary vaccination. At
first exposure in a naïve host, the vaccine is “free” and detected
solely via Pathogen-Associated Molecular Patterns (PAMPs)
and Pattern Recognition Receptors (PRRs) expressed by innate
cells. Upon re-exposure, vaccine immunogens form immune
complexes with primary Abs. They are cleared by FcR-expressing
phagocytic cells, they trigger inflammation and it results in the
presentation of vaccine-derived epitopes by these innate cells
(14, 15).

Consistently, a vaccine-like effect contributing to protection
can be observed in the case of Ab-based immunotherapies
against infectious diseases. For instance, in a model of retrovirus
infection in mice, passive transfer of Abs resulted in long-term
protection (16). It required not only Ab neutralizing- but also
Fc-functionality, as neutralization alone failed to protect (17).
Neutrophils were required. They mediated B cell help and tuned
the humoral response (18). Such a vaccine-like effect of Ab
infusion has also been observed in non-human primates, where
neutralizing Abs induced strong polyfunctional CD4+ T cell
response against SIV, mediated by Fc-activated dendritic cells
(DCs) (19).

Primary Memory T Cells
Specific memory T cells respond with more strength, are
more frequent and react faster, by requiring less activating
signals, than their naïve precursor counterparts (20–22). Like
Ab responses, T cell responses are modulated by the number
of antigen encounters (20), and also evolve over time. Immune
memory differentiation is a continuum. Primary and secondary
memory T cells, as well as early and late memory T cells differ
in their frequency, functions (including proliferation, cytokine
production and cytotoxicity), and distribution/recirculation. In
particular, a subset of memory T cells, called resident memory T
cells (TRM), populate barrier tissues (such as the mucosae and
skin) and organs. They do not recirculate like other memory
T cell subsets, such as central memory and effector memory T
cells (23).

TRM are fostered in the tissue where vaccine is delivered,
where they act as sentinels. They react more rapidly to secondary
vaccine encounter, and participate in the very early local
inflammation and modulation of innate cells. The cytokines
they produce can catalyze recruitment, or differentially recruit,
activate and license innate cells. For example during influenza
infection, it was shown that CD4+ memory T cells, can increase
the production of innate inflammatory cytokines by antigen-
presenting cells (APCs) in the lung upon cell-to-cell contact
and cognate antigen (Ag) recognition. This early augmented
innate responsiveness likely participates in early control of viral
replication (24). Similarly, after immunization with attenuated
Listeria monocytogenes, recalled memory T cells rapidly activate
innate cells, through an IFN-g/CLL3 dependent mechanism
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BOX 1 | First/second vaccine dose and prime/boost.

In the field, one may encounter the term “primary doses,” rather than “boosts,” particularly when the first vaccine injections are close in time to each other. The very

first vaccine dose activates naïve T cells, which undergo proliferation, contraction and a differentiation program to develop into primary memory T cells. As soon as

the second vaccine dose is administered, when the primary effector response has started to contract, it can actually be called a boost. It does not always mean that

the prime was optimal, and the boost might in fact not only restimulate primary memory T cells, but also prime new naïve T cells, although primary memory T cells

have an advantage to respond over naïve T cells.

BOX 2 | Homologous vs. heterologous prime/boost vaccine strategies.

Repeated administrations using the very same vaccine, which are called homologous prime/boost, have proven to be very effective for augmenting humoral responses

(1, 2). However, they appeared to be relatively less efficient at enhancing cellular immunity, likely because prior immunity to the vaccine tends to impair robust Ag

presentation and the generation of appropriate inflammatory signals for T cells. In contrast, in the 90s, in the context of the development of T cell-based vaccines

(e.g., against malaria, Mycobacterium tuberculosis, and HIV/AIDS), one strategy to overcome this limitation has been the sequential administration of vaccines using

different Ag delivery systems. This approach is called heterologous prime/boost. It has proven to be effective at generating high levels of memory T cells in preclinical

studies and clinical trials. However it had never been licensed for humans until very recently with the Gam-COVID-Vac (Sputnik V) aginst COVID-19 (3). It combines

recombinant live vectors (such as adenovirus (Ad)- or poxvirus-derived vectors), DNA or RNA vaccines, or adjuvanted subunit vaccines (4).

