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SUCCESSIVE MINIMA AND ASYMPTOTIC SLOPES IN

ARAKELOV GEOMETRY

FRANÇOIS BALLAŸ

Abstract. Let X be a normal and geometrically integral projective variety over a
global field K and let D be an adelic R-Cartier divisor on X. We prove a conjecture
of Chen, showing that the essential minimum ζess(D) of D equals its asymptotic
maximal slope under mild positivity assumptions. As an application, we see that
ζess(D) can be read on the Okounkov body of the underlying divisor D via the
Boucksom–Chen concave transform. This gives a new interpretation of Zhang’s in-
equalities on successive minima and a criterion for equality generalizing to arbitrary
projective varieties a result of Burgos Gil, Philippon and Sombra concerning toric
metrized divisors on toric varieties. When applied to a projective space X = PdK ,
our main result has several applications to the study of successive minima of her-
mitian vector spaces. We obtain an absolute transference theorem with a linear
upper bound, answering a question raised by Gaudron. We also give new compar-
isons between successive slopes and absolute minima, extending results of Gaudron
and Rémond.

Contents

1. Introduction 2
2. Conventions and terminology 8
3. Adelic Cartier divisors 9
4. Pseudo-effectivity and essential minimum 15
5. Asymptotic slopes and proof of Conjecture 1 20
6. The Boucksom–Chen concave transform 22
7. Application to Zhang’s theorem 24
8. Hermitian vector spaces 26
9. Proof of Theorem 1.6 and applications 29
Acknowledgements 33
References 33

2010 MSC : 14G40 (primary), 11G50, 11H06 (secondary)
Keywords : Height, essential minimum, successive minima, adelic line bundles and
divisors, Okounkov bodies, hermitian vector bundles, transference theorems.

1
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1. Introduction

Let K be either a number field or K = κ(CK) the field of functions of a regular
projective curve CK defined over an arbitrary field k. Equivalently, K is a finite
extension of K0, where K0 denotes either Q or k(T ). We let ΣK be the set of
places of K and we fix an algebraic closure K of K. Let π : X → SpecK be a
geometrically integral and normal projective variety on SpecK and let d = dimX.
We consider an adelic R-Cartier divisor D on X with continuous metrics, and we
denote by hD : X(K) → R the height function associated to D (see section 3 for
details). The notion of adelic R-divisors is due to Moriwaki [43], and generalizes
the one of adelic line bundles in the sense of Zhang [49]. The essential minimum of
D is defined by

ζess(D) = sup
Y(X

inf
x∈X(K)\Y

hD(x),

where the supremum is taken over the Zariski-closed proper subschemes Y ( X.
This invariant is of significant importance in Diophantine geometry. The celebrated
Bogomolov conjecture can be stated in terms of lower bounds for ζess(D), which are
required to be explicit in the effective version of the conjecture. Such bounds have
been studied extensively and have applications to other problems in Diophantine ge-
ometry and Arakelov geometry. A striking example is given by Zhang’s inequalities
on successive minima [48, Theorem 5.2] (see Theorem 1.4 below), which also play
an important role in equidistribution problems. Indeed, classical equidistribution
theorems (including the ones of Szpiro–Ullmo–Zhang [46], Favre–Rivera-Letelier
[25], Chambert-Loir [12], Baker–Rumely [1], Yuan [47] and Berman–Boucksom [3])
are applicable only when equality holds in Zhang’s theorem (see [9],[11] and sub-
section 1.2 below). The invariant ζess(D) is also related to important problems
in geometry of numbers. Indeed, when X = PdK is a projective space the essen-
tial minimum encodes crucial arithmetic information of euclidean lattices, or more
generally hermitian K-vector spaces (see [28, 30] and subsection 1.3 of this paper).

In [11], Burgos Gil, Philippon and Sombra proposed an innovative study of the
essential minimum for toric metrized divisors on toric varieties based on convex
analysis, and showed that in this case ζess(D) coincides with the maximum of a
concave function defined on the (geometric) Okounkov body of D. In a joint work
with Rivera-Letelier [9], they applied this result to investigate new situations in
which equidistribution phenomena occur (in the toric setting). The results of [11]
and [9] give a completely new understanding of the essential minimum when D is
a toric metrized divisor. However, the toric assumption on the metrics is rather
restrictive (even in the case X = PdK), and confers a very specific behaviour to the

essential minimum. To give a better understanding of the invariant ζess(D) in the
general case is an important topic of research, in which many interesting questions
remain unanswered.

In [15], Chen introduced an invariant measuring the asymptotic minimal size of
global sections of a hermitian line bundle. For any integer n ≥ 1, the K-vector
space Vn := H0(X,nD) is equipped with a supremum norm ‖.‖v,sup for each place

v of K. Let v0 ∈ ΣK0
be a place of K0. We denote by λmax,n(D) the supremum of

the real numbers t for which there exists a non-zero function φ ∈ Vn such that for
every place v ∈ ΣK ,

‖φ‖v,sup ≤
{
e−t if v|v0,
1 otherwise.

When D is big, the sequence (λmax,n(D)/n)n∈N converges in R. Following [15], we

call its limit the asymptotic maximal slope of D and denote it by µ̂asy
max(D). The

following conjecture of Chen relates this invariant to the essential minimum.
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Conjecture 1 (Chen). Assume that D is semi-positive and that the underlying
divisor D is big. Then ζess(D) = µ̂asy

max(D).

An explicit statement of this conjecture can be found in [19, Conjecture 4.1],
[18, section 5.3]. Although it appeared recently in the literature, Conjecture 1
has been known to experts in Arakelov geometry for some time and the potential
relations between the essential minimum and the asymptotic slope were already
discussed in the work of Chen on the differentiability of the arithmetic volume [16,
section 5.2] (together with applications to equidistribution). In the particular case
of a toric metrized divisor on a toric variety, Conjecture 1 is a consequence of the
work of Burgos Gil, Philippon and Sombra [11] on the essential minimum (see [11,
Corollary 3.10] and the discussion preceding Theorem 1.1 below). The behaviour of
ζess(D) is more subtle in the non-toric setting, and the conjecture remains open in
general. The relevance of Conjecture 1 is to suggest a completely new approach to
study the essential minimum, allowing one to compute ζess(D) only in terms of the
arithmetic of the graded linear series V• :=

⊕
n∈N Vn. It also has deep applications

in geometry of numbers, as we will see in subsection 1.3.

The main achievement of this paper is a proof of Conjecture 1 (see Theorem 1.2
below). Our approach starts with the equivalence

(1.1) µ̂asy
max(D) > 0⇐⇒ D is big

due to Chen (see for example [14, Proposition 3.11], or Proposition 5.5 in this
paper). Here the condition that D is big means that it has a positive arithmetic

volume v̂ol(D) > 0 (see subsection 3.3 for details). Using (1.1) and rescaling norms,
we shall see that Conjecture 1 is equivalent to the following theorem, which is the
key result of this paper. We say that D is pseudo-effective if D + B is big for any
big adelic R-Cartier divisor B.

Theorem 1.1 (Theorem 4.1). Assume that D is semi-positive and that D is big.
Then we have the equivalence

ζess(D) ≥ 0⇐⇒ D is pseudo-effective.

When D is big and D is pseudo-effective, it is not hard to see that ζess(D) ≥ 0.
The other implication in the theorem is more challenging. To outline the strategy
of the proof, we consider the following simplified setting : K = κ(CK) is a function
field and there exists a normal and proper model πX : X → CK of X, together with
a relatively nef R-Cartier divisor D on X , such that for any v ∈ ΣK the metric on
D at the place v is induced by D. We have a Cartesian diagram

X X

SpecK CK .

π πX

In this case, we can interpret the height function as an intersection number. More
precisely, for any point x ∈ X(K) with residue field κ(x), we have

hD(x) =
D · Cx

[κ(x) : K0]
,

where Cx is the Zariski-closure of x in X . Note that Cx ⊂ X is an integral curve
and πX (Cx) = CK . The key ingredient of the proof is a deep theorem of Boucksom–
Demailly–Păun–Peternell [7], which states that the pseudo-effective cone of X is
dual to the cone of movable curves. If D is not pseudo-effective, this result implies
the existence of a family of integral curves (Ct)t∈T covering a dense subset of X
and such that D · Ct < 0 for any t ∈ T . Since D is relatively nef by assumption,
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all the curves Ct are horizontal, i.e. πX (Ct) = CK for every t ∈ T . If we denote by
ηt ∈ X(K) the generic point of Ct for every t ∈ T , the set

ΛT = {ηt | t ∈ T} ⊂ X(K)

is dense and consists of points with negative height, hence ζess(D) ≤ 0. By contra-
position, this proves the implication

ζess(D) > 0 =⇒ D is pseudo-effective.

If ζess(D) = 0, the above implication together with a limit argument shows that D
is also pseudo-effective. When K is a number field, we use arithmetic intersection
theory to adapt the above argument. We first reduce the problem to a fixed model
and work with an arithmetic variety on SpecOK , and then apply an arithmetic
analogue of Boucksom–Demailly–Paŭn–Peternell’s theorem due to Ikoma [34]. To
do so we also use an arithmetic Bertini-type theorem due to Moriwaki [39].

One can interpret Theorem 1.1 as a numerical criterion for arithmetic pseudo-
effectiveness. As mentioned before, it is equivalent to Conjecture 1 (see Remark
5.7). We will prove the following theorem, which also gives an analogue of Conjec-
ture 1 relating the absolute minimum ζabs(D) := infx∈X(K) hD(x) and the asymp-

totic minimal slope µ̂asy
min(D) (see Definition 5.2). The latter relies on an arithmetic

Nakai–Moishezon’s criterion due to Zhang [48], generalized by Chen and Moriwaki
[21].

Theorem 1.2 (Theorem 5.6). Assume that D is semi-positive and that D is big.
Then

ζess(D) = µ̂asy
max(D).

If moreover D is a semi-ample Q-divisor, then

ζabs(D) = µ̂asy
min(D).

We present applications of Theorem 1.2 in two directions. In the spirit of [11],
we first give an interpretation of the essential minimum through convex analysis,
and study some consequences for Zhang’s theorem on minima. Secondly we apply
Theorem 1.2 to projective spaces to study successive minima of hermitian vector
spaces.

1.1. Essential minimum and Okounkov body. Assume that D is big. In [11],
Burgos Gil, Philippon and Sombra proposed a systematic study of the essential
minimum when D is a toric metrized divisor on a toric variety. The main the-
orem of [11] (Theorem A) relates ζess(D) to the maximum of the roof function
ϑD : ∆ → R, which is a concave function encoding arithmetic data of D and de-

fined on the Okounkov body ∆ of D. The latter is a convex body in Rd and
was introduced independently in the seminal papers of Lazarsfeld-Mustaţă [38] and
Kaveh-Khovanskii [35]. In the toric case, the Okounkov body is an intrinsic data
of D. In general, the definition is more complicated and depends on the choice of a
system of parameters z on XK (see section 6.1 for details). Using Theorem 1.2, we
will however be able to generalize [11, Theorem A] to the case where X is not nec-
essarily toric. Let ∆z(D) ⊂ Rd be the Okounkov body of the divisor D ∈ Div(X)R
defined with respect to a given system z. In [6], Boucksom and Chen introduced
a function GD,z : ∆z(D) → R ∪ {−∞}, called the concave transform of D. The
function GD,z generalizes to the non-toric case the roof function ϑD of Burgos Gil–

Philippon–Sombra (see [8, Introduction]). It turns out that the maximum of the
concave transform coincides with the asymptotic maximal slope. As a consequence
of Theorem 1.2, we have the following.
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Corollary 1.3 (Proposition 7.1). If D is big, then ζess(D) ≥ maxα∈∆z(D)GD,z(α),

with equality if D is semi-positive.

When D is semi-positive and D is big, this corollary permits to read the essential
minimum directly on the Okounkov body of D. In addition to the theoretical inter-
est of this result, its relevance lies in the fact that several invariants associated to
D can be easily computed using the concave transform [6, sections 2.4 and 3.1]. For

example, we have the following formula [6, Theorem 3.1] for the χ-volume v̂olχ(D)

of D (under mild positivity assumptions on D, see subsection 6.3 for details) :

(1.2) v̂olχ(D) = [K : K0](d+ 1)!

∫
∆z(D)

GD,zdλ.

We present an application of Corollary 1.3 to Zhang’s theorem in the next para-
graph.

1.2. On Zhang’s theorem on minima. The essential and absolute minima are
part of a series of invariants associated to D, originally introduced by Zhang [48].
For all λ ∈ R, we denote by XD(λ) the Zariski-closure in X of the set

{x ∈ X(K) | hD(x) ≤ λ}.

For every integer i ∈ {1, . . . , d+ 1}, the i-th Zhang minimum ζi(D) is defined by

ζi(D) = inf{λ ∈ R | dimXD(λ) ≥ i− 1}.

