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Abstract

The uncertainty of reconstructed PET images remains difficult to assess and to interpret for the use in
diagnostic and quantification tasks. Here we provide (1) an easy-to-use methodology for uncertainty
assessment for almost any Bayesian model in PET reconstruction from single datasets and (2) a
detailed analysis and interpretation of produced posterior image distributions. We apply a recent
posterior bootstrap framework to the PET image reconstruction inverse problem and obtain simple
parallelizable algorithms based on random weights and on existing maximum a posteriori (MAP)
(posterior maximum) optimization-based algorithms. Posterior distributions are produced, analyzed
and interpreted for several common Bayesian models. Their relationship with the distribution of the
MAP image estimate over multiple dataset realizations is exposed. The coverage properties of
posterior distributions are validated. More insight is obtained for the interpretation of posterior
distributions in order to open the way for including uncertainty information into diagnostic and
quantification tasks.

1. Introduction

In PET (Positron Emission Tomography) medical imaging, the raw data acquired by the scanner have alow SNR
(Signal to Noise Ratio) and the noise is of Poisson type. In addition, the image reconstruction inverse problem is
ill-posed. Standard PET image reconstruction methods model the noise and use some type of spatial
regularization to mitigate the noise propagation from the data to the image (Qi and Leahy 2006). Usually, the
reconstruction procedure produces a single image estimate, which depends on the reconstruction method used
and on the tuning of method parameters. An image estimate, and thus any subsequent visual or quantitative
analysis, depend on the given noisy dataset and on the characteristics of the chosen reconstruction method.
Hence, there is a need for assessing the uncertainty of voxel values in reconstructed PET image estimates.

Two types of uncertainty have been explored in PET image reconstruction, providing answers to the
following two different questions:

(i) Given an optimization-based iterative image reconstruction method that produces a single image estimate,
if PET imaging is repeated many times on the same patient in the same state in the exact same conditions,
what is the probability distribution of the reconstructed images over acquired datasets? This estimator
distribution and its characteristics (e.g. estimator/ensemble bias, estimator/ensemble variance, confidence
intervals) can be obtained from simulated data but not as easily from a single real dataset. Some
characteristics (e.g. variance) have been previously approximated from a single dataset using either
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analytical approximations, (Fessler 1996, Qi and Leahy 1999), or classical dataset bootstrap approaches,
(Dahlbom 2001, Buvat 2002, Markiewicz et al 2014).

(if) Given asingle acquired dataset and a Bayesian model relating the unknown image to this dataset, what is the
probability distribution of the image? This distribution, called a posterior image distribution, was previously
produced for some models using either analytical approximations, (Zhang et al 2019), or Monte Carlo
Markov chain (MCMC) samplers, (Sitek 2012, Filipovi¢ et al 2019) for PET and (Weir 1995, Higdon et al
1997) for SPECT.

Both these questions are relevant for most existing PET image reconstruction approaches.

The exact maximum likelihood (ML) PET image estimate, obtained for instance using the MLEM algorithm
at convergence, is almost never used in practice because of high image noise, e.g. Jaskowiak et al (2005). Instead,
various strategies are used to mitigate the image noise. For instance, MLEM iterations can be stopped before
reaching convergence, as mostly lower spatial frequencies are reconstructed in the first iterations. Many
optimization-based iterative methods either add a penalty/regularization term to the likelihood objective
function to obtain a penalized ML solution or they add a prior image probability distribution, building a
complete parametric Bayesian model of PET image reconstruction to obtain a posterior maximum (maximum
a posteriori (MAP)) solution. These two approaches have a different theoretical interpretation but often result in
equivalent algorithms and image estimates. They both have the purpose to introduce some assumptions about
the smoothness, roughness and edges in the image. Images from other modalities having higher spatial
resolution and lower noise (e.g. CT, MRI) have been used in the literature to aid this spatial regularization task
(Baietal2013). The ML solution may be viewed as a MAP solution using a uniform image prior distribution, or
equivalenty no prior information about the image. The work presented here belongs to the context of MAP
approaches but can be extended to a larger context.

Here we attempt to answer the second uncertainty question defined above using a new statistical framework,
called here for short the ‘posterior bootstrap’, which represents a synthesis from the following approaches:
Newton et al (2020), Fong et al (2019), Lyddon et al (2019). It allows for drawing approximate samples from the
posterior distribution of almost any Bayesian model by using random weights and existing MAP optimization
algorithms. Hence, the border may appear blurred between optimization-based iterative reconstruction
methods and sampling from posterior distributions, as well as between regularization /penalty and image priors.

Drawing samples from a posterior distribution is a daunting task in high-dimensional ill-posed inverse
problems with correlated variables (Girolami and Calderhead 2011, Robert and Casella 2013), which is the case
in PET image reconstruction. As an exemple, in our previous work, (Filipovié et al 2019), we used a MCMC
sampler, designed for a single though versatile type of spatially regularizing prior distribution (distance-
dependent Chinese Restaurant Process), and experienced some MCMC convergence difficulties. Compared to
MCMC, the posterior bootstrap avoids convergence issues, realization discarding, sequential computation, and
the need for analytical reformulation for each Bayesian model. The posterior bootstrap is applicable to any
Bayesian model, provided a corresponding MAP method is available, while remaining independent of the choice
of the particular optimization algorithm. It is scalable with respect to the amount of data and to the complexity
of the model and the realizations can be computed in parallel. However, the theoretical properties are different
from MCMC samplers and the drawn samples remain approximate, as currently there are no proofs stating that
they correspond exactly to the posterior distribution of the given Bayesian model when only alimited amount of
data is available, see Fong et al (2019), Newton et al (2020) for the currently available proofs. The posterior
bootstrap does not introduce additional analytical approximations. It is more general and has different
theoretical interpretations compared to the classical data bootstrap, (Efron 1979).

The main aims of this work are to (1) provide a versatile methodology for uncertainty assessment for real
data and for common approaches in PET reconstruction (2) provide a detailed analysis and interpretation of the
obtained uncertainty. This is a necessary step before including the uncertainty information into diagnostic tasks.
Redesigning the diagnostic tasks (e.g. lesion detection, lesion characterization, comparison of pathological and
healthy tissues) and quantitative processing (e.g. kinetic modeling) in terms of uncertainty is a vast subject in
itself and requires further exploration in close collaboration with physicians. As this work has strong explanatory
purposes, the methods, the results and the discussion are interleaved throughout the paper.

