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Abstract
The uncertainty of reconstructed PET images remains difficult to assess and to interpret for the use in
diagnostic and quantification tasks. Herewe provide (1) an easy-to-usemethodology for uncertainty
assessment for almost any Bayesianmodel in PET reconstruction from single datasets and (2) a
detailed analysis and interpretation of produced posterior image distributions.We apply a recent
posterior bootstrap framework to the PET image reconstruction inverse problem and obtain simple
parallelizable algorithms based on randomweights and on existingmaximum a posteriori (MAP)
(posteriormaximum) optimization-based algorithms. Posterior distributions are produced, analyzed
and interpreted for several commonBayesianmodels. Their relationshipwith the distribution of the
MAP image estimate overmultiple dataset realizations is exposed. The coverage properties of
posterior distributions are validated.More insight is obtained for the interpretation of posterior
distributions in order to open theway for including uncertainty information into diagnostic and
quantification tasks.

1. Introduction

In PET (Positron EmissionTomography)medical imaging, the rawdata acquired by the scanner have a low SNR
(Signal toNoise Ratio) and the noise is of Poisson type. In addition, the image reconstruction inverse problem is
ill-posed. Standard PET image reconstructionmethodsmodel the noise and use some type of spatial
regularization tomitigate the noise propagation from the data to the image (Qi and Leahy 2006). Usually, the
reconstruction procedure produces a single image estimate, which depends on the reconstructionmethod used
and on the tuning ofmethod parameters. An image estimate, and thus any subsequent visual or quantitative
analysis, depend on the given noisy dataset and on the characteristics of the chosen reconstructionmethod.
Hence, there is a need for assessing the uncertainty of voxel values in reconstructed PET image estimates.

Two types of uncertainty have been explored in PET image reconstruction, providing answers to the
following two different questions:

(i) Given an optimization-based iterative image reconstruction method that produces a single image estimate,
if PET imaging is repeatedmany times on the same patient in the same state in the exact same conditions,
what is the probability distribution of the reconstructed images over acquired datasets? This estimator
distribution and its characteristics (e.g. estimator/ensemble bias, estimator/ensemble variance, confidence
intervals) can be obtained from simulated data but not as easily from a single real dataset. Some
characteristics (e.g. variance) have been previously approximated from a single dataset using either
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analytical approximations, (Fessler 1996, Qi and Leahy 1999), or classical dataset bootstrap approaches,
(Dahlbom2001, Buvat 2002,Markiewicz et al 2014).

(ii) Given a single acquired dataset and a Bayesianmodel relating the unknown image to this dataset, what is the
probability distribution of the image? This distribution, called a posterior image distribution, was previously
produced for somemodels using either analytical approximations, (Zhang et al 2019), orMonte Carlo
Markov chain (MCMC) samplers, (Sitek 2012, Filipović et al 2019) for PET and (Weir 1995,Higdon et al
1997) for SPECT.

Both these questions are relevant formost existing PET image reconstruction approaches.
The exactmaximum likelihood (ML)PET image estimate, obtained for instance using theMLEMalgorithm

at convergence, is almost never used in practice because of high image noise, e.g. Jaskowiak et al (2005). Instead,
various strategies are used tomitigate the image noise. For instance,MLEM iterations can be stopped before
reaching convergence, asmostly lower spatial frequencies are reconstructed in the first iterations.Many
optimization-based iterativemethods either add a penalty/regularization term to the likelihood objective
function to obtain a penalizedML solution or they add a prior image probability distribution, building a
complete parametric Bayesianmodel of PET image reconstruction to obtain a posteriormaximum (maximum
a posteriori (MAP)) solution. These two approaches have a different theoretical interpretation but often result in
equivalent algorithms and image estimates. They both have the purpose to introduce some assumptions about
the smoothness, roughness and edges in the image. Images fromothermodalities having higher spatial
resolution and lower noise (e.g. CT,MRI) have been used in the literature to aid this spatial regularization task
(Bai et al 2013). TheML solutionmay be viewed as aMAP solution using a uniform image prior distribution, or
equivalenty no prior information about the image. Thework presented here belongs to the context ofMAP
approaches but can be extended to a larger context.