Note that ζd+1(D) = ζess(D) and ζabs(D) = ζ1(D). We denote by hD(X) the height

of X with respect to D (see [10, section 1.5] for a definition). A celebrated theorem
of Zhang [48, Theorem 5.2] relates this invariant to the successive minima ζi(D).
It was generalized by Gubler [32, Proposition 5.10] for global fields with weaker
positivity assumptions on D.

Theorem 1.4 (Zhang, Gubler). Assume that D ∈ D̂iv(X)Q is semi-positive and
that the underlying divisor D is big and semi-ample. Then

(d+ 1) ζess(D) ≥
hD(X)

Dd
≥

d+1∑
i=1

ζi(D).

The first inequality (referred to as the “fundamental inequality” in the articles of
Gubler [31, 32]) is of particular interest in equidistribution problems and in proofs
of the Bogomolov Conjecture. Except from the recent results of [9] concerning the
toric case, all the equidistribution theorems in the literature apply only when the
latter is an equality, i.e. when

(1.3) ζess(D) =
hD(X)

(d+ 1)Dd
.

It is therefore of particular interest to characterize when this equality occurs. We
refer the reader to the introductions of the papers [9, 11] for a complete discussion
and more details on this problem. When X is a toric variety and D is a toric
metrized divisor, Burgos Gil, Philippon and Sombra show that (1.3) holds if and
only if the roof function ϑD is constant [11, Corollary E]. Combining Corollary
1.3 with (1.2), we are able to generalize this result to the non-toric setting. We
also obtain a straightforward proof of the first inequality in Theorem 1.4, valid for
R-divisors and without semi-ampleness assumption.

Theorem 1.5 (Corollary 7.4). If D is semi-positive and D is big, then

ζess(D) ≥
hD(X)

(d+ 1)Dd
,
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with equality if and only if the following equivalent conditions are satisfied :

(1) GD,z is constant for any z;

(2) the sequence (λmax,n(D)/n)n≥1 converges to
hD(X)

(d+1)Dd
.

In that case, GD,z(α) = ζess(D) for any z and any α ∈ ∆z(D).

As in [11], we also prove analogues of this theorem when hD(X) is replaced by

the χ-volume v̂olχ(D) or the arithmetic volume v̂ol(D) (see Theorem 7.2). Criterion
(2) in Theorem 1.5 has a nice interpretation through Gaudron’s slope theory for
adelic vector spaces [26], and can be thought of as an “asymptotic semi-stability”
condition (Remark 7.5). We will study this approach further in section 9, restricting
our attention to projective spaces X = PdK .

1.3. Applications to geometry of numbers. In section 9 we apply Theorem 1.2
to the study of K-hermitian vector spaces E = (E, (‖.‖v)v∈ΣK ), which generalize
the notion of euclidean lattices to global fields (see section 8 for definitions). To
clarify the exposition we assume that K is a number field in the end of this introduc-
tion. In geometry of numbers, the central objects of study associated to a hermitian
K-vector space E are its successive minima. Various definitions have been intro-
duced by different authors, such as Bombieri–Vaaler [4], Roy–Thunder [45], Zhang
[48], etc. We shall focus on the two following definitions. Let hE : E ⊗K Q → R
be the logarithmic height function associated to E and let d = dimE. For any
algebraic extension K ′ of K and any λ ∈ R, we consider the ball

E(λ,K ′) = {s ∈ E ⊗K K ′ | hE(s) ≤ λ}.

For i ∈ {1, . . . , d}, we define the Roy-Thunder i-th minimum with respect to K ′ by

λi(E,K
′) = inf{λ ∈ R | dimK′(VectK′ E(λ,K ′)) ≥ i},

and the Zhang i-th minimum by

ζi(E) = inf{λ ∈ R | dim Zar(E(λ,Q)) ≥ i},

where Zar(E(λ,Q)) denotes the Zariski-closure of E(λ,Q) in E ⊗K Q. Note that
λi(E,Q) ≤ ζi(E) and λi(E,Q) ≤ λi(E,K ′).

As observed by Gaudron and Rémond [28, section 3], Zhang’s theorem 1.4 leads
to important refinements of absolute Siegel’s lemmas previously obtained by Roy
and Thunder [45]. Using a similar point of view, Chen [18, 19] presented some im-
portant consequences of Conjecture 1, especially towards the absolute transference
problem (see subsection 1.3.1 below). In section 9 we slightly strengthen Chen’s
approach by combining the two parts of Theorem 1.2. The key result of section 9 is
the following theorem, which relates Zhang’s minima to the maximal and minimal

slopes of the symmetric powers Sn(E
∨

).

Theorem 1.6. We have

ζd(E) = lim
n→+∞

µ̂max(Sn(E
∨

))

n
and ζ1(E) = lim

n→+∞

µ̂min(Sn(E
∨

))

n
.

We shall present applications of this new interpretation of Zhang’s minima to
two classical problems in geometry of numbers.

1.3.1. An absolute transference theorem. An important concern about successive
minima is their behaviour with respect to duality. It is well-known and not difficult
to see that

0 ≤ λi(E,K ′) + λd+1−i(E
∨
,K ′)
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for any i ∈ {1, . . . , d}. The so-called transference problem asks for upper bounds
for these sums, which are notoriously harder to obtain. When K ′ = K = Q, a
celebrated theorem of Banaszczyk [2] gives the inequality

(1.4) λi(E,Q) + λd+1−i(E
∨
,Q) ≤ ln(d),

which is highly non-trivial and optimal up to an additive constant. Transference
theorems are famous for their applications in lattice-based cryptography, and are
also important in Diophantine geometry and transcendental number theory (see for
example [5, 29]). It is natural and significant to look for generalizations of (1.4)
to other fields K,K ′. When K ′ = K, Gaudron [27, Theorem 36] deduced from
Banaszczyk’s theorem the upper bound

λi(E,K) + λd+1−i(E
∨
,K) ≤ ln(d) +

1

[K : Q]
ln |∆K/Q|,

where ∆K/Q is the discriminant of K. From a Diophantine geometry perspective,
the dependence in the discriminant is rather unsatisfactory. In this context, an
inequality with K ′ = Q which is independent of the base field K is often much
more suitable. In analogy with Roy–Thunder’s approach [45], we call such a bound
an absolute transference theorem. To our knowledge, the best result in this direction
is a theorem of Pekker [44], giving the inequality

λi(E,Q) + λd+1−i(E
∨
,Q) ≤ d− 1

2
.

It is independent of K, but very far from Banaszczyk’s one when K = Q. The
following question was raised by Gaudron [27, section 4.3].

Question 1 (Gaudron). Does there exist a polynomial f ∈ Z[X] such that

λi(E,Q) + λd+1−i(E
∨
,Q) ≤ ln(f(d)) ∀ 1 ≤ i ≤ d = dimE

for any number field K and any hermitian K-vector space E ?

Theorem 1.6 has immediate applications to this problem. The point is that the

slopes of E behave very well with respect to duality, namely µ̂max(E
∨

) = − µ̂min(E).
Using techniques of Gaudron and Rémond [28] to estimate slopes of symmetric
powers, we shall derive the following absolute transference theorem from Theorem
1.6. For any N ∈ N, we denote by HN = 1 + 1/2 + · · · + 1/N the N -th harmonic
number (H0 = 0 by convention).

Theorem 1.7. For any i ∈ {1, . . . , d}, we have

ζi(E) + ζd+1−i(E
∨

) ≤ Hi−1 +Hd−i.

Note that

λi(E,Q) + λd+1−i(E
∨
,Q) ≤ ζi(E) + ζd+1−i(E

∨
)

for any i ∈ {1, . . . , d}. Since HN ≤ ln(2N + 1) for any N ≥ 0 [24], the upper bound
in Theorem 1.7 for i = 1 is essentially as good as Banaszczyk’s. By the estimate
Hi−1 + Hd−i ≤ 2 ln(d), Theorem 1.7 answers Question 1 and shows that we can
choose f(d) = d2.

1.3.2. Comparison of successive slopes and minima. For i ∈ {1, . . . , d}, we denote
by µ̂i(E) the i-th successive slope of E (Definition 8.6). Finding upper bounds for
the sums ζi(E) + µ̂i(E) is closely related to the absolute transference problem (see
[18, 19] and [27]) and absolute Siegel’s lemmas [28, section 3]. For i = 1, it follows
from Zhang’s theorem 1.4 that

ζ1(E) + µ̂1(E) ≤ (Hd − 1)/2
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as observed by Gaudron and Rémond [28, Lemma 3.2]. It is significantly harder to
deal with the case i ≥ 2. As for the transference problem, Theorem 1.6 opens a
new approach to this question, leading to the following statement.

Theorem 1.8. For any i ∈ {1, . . . , d}, we have

ζi(E) + µ̂i(E) ≤ Hd−1 ≤ ln(2d− 1).

Our methods remain valid when K is a function field, in which case we obtain

ζi(E) + ζd−i+1(E
∨

) = ζi(E) + µ̂i(E) = 0 ∀ i ∈ {1, . . . , d}.

1.4. Organization of the paper. We fix some notations and conventions in sec-
tion 2. We then recall definitions and basic properties of adelic R-Cartier divisors,
including a few facts on arithmetic divisors on arithmetic varieties and arithmetic
intersection theory that we will need in the proof of Theorem 1.1 (section 3). We
also define Zhang’s successive minima and we give some elementary properties of
the essential minimum (see subsection 3.8). Section 4 is devoted to the proof of
Theorem 1.1. After defining asymptotic slopes we prove Theorem 1.2 in section 5.
We recall the definitions of Okounkov bodies and concave transform in section 6.
In section 7 we prove Corollary 1.3, Theorem 1.5 and some variants. In section 8
we recall definitions and basic facts about hermitian vector spaces. Applications
of Theorem 1.2 to geometry of numbers are discussed in section 9, with proofs of
Theorems 1.6, 1.7 and 1.8.

2. Conventions and terminology

2.1. A scheme is integral if it is reduced and irreducible. By variety over a field
k we mean an integral scheme of finite type over k. If X is a Noetherian integral
scheme, we denote by Div(X) or Div(X)Z the group of Cartier divisors on X
and by κ(X) the field of rational functions on X. If K denotes Q or R, we let
Div(X)K = Div(X) ⊗Z K and κ(X)K = κ(X)× ⊗Z K. The elements of Div(X)K
and κ(X)K are called K-Cartier divisors and K-rational functions respectively. A
K-rational function φ ∈ κ(X)K defines a K-Cartier divisor (φ) ∈ Div(X)K. We
denote by SuppD the support of a K-Cartier divisor D (see [43, section 1.2] for
details). It is a Zariski-closed subset of X [43, Proposition 1.2.1].

2.2. Let K0 denote either the field Q of rational numbers or the field of functions
k(T ), where k is an arbitrary field. A global field is by definition a finite extension
of K0. It is either a number field or the field of functions of a regular projective
curve CK over k equipped with a finite morphism ϕK : CK → C0 = P1

k, unique up
to k-isomorphism.

2.3. Let K be a global field. Let ΣK be the set of places of K and ΣK,∞ ⊂ K the
set of archimedean places. Note that ΣK,∞ = ∅ if K0 = k(T ). For each v ∈ ΣK ,
we denote by Kv the completion of K at the place v and by K0,v the completion of
K0 with respect to the restriction of v to K0. We shall normalize absolute values
associated to v.

Assume that K is a number field. For each place v ∈ ΣK , we let |.|v be the unique
absolute value on Kv extending the usual absolute value |.|v on Qv : |p|v = p−1 if
v is a finite place over a prime number p, and |.|v = |.| is the usual absolute value
on R if v is archimedean. For each v ∈ ΣK , we let nv(K) = [Kv : Qv]/[K : Q]. We
now turn to the function field case, so that K0 = k(T ). The set of places of K is
in one-to-one correspondence with the set of closed points of CK . For each v ∈ ΣK
and each f ∈ K× = κ(CK)×, we denote by ordv(f) the order of f in the discrete
valuation ring OCK ,v and by ev(ϕK) the ramification index of ϕK : CK → P1

k at
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v ∈ CK . We consider the absolute value |.|v on K given by |f |v = e− ordv(f)/ev(ϕK)

and we let

nv(K) =
ev(ϕK)[κ(v) : k]

[K : K0]
,

where κ(v) denotes the residue field of v in CK .
With these conventions, we have the following product formula :

(2.1) ∀x ∈ K×,
∑
v∈ΣK

nv(K) ln |x|v = 0.

2.4. Let X be a scheme on SpecK. For each v ∈ ΣK , let Xv be the fiber product
X ×K SpecKv. If v is non-archimedean, we denote by Xan

v the analytification of
Xv in the sense of Berkovich (see [10, section 1.2] for a short definition sufficient
for our purposes). When K is a number field and v is archimedean, we denote
by Σv ⊂ K(C) the set of embeddings σ : K ↪→ C associated to v. Hence Σv
is a singleton if v is real and Σv consists of two conjugate embeddings if v is
complex. For each σ ∈ Σv, we let Kσ = K ⊗σK C be the tensor product of K
with respect to σ and Xσ = X ×σK SpecC. We define the analytification of Xv by
Xan
v = Xv(C) = tσ∈ΣvXσ(C). The disjoint union

Xan
∞ :=

⊔
v∈ΣK , v|∞

Xan
v =

⊔
σ∈K(C)

Xσ(C) = X(C)

is the set of morphisms of SpecQ-schemes x : SpecC→ X. We let F∞ : Xan
∞ → Xan

∞
be the involution induced by the complex conjugation.