2. Theory

Let us consider a list-mode dataset composed of K detected counts, where each count has some attributes, e.g.
coordinates of the line-of-response (LOR) in which the count was detected, time-of-flight (TOF) measurement.
The attribute values represent a realization of a random variable r, which is independent and identically
distributed (iid) for each count, given the radiotracer emission concentration distribution in the patient (PET
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image) . Let the space of attribute values be discrete, with i indexing available attribute values, j the voxels, k the
counts. Let the list-mode dataset represent a realization from a Poisson point random process, see Barrett et al
(1997) for a detailed definition. If detected counts are histogrammed into any kind of bins (e.g. LOR, sinogram,
TOF), let a histogram dataset y represent a realization from a joint Poisson distribution with unknown
parameters as in equation (1): the A system matrix contains probabilities that an annihilation occurred in voxel j
is detected in the detection bin iand 4; is the expectation of the number of random and scattered counts

p(yIA) = ] Poisson (Z A + q,.). (1)
i j

Let us build a Bayesian model that relates the unknown PET image A to the acquired dataset (either list-mode
ror histogram y): the probability distribution p(data| \) is the likelihood of the acquired dataset and a prior
probability distribution of the image p()\) is specified in order to introduce assumptions about smoothness and
roughness properties in the image. The posterior image distribution results from the prior and the likelihood
distributions as p(\|data) o p(data| \)p(\). We thus update our prior beliefs about the image upon observing
some actual acquired data.

It should be noted that most optimization-based iterative reconstruction methods in PET have a Bayesian
model lurking inside. MAP methods produce an image estimate that maximizes the posterior image
distribution. From now on we consider directly the natural logarithms of mentioned probability distributions. If
R())is the log prior and L(data| ) the log likelihood, then the MAP image estimate A is obtained as

\= argmax L (data|\) + R(N). )
A

The posterior bootstrap approach presented here results from several converging ideas and can be
interpreted from several points of view (Newton and Raftery 1994, Rubin 1981, Newton et al 2020, Fong et al
2019, Lyddon et al 2019). Applying this framework to PET reconstruction requires to model the PET raw data
using iid random variables, hence using the list-mode data format. The list-mode log likelihood, (Barrett et al
1997, Huesman et al 2000), takes into account all the detected counts at once, but can be transformed into a sum
over counts as

L(r|\) = Z[IH(ZAikj/\j + q_”{) — %ZZAIj)\j + q_z] 3)

k j i ]

To apply the posterior bootstrap, K positive random weights wy (one per detected count, with Y yw; = 1) are
drawn from a chosen probability distribution and used to randomly perturb the contribution of each detected
count to the loglikelihood, to produce a randomly perturbed log likelihood L,,

J

IMGIVEDY Kwk(ln (Z A+ qj—k) - %ZZ A\ + q",-). (4)
3 ; ;7

Maximizing the objective function L,,(r| \) + R()\) over A then produces \, which represents an approximate
realization from the posterior distribution of the image A, and not a usual MAP image estimate A By repeating
this process of drawing weights and maximizing the obtained objective function B times, we produce a sample of
Brealizations from the posterior image distribution.

Now let us consider a histogram dataset y and its log likelihood

L()/|/\)Z%ln[ZAij)\jJrq_i)ZZAij/\jJrq_i. (5)
i j i

The randomly perturbed list-mode log likelihood in equation (4) can be transformed into an expression for
histogram log likelihood as

L,(y¥|\) = Zln[ZAijAj + q‘,»)z Kwi — > > AN + g 6)
i j i

keS;

This is equivalent to the expression for the log likelihood of a different histogram dataset y*, where
yi*:ZkE s, Kwi, S; being the set of counts detected in bin i.

Maximizing the objective function L,,(y*| \) + R(\) over A also produces an approximate realization \ from
the posterior image distribution. Repeating this process B times generates a sample of size B from the posterior
image distribution. A randomized histogram y* is obtained by drawing a new number of counts for each
histogram bin, by drawing a realization from a distribution derived from the chosen distribution for the weights
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wand from the original histogram dataset y. The choice of the weights distribution and the demonstration of the
resulting histogram resampling procedure is described and discussed in what follows.

2.1.Interpretation and implementation of the weights w

The weights w have several intuitive interpretations. They can be viewed as a way to randomly perturb the
contribution of each data realization (count) to the overall likelihood, as in Newton and Raftery (1994). They can
also be viewed as probabilities that we assign to each data realization (count) in the dataset, before we perform
some Bayesian modeling as described above: the K weights themselves represent a probability distribution. This
is similar to the idea behind the Bayesian bootstrap (Rubin 1981) and the classical bootstrap (Efron 1979). In the
classical bootstrap for list-mode datasets, a bootstrapped dataset is obtained by drawing randomly K counts with
replacement from the original dataset. This is equivalent to assigning the same probability 1 /K to each data
realization (count). In the Bayesian bootstrap, no longer a fixed but a random probability is assigned to each data
realization. These assigned probabilities can be used either analytically to perform some modeling/inference/
computation, or they can be used to bootstrap the original dataset before performing some further modeling/
inference/computation.

The weights w can also be viewed as an expression of uncertainty about the Bayesian model itself, as formally
defined in Fong et al (2019) and Lyddon et al (2018). Every model is misspecified to some degree or does not
match the reality perfectly, so it is relevant to express and include our belief/uncertainty about the postulated
model itself, and the weights serve this purpose. More discussion about this interpretation will be given in the
section 3.6.

The choice of a probability distribution from which to draw the weights w; depends on their interpretation.
As these weights represent themselves a probability distribution, the simplest choice is the uniform Dirichlet
distribution with K parameters, Dir(1, 1, ..., 1): a realization (wy, w,, ..., W) drawn from this Dirichlet
distribution represents itself a discrete probability distribution over K possible outcomes (counts). In this work,
we choose this distribution and show how to draw the random weights for list-mode and histogram data in what
follows.