In addition to the vaccine variables well-known to modulate immunity, such as the nature of the vaccine or adjuvant, its dose and its route of injection for instance,

other parameters need to be compared and optimized in the case of prime/boost vaccine strategies (5). They include the number of injections, the delay between

them and the combination and order of vaccines for heterologous prime/boost. The exact molecular and cellular mechanisms implicated are not fully understood,

preventing a full rationale for optimization of these parameters. Thus, they are defined empirically, and the best parameters out of those tested, neither the absolute

nor the individual best parameters, are used.

(25, 26). Furthermore, after cognate or even non-cognate
recognition of Ag, TRM trigger an innate alarm, which dampens
infection severity by recruiting neutrophils into the lungs (27),
or by activating DC and NK cells in mucosae of the female
reproductive tract (28).

INNATE CELLS CAN RESPOND
INTRINSICALLY BETTER TO STIMULI
AFTER BEING TRAINED

In addition to the extrinsic effect provided by specific Abs
and recalled memory T cell responses upon Ag re-exposure,
innate cells can react differently to restimulation in an intrinsic
manner, because of imprinting that might have occurred during a
previous inflammatory/infection episode. Innate cells can display
memory-like features, brought about by this so-called innate
immune training (11).

Concept and Hallmarks of Trained
Immunity
Trained immunity features and mechanisms differ from those
of B and T cells memory by the involvement of metabolic
and epigenetic reprogramming in innate cells. It provides
homologous (29, 30) andmore strikingly heterologous protection
(i.e., against antigenically unrelated pathogens), mediated by
trained innate cells that display enhanced innate effector response
upon restimulation long after the initial stimulus of training.
Trained cells remain present at least 3 months after being
induced (31), while the non-specific effects (NSE) of live vaccines
on all-cause morbidity and mortality, which is thought to be
partly mediated by trained immunity in addition to bystander
activation and cross-reactive TCR and Ab, last longer, for

BOX 3 | Outstanding questions on trained immunity based prime/boost

vaccines.

• Which vaccines and adjuvants are capable of inducing trained immunity?

• Do they stimulate hematopoietic stem or progenitors cells, or a subset,

directly or indirectly?

• Are there different mechanisms leading to different flavors of innate

memory?

• How long does innate memory take to develop?

• How long does innate memory last?

• Do resting trained cells differ immunophenotypically from their naïve

counterparts in addition to their epigenetic marks? Do they represent a

distinct subset?

• What are the roles of effector and memory B and T cells, and Abs, in the

induction and maintenance of innate memory?

• How to best harness trained immunity to optimize prime/boost

vaccine strategies?

several years (32, 33). The mechanisms of trained immunity
maintenance, and waning remain to be fully investigated (for
open questions on trained immunity see Box 3).

Trainable Cells
The first evidence of innate memory in themyeloid compartment
was identified in monocytes/macrophages. Trained monocytes
and macrophages were described essentially by their ability to
more efficiently produce cytokines, especially IL-6 and TNF-
a, upon exposure to unrelated stimuli (29, 34–37). Other cells
from the myeloid lineage, such as DCs (29, 38, 39) and
even neutrophils (40–43), despite their very short life span,
were recently reported to display enhanced innate functions
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long after the initial stimulation. A burgeoning diversity of
neutrophil phenotypes and functionalities are being uncovered,
with their capacity to act as APCs a current focus of investigation
(44). Innate lymphoid cells (45) and NK cells (46–49) can
also “remember” previous infection/inflammation. Ag-specific
memory NK cell subsets have been described (50–53). Finally,
non-immune cells (such as fibroblast, epithelial stem cells, or
interstitial stromal cells) can also be trained, and respond more
strongly to tissue stress and damage for instance (54, 55).