2.5. Let x ∈ X be a closed point and κ(x) its residue field. For a place v ∈ ΣK ,
we denote by Σv(x) the set of Kv-algebra morphisms κ(x)⊗K Kv → Cv, where Cv
is an algebraic closure of Kv. For each σ ∈ Σv(x), we denote by xσ the closed point
of Xv given by composition

SpecCv
σ−→ Spec(κ(x)⊗K Kv)

x×id−→ Xv.

We define the orbit Ov(x) ⊂ Xv of x by

Ov(x) = {xσ | σ ∈ Σv(x)}.

Note that the cardinal of Ov(x) is [κ(x) : K]. Moreover, for each z ∈ Xv(Cv), we
define a point zan ∈ Xan

v as follows. If v|∞, we let zan = z. If v is finite, zan ∈ Xan
v

is the unique valuation on Kv(z) extending v.

2.6. Assume that X is projective and geometrically integral. Let D ∈ Div(X)R,
v ∈ ΣK and let Dv ∈ Div(Xv)R be the pullback of D to Xv. We consider an
open covering Xv = ∪`i=1Ui such that Dv is defined by fi ∈ κ(Xv)R on Ui for each
i ∈ {1, . . . , `}. A continuous (respectively smooth) D-Green function on Xan

v is a
function

gv : Xan
v \ (SuppDv)

an → R
such that gv + ln |fi|2v extends to a continuous (respectively smooth) function on
the analytification Uan

i of Ui for each i ∈ {1, . . . , `}. We refer the reader to [43,
sections 1.4 and 2.1] for more details on Green functions.

3. Adelic Cartier divisors

In this section we define adelic R-Cartier divisors and recall different notions of
positivity. We mainly follow the book of Moriwaki [43].
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3.1. Notations. Throughout this section we fix a global field K and a projective,
normal and geometrically integral variety X on SpecK. We let d := dimX and we
fix an algebraic closure K of K. We define a scheme S as follows :

(1) if K0 = Q, S = SpecOK is the spectrum of the ring of integers OK of K;
(2) if K0 = k(T ), S = CK is a regular projective integral curve over k with field

of functions κ(CK) = K. This implies the existence of a finite k-morphism
ϕ : CK → P1

k. Moreover, the curve CK is unique up to k-isomorphism.

In all this section, K denotes either Z, Q or R. Let D ∈ Div(X)K and let U ⊂ S be
a non-empty open subset. A model X of X over U is an integral scheme together
with a projective dominant morphism πX : X → U with generic fiber X. We will
denote a model (X , πX ) if we need to specify the associated morphism. We say that
X is a normal model if X is normal. If D is a K-Cartier divisor on X such that the
restriction of D to X is equal to D, we say that (X ,D) is a model of (X,D) over U .
For each non-archimedean place v ∈ U , we denote by gD,v the D-Green function
on Xan

v induced by D (see [43, section 0.2] for details on this construction).

3.2. Definitions.

Definition 3.1. A metrized K-Cartier divisor on X is a pair D = (D, (gv)v∈ΣK )
consisting of a K-Cartier divisor D on X and of a continuous D-Green function gv
on Xan

v for each v ∈ ΣK . We say that D is an adelic K-Cartier divisor on X if
moreover the following conditions are satisfied.

(1) There exists a dense open subset U of S and a normal model (XU ,DU ) of
(X,D) over U such that gv = gDU ,v for all v ∈ U .

(2) If K is a number field, gv is invariant under the complex conjugation F∞
for each v ∈ ΣK,∞.

The set of adelic K-Cartier divisors on X forms a group, denoted by D̂iv(X)K. Note

that D̂iv(X)Z ⊂ D̂iv(X)Q ⊂ D̂iv(X)R. In the sequel, the elements of D̂iv(X)Z will
sometimes be called adelic Cartier divisors for simplicity.

Remark 3.2. In [43, Definition 4.1.1], adelic K-Cartier divisors are called adelic
arithmetic K-Cartier divisors of C0-type .

Note that an adelic R-Cartier divisor ξ on SpecK is just a collection of real
numbers ξ = (ξv)v∈ΣK such that ξv = 0 for all but finitely many v ∈ ΣK . The
normalized Arakelov degree of ξ is defined by

d̂eg(ξ) =
1

2

∑
v∈ΣK

nv(K)ξv.

3.3. Arithmetic volume function. Let D = (D, (gv)v∈ΣK ) be an adelic R-
Cartier divisor on X. We consider the K-vector space

H0(X,D) := {φ ∈ κ(X)× | D + (φ) ≥ 0} ∪ {0}.

For any non-zero element φ ∈ H0(X,D) and any v ∈ ΣK , the function ‖φ‖v :=
|φv|v exp(−gv/2) extends to a continuous function on Xan

v , where φv is the func-
tion on Xan

v induced by φ (see [43, Propositions 1.4.2 and 2.1.3]). We also define
‖φ‖v,sup := supx∈Xan

v
‖φ‖v(x) and

Ĥ0(X,D) := {φ ∈ H0(X,D) | ‖φ‖v,sup ≤ 1 ∀v ∈ ΣK}.

We let

ĥ0(X,D) =

{
ln #Ĥ0(X,D) if K0 = Q,

dimk Ĥ
0(X,D) if K0 = k(T ).
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Definition 3.3. The arithmetic volume of D is the quantity

v̂ol(D) := lim sup
n→+∞

ĥ0(X,nD)

nd+1/(d+ 1)!
.

Example 3.4. Assume that there exists a normal model (X ,D) over S such that
all the D-Green functions of D are induced by D. By [43, Proposition 4.3.1], we
have

Ĥ0(X,D) = {φ ∈ H0(X ,D) | max
v∈ΣK,∞

‖φ‖v,sup ≤ 1}.

In particular, if K0 = k(T ) then Ĥ0(X,D) = H0(X ,D). It follows that v̂ol(D) =
vol(D) is the (geometric) volume of D (see [36, section 2.2]) :

vol(D) = lim sup
n→+∞

dimkH
0(X , nD)

nd+1/(d+ 1)!
.

We now recall a well-known continuity property of the volume function v̂ol due
to Moriwaki.

Theorem 3.5. Let D,D1, . . . , D` be adelic R-Cartier divisors on X. Then

lim
ε1→0,...,ε`→0

v̂ol(D + ε1D1 + · · ·+ ε`D`) = v̂ol(D).

When K is a number field, this is a particular case of [43, Theorem 5.2.1]. In
the function field case, one can prove the result by using similar arguments and the
continuity of the geometric volume function [36, Theorem 2.2.44]. Alternatively,
Theorem 3.5 is a particular case of [21, Theorem 6.4.24] due to Chen and Moriwaki,
who recently established the continuity of the arithmetic volume in the much more
general setting of adelic curves.

3.4. Height function. Let D = (D, (gv)v∈ΣK ) be an adelic R-Cartier divisor on
X and let x ∈ X(K) be a closed point with residue field κ(x). The height of a x
with respect to D is defined to be

hD(x) := − 1

[κ(x) : K]

∑
v∈ΣK

nv(K)
∑

z∈Ov(x)

ln ‖φ‖v(zan),

where φ ∈ H0(X,D) is any function with x /∈ Supp(D + (φ)). This definition does
not depend on the choice of φ (see [43, section 4.2] for details).

Remark 3.6. We mention an equivalent formula for the height of x, which may
be more usual. For each place w ∈ Σκ(x), we fix a K-embedding σw : κ(x) ↪→ Cv
associated to w, where v denotes the restriction of w to K (note that there are
exactly [κ(x)w : Kv] such embeddings). The pair (x, σw) determines uniquely a
point xw ∈ Xv, and the quantity ‖φ‖w(x) := ‖φ‖v(xan

w ) does not depend on the
choice of σw. With these notations, we have

hD(x) = −
∑

w∈Σκ(x)

nw(κ(x)) ln ‖φ‖w(x).

If we denote by π : X → SpecK the structural morphism, we have

(3.1) hD+π∗ξ(x) = hD(x) + d̂eg(ξ)

for any ξ ∈ D̂iv(SpecK)R and x ∈ X(K). In view of example 3.7 below, this basic
fact can be interpreted as a projection formula.
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Example 3.7. Assume that K is a function field and that there exists a normal
model (X ,D) of (X,D) over S = CK such that for each v ∈ ΣK , the D-Green
function gv = gD,v is induced by D. Let x ∈ X(K) be a closed point and let
Cx ⊂ X be the Zariski-closure of x in X . Note that Cx is an integral projective
curve, and that the restriction πX |Cx : Cx → CK is surjective. We have

hD(x) =
D · Cx

[κ(x) : K0]
,

where κ(x) is the residue field of X at x and D·Cx is the usual geometric intersection
product of cycles. We will see that an analogue of this formula involving the
arithmetic intersection product holds when K is a number field (see section 3.7).

We end this paragraph with the following well-known lemma, giving a lower
bound for the height of points at which a small section doesn’t vanish.

Lemma 3.8. Suppose there exists φ ∈ H0(X,D) \ {0} with ‖φ‖v,sup ≤ 1 for all

v ∈ ΣK . For any x ∈ X(K) not contained in the support of D + (φ), we have
hD(x) ≥ 0.

Proof. If x ∈ X(K) is not contained in the support of D + (φ), we have

hD(x) = − 1

[κ(x) : K]

∑
v∈ΣK

nv(K)
∑

z∈Ov(x)

ln ‖φ‖v(zan) ≥ 0

since ‖φ‖v(zan) ≤ ‖φ‖v,sup ≤ 1 for every v ∈ ΣK and z ∈ Ov(x). �

3.5. Positivity of adelic R-Cartier divisors. In this section we define several
notions of arithmetic positivity, following [43, section 4.4] and [49]. For the defini-
tion of plurisubharmonic functions we refer the reader to [42, section 2.1] and [43,
section 1.4].

Definition 3.9. Let D = (D, (gv)v∈ΣK ) be an adelic R-Cartier divisor on X. We
say that D is

• big if v̂ol(D) > 0;
• pseudo-effective if D+A is big for any big adelic R-Cartier divisor A on X;
• semi-positive if there exists a sequence (Xn,Dn, (gn,v)v∈ΣK )n∈N such that :

(1) for all n ∈ N, (Xn,Dn) is a normal model for (X,D) with Dn relatively
nef,

(2) for all n ∈ N, gn,v is a smooth plurisubharmonic D-Green function
invariant under F∞ if v ∈ ΣK,∞ and gn,v = gDn,v for every non-
archimedean v ∈ ΣK ,

(3) for every v ∈ ΣK , (gn,v)n∈N converges uniformly to gv;

• nef if D is semi-positive and if infx∈X(K) hD(x) ≥ 0.

Remark 3.10. (1) In the definition of semi-positivity, the condition that Dn is
relatively nef is to be understood with respect to the morphism πXn : Xn → S
associated to the model Xn : by definition, Dn is relatively nef if it has non-negative
intersection with any curve contained in a fiber of πXn above a closed point.

(2) When D ∈ D̂iv(X)Z and K is a number field, our definition of semi-positivity
coincides with the notion of semi-positive adelic line bundles in the sense of Zhang
[49] (see [8], (1) page 229). In [43], Moriwaki introduced the more intrinsic notion of
relatively nef adelic R-Cartier divisors, which is closely related to semi-positivity in

the sense of Definition 3.9. By [43, Proposition 4.2.2], if D ∈ D̂iv(X)R is relatively
nef in the sense of [43, Definition 4.4.1], then it is semi-positive (see also [8], (2)
and (4) page 229).



SUCCESSIVE MINIMA AND ASYMPTOTIC SLOPES IN ARAKELOV GEOMETRY 13

Example 3.11. In the situation of example 3.4 when K0 = k(T ), D is big (respec-
tively pseudo-effective) if and only if D is big (respectively pseudo-effective) in the
sense of [36, section 2.2].

3.6. Arithmetic Cartier divisors. In this section we define arithmetic K-Cartier
divisors on arithmetic varieties, which are special cases of adelic K-Cartier divisors
for which all the Green functions at the non-archimedean places are induced by the
same model. In this paragraph we assume that K is a number field. Let X be a
projective arithmetic variety over SpecOK , that is an integral scheme projective and
flat over SpecOK . We let d + 1 be the Krull dimension of X , so that the generic
fiber X := X ×OK SpecK of X has dimension d. We say that X is generically
smooth if X is smooth.

Definition 3.12. An arithmetic K-Cartier divisor D = (D, (gv)v∈ΣK,∞) on X is a
pair consisting of a K-Cartier divisor D ∈ Div(X )K and, for each archimedean place
v ∈ ΣK,∞, a continuous D-Green function gv on Xan

v invariant under the complex

conjugation F∞. We say that D is of C∞-type if gv is smooth for every v ∈ ΣK,∞.