The sampling from a Dirichlet distribution can be easily implemented using Gamma distributions: first,
each random weight is drawn from Gamma(1, 1), and then the weights are normalized to satisfy ) ywy, = 1. The
normalization can be avoided by making a simple approximation (see the appendix), resulting in
Kwy ~ Gamma(1, 1). The algorithm for drawing a sample of B realizations from the posterior image distribution
from alist-mode dataset is given in algorithm 1. The objective function remains the same as for the original list-
mode dataset except for the multiplicative weights. These weights do not modify the properties of the objective
function (e.g. derivatives, convexity), so any usual numerical solution algorithm can be applied by taking into
account the weights.

For histogram data, it follows (see the appendix) that the number of counts (€R) for each randomized
histogram bin y*;is first drawn from Gamma(y;, 1), and then the randomized histogram is normalized to contain
exactly the same number of counts as the original histogram. Again, this normalization step can be avoided by
making a simple approximation (see the appendix), resulting in yi* ~ Gamma(y;, 1). The expectation of such a
Gamma distribution per histogram bin is equal to the actual acquired number of counts in the histogram bin. It
should be noted that this resampling does not imply nor assume that the histogram data follow such Gamma
distributions. Also, the randomized histogram y* is not assumed to represent a realization of acquired PET data (
i.e. arepeated acquisition dataset) and it does not follow a joint Poisson distribution. This is not an issue, because
the Poisson likelihood assumption for the original acquired dataset remains valid. The implementation of the
posterior bootstrap for histogram data amounts to repeatedly resampling the dataset and applying usual MAP
reconstruction methods, as shown in algorithm 2. The objective function to maximize remains the same as for
the original dataset, so there are no modifications regarding the choice and the properties of numerical solution
algorithms. This implementation of the posterior bootstrap is used in this work.

2.2. Algorithms

Algorithm 1. List-mode PET data.

1:for b =1to Bdo

2: draw Kwyp, Kwyp,...Kwgp, from Gamma (1, 1)
3N = arg maxy Ly, (r]A) + R(})

4: end for
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Figure 1. Left: high resolution PET phantom, Center and Right: PET phantom downsampled to the PET system resolution and the
associated downsampled MRI image.

Algorithm 2. Histogram PET data.

1: for b = 1to Bdo

2: draw dataset y;, where each y;;, is drawn from Gamma (y;, 1)
3\ = arg maxy wa(yb*lz\) + R(\)

4: end for

3. Methods and results

3.1. Phantom and simulation

We used a highly realistic '*F-FDG PET/MRI brain phantom, (Belzunce and Reader 2020). The spatial
resolution of the PET phantom (figure 1 left) is higher than the typical resolution of clinical PET scanners
(=800 pum compared to ~4 mm FWHM) and the spatial distribution of the tracer emission concentration
presents inhomogeneities instead of being piece-wise constant. The associated MRI image is real (acquired post-
mortem, T1-weighted post-processed, as available from BigBrain, Amunts et al 2013), so that the matching of
smooth areas and edges between PET and MRI images is imperfect, similarly to real exams. An in-house
simulation library Stute et al (2015) was used to simulate dataset realizations (repeated dataset acquisitions or an
ensemble of datasets) of PET histogram data, given the same high-resolution PET phantom. The Siemens
Biograph 6 TruePoint PET/CT geometry (Jakoby et al 2009) was used and the bins in the histogram dataset
represented the available LORs. The simulation included attenuation, random and scattered coincidences and
resolution modeling using an image-domain point spread function (PSF). The simulation was 2D, the total
number of counts (true, random and scattered) was 56, the number of noise equivalent counts was 1.5¢6,
approximating count rates ocurring in clinical brain "*F-FDG PET exams for a 2D slice in the center of the axial
field-of-view.

3.2. Models

The proposed posterior bootstrap approach was used to produce posterior image distributions for several
Bayesian models commonly used in PET reconstruction. The likelihood being always the same, the difference
between the models lies in the priors.

The choice of the prior is a widely discussed question in Bayesian approaches: the prior image probability
distribution should convey the actual prior assumptions one might have about the PET image. The usual prior
assumptions are related to the properties of smoothness/roughness in the image, based on local or nonlocal
voxel neighbourhoods and possibly on additional data or images from other modalities (e.g. MRI, CT). Such
prior image distributions represent a mathematical modelling of our (uncertain) prior assumptions about the
smoothness/roughness in the PET image, and do not stand for an absolute truth with respect to the physical
reality. The prior also conditions the interpretation of the posterior distribution, because the posterior
distribution has to be understood and used while having in mind the chosen prior.
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Figure 2. Illustration of the production of posterior distributions and of the distribution of the MAP image estimate over dataset
realizations for a single Bayesian model, with simulated data.

+ U: uniform prior, the optimization algorithm is MLEM.

+ MRF-Q: Markov random field prior with the quadratic potential function, the MAP algorithm is MAP-EM,
(De Pierro 1995).

+ MRF-Q-MRI: the same with the addition of an associated MRI image, using the asymmetric Bowsher method,
(Vunckx and Nuyts 2010).

+ MRF-RD: Markov random field prior with the relative differences potential function, the MAP algorithm is
the preconditioned gradient-based algorithm as in Nuyts et al (2002).

+ MRF-RD-MRI: the same using an MRI image, using the asymmetric Bowsher method.
The posterior distributions in these models are convex and differentiable functions.

3.3.Reminder

A posterior image distribution differs by definition from the distribution of a MAP image estimate over dataset
realizations. A posterior distribution expresses the uncertainty of the PET image, given the single acquired
dataset and given the model (likelihood + prior, given the assumptions about the system matrix A and random/
scattered coincidences). The distribution of a MAP image estimate over dataset realizations (estimator
distribution) expresses the uncertainty of the MAP image estimator for a given model when data acquisition is
repeated on the same patient in the exact same conditions. When several dataset realizations are available, it
should be noted that for each Bayesian model there are several posterior distributions (each corresponding to a
dataset realization), while there is only one distribution of the MAP image estimate over dataset realizations, see
figure 2.