Here we attempt to answer the second uncertainty question defined above using a new statistical framework,
called here for short the ‘posterior bootstrap’, which represents a synthesis from the following approaches:
Newton et al (2020), Fong et al (2019), Lyddon et al (2019). It allows for drawing approximate samples from the
posterior distribution of almost any Bayesianmodel by using randomweights and existingMAPoptimization
algorithms.Hence, the bordermay appear blurred between optimization-based iterative reconstruction
methods and sampling fromposterior distributions, as well as between regularization/penalty and image priors.

Drawing samples from a posterior distribution is a daunting task in high-dimensional ill-posed inverse
problemswith correlated variables (Girolami andCalderhead 2011, Robert andCasella 2013), which is the case
in PET image reconstruction. As an exemple, in our previous work, (Filipović et al 2019), we used aMCMC
sampler, designed for a single though versatile type of spatially regularizing prior distribution (distance-
dependent Chinese Restaurant Process), and experienced someMCMCconvergence difficulties. Compared to
MCMC, the posterior bootstrap avoids convergence issues, realization discarding, sequential computation, and
the need for analytical reformulation for each Bayesianmodel. The posterior bootstrap is applicable to any
Bayesianmodel, provided a correspondingMAPmethod is available, while remaining independent of the choice
of the particular optimization algorithm. It is scalable with respect to the amount of data and to the complexity
of themodel and the realizations can be computed in parallel. However, the theoretical properties are different
fromMCMCsamplers and the drawn samples remain approximate, as currently there are no proofs stating that
they correspond exactly to the posterior distribution of the given Bayesianmodel when only a limited amount of
data is available, see Fong et al (2019), Newton et al (2020) for the currently available proofs. The posterior
bootstrap does not introduce additional analytical approximations. It ismore general and has different
theoretical interpretations compared to the classical data bootstrap, (Efron 1979).

Themain aims of this work are to (1)provide a versatilemethodology for uncertainty assessment for real
data and for common approaches in PET reconstruction (2) provide a detailed analysis and interpretation of the
obtained uncertainty. This is a necessary step before including the uncertainty information into diagnostic tasks.
Redesigning the diagnostic tasks (e.g. lesion detection, lesion characterization, comparison of pathological and
healthy tissues) and quantitative processing (e.g. kineticmodeling) in terms of uncertainty is a vast subject in
itself and requires further exploration in close collaborationwith physicians. As this work has strong explanatory
purposes, themethods, the results and the discussion are interleaved throughout the paper.

2. Theory

Let us consider a list-mode dataset composed ofK detected counts, where each count has some attributes, e.g.
coordinates of the line-of-response (LOR) inwhich the count was detected, time-of-flight (TOF)measurement.
The attribute values represent a realization of a random variable r, which is independent and identically
distributed (iid) for each count, given the radiotracer emission concentration distribution in the patient (PET
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image)λ. Let the space of attribute values be discrete, with i indexing available attribute values, j the voxels, k the
counts. Let the list-mode dataset represent a realization fromaPoisson point randomprocess, see Barrett et al
(1997) for a detailed definition. If detected counts are histogrammed into any kind of bins (e.g. LOR, sinogram,
TOF), let a histogramdataset y represent a realization froma joint Poisson distributionwith unknown
parameters as in equation (1): theA systemmatrix contains probabilities that an annihilation occurred in voxel j
is detected in the detection bin i and q̄i is the expectation of the number of randomand scattered counts

⎛

⎝
⎜

⎞

⎠
⎟( ∣ ) ¯ ( ) ål l= +p y A qPoisson . 1

i j
ij j i

Let us build a Bayesianmodel that relates the unknownPET imageλ to the acquired dataset (either list-mode
r or histogram y): the probability distribution p(data|λ) is the likelihood of the acquired dataset and a prior
probability distribution of the image p(λ) is specified in order to introduce assumptions about smoothness and
roughness properties in the image. The posterior image distribution results from the prior and the likelihood
distributions as p(λ|data)∝ p(data|λ)p(λ).We thus update our prior beliefs about the image upon observing
some actual acquired data.