Arithmetic K-Cartier divisors on X form a group, denoted by D̂iv(X )K. Given

an arithmetic K-Cartier divisor D = (D, (gv)v∈ΣK,∞), we denote by Dad
the adelic

K-Cartier divisor on the generic fiber X defined by (D, (gv)v∈ΣK ), where D = D|X
is the restriction of D and for every non-archimedean place v ∈ ΣK , gv = gD,v is
the D-Green function induced by D.

Definition 3.13. An arithmetic R-Cartier divisor D on X is said to be big (respec-

tively pseudo-effective) if Dad
is big (respectively pseudo-effective). We say that D

is semi-positive if D is relatively nef and gv is plurisubharmonic for every v ∈ ΣK,∞,

and that D is nef if it is semi-positive with hDad(x) ≥ 0 for every x ∈ X(K).

We observe that our definitions of big, pseudo-effective and nef arithmetic R-
divisor coincide with the ones of Ikoma [34]. We will also need the notion of
ampleness used in [34]. We first recall the definition of the curvature current.

Let D = (D, (gv)v) ∈ D̂iv(X )Z. We assume that X is generically smooth. For
v ∈ ΣK,∞, we denote by Dv the divisor induced by D on Xv and we consider the

current c1,v(D) :=
√
−1

2π ∂∂[gv] + δDv on Xan
v . Note that c1,v(D) is non-negative if

the function gv is plurisubharmonic, and that it is a real (1, 1) form if gv is smooth.
We let c1(D) be the current on X(C) whose restriction to Xan

v is c1,v(D) for each
v ∈ ΣK,∞.

The following definition of ampleness is the one used by Ikoma in [34].

Definition 3.14. Let X be a generically smooth arithmetic variety over SpecOK
and let A = (A, (gv)v∈ΣK,∞) ∈ D̂iv(X )Z. We say that A is ample if it satisfies the
following conditions :

(1) A is ample;
(2) for each v ∈ ΣK,∞, gv is smooth;

(3) the curvature form c1(A) is positive pointwise on X(C);
(4) for m � 1, H0(X ,mA) is generated as an OK-module by sections s with

maxv∈ΣK,∞ ‖s‖v,sup < 1.

An arithmetic R-divisor D on X is ample if there exist ample arithmetic Z-Cartier
divisors A1, . . . ,A` and positive real numbers a1, . . . , a` such that

D = a1A1 + · · ·+ a`A`.

3.7. Reminder on arithmetic intersection theory. In this paragraph we recall
some properties of the arithmetic intersection product that we will need in the
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proof of Theorem 1.1. We assume that K is a number field and let X be a normal
arithmetic variety over SpecOK .

We say that a divisor D ∈ D̂iv(X )R is integrable if it belongs to the subgroup

of D̂iv(X )R generated by nef arithmetic R-Cartier divisors. In particular, a semi-
positive arithmetic R-Cartier divisor is integrable. Let D0,D1, . . . ,Dd be integrable
arithmetic R-Cartier divisors on X . In [42, section 6.4], Moriwaki defined a multi-
linear intersection product

(3.2) d̂eg(D0 · · · Dd)

when X generically smooth. In [34], Ikoma extended the intersection product (3.2)
to the cases where X is not generically smooth and D0 is not integrable. Let

D ∈ D̂iv(X )R be an integrable arithmetic R-Cartier divisor and D = Dad
be the

induced adelic divisor on X. Let x ∈ X(K) be a closed point and let Cx ⊂ X be
the Zariski closure of x in X . Then we have

(3.3) hD(x) =
d̂eg(D|Cx)

[κ(x) : K0]

(see [42, section 5.3] for details). When X is generically smooth and when the

divisors D0,D1, . . . ,Dd ∈ D̂iv(X )Z are of C∞-type, then the product (3.2) coincides
with the usual one, used for example in [48, 49]. In particular, for any non-zero
function φ ∈ H0(X ,Dd) we have

d̂eg(D0 · · · Dd) =
∑̀
i=1

aid̂eg(D0|Zi · · · Dd−1|Zi)

−
∑

v∈ΣK,∞

∫
Xan
v

ln ‖φ‖vc1,v(D0) ∧ · · · c1,v(Dd−1),

where (φ) +Dd =
∑`
i=1 aiZi is the decomposition of the Weil divisor (φ) +Dd : for

each i ∈ {1, . . . , `}, ai ∈ Z>0 and Zi ⊂ X is a codimension 1 integral subvariety.

3.8. Successive minima of an adelic R-Cartier divisor. Let K be global field
and let X be a projective, normal and geometrically integral variety on SpecK of
dimension d ≥ 1. Let D = (D, (gv)v∈ΣK ) be an adelic R-Cartier divisor on X. For
all λ ∈ R, we denote by XD(λ) the Zariski-closure in X of the set

{x ∈ X(K) | hD(x) ≤ λ}.

For every integer i ∈ {1, . . . , d+ 1}, we define the i-th minimum ζi(D) of D by

ζi(D) = inf{λ ∈ R | dimXD(λ) ≥ i− 1}.

These invariants were first introduced by Zhang in the number field setting [48]. We
call ζabs(D) = ζ1(D) the absolute minimum and ζess(D) := ζd+1(D) the essential
minimum of D. Note that ζabs(D) = infx∈X(K) hD(x) and

ζess(D) = inf{λ ∈ R | XD(λ) is dense} = sup
Y(X

inf
x∈X(K)\Y

hD(x),

where the supremum is taken on the Zariski-closed proper subschemes Y of X.
We gather some basic properties of the essential minimum in the following

lemma.

Lemma 3.15. Let D1, D2 be two adelic R-Cartier divisors on X.

(1) (super-additivity) We have

ζess(D1 +D2) ≥ ζess(D1) + ζess(D2).
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(2) (non-decreasing) If Ĥ0(X, t(D1 −D2)) 6= {0} for some real number t > 0,
then ζess(D1) ≥ ζess(D2).

(3) (continuity) If the underlying Cartier divisor D1 of D1 is big, we have

lim
t→0

ζess(D1 + tD2) = ζess(D1).

Proof. (1) Without loss of generality, we assume that ζess(D1), ζess(D2) > −∞. Let
λ1 < ζess(D1) and λ2 < ζess(D2) be real numbers. By definition of the essential
minimum, there exist non-empty open subsets U1, U2 in X such that for each
i ∈ {1, 2},

∀x ∈ Ui, hDi(x) ≥ λi.
Since X is integral, the open subset U = U1 ∩ U2 is non-empty. It follows that

ζess(D1 +D2) ≥ inf
x∈U(K)

(hD1
(x) + hD2

(x)) ≥ λ1 + λ2,

and we conclude by letting λ1, λ2 tend to ζess(D1), ζess(D2) respectively.
(2) By (1), we have

ζess(D1) = ζess(D2 +D1 −D2) ≥ ζess(D2) + ζess(D1 −D2).

By Lemma 3.8, there exists a closed subset Zt ( X such that thD1−D2
(x) =

ht(D1−D2)(x) ≥ 0 for any x ∈ X(K) \ Zt. Therefore

ζess(D1 −D2) ≥ inf
x∈X(K)\Zt

hD1−D2
(x) ≥ 0.

(3) Let π : X → SpecK denote the structural morphism. If we replace D1 by
D1 +π∗ξ for some adelic R-Cartier divisor ξ on SpecK, both sides of the inequality

differ by d̂eg(ξ) (see the projection formula for the height (3.1)). Hence we may
assume that D1 is big. Let ε > 0 and t be real numbers. By continuity of the
volume function (Theorem 3.5), the divisors

(1 + ε)D1 − (D1 + tD2) = εD1 − tD2

and

(D1 + tD2)− (1− ε)D1 = εD1 + tD2

are both big if t is sufficiently close to zero. By (2), we have

(1 + ε) ζess(D1) ≥ ζess(D1 + tD2) ≥ (1− ε) ζess(D1)

and the result follows. �

Lemma 3.16. If D is pseudo-effective and D is big, then ζess(D) ≥ 0.

Proof. If D is big, then ζess(D) ≥ 0 by Lemma 3.15 (2). We deduce the general
case by continuity (Lemma 3.15 (3)). �

4. Pseudo-effectivity and essential minimum

Let K be a global field and let S = CK or SpecOK denote the corresponding
scheme defined in section 3.1. Let X be a projective, normal and geometrically
integral variety X on SpecK and let D = (D, (gv)v∈ΣK ) be an adelic R-Cartier di-
visor on X. The purpose of this section is to prove Theorem 1.1 in the introduction.
We reproduce the statement below.

Theorem 4.1. Suppose that D is semi-positive and that D is big. Then D is
pseudo-effective if and only if ζess(D) ≥ 0.
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By Lemma 3.16, we only need to prove the implication

ζess(D) ≥ 0 =⇒ D is pseudo-effective.

We first reduce the problem to the case D = Dad
(subsection 4.1) : we shall see

that we may assume the existence of a normal model (X ,D) on S such that for
every non-archimedean place v ∈ ΣK , the D-Green function gv is induced by D. In
this case, we can interpret the height of a closed point as an intersection number on
X (see example 3.7 and subsection 3.7). When S = CK , we will deduce Theorem
4.1 from a deep theorem of Boucksom–Demailly–Păun–Peternell [7], characterizing
pseudo-effectivity in terms of numerical positivity (see Theorem 4.4 below). When
S = SpecOK , we adopt the same strategy and use the arithmetic counterpart of
Theorem 4.4, due to Ikoma [34]. To clarify the exposition, we shall distinguish the
cases S = CK (subsection 4.2) and S = SpecOK (subsection 4.3).

Before we start the proof, we mention a useful corollary of Theorem 4.1.

Corollary 4.2. Let ξ be an adelic R-Cartier divisor on SpecK with d̂eg(ξ) = 1
and let π : X → SpecK be the structural morphism. Suppose that D is big. Then
we have

ζess(D) ≥ sup{t ∈ R | D − tπ∗ξ is pseudo-effective},
with equality if D is semi-positive.

Proof. For t ∈ R, we let Dt = D − tπ∗ξ. By the projection formula for the height
(3.1), we have ζess(Dt) = ζess(D)− t. By Lemma 3.16, ζess(D) ≥ t if Dt is pseudo-
effective. It follows that

(4.1) ζess(D) ≥ sup{t ∈ R | Dt is pseudo-effective}.

If moreover D is semi-positive, then Dt is semi-positive for any t ∈ R. By Theorem
4.1, Dt is pseudo-effective for any t ≤ ζess(D). Hence (4.1) is an equality. �

4.1. Reduction to a fixed model.

Lemma 4.3. Assume that D = (D, (gv)v∈ΣK ) is semi-positive but not pseudo-
effective. Then there exist a normal model (X ,D) of (X,D) on S together with a
collection (gD,v)v∈ΣK,∞ such that

• D is relatively nef,
• for all v ∈ ΣK,∞, gD,v is a smooth D-Green function invariant by F∞,

• D is not pseudo-effective,

• ζess(D
ad

) > ζess(D),

where Dad ∈ D̂iv(X)R is the adelic R-Cartier divisor on X induced by D =
(D, (gD,v)v∈ΣK,∞).

Proof. Since D is semi-positive, there exists a sequence (Xn,Dn, (gn,v)v∈ΣK )n∈N
such that :

(1) for all n ∈ N, (Xn,Dn) is a normal model for (X,D) with Dn relatively nef,
(2) for all n ∈ N, gn,v is a smooth plurisubharmonic D-Green function invariant

under F∞ if v ∈ ΣK,∞ and gn,v = gDn,v for every non-archimedean v ∈ ΣK ,
(3) limn→+∞ ‖gn,v − gv‖v,sup = 0 for every v ∈ ΣK .

For each n ∈ N, we denote by πn : Xn → S the morphism given by the model

Xn. Let M ∈ Div(S)R be an effective R-Cartier divisor such that d̂eg(ξM ) = 1,
where ξM is the adelic R-Cartier divisor on SpecK induced by M . Let ε > 0
be a real number. We let Dn,ε := Dn + επ∗nM , Dn,ε = (Dn,ε, (gn,v)v∈ΣK,∞) and

Dn = (Dn, (gn,v)v∈ΣK,∞).



SUCCESSIVE MINIMA AND ASYMPTOTIC SLOPES IN ARAKELOV GEOMETRY 17

By (3) above and by the projection formula (3.1), there exists an integer nε ≥ 1
such that

hDad
n,ε

(x) = hDad
n

(x) + ε ≥ hD(x) + ε/2

for every x ∈ X(K) and n ≥ nε. It follows that ζess(D
ad

n,ε) > ζess(D) for all ε > 0
and n ≥ nε. Moreover Dn,ε is relatively nef for all n ∈ N and ε > 0. It remains to

check that we can choose ε and n ≥ nε so that Dn,ε is not pseudo-effective. Since D

is not pseudo-effective, there exists a big adelic R-divisor B on X such that D+B
is not big. For all n ∈ N, ε > 0 and v ∈ ΣK , we let sv,n,ε = ‖gDn,ε,v − gv‖v,sup.
By construction, we can choose n and ε so that maxv∈ΣK sv,n,ε is arbitrarily small.