3.4. Implementation

All the MAP reconstruction methods were fully quantitative and contained image PSF resolution modelling and
the corrections (random and scattered coincidences, attenuation, normalization). They were entirely
implemented using the CASToR (Customizable and Advanced Software for Tomographic Reconstruction)
platform in C++, (CAS 2017, Merlin et al 2018). The voxel size for reconstructed images was set to

2.2mm X 2.2 mm X 2.8 mm to match the simulated PET scanner spatial resolution (4 mm FWHM). Figure 1
center shows the PET phantom downsampled to the PET scanner resolution. For MAP methods that use the
associated MRI image, the MRI image was downsampled to the PET scanner resolution before being input into
the reconstruction. The color scales for all the PET images related to the simulated data have the same unit as the
PET phantom (relative uptake value, Belzunce and Reader 2020).
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Table 1. Hyperparameter values.

MRE-Q MRE-RD MRE-Q-MRI MRE-RD-MRI
5] 61 50 350 160
Neighbourhood sphere radius (mm) 3 3 8 8
Bowsher threshold / / 30% 30%
Relative differences y / 0 / 3

The number of posterior realizations (the size of the posterior sample) B for a single posterior distribution
was set to 1000. The number of dataset realizations for the distribution of a MAP image over dataset realizations
(estimator distribution) was also set to 1000. All the dataset realizations were reconstructed with all the different
MAP reconstruction methods. As a posterior distribution is computed from a single dataset realization,
posterior distributions were computed for 10 dataset realizations for each model, to appreciate how posterior
distributions vary over dataset realizations. Figure 2 shows the overall simulation and reconstruction procedure
and an illustration of posterior distributions versus the distribution of the MAP image over dataset realizations
for a single model.

All the MAP (including ML) algorithms were run for 1000 iterations, both for MAP image reconstruction
and inside the posterior bootstrap algorithm. The chosen number of iterations achieved an empirical
convergence for MRF MAP algorithms, and resulted in a relatively early stopping for MLEM. MAP methods
have in addition hyperparameters (parameters of the prior distribution) which tune the characteristics and the
strength of prior smoothness/roughness assumptions, such as the general weight 4in MRF priors (Qiand
Leahy 2006), the tradeoff -y between allowing for edges and reducing noise for MRF-RD (Nuyts et al 2002), the
size of the voxel neighbourhood (defined here as a sphere with a radius in mm (CAS 2017)) and the percentage of
neighbourhood voxels selected by the Bowsher method (Bowsher et al 2004, CAS 2017). The hyperparameter
values were fixed by running each MAP method on a single dataset for a wide range of hyperparameters values
and choosing the values that minimize the RMSE with respect to the true phantom image downsampled to the
PET system resolution. They are given in table 1.

3.5. Characteristics of posterior distributions
We explore and present the characteristics of posterior distributions, as well as their relationship with the
distribution of the corresponding MAP solution over dataset realizations (estimator distribution).

3.5.1. Results overview

Figure 3 shows the voxel-wise posterior mean, posterior variance and posterior interval size for a dataset
realization, for all the Bayesian models. Figure 4 shows the voxel-wise mean, variance and interval size
corresponding to the distribution of the MAP image over dataset realizations (also called estimator mean and
variance, and confidence intervals), for all the Bayesian models. The interval size for a voxel is computed as the
difference between the maximum and minimum voxel intensity realization in the sample, see section 3.6 for
more details.

3.5.2. Mean

The posterior mean image (obtained with the posterior bootstrap) is visually indistinguishable from the
posterior maximum (MAP) image (obtained with the corresponding MAP algorithm, not shown), for the same
dataset realization. The quantitative difference is low (root mean square difference < 0.01). This is due to the
convexity and to a degree of symmetry of posterior distributions for the Bayesian models used here. Hence, the
posterior mean shows here the same properties (e.g. image noise) as the MAP solution.

The estimator mean image (the average of MAP images over dataset realizations) presents lower image noise
than a single MAP solution, which is expected because the estimator mean image approaches the MAP image
reconstructed from noiseless data, as discussed in Fessler (1996). This estimator mean image is thus less noisy
but shows the estimator bias. It could be argued that this image would be useful for diagnostic purposes, but it is
not exactly obtainable from a single dataset.

The posterior mean shows the propagation of data noise due to the ill-posedness of the PET inverse problem,
which depends on the given single noisy dataset and on the model. This implies that the posterior mean from
one dataset realization may present visible differences compared to the posterior mean from a different dataset
realization, as illustrated in figure 5. These differences are most obvious in the nuclei caudate area, possibly
because of the proximity of high and low uptake (high contrast) and of a low system sensitivity mostly due to
attenuation: for the first dataset realization, the nuclei have a similar intensity for all the models, and for the

7



I0OP Publishing Phys. Med. Biol. 66 (2021) 125018 M Filipovic et al

Variance Mean
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u MRF-Q MRF-RD MRF-Q-MRI MRF-RD-MRI

Figure 3. Posterior distribution: voxel-wise posterior mean, posterior variance, posterior interval size for a dataset realization, for
different models. The colorscale maximum differs across models for the variance and the interval size.

Mean
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Interval

u MRF-Q MRF-RD MRF-Q-MRI MRF-RD-MRI

Figure 4. Distribution of the MAP image estimate over dataset realizations: voxel-wise estimator mean, estimator variance and
confidence interval size for different models. The colorscale maximum differs across models for the variance and the interval size.

second dataset realization, the left nucleus has a visibly higher intensity than the right one. In other image
regions, the differences between dataset realizations are less noticeable.

The differences between the posterior mean and the estimator mean should be kept in mind when
interpreting other distribution characteristics, e.g. (co)variance, intervals.
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Figure 5. Posterior mean and variance for two different dataset realizations, for some models.

3.5.3. Variance

The voxel-wise posterior variance image is similar to the MAP estimator voxel-wise variance image in terms of
structures, intensities and model-dependent characteristics. However, it presents more local variations and a
‘noisier’ appearance with respect to the estimator variance. The reason is that the posterior variance is
meaningful with respect to the posterior mean, which shows some characteristics intrinsic to inverse problem
noise propagation from the given single dataset realization, as illustrated in figure 5, while the estimator variance
is meaningful with respect to an almost noiseless mean image. This effect is more visible for the U model than for
models with spatial smoothness priors. Both types of variance decrease with stronger priors. This is expected
because both types of variance are mostly due to the Poisson noise in the dataset and to its propagation in the
inverse problem, while the spatial smoothness priors mitigate this noise. The overall variance intensity ranks
from higher to lower for different models (having in mind the fixed hyperparameter values and the MLEM early
stopping) as: U, MRF-RD, MRF-Q, MRF-RD-MRI, MRF-Q-MRI. The MRF-Q variance is rather flat, as already
observed in Qi and Leahy (1999). The MRF-RD variance presents some local smoothness with amplification
near some strong edges, e.g. the edge between the gray matter and the skull, which is reminiscent of the
behaviour of total variation type regularization. The MRF-RD-MRI variance presents clearer edges, because of
the influence of the MRI image, and higher intensities in some regions such as the nuclei caudate.