Trained Immunity Mechanisms
Trained immunity entails the activation, followed by a long-
lasting metabolic rewiring, epigenetic re-programming and
changes in gene expression in differentiated myeloid cells, such
as monocytes (31), and hematopoietic stem and progenitor
cells (HSPCs) from the bone marrow (BM), as demonstrated
in vivo using Bacillus Calmette-Guérin (BCG), the current live
attenuated vaccine made of Mycobacterium bovis and used
against Mycobacterium tuberculosis [both in mice (56) and
in humans (57)], and with fungal cell wall component b-
glucan (58). The transfer of BM cells from BCG- or b-glucan-
trained mice into non-trained animals, led to acquisition of
trained immunity features in the transplanted animals. Such
an education of the progenitors resulted in a bias toward
myelopoiesis and was inherited by the myeloid progeny, because
epigenetic modifications of HSPCs were stable and durable
throughout differentiation. This explains how innate memory
can be long-lasting despite the short life of innate effector cells.
Myelopoiesis includes several differentiation and maturation
steps, which take time, from HSCs to common, and then more
committed, myeloid progenitor cells, through to the terminal
differentiation of myeloid cells, i.e., granulocytes, monocytes
and DCs. Trained daughter innate myeloid cells remain resting
when unchallenged and they display enhanced innate effector
functions upon stimulation. Differences in the phenotype of
resting trained cells and their naïve counterparts has not been
explored thoroughly, with the exception of a few studies that
demonstrated differential expression of key surface markers
between resting trained vs. naïve innate cells (31, 41) (Box 3).
In addition, LPS was recently reported to induce long-term
cryptic epigenetic changes in bona fide hematopoietic stem
cells, without modifying their count or gene expression (59).
We have previously shown in macaques that the subcutaneous
injection of attenuated vaccinia virus, Modified Vaccinia Ankara
(MVA), elicited late phenotypic modifications in blood innate
myeloid cells resulting in a “defense-ready” phenotype, which
was reminiscent of innate training. Monocytes, but also DCs and
neutrophils, expressed higher levels of several markers involved
in signal transduction (CD45), Ag presentation (HLA-DR),
sensing (CD14), binding of immune complexes (CD16, CD32)
and complement (CD11b, CD11c), inflammation (IL-10, IP-10,
IL-12, IL-8), or migration (CXCR4, CCR5) (41). Admittedly, it
remains to be seen whether such phenotypic changes translate
into functional innate memory, characterized by an enhanced
responsiveness to heterologous stimulation in vivo. In any
case, our work suggests that MVA imprints different sets of
progenitor cells, including downstream of common myeloid

progenitors (CMPs)/myeloid-committed granulocyte-monocyte
common progenitors (GMPs), because most neutrophils, but
only some monocytes and DCs, were modified (Figure 1). GMPs
are actually heterogeneous, as committed progenitors within
GMPs are now being identified and characterized, as well as their
downstream precursors (60–63). Thus, depending on the vaccine
and the targeted HSPCs, different flavors of trained immunity are
likely to be induced (Box 3).

The development of trained immunity is associated with
major HSPC and monocyte changes related to their glycolysis,
tricarboxylic acid (TCA) cycle (also called citric acid cycle or
Krebs cycle), glutaminolysis, cholesterol synthesis, and fatty acid
synthesis, as shown with BCG and b-glucan. Several metabolites,
at the intersection of metabolism and epigenetics, are enriched
and play key roles in the development and/or persistence of
trained immunity. These include fumarate, which accumulates
after glutamine replenishment of the TCA, and mevalonate, a
metabolite of the cholesterol biosynthesis pathway (36, 58, 64,
65).

Epigenetic reprogramming of HSPCs and monocytes is
mediated by histone modifications and deposition of epigenetic
marks, in particular H3K4me3 and H3K27Ac marks, on multiple
specific targeted loci, i.e. at the promoters and associated
enhancers of immune genes (such as PI3K/AKT and NF-
kB pathways, as well as TNF-a and IL-6 promoter regions).
Whether other epigenetic marks also participate to the regulation
of trained immunity needs to be addressed. In addition
to histone modification, a role of DNA methylation in the
development of trained immunity has also been reported after
BCG immunization (66). Some long non-coding RNAs, called
immune priming lncRNAs, also play a key role. They are
upregulated by the initial stimulus and they direct epigenetic
remodeling enzymes proximal to immune genes, and thus
target the deposition of epigenetic marks on specific gene
promoters (67).