By continuity of v̂ol (Theorem 3.5), it follows that there exist ε0 > 0 and m ≥ nε0
such that Bm,ε0 := B− (0, (sv,m,ε0)v∈ΣK )) is big. If Dm,ε0 is pseudo-effective, then

v̂ol(D +B) ≥ v̂ol(Dad

m,ε0 +Bm,ε0) > 0,

which is absurd. Hence Dm,ε0 is not pseudo-effective, and we obtain the lemma

with D = Dm,ε0 . �

4.2. The function field case. The goal of this section is to prove Theorem 4.1
when K is a function field, i.e. when S = CK is a regular integral projective curve
on a field k. We will see that in this case, Theorem 4.1 is a consequence of the
following theorem of Boucksom, Demailly, Păun and Perternell, describing the dual
of the pseudo-effective cone of a projective variety.

Theorem 4.4 ([7], Theorem 2.2). Let Z be an integral projective variety over a
field and let ` = dimZ − 1. A divisor E on Z is pseudo-effective if and only if for
every birational morphism ϕ : Z ′ → Z and for all ample divisors A1, . . . , A` on X ′,

E · ϕ∗(A1 · · ·A`) ≥ 0,

where ϕ∗ denotes the proper pushforward of cycles.

In [7, Theorem 2.2], this theorem is stated and proved over C. Recently, Das
[23] observed that the proof given by Lazarsfeld in [37, section 11.4.C] (following
[7]) works over an algebraically closed field of arbitrary characteristic. By the work
of Cutkosky [22], it turns out that the proof given in [37] remains valid without
any assumption on the base field. More precisely, the key point in the proof of [37,
Theorem 11.4.19] is the “asymptotic orthogonality of Fujita approximation” [37,
Theorem 11.4.21]. The latter holds for any field k by [22, Corollary 5.5]1. The rest
of the proof of [37, Theorem 11.4.19] makes no use of the algebraically closed nor
characteristic zero assumption on k.

We will use the following classical consequence of Theorem 4.4 (see [37, Lemma
11.4.18]).

Corollary 4.5. Let Z be an integral projective variety over a field and let E be
a divisor Z which is not pseudo-effective. Then for any Zariski-closed proper sub-
scheme Y ( Z, there exists an integral curve C ⊂ Z not contained in Y such that
E · C < 0.

We are now ready to prove Theorem 4.1 when K is a function field.

Proof of Theorem 4.1 (K0 = k(T )). By Lemma 3.16, it suffices to prove the impli-
cation

ζess(D) ≥ 0 =⇒ D is pseudo-effective.

1In [22, Corollary 3.13], it follows immediately from the proof that one can replace the constant
C by C′ωd, where C′ is a numerical constant. This observation leads to a slightly more explicit
statement in [22, Corollary 5.5], which is exactly [37, Theorem 11.4.21] for an arbitrary field k.
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Assume that D is not pseudo-effective. By Lemma 4.3 (see also example 3.11),
there exists a normal model (X , πX ) of X on CK and a R-Cartier divisor D on X
such that

(1) D is relatively nef,
(2) D is not pseudo-effective,

(3) ζess(D
ad

) > ζess(D).

We only need to show that ζess(D
ad

) ≤ 0. Let Y ( X be a proper closed subscheme.
By Corollary 4.5, there exists an integral curve CY ∈ X not contained in Y such
that D·CY < 0. Since D is relatively nef, we have D·C ≥ 0 for any curve contained
in a fiber of πX above a closed point. It follows that the curve CY is horizontal,
in the sense that the restriction πX |CY is a surjective morphism. The generic point

PY ∈ X(K) of CY satisfies

hDad(PY) =
D · CY

[κ(CY) : K0]
< 0.

We infer that
sup
Y X

inf{hDad(P ) | P ∈ X(K), CP * Y} ≤ 0,

where for any P ∈ X(K), CP denotes the Zariski-closure of P in X . Now the

supremum on the left hand-side is the essential minimum ζess(D
ad

), so the theorem
is proved. �

4.3. The number field case. We now assume that K is a number field, i.e.
S = SpecOK . The following arithmetic analogue of Theorem 4.4 is due to Ikoma.

Theorem 4.6 ([34], Theorem 6.4). Let X be a normal projective arithmetic variety
on SpecOK of dimension d+1. Let D = (D, (gv)v∈ΣK,∞) be an arithmetic R-divisor
on X . The following are equivalent.

(1) D is pseudo-effective.
(2) For any blowing-up ϕ : X ′ → X such that X ′ is normal and generically

smooth, and for any ample arithmetic Q-divisor H on X ′, we have

d̂eg(ϕ∗D · Hd) ≥ 0.

We shall derive Theorem 4.1 from Ikoma’s theorem by applying a method similar
to the one we used in the function field case. In order to deduce an analogue of
Corollary 4.5 from Theorem 4.6, we use an arithmetic Bertini-type theorem due
to Moriwaki [39, Theorem 5.3]. The latter was extended by Ikoma [33], and more
recently by Charles [13].

Proof of Theorem 4.1. By Lemma 3.16, it is sufficient to assume that D is not
pseudo-effective and to show that ζess(D) < 0. By Lemma 4.3, there exist a normal
projective arithmetic variety X on SpecOK and an arithmetic R-Cartier divisor
D = (D, (gv)v∈ΣK,∞) such that :

(1) D is semi-positive of C∞-type,
(2) D is not pseudo-effective,

(3) ζess(D
ad

) > ζess(D).

It is enough to show that ζess(D
ad

) ≤ 0. By homogeneity and continuity of the

essential minimum (Lemma 3.15 (3)), we may assume that Dad ∈ D̂iv(X )Z. Since D
is not pseudo-effective, by Theorem 4.6 there exist a birational morphism ϕ : X ′ →
X , with X ′ normal and generically smooth, and an ample arithmetic Q-divisor H
on X ′ such that

d̂eg(ϕ∗D · Hd) < 0,
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where d = dimX. Without loss of generality, we assume that H ∈ Div(X ′)Z.
Let Y ( X be a closed subscheme. Since H is ample, [33, Theorem A] implies
the existence of an integer n ≥ 1 and a non-zero function φ ∈ H(X ′, nH) with
maxv∈ΣK,∞ ‖φ‖v,sup < 1 such that the divisor (φ) + nH is generically smooth and

intersects Y ′ := ϕ−1(Y) properly. We write

(φ) + nH =
∑̀
i=1

aiZi

the decomposition of (φ)+nH as a cycle : for each i ∈ {1, . . . , `}, ai > 0 is an integer
and Zi ⊂ X ′ is a generically smooth subvariety of codimension 1 not contained in
Y ′. We have

(4.2) d̂eg(ϕ∗D · (nH)d) =
∑̀
i=1

aid̂eg(D|Zi · (nH|Zi)
d−1)

−
∑

v∈ΣK,∞

∫
Xan
v

ln ‖φ‖vc1,v(ϕ∗D) ∧ c1,v(nH)d−1.

Since ϕ∗D is semi-positive and H is ample, the current c1,v(ϕ
∗D) ∧ c1,v(nH)d−1 is

non-negative for each v ∈ ΣK,∞. On the other hand ‖φ‖v,sup ≤ 1, hence we have

−
∫
Xan
v

ln ‖φ‖vc1,v(ϕ∗D) ∧ c1,v(nH)d−1 ≥ 0

for each v ∈ ΣK,∞. It follows from (4.2) that

∑̀
i=1

aid̂eg(D|Zi · (nH|Zi)
d−1) ≤ d̂eg(ϕ∗D · (nH)d) = ndd̂eg(ϕ∗D · Hd) < 0.

Since ai > 0 for all 1 ≤ i ≤ `, there exists a codimension 1 generically smooth
subvariety Z ⊂ X ′ not contained in Y ′ such that

d̂eg(ϕ∗D|Z · H
d−1

|Z ) < 0.

Since H|Z is ample, we can iterate this process. Eventually we obtain an integral
curve C′ ⊂ X ′ not contained in Y ′ such that

d̂eg(ϕ∗D|C′) < 0.

We denote by πX : X → S = SpecOK the morphism defining the model X , and we
let πX ′ = πX ◦ϕ. Assume that πX ′(C′) ∈ S is a closed point, and let p be its image
in SpecZ. In this case we have

d̂eg(ϕ∗D|C′) = ln(p) deg(ϕ∗D · C′) < 0,

which is absurd since ϕ∗D is relatively nef. It follows that C′ is horizontal, i.e.
πX ′(C′) = S. The image ϕ(ηC′) of the generic point of C′ by ϕ defines a closed
point x ∈ X(K) \ Y of height hDad(x) < 0. It follows that

inf{hDad(x) | x ∈ X(K), x /∈ Y} < 0.

By taking the supremum on the Zariski-closed proper subschemes Y ⊂ X we find

ζess(D
ad

) ≤ 0, which concludes the proof. �
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5. Asymptotic slopes and proof of Conjecture 1

We recall definitions and known facts about asymptotic slopes in subsection
5.1. These invariants were first introduced by Chen in [15] for arithmetic divisors
(see also [14]), and extended to adelic R-Cartier divisors by Chen and Moriwaki
[20, 21]. In subsection 5.2 we prove Theorem 1.2. Let K be a global field and
let π : X → SpecK be a projective, normal and geometrically integral variety of
dimension d := dimX. We fix a place v0 of K0, and we assume that κ(v0) = k if
K0 = k(T ) (e.g. v0 = (1 : 0) ∈ P1

k).

5.1. Definitions and properties. Let D ∈ D̂iv(X)R. For any real number t
and any integer n ≥ 1, we consider the K-linear subspace V tn of Vn = H0(X,nD)
generated by functions φ ∈ Vn such that for each place v ∈ ΣK ,

‖φ‖v,sup ≤
{
e−t if v|v0,
1 otherwise.

We let

λmax,n(D) := sup{t ∈ R | V tn 6= 0} and λmin,n(D) := sup{t ∈ R | V tn = Vn}.

Example 5.1. (1) Suppose that K is a number field and that D = Dad
for some

arithmetic R-Cartier divisor D on a normal model X of X. Then for any n ≥ 1
and t ∈ R, V tn identifies with the set

{φ ∈ H0(X , nD) | max
v∈ΣK,∞

‖φ‖v,sup ≤ e−t}.

(2) Suppose that K is a number field and let n ≥ 1 be an integer. Then
exp(−λmax,n(D)) and exp(−λmin,n(D)) are respectively the first and last minima
of (Vn, (‖.‖v,sup)v∈ΣK ) in the sense of Bombieri–Vaaler [4, section III.1].

Definition 5.2. The asymptotic maximal slope of D is the quantity

µ̂asy
max(D) = lim sup

n→+∞

λmax,n(D)

n
.

The asymptotic minimal slope of D is

µ̂asy
min(D) = lim inf

n→+∞

λmin,n(D)

n
.

Remark 5.3. For any integer n ≥ 1 the K-vector space Vn equipped with the
collections of norms (‖.‖v,sup)v∈ΣK is an adelic K-vector space in the sense of Gau-

dron [26], and we let µ̂max(V n) be its maximal slope as defined in [26, section 5.1].
By [26, Theorem 5.20], we have µ̂max(V n) = λmax,n(D) + o(n). Therefore

µ̂asy
max(D) = lim sup

n→+∞

µ̂max(V n)

n
.

In particular, Definition 5.2 of µ̂asy
max(D) is consistent with the one of [15]. The same

is true for the asymptotic minimal slope.

The asymptotic slopes of D are actually limits under suitable positivity condi-
tions on D.

Proposition 5.4 ([15], Theorem 4.1.2). If D is big, the sequence (λmax,n(D)/n)n∈N
converges in R : µ̂asy

max(D) = limn→+∞ λmax,n(D)/n. If moreover the graded K-
algebra

V• =
⊕
n∈N

Vn
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is finitely generated, the sequence (λmin,n(D)/n)n∈N converges in R : µ̂asy
min(D) =

limn→+∞ λmin,n(D)/n.

The following result of Chen [14, Proposition 3.11] characterizes the positivity
of the asymptotic maximal slope in terms of bigness of D. It holds in the more
general setting of adelic curves by Chen–Moriwaki [21].

Proposition 5.5 ([21], Proposition 6.4.18). The following conditions are equiva-
lent :

(1) D is big,
(2) D is big and µ̂asy

max(D) > 0.

5.2. Proof of Theorem 1.2. The goal of this subsection is to prove the following
theorem, which is a slightly more precise version of Theorem 1.2 in the introduction.
We say that a divisor D ∈ Div(X)Q is semi-ample if there exists an integer n ≥ 1
such that nD ∈ Div(X)Z and OX(nD) is generated by global sections.

Theorem 5.6. Let D ∈ D̂iv(X)R.