For the Bayesian models used here, and as obtained with the proposed posterior bootstrap approach, the
posterior variance and more generally the uncertainty conveyed by the posterior distribution shows mostly the
uncertainty related to the noise in the data and to its propagation through the chosen model. It conveys some
spatial regularization properties of the models and so can be used to compare models between them. Higher
variance may point out some areas in the image where the inversion or the spatial regularization struggle, for
instance areas with strong contrast or sharp edges.

3.5.4. Covariance

The voxel-wise posterior covariance is similar to the estimator covariance for all the models in the same manner
as the variance. It is more difficult to visualize because there are as many covariance images as there are voxels.
An example of posterior covariance images is shown for a voxel in the gray matter in figure 6. It is consistent with
the already known spatial regularization properties of the models used here. Without prior information (U), the
covariance of a voxel with its neighbourhood is substantially lower than the covariance of the voxel with itself (its
variance). The MRF-Q covariance is isotropically high within the voxel neighbourhood. The MRF-RD
covariance is lower in edges and higher in smoother areas. The MRF-Q-MRI and MRE-RD-MRI covariance is
high in a larger neighbourhood that appears smooth in the MRI image. The absolute covariance values decrease
with stronger priors and some Gibbs ringing pattern can be seen around the voxel, especially for MRF-Q and
MRE-RD.

3.5.5. Whole distribution

Examples of both posterior and estimator distributions for several gray matter voxels are given in figure 7 and for
several nuclei caudate voxels in figure 8. For each voxel, the figures show two posterior distributions, obtained
from two different dataset realizations, and the distribution of the MAP solution over dataset realizations, for
different models. Both distributions for U are skewed and have long tails. The posterior distributions for U vary
the most over dataset realizations, because of high image noise and dataset dependent noise propagation. The
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Figure 6. Posterior and MAP estimator covariance images for a gray matter voxel (shown in the left in red) for different models. The
colorscale maximum differs across models.
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Figure 7. Examples of entire distributions for several gray matter voxels for 3 models: posterior distributions from two dataset
realizations and the distribution of the MAP solution over dataset realizations.
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distributions tend to concentrate around their maximum with stronger spatial regularization and present slight
skewness.

3.5.6. Discussion

Posterior distributions presented here convey mostly the uncertainty due to the noise in the data and to its
propagation through the model. Hence, they cannot auto assess model misspecification (imperfect match to
reality, e.g. system matrix A, mismatch of smooth areas in MRI and PET images), nor the model bias. However,
the posterior bootstrap framework has an other interpretation in the context of misspecified models which can
take into account the uncertainty of some modelling assumptions, but this is subject for future work, see
section 3.6 question (ii) for more details. All the distributions in these models are convex, but it should be noted
that the posterior bootstrap is applicable to non convex posteriors with possibly multiple maxima, provided a
corresponding MAP optimization algorithm is available.

The posterior bootstrap framework implies that all the optimization algorithms are run to convergence. In
practice, convergence is never strictly achieved due to limited computational resources and to the properties of
optimization algorithms. MLEM and MAP-EM have strict convergence proofs, while the algorithm used for
MREF-RD does not. MAP algorithms for MRF priors usually converge faster than MLEM. Also, U, MRF-Q and
MRE-RD models are well defined Bayesian models, while the asymmetric Bowsher approach is an empirical
modification of the original MRI Bowsher prior (Vunckx and Nuyts 2010). In this work, for models with MRF
priors, an empirical convergence was achieved with the chosen number of iterations (1000). For the U model,
the convergence would require much more iterations and would produce substantially noisier images, so the
presented results correspond to a relatively early stopped MLEM. If MLEM were run to convergence, it could be
argued that the uncertainty, both posterior and estimator, may not be useful for diagnostic and quantitative
purposes, because it conveys an amount of uncertainty so high that it becomes useless (e.g. the variance becomes
approximately proportional to the square of the mean image (Barrett et al 1994)). Some illustrative results using
MLEM with much more (10 000) iterations are presented in the supplementary material available online
at stacks.iop.org/PMB/66,/125018 /mmedia. The effect of choosing a lower number of iterations for MRF
models depends on and can be anticipated according to the convergence behaviour of corresponding MAP
algorithms for the given dataset. An example is shown in the supplementary material.

The choice for the posterior sample size B (the number of realizations drawn from the posterior distribution)
depends on the shape of the posterior distribution and on which posterior characteristics are of interest (e.g.
covariance, intervals, quantiles). For instance, if the posterior distribution has very long tails and we wish to
characterize them accurately, a larger sample size will be needed. If we wish to estimate the variance, B can be
lower. Also, convex posteriors put lower requirements on B than multimodal posteriors. In this work, we
empirically observed that the posterior mean and variance stabilize beyond the chosen B (1000) for all the
models. The effect of choosing a lower number of posterior realizations depends on and can be anticipated
according to the overall shape of the posterior distribution and the posterior characteristic of interest for the
given dataset. An example is shown in the supplementary material.

2D simulation was chosen over 3D for computational reasons: a large number of dataset realizations and of
posterior realizations was required for a thorough analysis and it was of interest to show results for several
different Bayesian models. The posterior bootstrap framework itself is independent of the dataset dimensions
and of the influence of 2D versus 3D data on MAP solution and MAP algorithm performance.

Posterior distributions depend on the chosen values for the parameters of the image prior. The dependence
of the MAP solution on hyperparameter values has already been studied in the literature and it applies also to the
posterior mean. The (co)variance and the intervals tend to increase when the strength of prior smoothness/
roughness assumptions descreases (lower ) and vice-versa. An example for the MRF-RD-MRI model is shown
for lower and higher B values in the supplementary material. The general conclusions in this work do not depend
on the choice of hyperparameter values.