In addition to HSPCs and circulating myeloid cells, trained
immunity can be induced locally, as demonstrated in the instance
of alveolar macrophages after intranasal infection with non-
replicative human serotype 5 adenovirus (Ad5), independently
of monocytes and BM HSPCs (68). The training of these
macrophages was dependent on IFN-g, produced by effector
CD8+ T cells, and lasted up to 4 months. Increased glycolytic
metabolism, modification of transcriptomic profile, and a
heightened response to heterologous (bacterial) infection were
observed. This work highlights the need to better understand the
role of adaptive effector and memory T cells in the induction and
maintenance of innate memory (Box 3).

TRAINED IMMUNITY-BASED VACCINES

Trained Immunity-Inducing Vaccines
In the last decade, trained immunity has been abundantly
reported following BCG vaccination, in humans and mice, and
after b-glucan injection in mice (29, 31, 34, 46, 56, 69, 70).
Evidenced by epidemiological, pre-clinical and clinical vaccine
studies, the occurrence of NSE and/or trained immunity have
been witnessed after administration of live-attenuated vaccines
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FIGURE 1 | The phenotypic memory of myeloid cells is not restricted to monocytes, and can be more pronounced in granulocytes. Macaques (n = 5) were

immunized twice, subcutaneously, 2 months apart with a recombinant attenuated vaccinia virus encoding HIV clade B Ags, rec MVA HIV-B (MVA is for Modified

Vaccinia Ankara). Blood myeloid cell subsets were analyzed overtime using mass cytometry and a multi-step clustering analysis. They were classified as prime

signature (blue), boost signature (red), or non-discriminant “no signature” (green), after a Linear Discriminant Analysis (LDA) performed after Least Absolute Shrinkage

and Selection Operator (LASSO). Cell subsets responding to the 2nd immunization differed for the intensity of expression of several markers from those responding to

the 1st immunization. They were present prior to vaccine boost, and were induced long after the 1st immunization. They were “better equipped to respond” to

restimulation. Most neutrophils were modified, in contrast to some monocytes and DCs (41).

other than BCG, including vaccines against smallpox (vaccinia
virus), measles, polio (oral live vaccine, but not the inactivated
vaccine), yellow fever, and the new live attenuatedM. tuberculosis
candidate vaccine (MTBVAC) (71–76).

What about “non-live” vaccines (such as inactivated or
subunit vaccines)? Trivalent influenza vaccination has been
reported to elicit imprinting in monocytes and DCs for at least
6 months (77), while gamma-irradiated BCG induced trained
monocytes in vitro, but failed to do so in vivo. In contrast,
a long-lasting enhanced anti-inflammatory responsiveness was
recently reported after exposure to helminth extracts (78) and
a live attenuated anti-pertussis vaccine BPZE1 (79). Finally,
diphtheria-tetanus-pertussis (DTP) vaccination, as opposed to
BCG, was shown to enhance all-cause morbidity and mortality,
more particularly in females (80). Which vaccines/adjuvants can
induce trained immunity, and how, is currently one of the
hottest topics in the field (Box 3). A better understanding of the
mechanismsmaymake it possible in the future, to precisely target
the trained immunity metabolic or epigenetic pathways, with
pharmacological modulators, to program and tailor immune
training, as recently discussed (81). The genetic depletion and
pharmacological inhibition of SHIP-1 was shown for instance to
improve the b-glucan mediated training of macrophages (82).