(1) Suppose that D is big. Then

ζess(D) ≥ µ̂asy
max(D),

with equality if D is semi-positive.
(2) Suppose that D ∈ Div(X)Q is big and semi-ample. Then

ζabs(D) ≥ µ̂asy
min(D),

with equality if D is semi-positive.

Note that the first assertion of this theorem implies Conjecture 1. As we will
see, it is an immediate consequence of Corollary 4.2 and Proposition 5.5. We shall
derive Theorem 5.6 (2) from an arithmetic Nakai-Moishezon criterion for ampleness,
originally proved by Zhang whenK is a number field [48, Theorem 4.2] and extended
to the much wider setting of adelic curves by Chen and Moriwaki [21], under weaker
positivity assumptions.

Proof. (1) Assume that D is big. Let ξ0 = (ξ0,v)v∈ΣK be the adelic divisor on
SpecK given by

ξ0,v =

{
2 if v|v0,
0 otherwise.

It follows from the definitions that µ̂asy
max(D − tπ∗ξ0) = µ̂asy

max(D)− t for any t ∈ R.
Applying Proposition 5.5 to µ̂asy

max(D − tπ∗ξ0) when t ∈ R varies, we find

µ̂asy
max(D) = sup{t ∈ R | D − tπ∗ξ0 is big}

= sup{t ∈ R | D − tπ∗ξ0 is pseudo-effective},
where the second equality follows from the definition of pseudo-effectivity. We

conclude with Corollary 4.2 (note that d̂eg(ξ0) = 1).
(2) For t ∈ R, we let Dt := D− tπ∗ξ0. It follows from the projection formula for

the height (3.1) and the definition of ζabs(D) that

ζabs(D) = sup{t ∈ R | Dt is nef}.
Let n ≥ 1 be an integer and let (φ1, . . . , φ`n) be a basis for H0(X,nD). Let
x ∈ X(K) be a point with residue field κ(x). Since D is semi-ample, there exists
i ∈ {1, . . . , `n} such that x /∈ Supp(nD + (φi)) provided that n is sufficiently large
and divisible. It follows that

nhD(x) = −
∑

w∈Σκ(x)

nw(κ(x)) ln ‖φi‖w(x) ≥ −
∑

w∈Σκ(x)

nw(κ(x)) ln ‖φi‖w,sup.
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We infer that hD(x) ≥ λmin,n(D)/n for every x ∈ X(K) and n � 1 sufficiently

divisible. By the projection formula (3.1), Dt = D − tπ∗ξ0 is nef for every t ≤
µ̂asy

min(D), so that

µ̂asy
min(D) ≤ sup{t ∈ R | Dt is nef} = ζabs(D).

We now assume that D is semi-positive to prove the converse inequality. By defini-
tion, µ̂asy

min(Dt) = µ̂asy
min(D)− t for any t ∈ R. By the above, there exists t0 ∈ R such

that Dt is nef for every t ≤ t0. Let t < t0 be a rational number and let Y ⊂ X be
an irreducible subvariety. We have

µ̂asy
max(Dt|Y ) = ζess(Dt|Y ) ≥ ζabs(Dt|Y ) > ζabs(Dt0) ≥ 0.

By definition of µ̂asy
max(Dt|Y ) there exists an integer nY ≥ 1 such that Ĥ0(Y, nDt|Y ) 6=

0 for every n ≥ nY . By the arithmetic Nakai-Moishezon criterion [21, Theorem
7.4.1], we have µ̂asy

min(D)− t = µ̂asy
min(Dt) ≥ 0, and finally

µ̂asy
min(D) ≥ sup{t ∈ R | Dt is nef} = ζabs(D).

�

Remark 5.7. When D is big, we proved that

(5.1) µ̂asy
max(D) = sup{t ∈ R | D − tπ∗ξ0 is pseudo-effective},

where ξ0 = (ξ0,v)v∈ΣK ∈ D̂iv(SpecK)R is defined by ξ0,v = 2 if v|v0 and ξ0,v = 0

otherwise. This equality actually holds for any ξ ∈ D̂iv(SpecK)R with d̂eg(ξ) =
1 (see [20]). Note that (5.1) shows that Theorem 4.1 is actually equivalent to
Conjecture 1.

6. The Boucksom–Chen concave transform

The purpose of this section is to recall the definition and some known properties
of the concave transform introduced by Boucksom and Chen [6]. We closely follow
Moriwaki [41, section 1.1], who extended this construction to the case of R-Cartier
divisors.

6.1. Okounkov bodies. We briefly recall the construction of an Okounkov body
attached to a graded linear series of a divisor, following [38] and [41]. Let K be
a global field and X → SpecK be a projective, normal and geometrically integral
variety of dimension d := dimX. Let D ∈ Div(X)R, and let DK be the pullback

of D to XK = X ×K SpecK. The choice of a system of parameters z centred at a

regular point P ∈ X(K) defines a function

νz : H0(XK , DK) \ {0} → Rd

satisfying the following conditions (see [41, section 1] for details) :

• for every a ∈ F× and φ ∈ H0(XK , DK) \ {0}, νz(aφ) = νz(φ);
• for all φ1, φ2 ∈ H0(XK , DK) \ {0},

νz(φ1φ2) = νz(φ1) + νz(φ2) and νz(φ1 + φ2) ≥lex min{νz(φ1), νz(φ2)},

where ≥lex denotes the lexicographic order on Rd. Given a graded K-subalgebra
W• =

⊕
n∈NWn of V•(D) :=

⊕
n∈NH

0(X,nD), we consider the subset of Rd
defined by

Γz(W•) =
⋃
n≥1

1

n
νz(Wn ⊗K K \ {0}) =

{
νz(φ)

n
| n ≥ 1, 0 6= φ ∈Wn ⊗K K

}
.
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Definition 6.1. The Okounkov body of W• with respect to the system of parame-
ters z is defined to be the closure

∆z(W•) = Γz(W•)

of Γz(W•) in Rd for the euclidean topology. We call ∆z(D) = ∆z(V•(D)) the
Okounkov body of D with respect to z.

When D is big, ∆z(D) ⊂ Rd is a convex body (see [38, Proposition 2.1]), and
we have vol(D) = d! vol(∆z(D)).

6.2. The concave transform. Let D = (D, (gv)v∈ΣK ) be an adelic R-Cartier
divisor on X with D big. For any t ∈ R and n ∈ N, let V tn be the K-linear subspace
of Vn = H0(X,nD) defined in section 5. We consider the graded K-subalgebra
V t• ⊂ V•(D) defined by V t• =

⊕
n∈N V

nt
n .

Definition 6.2. The concave transform of D with respect to z is the function
GD,z : ∆z(D)→ R ∪ {−∞} defined by

GD,z(α) = sup{t | α ∈ ∆z(V t• )}

for every α ∈ ∆z(D).

By [6, section 1.3], GD,z is an upper-semicontinuous concave function and we
have

µ̂asy
min(D) ≤ GD,z(α) ≤ µ̂asy

max(D)

for any α ∈ ∆z(D). The maximal asymptotic slope actually coincides with the
maximum of GD,z.

Lemma 6.3. Assume that D is big. Then we have

µ̂asy
max(D) = max

α∈∆z(D)
GD,z(α).

Proof. We have already seen that GD,z(α) ≤ µ̂asy
max(D) for any α ∈ ∆z(D). For the

reverse inequality, let ξ0 ∈ D̂iv(SpecK)R be the R-adelic divisor defined in remark
5.7. Let t ∈ R be such that D−tπ∗ξ0 is big. For n ≥ 1 sufficiently large, there exists

a non-zero φ ∈ Ĥ0(X,nD−ntπ∗ξ0) ⊂ V ntn . It follows that αφ := 1
nνz(s) ∈ ∆z(V t• ),

hence GD,z(αφ) ≥ t. Therefore

GD,z(αφ) ≥ sup{t ∈ R | D − tπ∗ξ0 is big}

= sup{t ∈ R | D − tπ∗ξ0 is pseudo-effective} = µ̂asy
max(D),

so that maxα∈∆z(D)GD,z(α) ≥ µ̂asy
max(D). �

6.3. Concave transform and volume functions. Theorem 6.4 below gives two

useful formulae due to Boucksom and Chen [6], expressing the volumes v̂ol(D) and

v̂olχ(D) in terms of the concave transform. We first recall the definition of v̂olχ(D)

for an adelic R-Cartier divisor D on X. Let AK be the ring of adèles of K. For
any integer n ≥ 1, we let Vn = H0(X,nD) and we consider the adelic unit ball
B(Vn) ⊂ Vn ⊗K AK defined by

B(Vn) = {(φv) ∈ Vn ⊗K AK | ‖φv‖v,sup ≤ 1 ∀v ∈ ΣK}.

We denote by ν the Haar measure on Vn ⊗K AK with ν((Vn ⊗K AK)/Vn) = 1. We
define the χ-volume of D by

v̂olχ(D) = lim sup
n→+∞

ν(B(Vn))

nd+1/(d+ 1)!
.
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Theorem 6.4 (Boucksom–Chen [6]). Let D be an adelic R-Cartier divisor on X
such that D is big. Then

v̂ol(D) = (d+ 1)![K : K0]

∫
∆z(D)

max{0, GD,z}dλ

and

v̂olχ(D) ≤ (d+ 1)![K : K0]

∫
∆z(D)

GD,zdλ,

with equality if infα∈∆z(D)GD,z(α) > −∞.

Proof. The result follows from [6, Theorem 1.11] as in [6, Theorems 2.8 and 3.1]
(see also [41, Theorem 1.2.1]). In the function field case, one should replace Gillet-
Soulé’s result used in the proof of [6, Theorem 2.8] by its geometric analogue, see for
example [17, Theorem 2.4]. Alternatively, one can see Theorem 6.4 as a corollary
of [21, Theorem 6.4.9], which is a much more general statement valid for adelic
curves. �

7. Application to Zhang’s theorem

Let K be a global field and let X → SpecK be a projective, normal and geo-
metrically integral variety of dimension d := dimX ≥ 1. Let D = (D, (gv)v∈ΣK ) be
an adelic R-Cartier divisor on X. Our goal in this section is to prove Theorem 1.5
in the introduction. We will derive it from Boucksom–Chen’s theorem 6.4 and the
following proposition, which follows immediately from Theorem 5.6 (1) and Lemma
6.3. We fix a choice of parameters z centred at a regular point P ∈ X(K).

Proposition 7.1. If D is big, then

ζess(D) ≥ max
α∈∆z(D)

GD,z(α) = µ̂asy
max(D),

with equality if D is semi-positive.

We begin with a variant of Theorem 1.5 involving the arithmetic volumes v̂ol(D)

and v̂olχ(D).

Theorem 7.2. Assume that D is big.

(1) We have

(d+ 1)[K : K0] ζess(D) ≥ v̂olχ(D)

vol(D)
,

with equality if and only if GD,z(α) = ζess(D) for every α ∈ ∆z(D).

(2) Assume that D is pseudo-effective. Then

(d+ 1)[K : K0] ζess(D) ≥ v̂ol(D)

vol(D)
,

with equality if and only if max{0, GD,z(α)} = ζess(D) for every α ∈ ∆z(D).

In the special case when D is a toric metrized divisor on a toric variety, this
theorem was proved by Burgos Gil, Philippon and Sombra [11]. One warning : the

definition of the volumes v̂ol(D) and v̂olχ(D) used in [11] are normalized by the
degree [K : K0].

Proof. Assume that D is big. By Proposition 7.1 and Theorem 6.4, we have

ζess(D) ≥ max
α∈∆z(D)

GD,z(α) ≥ d!

vol(D)

∫
∆z(D)

GD,zdλ

≥ v̂olχ(D)

(d+ 1)[K : K0] vol(D)
.
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If (d+ 1)[K : K0] ζess(D) =
v̂olχ(D)
vol(D) , then by the above we have

ζess(D) = max
α∈∆z(D)

GD,z(α) =
1

vol(∆z(D))

∫
∆z(D)

GD,zdλ,

so GD,z = ζess(D) is constant. Conversely, if GD,z is constant equal to ζess(D) then
applying Proposition 7.1 and Theorem 6.4 again we obtain

v̂olχ(D)

[K : K0] vol(D)
=

(d+ 1)!

vol(D)
vol(∆z(D)) max

α∈∆z(D)
GD,z(α) = (d+ 1) ζess(D).

If D is pseudo-effective, then maxα∈∆z(D)GD,z(α) ≥ 0 by remark 5.7 and Lemma

6.3. The proof of (2) is the exact analogue of (1) when the function GD,z is replaced

by max{0, GD,z}. �

We will deduce Theorem 1.5 from Theorem 7.2 by comparing the χ-volume

v̂olχ(D) with the height hD(X) of X. We refer the reader to [10, section 1.5] for

the definition of the height hD(X) of X. When K is a number field and D is

integrable (see section 3.7), then [K : Q]hD(X) = d̂eg(D
d+1

). If K is a function

field and the D-Green functions of D are all induced by a divisor D ∈ Div(X )R on
a normal model X of X, then [K : k(T )]hD(X) = Dd+1 is the top self-intersection

number of D. When D is semi-positive, it turns out that hD(X) coincides with

v̂olχ(D) up to normalization, by the following theorem of Moriwaki [43].