3.6. Assessment
There are no standard methods for validating posterior distributions. Several questions can be addressed:

(i) Do the computed posterior realizations match the corresponding ‘true’ posterior distribution, where ‘true’
means with respect to the postulated Bayesian model and to the available dataset?
(ii) To what extent does the model match the reality?

(iii) Are the produced posterior distributions ‘well calibrated’, i.e. behave consistently in different cases (more
explanations in the answer)?

(iv) How does the posterior bootstrap compare to other methods for generating posterior distributions?
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It should be noted that there is no ‘true’ posterior distribution outside of the context of the given model and
dataset. Bayesian inference can be viewed as updating our current prior assumptions about the PET image using
the available acquired data, i.e. more as a method of reasoning and inference than a search for an absolute truth.
Some answers and some discussion are provided in what follows.

(@)

(ii)

(iii)

It should be noted that there are currently no established figures of merit for the performance of the
posterior bootstrap and that there is no gold standard for posterior distribution estimation, especially in the
context of high-dimensional ill-posed inverse problems such as PET. Some validation approaches consist in
checking the relevance of posterior distributions by using them to predict new PET data, (Gelman et al
1996). The data predicted by the model can then be compared to the actual acquired dataset but it is not
clear yet which comparison criteria would be most relevant and reliable for PET. This is material for future
work.

Some theoretical proofs for the posterior bootstrap currently exist only for the asymptotic case, when the
amount of data (the number of counts in the dataset) approaches infinity, (Fong e al 2019, Newton et al
2020).

A posterior distribution, as defined here, is based on the assumption that the underlying Bayesian model is
true, in the sense that there exists an image A, supported by the prior, for which the likelihood distribution
generates the acquired data. However, the posterior bootstrap has an other theoretical interpretation in
which the produced posterior distributions are exact (no longer approximate), but they do not have the
same meaning. First, a vocabulary reminder. All the Bayesian models used in this and in previous works in
PET image reconstruction are called parametric: the noisy acquired data are assumed to follow a probability
distribution of known type (i.e. Poisson) and of unknown parameters. Another kind of Bayesian models is
called nonparametric: the measured data follow an unknown type of probability distribution, which is itself
arealization drawn from probability distributions capable of generating probability distributions (e.g. a
Dirichlet process), so there are no direct notions of unknown parameters. The other interpretation of the
posterior bootstrap is nonparametric and provides useful insights. The produced posterior distribution is
exact (no longer an approximation) but refers to a different modelling context: the usual parametric
Bayesian model is no longer viewed as true. It is instead viewed as misspecified to some degree, i.e. as an
imperfect approximation of the reality: we assert openly that we are not sure about this parametric Bayesian
model. We build a different independent nonparametric Bayesian model focused on the data distribution
and use the parametric model only as an imperfect but convenient image estimator. The nonparametric
Bayesian model contains a prior on the data distribution, which is here a uniform Dirichlet distribution
(using weights w), which does not carry assumptions about the data probability distribution (except the
i.i.d. assumption of list-mode counts). In this context, the produced posterior distributions represent
posterior distributions of imperfect image estimators with respect to a noninformative prior (no prior
assumptions) on the data distribution and with respect to the acquired dataset. See Fong et al (2019), Lyddon
etal (2018,2019) for more explanations. This interpretation can be viewed as a generalization of parametric
posterior image distributions and of image estimators, and is material for further exploration of the
uncertainty in PET reconstruction.

It is argued in Rubin (1984) and Bayarri and Berger (2004) that it is desirable in practice that posterior
distributions be well calibrated, i.e. that the (Bayesian) posterior distributions meet (frequentist) estimator
distributions in some aspects: for instance, that (e.g. 95%) posterior intervals contain the ‘true’ value in the
same percentage (e.g. 95%) of ‘cases’, where a ‘case’ is a realization of the joint distribution of the acquired
dataset and of the image. Some theoretical considerations and proofs about the meeting point between
Bayesian and frequentist approaches for inverse problems such as in PET in the limit case of infinite amount
of data are given in Bochkina and Green (2014).

First, a quick reminder about interval names:

+ A ‘posterior interval’ refers to an interval on the posterior distribution of voxel intensity for each voxel, so
each voxel has a posterior interval for each model and for each dataset realization.

+ A ‘confidence interval’ refers to an interval on the MAP estimator distribution of voxel intensity over
dataset realizations for each voxel, so each voxel has a confidence interval for each model.
Hence, for a given model, each voxel has a single confidence interval and several posterior intervals (each
corresponding to a dataset realization), which can be confusing, see figure 2.
As here the number of realizations (1000) was relatively low from a statistical point of view and as the
distribution tails are long due to the Poisson nature of the data, computing intervals with a precise
percentage contents (e.g. 95%) would not be reliable. Hence, we settle for approximate intervals: we
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Figure 9. In red are shown the voxels for which posterior and confidence intervals fail to cover the true value, for different models.

Table 2. Average % of coverage of the true value by posterior and confidence intervals for different models.

U MRF-Q MRE-RD MRF-Q-MRI MRF-RD-MRI
Posterior 90 70 67 58 51
Confidence 93 74 70 61 50

compute intervals for each voxel by taking the difference between the maximum and the minimum
values in the sample and assume that these intervals correspond to approximate high percentage intervals
(90%-100%), with some possible positive bias.

As the MAP estimator presents some estimator bias for all the models, the confidence intervals by
definition contain the biased true value (the MAP estimator mean) in a high percentage of dataset
realizations, but contain the actual true value (from the undersampled phantom) in a lower percentage of
dataset realizations. The good calibration of posterior distributions implies that the coverage of the true
and of the biased true value should match between confidence and posterior intervals. Figure 9 shows in
red the voxels whose true value is not contained in confidence or posterior intervals. These maps are
similar for confidence and posterior intervals and show mostly areas with 0 or very low uptake values

(e.g. CSF, background), which can be explained by some positive bias in low uptake areas due to the
positivity constraint inherent in the MAP algorithms.

We checked the following calibration properties of the posterior intervals:

+ The posterior intervals should contain the biased true value in a high percentage of dataset realizations.

+ The posterior intervals should contain the true value in the same percentage of dataset realizations as the
confidence intervals.

+ The posterior intervals should contain the biased true value in a high percentage of brain voxels.