Most current licensed vaccines are administered through
parenteral routes. They are highly effective for inducing systemic
adaptive immune responses, but they are usually poor at eliciting
local immunity. In contrast, mucosal vaccines can induce
protective specific immunity at the mucosal front line, through

which most pathogens enter the body, and to a lower extent
systemically (83). Some vaccines, when delivered by mucosal
but not parenteral route, have been shown to also induce
trained immunity. A recombinant Ad5-based M. tuberculosis
vaccine expressing the immunodominantM. tuberculosisAg85A,
delivered intranasally afforded protection from early stages
of pulmonary M. tuberculosis infection; it failed to do so
when injected intramuscularly. Protection was mediated by
trained airway macrophages (both alveolar and interstitial),
and independently of the recruitment of blood inflammatory
monocytes in lungs (84). Respiratory-mucosal trained immunity-
based vaccination may represent a powerful strategy against
respiratory infections, such as M. tuberculosis and SARS-CoV-
2/COVID-19 (85, 86).

BCG, which is injected intradermally in humans, was
recently shown, in a prospective double-blind and randomized
clinical trial, to protect the elderly from new infections,
especially respiratory infections, and increase the responsiveness
of their blood cells to unrelated stimuli (87). Several clinical
trials to evaluate whether BCG could protect health workers
from SARS-CoV2 infection and COVID-19 are ongoing (88).
However, a very encouraging retrospective study comparing
healthy volunteers vaccinated with BCG in the last 5 years
or never before showed that BCG immunization seems to
decrease the incidence of sickness (89). In addition, prior BCG
vaccination of health workers was associated with a decrease
of SARS-CoV2 seroconversion and of incidence of COVID-19
clinical symptoms. In contrast, the history of meningococcal,
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pneumococcal, or influenza vaccination did not protect against
SARS-CoV-2 infection (90). It is of interest to determine whether
BCG delivered to the pulmonary system (by endobronchial
instillation) can outperform BCG delivered intradermally, in
terms of both systemic and local innate training, as it does
in terms of protection against M. tuberculosis in non-human
primates (91).

The exact stimulus of trained immunity is a matter of
great debate. Assuming that vaccine immunogen reaches the
BM, HSPCs could be stimulated directly (by detecting vaccine-
derived PAMPs), or they could be indirectly stimulated by
sensing systemic inflammation signals, including growth factors
and cytokines such as GM-CSG, M-CSG, G-CSF, IL-1b, IL-
6 (Box 3). The route of administration appears to be a key

parameter, and not only the nature of the vaccine itself. The
vaccine injection site determines vaccine biodistribution, and
which are the first immune and non-immune cells sensing
the vaccine, and responding to it, and thus the early and
transient inflammation. In mice, BCG injected intravenously
persisted in BM monocytes (but not in HSPCs) for up to 7
months and trained immunity developed, whereas subcutaneous
BCG injection did not lead to the presence of BCG in the
BM and failed to elicit training. However, both routes of
BCG injection also likely result in different early systemic
inflammation. Additionally, early antibiotic treatment showed
that the persistence of BCG in BM was actually not required
to induce trained immunity, likely at least its initial presence.
In non-human primates, BCG injected intravenously was not

FIGURE 2 | Trained innate immune cells, a new player in prime/boost vaccine strategies. (A) At the time of the primary injection, the early innate effector response

participates to the activation of Ag specific naive B and T cells, leading to the generation of long-lived plasma cells, primary Abs and memory B and T cells, defined by

an Ag-specific heightened effector response upon Ag re-encounter. (B) At the time of the vaccine boost, not only “free,” but also Ab-bound vaccine and Ag specific

primary memory B and T cells, which are triggered by their cognate Ag recognition, activate innate cells. Depending on the type of vaccine, its route of administration,

and the delay between immunizations, prime-induced resting trained innate cells can be present and respond better than “naive” ones to restimulation. These

extrinsic, and possibly intrinsic, differences can lead to an innate effector response that differs between prime and boost, and differentially shapes the secondary

effector and memory adaptive response. If and how primary Abs, and effector and memory B and T cells participate in the induction and maintenance of trained

immunity is unclear. (C) In the case of a new unrelated vaccination as opposed to a homologous or heterologous boost, only potential trained HSPCs and innate cells

induced by the first vaccine, as well as TRM activated after non-cognate Ag stimulation, may modulate the innate effector response and consequently the primary