Theorem 7.3 (Moriwaki). If D is semi-positive, then v̂olχ(D) = [K : K0]hD(X).

Proof. In the number field case, this result is proved in [43, proof of Theorem
5.3.2]. We briefly explain how to adapt the proof of [43] when K is a a function
field. By a continuity argument as in [43], we reduce the problem to the case where
all the D-Green functions of D are induced by a normal model (X ,D) of (X,D)
with D ∈ Div(X )Z relatively ample with respect to the corresponding morphism
π : X → CK . Let L = OX (D). In this case,

[K : k(T )]hD(X) = Ld+1 and v̂olχ(D) = lim sup
n→+∞

deg(π∗(L⊗n))

nd+1/(d+ 1)!
,

where deg(π∗(L⊗n)) is the geometric degree of the vector bundle π∗(L⊗n)) on CK .
By the Riemann-Roch formula, we have

deg(π∗(L⊗n)) = h0(CK , π∗(L⊗n))− h1(CK , π∗(L⊗n)) +O(nd).

Since L is relatively ample, we have Hi(CK , π∗(L⊗n)) = Hi(X ,L⊗n) for all i ≥ 0
and n� 1. In particular, Hi(X ,L⊗n) = 0 for all n� 1 and i > 1 = dimCK . We

conclude that v̂olχ(D) = Ld by the asymptotic Riemann–Roch theorem. �

Combining Proposition 7.1 with Theorems 7.2 and 7.3, we obtain Theorem 1.5
in the introduction. We reproduce the statement below.

Corollary 7.4. If D is semi-positive and D is big, then

ζess(D) ≥
hD(X)

(d+ 1)Dd
,

with equality if and only if the following equivalent conditions are satisfied :

(1) GD,z is constant;

(2) the sequence (λmax,n(D)/n)n≥1 converges to
hD(X)

(d+1)Dd
.

In that case, GD,z(α) = ζess(D) for any α ∈ ∆z(D).
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Proof. Assume that D is big and D is semi-positive. In particular D is nef and big,
so that Dd = vol(D) > 0. By Proposition 7.1 and Theorem 7.2, the three following
conditions are equivalent :

(1) GD,z is constant equal to ζess(D);

(2) GD,z is constant;

(3) limn→+∞(λmax,n(D)/n) = v̂olχ(D)/([K : K0](d+ 1)Dd).

By Theorem 7.3, v̂olχ(D) = [K : K0]hD(X). Therefore the result follows from
Theorem 7.2. �

Remark 7.5. Theorem 5.6 (1) gives another approach to prove criterion (2) in
Corollary 7.4, based on the theory of adelic vector spaces of Gaudron [26] and
without using the concave transform. Assume that D is big. We keep the notations
of remark 5.3, so that for any n ≥ 1, V n = (Vn, (‖.‖v,sup)v∈ΣK ) denotes the adelic
vector space [26] given by the K-vector space Vn = H0(X,nD) equipped with the

supremum norms. Since D is big, Vn 6= {0} for n large enough. Let d̂eg(V n)
be the normalized adelic degree of V n as defined in [26, Definition 4.1] and let

µ̂(V n) := d̂eg(V n)/ dimVn be its slope. It follows from the definitions that

(7.1)
v̂olχ(D)

[K : K0] vol(D)
= (d+ 1) lim sup

n→+∞

d̂eg(V n)

n dim(Vn)
= (d+ 1) lim sup

n→+∞

µ̂(V n)

n
.

On the other hand, we saw in remark 5.3 that µ̂asy
max(D) = limn→+∞ µ̂max(V n)/n,

where µ̂max(V n) denotes the maximal slope of V n [26, Definition 5.4], which by
definition satisfies µ̂max(V n) ≥ µ̂(V n) for any n ≥ 1. It immediately follows from
Theorem 5.6 and (7.1) that

(d+ 1) ζess(D) ≥ (d+ 1) lim
n→+∞

µ̂max(V n)

n
≥ v̂olχ(D)

[K : K0] vol(D)
.

If D is semi-positive, then the first inequality is actually an equality by Theorem 5.6

and v̂olχ(D) = [K : K0]hD(X) by Theorem 7.3. Therefore we have the equivalence

(d+ 1) ζess(D) =
hD(X)

vol(D)
⇐⇒ lim

n→+∞

µ̂max(V n)

n
= lim sup

n→+∞

µ̂(V n)

n
.

The equality on the right-hand side can be interpreted as an “asymptotic semi-
stability” condition (see [26, section 5.3] for the classical notion of semi-stability).
This gives another interesting criterion for equality to hold in Zhang’s theorem 1.4.
We will investigate this approach further in the next two sections, restricting our
attention to projective spaces.

8. Hermitian vector spaces

Let K be a global field and let K be an algebraic closure of K. In this section we
recall the definitions of hermitian vector spaces on K, following Gaudron [26, 27]
and Gaudron–Rémond [28]. Successive minima and slopes are defined in subsections
8.3 and 8.4.

8.1. Definitions. Given a place v ∈ ΣK and an integer d ≥ 1, we fix an algebraic
closure Cv of the completion Kv of K at v. We define a norm ‖.‖2,v on Cdv by

∀ x = (x1, . . . , xd) ∈ Cdv, ‖x‖2,v =

{ (∑d
i=1 |xi|2v

)1/2

if v|∞,

max1≤i≤d |xi|v if v -∞
.

We denote by AK the ring of adèles of K.
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Definition 8.1. A hermitian K-vector space is the data E = (E, (‖.‖E,v)v∈ΣK ) of

a finite dimensional K-vector space E and for each place v ∈ ΣK , a norm ‖.‖E,v on

E⊗K Cv such that the following condition holds. There exist a K-basis (e1, . . . , ed)
of E and an adelic matrix A = (Av)v∈ΣK ∈ GLd(AK) such that for any v ∈ ΣK
and x = (x1, . . . , xd) ∈ Cdv, we have

‖x1e1 + · · ·+ xded‖E,v = ‖Avx‖2,v.

A hermitian K-vector space is a hermitian vector space defined on some finite
extension of K0 = Q or k(T ).

Remark 8.2. IfK ′ is an algebraic extension of Q, the notion ofK ′-hermitian vector
space coincides with the one of rigid adelic space on K ′ introduced by Gaudron and
Rémond [30].

Let E = (E, (‖.‖E,v)v∈ΣK ) and E
′

= (E′, (‖.‖E′,v)v∈ΣK ) be two hermitian vector

spaces on K of dimension d, d′ ≥ 1 respectively. Given a place v ∈ ΣK , we say that
a basis (f1, . . . , fd) of E ⊗K Cv is orthonormal if

‖x1f1 + · · ·+ xdfd‖E,v = ‖x‖2,v

for any x = (x1, . . . , xd) ∈ Cdv. By definition, such a basis exists for any v ∈ ΣK .

8.2. Operations. We briefly recall some basic operations on hermitian vector
spaces. We refer the reader to [26, section 3.3] for details.

8.2.1. Subspace and quotient. We say that E
′ ⊂ E is a hermitian subspace of E if

E′ ⊂ E and if for every place v ∈ ΣK , ‖.‖E′,v is the restriction of ‖.‖E,v to E′⊗KCv.
We define the quotient hermitian space E/E

′
by considering the quotient norms.

8.2.2. Dual space. The dual E
∨

= (E∨, (‖.‖E∨,v)v∈ΣK ) of E is the hermitian vector

space given by the dual vector space E∨ = HomK(E,K) equipped with the usual

dual norms on E∨ ⊗K Cv. The bidual (E
∨

)
∨

is isometrically isomorphic to E by
[26, Remark 3.6]. This observation will be important in the sequel.

8.2.3. Tensor product and symmetric power. For each v ∈ ΣK , we define a norm
‖.‖E⊗E′,v on E ⊗K E′ ⊗K Cv as follows. Let (e1, . . . , ed) and (e′1, . . . , e

′
d′) be or-

thonormal bases for E ⊗K Cv and E′ ⊗K Cv. Then ‖.‖E⊗E′,v is defined to be the

unique norm such that the basis (ei⊗e′j)1≤i≤d,1≤j≤d′ is orthonormal. The hermitian

tensor product is the hermitian vector space E⊗KE
′

= (E⊗KE′, (‖.‖E⊗E′,v)v∈ΣK ).

For any integer n ≥ 1, the symmetric power SnE is the hermitian vector space

(SnE, (‖.‖SnE,v)v∈ΣK ) given by the quotient hermitian structure of E
⊗n

.

8.2.4. Wedge product. Let r ∈ {1, . . . , d}. We define the r-th wedge product ∧rE of
E to be the hermitian vector space (∧rE, (‖.‖∧rE,v)v∈ΣK ), where for each v ∈ ΣK ,

‖.‖∧rE,v is the norm on ∧rE ⊗K Cv such that

‖η‖∧rE,v = inf{‖x1‖E,v · · · ‖xr‖E,v | x1, . . . , xr ∈ E ⊗K Cv, η = x1 ∧ · · · ∧ xd}

for all decomposable η ∈ ∧rE ⊗K Cv. One warning : as opposed to the symmetric

power, the wedge product is not exactly the quotient of E
⊗r

(see [28, section
2.7]). The determinant detE of E is by definition the hermitian vector space
detE = ∧dE.
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8.2.5. Scalar extension. For any finite extension K ′ of K and for any place w ∈ ΣK′

above a place v ∈ ΣK , we define a norm ‖.‖w on E⊗KCv as follows : if σv : K ↪→ Cv
and σw : K ′ ↪→ Cv are embeddings associated to v and w respectively, we let∥∥∥∥∥∑

i

(ei ⊗K xi)⊗σwK yi

∥∥∥∥∥
w

=

∥∥∥∥∥∑
i

ei ⊗σvK (σw(xi)yi)

∥∥∥∥∥
v

for any finite families of elements ei ∈ E, xi ∈ K ′, yi ∈ Cv. This gives to EK′ =
E ⊗K K ′ the structure of an hermitian vector space on K ′, denoted by EK′ =
(EK′ , (‖.‖w)w∈ΣK′ ).

Any K-vector subspace F of EK = E ⊗K K is a K ′-vector subspace of EK′ =
E ⊗K K ′ for some finite extension K ′ of K. Hence F has a natural structure of
K-hermitian vector space F ⊂ EK′ .

8.3. Height function and successive minima. Let E = (E, (‖.‖v)v∈ΣK ) be K-
hermitian of dimension d ≥ 1. For any non-zero vector s ∈ E ⊗K K, we define the
height of s by

hE(s) =
∑

w∈ΣK′

nw(K ′) ln ‖s‖w,

where K ′ is a finite extension of K such that s ∈ E ⊗K K ′ (see section 2 for the
definition of nw(K ′)). This definition does not depend on the choice of the field

K ′. Moreover, we have hE(λs) = hE(s) for any λ ∈ K× by the product formula
(2.1).

Definition 8.3. Let i ∈ {1, . . . , d}. For all λ ∈ R, we consider the set

E(λ,K) = {s ∈ E ⊗K K \ {0} | hE(s) ≤ λ}.

The Zhang i-th minimum of E is defined by

ζi(E) = inf{λ ∈ R | dim Zar(E(λ,K)) ≥ i},

where Zar(E(λ,K)) denotes the Zariski closure of E(λ,K) in E ⊗K K (for any

choice of basis E ⊗K K ' Kd
).

This terminology is justified by the following remark.

Remark 8.4. We denote by PK(E∨) = ProjK(SymE∨) the projective space asso-
ciated to E∨. Let φ ∈ E∨ be a non-zero vector and let D = (φ) ∈ Div(PK(E∨)).
For any v ∈ ΣK , we consider the D-Green function

gv : PKv (E∨ ⊗K Kv) \ Supp(Dv)→ R

defined by gv(x) = 2 ln ‖xφ‖v, where xφ ∈ E ⊗K Kv is the unique representative

of x ∈ PKv (E∨ ⊗K Kv) with φ(x) = 1. We denote by D the adelic Cartier divisor
(D, (gv)v∈ΣK ). It follows from the definitions that the Zhang minima of E coincide
with the successive minima of D defined in subsection 3.8, namely ζi(E) = ζi(D)
for any i ∈ {1, . . . , d}.

8.4. Successive slopes. Let E = (E, (‖.‖v)v∈ΣK ) be a hermitian vector space on
K of dimension d ≥ 1.

Definition 8.5. The degree of E is the quantity

d̂eg(E) = −hdetE(s),

where s ∈ det(E) ⊗K K is any non-zero vector. We put d̂eg({0}) = 0. The slope

of E is defined by µ̂(E) = d̂eg(E)/ dim(E).
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Note that by the product formula, this definition does not depend on the choice

of s ∈ detE \ {0}. Moreover, d̂eg(EK′) = d̂eg(E) for any finite extension K ′ of K.
In particular, Definition 8.5 naturally extends to K-hermitian vector spaces. Let
F ⊂ EK be a K-vector subspace of dimension r ≥ 1. The degree of F is given by

d̂eg(F ) = −h∧rE(ηF ),

where ηF is any non-zero vector in det(F ) ⊂ ∧rE. In particular, we have d̂eg(F ) ≤
−ζ1(∧rE) <∞. It follows that the convex hull of the set

{(dimF, d̂egF ) | F ⊂ EK} ⊂ R2

is delimited from above by a concave and piecewise affine function PE : [0, d]→ R.