+ The posterior intervals should contain the true value in the same percentage of brain voxels as the
confidence intervals.
Given the approximate intervals computation, we regard these properties as reasonably fulfilled. The
coverage of the biased value is in average above 90%. The table 2 shows the average percentage of
coverage of the true value by posterior and confidence intervals (for voxels with true value >0): the
posterior intervals’ coverage is a couple of percents lower than the confidence interval percentage. In
terms of coverage, MRF-Q and MRF-RD models behave similarly, as well as MRF-Q-MRI and MRF-
RD-MRI.

(iv) Relevant comparisons would consist in implementing other methods that produce posterior image
distributions for the exact same Bayesian models. The widely used MCMC methods suffer from
convergence issues, especially for high-dimensional complex models (Girolami and Calderhead 2011,
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Robert and Casella 2013). In addition, direct comparison with previous work that used MCMC samplers is
difficult. The previously proposed MCMC method by our group, (Filipovié et al 2019), was designed for a
different prior (ddCRP), which cannot be used in the posterior bootstrap framework because there are no
corresponding MAP optimization algorithms to our knowledge. Some previous MCMC methods

(Weir 1995, Higdon et al 1997) developed for SPECT reconstruction used complex samplers and similar
priors though notidentical to the ones used in this work. The origin ensemble method (Sitek 2011) does not
produce directly posterior distributions, though additional steps were provided for producing posterior
distributions for some specific priors in Sitek (2012), which are different from the common priors used in
this work.

3.7. Preliminary discussion for using posterior image distributions

A posterior distribution may be closer to an intuitive understanding than an estimator distribution. It can be
used to compute directly the probabilities of pathological features. It can also be obtained as a whole
distribution, whereas one can currently obtain only the maximum and sometimes an analytically approximated
co(variance) for an estimator distribution.

A posterior image distribution provides a posterior distribution for each voxel, as well as a posterior
distribution of any voxel summary. A voxel summary refers to a function of several voxels (e.g. characteristics of
regions of interest (ROIs)). A posterior distribution can be used to extract directly some relevant probabilities of
interest, such as the probability that a voxel or ROI emission concentration is above a certain level or is higher/
lower than some other voxel or ROI emission concentration. For such uses of posterior distributions, a clinically
relevant task needs to be clearly formulated in terms of probabilities in close collaboration with physicians.
Different Bayesian models may provide different answers to the same diagnostic question. A posterior image
distribution can also be incorporated into kinetic modelling, by redefining kinetic models as Bayesian models, as
for instance in Sitek et al (2016). We expect that posterior distributions will be useful in the cases of doubtful
diagnosis (e.g. distinguishing a lesion from image noise) and in the case of any quantitative analysis. When
redesigning diagnostic questions in terms of uncertainty, it should be kept in mind that the voxels are correlated
and that their covariance depends on the model used, as shown in figure 6. It should also be kept in mind that
these models contain some bias, whose value depends on model components and on data amount and which is
difficult to deal with.

In this work, the simulated PET phantom image was produced using a real epilepsy brain '*F-FDG exam
with no associated specific diagnostic information, (Belzunce and Reader 2020), which allows for a general
analysis on realistic data. Applications of posterior distributions in different cases of pathology and tracers is
closely related to the redesign of diagnostic tasks in terms of uncertainty and is subject for future work. For
instance, in view of applying posterior distributions on low-contrast lesion detection tasks, a different phantom
could be built using the same methodology (Belzunce and Reader 2020) and real exams with confirmed lesions.

The choice of voxel summaries is not straightforward in the context of posterior distributions. A common
voxel summary used with single estimate reconstruction methods is the mean of a ROI. In what follows, we
discuss the use of the ROI mean in the context of posterior distributions.

3.7.1. ROI'mean

The ROI mean has the usually desirable property of being less sensitive to the noise in the image than individual
voxel intensities, though it remains sensitive to the estimator bias. This property may actually not be desirable
when the aim is to take into account the uncertainty, because any type of variance is reduced artificially. It should
be noted that models with stronger priors tend to produce smoother voxel intensities inside ROIs, so the ROI
mean tends to be similar to individual voxel intensities in the ROI.

To illustrate the behaviour of posterior distributions of ROI means, two pairs of contralateral ROIs were
drawn on the high resolution PET phantom and then downsampled to the PET system resolution, see figure 10.
The spatial histograms for high-resolution ROIs show an aspect of the ‘true’ difference between the contralateral
ROIs and presumably represent real situations better than strictly uniform ROIs. The spatial histograms overlap
slightly for the gray matter ROI pair and strongly for the nuclei caudate ROI pair, representing respectively a
rather different and a rather similar pair of ROIs. The spatial histograms for the ROIs downsampled to PET
system resolution are not shown because they contain few voxels (~10).

Figure 11 shows the posterior ROI mean distribution for 2 dataset realizations and the distribution of the
MAP ROI'mean over dataset realizations, for several models. For each model, the distributions are rather
similar: the posterior distributions do not vary substantially across dataset realizations and are similar to the
estimator distribution. The overlap between the contralateral ROI distributions is low for U and almost non
existent for models with spatially regularizing prior information. These observations can be explained by the
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Figure 10. Contralateral ROI pairs and their spatial histograms: gray matter (left) and nuclei caudate (right).
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Figure 11. Posterior distribution of the ROI mean for the gray matter ROI pair, for 2 dataset realizations, and the distribution of the
MAP ROI mean over data realizations, for different models. The dashed lines represent the true values (from the downsampled
phantom).

tendency of the ROI mean summary to lower the variance. This effect is more visible for U, having a high image
noise, than for the other models which produce rather smooth voxel intensities in the ROIs. The vertical dashed
lines show the true values, as computed from the PET phantom downsampled to the PET system resolution.
Models with MRF priors tend to be more biased than U for these ROIs.

Figure 12 shows ROI mean distributions for the nuclei caudate ROI pair. The overlap of posterior
distributions varies across models and across data realizations. This is due to the dependency on the specific data
realization and to a high variability in the nuclei caudate area, as explained in detail in section 3.5.2. The models
with MRI tend to have alower MAP estimator bias for these ROIs. Other voxel summaries could be explored or
designed for taking full advantage of uncertainty information, in conjuction with redesigning various diagnostic
tasks in terms of uncertainty.