It should be noted thatmost optimization-based iterative reconstructionmethods in PEThave a Bayesian
model lurking inside.MAPmethods produce an image estimate thatmaximizes the posterior image
distribution. Fromnowonwe consider directly the natural logarithms ofmentioned probability distributions. If
R(λ) is the log prior and L(data|λ) the log likelihood, then theMAP image estimate l̂ is obtained as

ˆ ( ∣ ) ( ) ( )l l l= +
l

L data Rargmax . 2

The posterior bootstrap approach presented here results from several converging ideas and can be
interpreted from several points of view (Newton andRaftery 1994, Rubin 1981,Newton et al 2020, Fong et al
2019, Lyddon et al 2019). Applying this framework to PET reconstruction requires tomodel the PET rawdata
using iid random variables, hence using the list-mode data format. The list-mode log likelihood, (Barrett et al
1997,Huesman et al 2000), takes into account all the detected counts at once, but can be transformed into a sum
over counts as

⎛

⎝
⎜

⎛

⎝
⎜
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To apply the posterior bootstrap,K positive randomweightswk (one per detected count, with∑kwk= 1) are
drawn froma chosen probability distribution and used to randomly perturb the contribution of each detected
count to the log likelihood, to produce a randomly perturbed log likelihood Lw

⎛

⎝
⎜

⎛

⎝
⎜

⎞
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1
. 4w
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k

j
i j j i
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Maximizing the objective function Lw(r|λ)+ R(λ) overλ then produces l̃, which represents an approximate
realization from the posterior distribution of the imageλ, and not a usualMAP image estimate l̂. By repeating
this process of drawingweights andmaximizing the obtained objective functionB times, we produce a sample of
B realizations from the posterior image distribution.

Now let us consider a histogramdataset y and its log likelihood

⎛

⎝
⎜

⎞

⎠
⎟( ∣ ) ¯ ¯ ( )å å åål l l= + - +L y y A q A qln . 5
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The randomly perturbed list-mode log likelihood in equation (4) can be transformed into an expression for
histogram log likelihood as

⎛

⎝
⎜

⎞

⎠
⎟( ∣ ) ¯ ¯ ( )å å å åål l l= + - +

Î

L y A q Kw A qln . 6w
i j

ij j i
k S

k
i j
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*

This is equivalent to the expression for the log likelihood of a different histogramdataset y*, where
=å Îy Kw

i k S ki
* , Si being the set of counts detected in bin i.

Maximizing the objective function Lw(y
*|λ)+ R(λ) overλ also produces an approximate realization l̃ from

the posterior image distribution. Repeating this processB times generates a sample of sizeB from the posterior
image distribution. A randomized histogram y* is obtained by drawing a newnumber of counts for each
histogrambin, by drawing a realization from a distribution derived from the chosen distribution for theweights
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w and from the original histogramdataset y. The choice of theweights distribution and the demonstration of the
resulting histogram resampling procedure is described and discussed inwhat follows.

2.1. Interpretation and implementation of theweightsw
Theweightsw have several intuitive interpretations. They can be viewed as away to randomly perturb the
contribution of each data realization (count) to the overall likelihood, as inNewton andRaftery (1994). They can
also be viewed as probabilities that we assign to each data realization (count) in the dataset, beforewe perform
someBayesianmodeling as described above: theKweights themselves represent a probability distribution. This
is similar to the idea behind the Bayesian bootstrap (Rubin 1981) and the classical bootstrap (Efron 1979). In the
classical bootstrap for list-mode datasets, a bootstrapped dataset is obtained by drawing randomlyK counts with
replacement from the original dataset. This is equivalent to assigning the same probability 1/K to each data
realization (count). In the Bayesian bootstrap, no longer afixed but a randomprobability is assigned to each data
realization. These assigned probabilities can be used either analytically to perform somemodeling/inference/
computation, or they can be used to bootstrap the original dataset before performing some furthermodeling/
inference/computation.

Theweightsw can also be viewed as an expression of uncertainty about the Bayesianmodel itself, as formally
defined in Fong et al (2019) and Lyddon et al (2018). Everymodel ismisspecified to some degree or does not
match the reality perfectly, so it is relevant to express and include our belief/uncertainty about the postulated
model itself, and theweights serve this purpose.More discussion about this interpretationwill be given in the
section 3.6.

The choice of a probability distribution fromwhich to draw theweightswk depends on their interpretation.
As theseweights represent themselves a probability distribution, the simplest choice is the uniformDirichlet
distributionwithK parameters, Dir(1, 1,K, 1): a realization (w1,w2,K,wK) drawn from thisDirichlet
distribution represents itself a discrete probability distribution overK possible outcomes (counts). In this work,
we choose this distribution and showhow to draw the randomweights for list-mode and histogramdata inwhat
follows.