Definition 8.6. For any i ∈ {1, . . . , d}, the i-th slope of E is defined by µ̂i(E) =
PE(i)− PE(i− 1).

Note that d̂eg(E) =
∑d
i=1 µ̂i(E) and µ̂d(E) ≤ · · · ≤ µ̂1(E) by concavity of PE .

We recall now some classical properties of the successive slopes.

Proposition 8.7. For all i ∈ {1, . . . , d}, we have

(1) µ̂i(E) = −µ̂d−i+1(E
∨

);
(2) µ̂i(E) = maxE1

minE2
µ̂(E1/E2) = minE2

maxE1
µ̂(E1/E2), where E2 ⊂

E1 run over the subspaces of EK with dimE2 < i ≤ dimE1.

Proof. When K is a number field, this is [27, Propositions 18 and 19 (2)]. The
proofs remain valid when K is a function field. �

We define the maximal slope of E by µ̂max(E) = µ̂1(E), and the minimal slope
by µ̂min(E) = µ̂d(E). By Proposition 8.7 (2), we have

µ̂max(E) = max{µ̂(F ) | 0 6= F ⊂ EK},
µ̂min(E) = min{µ̂(G) | 0 6= G quotient of EK}.

Remark 8.8. When K is a number field, our definition of successive slopes co-
incides with the ones of [26], as one can see by using a classical Galois descent
argument (see for example [27, Proposition 19 (3)]). In particular, we have

µ̂max(E) = max{µ̂(F ) | 0 6= F ⊂ E} and µ̂min(E) = min{µ̂(E/F ) | F $ E}.

In the next section we will compare successive slopes and minima of hermitian
vector spaces. For this purpose we need the following proposition due to Gaudron.

Proposition 8.9. For every i ∈ {1, . . . , d}, we have

0 ≤ µ̂i(E) + ζi(E) ≤ sup
dimE′=d

(
µ̂d(E

′
) + ζd(E

′
)
)
,

where the supremum is over all K-hermitian vector spaces E
′

with dimE′ = d.

Proof. In the number field case, this is [27, Corollary 23 and Proposition 29]. The
proofs remain valid when K is a function field. �

9. Proof of Theorem 1.6 and applications

In this section we work over a number field K. We shall explain how to adapt
the arguments for function fields in subsection 9.5.



30 FRANÇOIS BALLAŸ

9.1. Proof of Theorem 1.6. Let E be a hermitian K-vector space of dimension
d ≥ 1. We want to prove the equalities

ζd(E) = lim
n→+∞

µ̂max(Sn(E
∨

))

n
and ζ1(E) = lim

n→+∞

µ̂min(Sn(E
∨

))

n
.

To do so we apply Theorem 5.6 to the divisor D of remark 8.4. We then compare the

quantities λmax,n(D), λmin,n(D) with the maximal and minimal slopes of Sn(E
∨

),
closely following Chen [19, section 4.2]. The reader more familiar with the formalism
of adelic line bundles can replaceD byOP(E∨)(1) equipped with Fubini-Study norms

coming from E.
Let D be the adelic Cartier divisor on X = PK(E∨) constructed in remark 8.4.

In particular, we have ζd(E) = ζess(D), ζ1(E) = ζabs(D) and Vn := H0(X,nD) =
SnE∨ for all n ≥ 1. Moreover D is semi-positive and the underlying divisor D is
ample. By Theorem 5.6, we have

(9.1) ζd(E) = µ̂asy
max(D) and ζ1(E) = µ̂asy

min(D).

We can equip the K-vector space Vn = SnE∨ with two different families of norms
(‖.‖1,v)v, (‖.‖2,v)v defined as follows : for each v ∈ ΣK ,

• ‖.‖1,v = ‖.‖v,sup is the supremum norm associated to D,

• ‖.‖2,v = ‖.‖Sn(E
∨

),v is the norm induced by E constructed in subsections

8.2.2 and 8.2.3.

For any i ∈ {1, 2} and t ∈ R, we denote by V ti,n the K-linear subspace of Vn
generated by vectors φ ∈ Vn such that ‖φ‖i,v ≤ e−t for all v|v0 and ‖φ‖i,v ≤ 1 for
all v - v0. We let

λmax(Vn, ‖.‖i) = sup{t ∈ R | V ti,n 6= {0}}, λmin(Vn, ‖.‖i) = sup{t ∈ R | V ti,n = Vn}.

By definition, we have

µ̂asy
max(D) = lim

n→+∞

λmax(Vn, ‖.‖1)

n
and µ̂asy

min(D) = lim
n→+∞

λmin(Vn, ‖.‖1)

n

(the limits exist by Proposition 5.4). Let v ∈ ΣK be a place. We let δ(v) = 1 if v
is archimedean and δ(v) = 0 otherwise. By the classical inequalities of norms ([26,
Lemma 7.6])

‖.‖1,v ≤ ‖.‖2,v ≤
(
n+ d− 1

d− 1

)δ(v)/2

‖.‖1,v,

we have

λmax(Vn, ‖.‖1) = λmax(Vn, ‖.‖2) + o(n), λmin(Vn, ‖.‖1) = λmin(Vn, ‖.‖2) + o(n).

On the other hand,

λmax(Vn, ‖.‖2) = µ̂max(Sn(E
∨

)) +o(n) and λmin(Vn, ‖.‖2) = µ̂min(Sn(E
∨

)) +o(n)

by [18, Theorem 1.1]. It follows that

µ̂asy
max(D) = lim

n→+∞

µ̂max(Sn(E
∨

))

n
and µ̂asy

min(D)) = lim
n→+∞

µ̂min(Sn(E
∨

))

n
,

and we conclude with (9.1).
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9.2. Symmetry defects. Let E be a hermitianK-vector space of dimension d ≥ 1.
In view of Theorem 1.6, we introduce two invariants controlling the behaviour of
the maximal slope with respect to symmetric products.

Definition 9.1. The strong symmetry defect of E is the quantity

αs(E) = lim
n→+∞

1

n

(
µ̂max(Sn(E

∨
))− µ̂max((SnE)∨)

)
,

and the symmetry defect of E is defined by

α(E) = lim
n→+∞

1

n

(
µ̂max(Sn(E

∨
))− n µ̂max(E

∨
)
)
.

Let α] denote either αs or α. For any integer d ≥ 1, we define

α](d) = sup{α](F ) | F hermitian K-vector space of dimension ≤ d}

and we put α](0) = 0.

For any integer N ∈ N, we denote by HN = 1 + 1/2 + . . . + 1/N the N -th
harmonic number (with the convention H0 = 0).

Proposition 9.2. For any positive integer d, we have

ln(d)/2 ≤ α(d) ≤ αs(d) ≤ Hd−1.

Proof. The first inequality follows from the identity α((Qd, (‖.‖2,v)v)) = ln(d)/2

(see [28, page 585] for an explicit calculation). Let E be a hermitian K-vector
space of dimension d ≥ 1. By Proposition 8.9 and Theorem 1.6, we have

µ̂min(E) = −µ̂1(E
∨

) ≤ ζ1(E
∨

) = lim
n→+∞

µ̂min(SnE)

n
.

Therefore,

0 ≤ α(E) = lim
n→+∞

1

n

(
µ̂max(Sn(E

∨
)) + nµ̂min(E)

)
≤ lim
n→+∞

1

n

(
µ̂max(Sn(E

∨
)) + µ̂min(SnE)

)
= αs(E).

To give an upper bound for αs(E), we follow [28, Proof of Lemma 6.2]. For all
n ∈ N, we consider the isomorphism θn : Sn(E∨)→ (SnE)∨ defined as follows : for
ϕ1 · · ·ϕn ∈ Sn(E∨) and x1 · · ·xn ∈ SnE, we let

θn(ϕ1 · · ·ϕn)(x1 · · ·xn) =
∑
σ∈Sn

n∏
i=1

ϕi(xσ(i)),

where Sn denotes the symmetric group of {1, . . . , n}. By [26, Lemma 6.4], we have

µ̂max(Sn(E
∨

)) ≤ µ̂max((SnE)∨) +
∑
v∈ΣK

nv(K) ln ‖θn‖v,

where ‖θn‖v denotes the operator norm of the induced map θn : Sn(E∨)⊗K Cv →
(SnE)∨ ⊗K Cv for each v ∈ ΣK . By [28, pages 583 and 589], the sum on the right
hand side is of the form nHd−1 + o(n). The result follows. �

9.3. Comparison of slopes and minima. Let E be a hermitian adelic vector
space on K of dimension d ≥ 1. As an application of Theorem 1.6, we now give
upper bounds for the quantities µ̂i(E) + ζi(E) in terms of symmetry defects.

Corollary 9.3. For any i ∈ {1, . . . , d}, we have

µ̂i(E) + ζi(E) ≤ α(d) ≤ Hd−1.
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Proof. It is enough to consider the case i = d by Proposition 8.9, and we have

µ̂d(E) + ζd(E) = µ̂d(E) + lim
n→+∞

µ̂max(Sn(E
∨

))

n
= α(E) ≤ α(d) ≤ Hd−1

by Theorem 1.6 and Proposition 9.2. �

9.4. An absolute transference theorem. Let E be a hermitian K-vector space
of dimension d ≥ 1. The following theorem gives upper bounds for the transference
problem in terms of symmetry defects. By Proposition 9.2, it implies Theorem 1.7
in the introduction.

Theorem 9.4. For any i ∈ {1, . . . d}, we have

ζi(E) + ζd−i+1(E
∨

) ≤ min{2α(d), αs(i) + αs(d− i+ 1)}.

Proof. Let i ∈ {1, . . . d}. By Proposition 8.7 and Corollary 9.3, we have

ζi(E) + ζd−i+1(E
∨

) ≤ −µ̂i(E)− µ̂d−i+1(E
∨

) + 2α(d) = 2α(d).

It only remains to prove that

(9.2) ζi(E) + ζd−i+1(E
∨

) ≤ αs(i) + αs(d− i+ 1).

For every j ∈ {0, . . . d}, we consider the real number

σj(E) = − sup{d̂eg(F ) | F ⊂ EK , dimF = j}.

Then σ1(E) = ζ1(E) and σj(E) = σd−j(E
∨

)− d̂eg(E) (see [45, Theorem 1.1]). Let
ε > 0 be a real number and let G ⊂ EK be a vector subspace of dimension i such

that −d̂eg(G) ≤ σi(E) + ε. We have

ζi(E) + σi−1(E) ≤ ζi(G) + σi−1(G) = ζi(G) + ζ1(G
∨

)− d̂eg(G).

Moreover, Theorem 1.6 implies

ζ1(G
∨

) + ζi(G) = lim
n→+∞

1

n
(µ̂min(SnG) + µ̂max(Sn(G

∨
))) = αs(G) ≤ αs(i),

so that

ζi(E) + σi−1(E) ≤ αs(i)− d̂eg(G) ≤ αs(i) + σi(E) + ε

= αs(i) + σd−i(E
∨

)− deg(E) + ε.

Similarly, we have

ζd+1−i(E
∨

) + σd−i(E
∨

) ≤ αs(d− i+ 1) + σi−1(E)− deg(E
∨

) + ε

= αs(d− i+ 1) + σi−1(E) + deg(E) + ε.

Summing up, we find ζi(E) + ζd+1−i(E
∨

) ≤ αs(i) + αs(d − i + 1) + 2ε, and we
conclude by letting ε tend to zero.

�

9.5. The function field case. We assume now that K = κ(CK) is the function
field of a regular projective integral curve over a field k and we let E be a hermitian
K-vector space of dimension d ≥ 1. Consider the vector bundle E on CK defined
by

E(U) = {x ∈ E | ‖x‖v ≤ 1 ∀v ∈ U}
for any non-empty open subset U of CK . By construction, we have

µ̂max(E) = sup
ϕ : C′→CK

sup{deg(F)/ rk(F) | 0 6= F ⊂ ϕ∗E subbundle},

where ϕ runs over all finite surjective morphisms of regular projective integral curves
ϕ : C ′ → CK on k. It follows from [40, Theorem 7.2] that µ̂max(SnE) = n µ̂max(E)
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for any n ≥ 1. Arguing as in paragraph 9.1, we find that ζd(E) = µ̂max(E
∨

) =
−µ̂d(E) (one can replace [18, Theorem 1.1] by [26, Theorem 5.20], which holds for
function fields in arbitrary characteristic). By Proposition 8.9, we have ζi(E) =
−µ̂i(E) for all 1 ≤ i ≤ d.
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Peyre, editors, Arakelov Geometry and Diophantine applications, volume 2276 of Lecture

notes in Mathematics. Springer, 2020.
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