adaptive response to the second vaccine.
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found in the BM 1 month later, and, as determined by the
production of cytokines in response to heterologous stimulus
by PBMCs, there was no evidence of immune training (92). In
humans, the intradermal injection of BCG resulted in trained
immunity, and no BCGwas found in the BM after 90 days (57). In
any case, if initial stimulus persists chronically in an anatomical
or cellular reservoir, then long-term imprinting of innate cells
might not be related to innate memory, but rather reflect a
state of chronic stimulation as discussed recently (85). It is also
interesting to note that different BCG strains were sub-cultured
historically in different laboratories, yielding genetic diversity
with differences in virulence, innate activation, immunogenicity
and trained immunity-inducing capability (93).

Trained Immunity to Improve Prime/Boost
Vaccines
Instead of inducing only classical Ag-specific Ab, B, and T cells,
future vaccines could contribute further with induction of both
innate and adaptive immune memory as recently highly debated
(94–96). Trained immunity-based vaccines could be developed
to: (i) increase protection against the targeted infectious agent by
relying on both arms of the immune system (innate and adaptive
B and T cell responses), (ii) provide heterologous protection
against unrelated pathogens, mediated by innate training. More
particularly, future vaccines could prevent infection by emerging
and old pathogens (such as HIV, RSV, HSV-1/2) for which there
remains no potent vaccine. It would benefit more susceptible
individuals, such as the newborns and pre-term infants (97),
and elderly (87), or patients suffering from immunodeficiency
(98). And (iii) pre-condition the innate immune system in order
to increase or modulate immune responses after re-vaccination
during prime/boost vaccine strategies, or after new unrelated
vaccination with a sub-optimal vaccine, or in people less prone
to efficiently respond to vaccines, like the elderly (Figure 2).

BCG has been shown to provide innate protection against
pathogens and diseases not related to M. tuberculosis. It can
also potentiate and modulate adaptive immune responses
to heterologous pathogens and vaccines. For example,
concentrations of specific Abs after routine infant immunization
were higher in babies whose innate immune system was exposed
to BCG at birth (99). Adults, who were immunized with BCG
2 weeks prior to flu vaccine, developed hemagglutination
inhibiting Ab responses, faster and to a greater extent
(100). Furthermore, prior immunization with BCG was
associated with decreased live-attenuated YF17D vaccine
viremia. The BCG-induced lower yellow fever vaccine Ag
and PAMP doses had no impact on the yellow fever specific
neutralizing Ab response though (69). Thus, suggesting an
improved priming, or that YF17D vaccine replication is
not a key determinant of the magnitude of the humoral
response (likely above a certain concentration), as previously
proposed (101).

To benefit from trained immunity in the case of re-vaccination
or unrelated vaccination, it is yet to be determined which
vaccines, recombinant vectors and adjuvants induce trained
immunity, and if specific routes of administration are required.

Furthermore, the optimal sequence of immunization needs to
be defined, given that the long-term NSE induced by different
vaccines can augment/inhibit each other, as demonstrated for
BCG and tetanus-diphtheria-pertussis inactivated polio vaccine
(Tdap) (102). Therefore, vaccine schedules may need to be
adapted. The generation of resting trained innate cells, through
the reprogrammation of their HSPCs, takes time. We previously
demonstrated in MVA-primed/boosted monkeys that intensity
and quality of secondary Ab response correlated with the
abundance of trained cells in blood at the time of the 2nd
vaccine dose. These cells were not present 2 weeks after the 1st
vaccine dose, but were enriched 2 months after (103). Thus, delay
between immunizations is another likely key parameter.

CONCLUSIONS

Innate memory is changing our view of vaccines and vaccine
strategies. It is a challenging and new tool to improve vaccines.
It might also contribute to the inter-individual variability
of responses to vaccines, depending on the individual
inflammation/infection history that needs to be taken into
account to personalize vaccines. Innate training might
represent the 6th revolution in vaccinology, next to other
breakthroughs such as combination vaccines, new adjuvants,
systems vaccinology, and vaccines against non-infectious
diseases proposed by Stanley Plotkin (104).
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