3.8. Real data

Two real clinical exams were obtained from a GE Signa PET /MR scanner in the histogram data format, where
the bins represented all the available LORs and TOF bins. The implementation of the reconstructions was
identical to the one presented for simulated data (fully quantitative, including corrections and image PSF
resolution modeling), except for the following: only the MRF-RD-MRI model was used, the reconstruction
voxel size was 1.56 mm x 1.56 mm X 2.78 mm and the hyperparameters were set empirically to a subjective
compromise between spatial regularization and conservation of PET specific features. Making a compromise
between computation time and method accuracy (MAP algorithm convergence and posterior distribution
characterization) resulted in alower number of MAP iterations, the use of subsets, and alower number of
posterior realizations compared to the simulated data: the number of MAP iterations was 16, the number of
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Figure 12. Posterior distribution of the ROI mean for the nuclei caudate ROI pair, for 2 dataset realizations, and the distribution of the
MAP ROI mean over data realizations, for different models. The dashed lines represent the true values.

OSEM T1 MRI Mean Variance Interval

Figure 13. Neurodegenerative disease exam: (from left to right) clinical reconstruction, MRI image, and posterior mean, posterior
variance and posterior intervals size for MRE-RD-MRI, for two axial slices.

subsets 28, the number of posterior realizations 400. A clinical reconstruction is also presented, using OSEM
with 28 subsets and 8 iterations, without post-smoothing, using the same corrections and resolution modeling.
The unit for all the reconstructed images is the standard uptake value (SUV).

Exam characteristics are given below:

+ '"®F-FDG neurodegenerative disease exam (1.18¢8 noise equivalent counts), showing no signs of pathology,
with an associated 3D T1 weighted MRI image, and the following hyperparameter values: neighbourhood
sphere radius = 6 mm, v = 3, 3 = 0.002, Bowsher percentage = 30%.

+ Brain bed step of a whole body '"*F-FDG oncological exam (4.5¢7 noise equivalent counts), showing a
metastatic lesion in the brain stem, with an associated 3D T1 weighted MRI image acquired after Gd contrast
agent injection, and the following hyperparameter values: neighbourhood sphere radius = 6 mm, y = 3,

(8 =0.005, Bowsher percentage = 30%.
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Figure 15. Oncological exam: (from left to right) clinical reconstruction, MRI image, and posterior mean, posterior variance and
posterior intervals size for MRE-RD-MRI, for two axial slices in the lesion area.
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For the neurodegenerative disease exam, figure 13 shows a standard clinical reconstruction, the MRI image,
and some characteristics of posterior MRF-RD-MRI distribution (mean, variance, intervals size) for two
example axial slices located in an anatomical region similar to the phantom used for simulated data, while
figure 14 shows covariance images and entire posterior distributions for several example gray matter voxels. For
the oncological exam, figure 15 shows a standard clinical reconstruction, the MRI image and some
characteristics of posterior MRF-RD-MRI distribution (mean, variance, intervals size) for two example axial
sliceslocated in the lesion area, while figure 16 shows covariance images and entire posterior distributions for

several example lesion voxels.

For both exams, the posterior mean image was visually indistinguishable from the corresponding MAP
estimate (not shown), with quantitative differences being low (the root mean square difference < 0.03). The
posterior mean shows clearer edges than OSEM because of the MRI-influenced spatial regularization. The
variance is higher in areas with higher uptake and near some edges. The covariance is highest in the nearest voxel
neighbourhood. Entire posterior distributions tend to concentrate around their maximum and present some
skewness, similarly to the simulated data. For the oncological exam, the posterior mean, variance, and intervals
size images have a noisier appearance than for the neurodegenerative disease exam, because the noise equivalent

count rate is lower.

For a further interpretation and analysis of posterior distribution characteristics from real exams, close

collaboration with physicians using diagnostic information is required. There are several perspectives for future
work, e.g. building more elaborate priors that include some prior clinical knowledge about the tracer and the
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Figure 16. Oncological exam: posterior covariance and entire posterior distributions for several voxels in the lesion.
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pathology, or propagating the uncertainty information into quantitative image processing (kinetic modelling,
texture features, biomarkers, machine learning).

4. Conclusion

We show that the posterior bootstrap framework can be easily applied to PET image reconstruction to produce
approximate posterior image distributions for any usual Bayesian model for a single patient dataset. Posterior
distributions were obtained for several Bayesian models with spatially regularizing image priors for simulated
data. They were assessed, analyzed and described in detail in terms of the mean, (co)variance, intervals. Their
relationship with the corresponding distributions of the MAP image estimate over dataset realizations was
exposed. The methodology was applied on two real datasets from a PET/MRI scanner. Posterior image
uncertainties provide information about the propagation of the data noise, as dependent on the modelling
assumptions, the chosen image prior, parameter values, and on the available dataset. Pathway is opened for the
use of posterior uncertainties in diagnostic and quantification tasks.
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Appendix. Random weights

As discussed in section 2.1, the random weights w required in equation (4) are drawn from a uniform Dirichlet
distribution with K unitary parameters:

(w1, W2 »..., wg) ~ Dirichlet(1, 1,...,1). (A.1)
According to the properties of Dirichlet distributions, drawing a realization from this K-dimensional

Dirichlet distribution can be implemented using K Gamma distributions, with their shape parameters equal to
the parameters of the Dirichlet distribution, as:

Py ~ Gamma(l, 1) (A.2)
Wi = Py / > Py (A3)
K
Kwy = —p,. (A4)
Wk Z mpk

As Y pm ~ Gamma(K, 1), and E(Gamma(K, 1)) = K, and as K >> 1, the following approximation can be
made for simplifying the implementation:
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_r ~ 1 (A.5)
2P
resulting in
Kwy ~ Gamma(l, 1) (A.6)

asinalgorithm 1.
As was already shown in equation (6), the posterior bootstrap can be applied on histogram data by drawing
randomized histograms y;,, where the number of counts in each randomized histogram bin is

Vi = Z Kwyy (A.7)
keS;
K
TS > kes, P (A-8)

Following the properties of Gamma distributions, Y xcs _ipx ~ Gamma(y;, 1), where y; is the number of
counts in the original histogram bin i. Then, using the same approximation as above, the number of counts in
each randomized histogram bin can be obtained as:

Yy ~ Gamma(y,, 1) (A.9)

asinalgorithm 2.
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