The sampling from aDirichlet distribution can be easily implemented usingGammadistributions:first,
each randomweight is drawn fromGamma(1, 1), and then theweights are normalized to satisfy∑kwk= 1. The
normalization can be avoided bymaking a simple approximation (see the appendix), resulting in
Kwk∼Gamma(1, 1). The algorithm for drawing a sample ofB realizations from the posterior image distribution
froma list-mode dataset is given in algorithm 1. The objective function remains the same as for the original list-
mode dataset except for themultiplicative weights. Theseweights do notmodify the properties of the objective
function (e.g. derivatives, convexity), so any usual numerical solution algorithm can be applied by taking into
account theweights.

For histogramdata, it follows (see the appendix) that the number of counts (Î) for each randomized
histogrambin y*i isfirst drawn fromGamma(yi, 1), and then the randomized histogram is normalized to contain
exactly the same number of counts as the original histogram. Again, this normalization step can be avoided by
making a simple approximation (see the appendix), resulting in y

i
*∼Gamma(yi, 1). The expectation of such a

Gammadistribution per histogrambin is equal to the actual acquired number of counts in the histogrambin. It
should be noted that this resampling does not imply nor assume that the histogramdata follow suchGamma
distributions. Also, the randomized histogram y* is not assumed to represent a realization of acquired PETdata (
i.e. a repeated acquisition dataset) and it does not follow a joint Poisson distribution. This is not an issue, because
the Poisson likelihood assumption for the original acquired dataset remains valid. The implementation of the
posterior bootstrap for histogramdata amounts to repeatedly resampling the dataset and applying usualMAP
reconstructionmethods, as shown in algorithm2. The objective function tomaximize remains the same as for
the original dataset, so there are nomodifications regarding the choice and the properties of numerical solution
algorithms. This implementation of the posterior bootstrap is used in this work.

2.2. Algorithms

Algorithm1. List-mode PETdata.

1: for b = 1 to B do

2: draw ¼Kw Kw Kw, ,b b Kb1 2 from Gamma (1, 1)
3: ˜ ( ∣ ) ( )l l l= +l L r Rarg maxb wb

4: end for
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Algorithm2.HistogramPETdata.

1: for =b 1 to B do

2: draw dataset yb, where each yib is drawn from Gamma ( )y , 1i

3: ˜ ( ∣ ) ( )l l l= +l L y Rarg maxb w bb
*

4: end for

3.Methods and results

3.1. Phantomand simulation
Weused a highly realistic 18F-FDGPET/MRI brain phantom, (Belzunce andReader 2020). The spatial
resolution of the PETphantom (figure 1 left) is higher than the typical resolution of clinical PET scanners
(≈800 μmcompared to≈4 mm FWHM) and the spatial distribution of the tracer emission concentration
presents inhomogeneities instead of being piece-wise constant. The associatedMRI image is real (acquired post-
mortem, T1-weighted post-processed, as available fromBigBrain, Amunts et al 2013), so that thematching of
smooth areas and edges between PET andMRI images is imperfect, similarly to real exams. An in-house
simulation library Stute et al (2015)was used to simulate dataset realizations (repeated dataset acquisitions or an
ensemble of datasets) of PEThistogramdata, given the same high-resolution PETphantom. The Siemens
Biograph 6TruePoint PET/CTgeometry (Jakoby et al 2009)was used and the bins in the histogramdataset
represented the available LORs. The simulation included attenuation, randomand scattered coincidences and
resolutionmodeling using an image-domain point spread function (PSF). The simulationwas 2D, the total
number of counts (true, randomand scattered)was 5e6, the number of noise equivalent counts was 1.5e6,
approximating count rates ocurring in clinical brain 18F-FDGPET exams for a 2D slice in the center of the axial
field-of-view.

3.2.Models
The proposed posterior bootstrap approachwas used to produce posterior image distributions for several
Bayesianmodels commonly used in PET reconstruction. The likelihood being always the same, the difference
between themodels lies in the priors.

The choice of the prior is awidely discussed question in Bayesian approaches: the prior image probability
distribution should convey the actual prior assumptions onemight have about the PET image. The usual prior
assumptions are related to the properties of smoothness/roughness in the image, based on local or nonlocal
voxel neighbourhoods and possibly on additional data or images fromothermodalities (e.g.MRI, CT). Such
prior image distributions represent amathematicalmodelling of our (uncertain) prior assumptions about the
smoothness/roughness in the PET image, and do not stand for an absolute truthwith respect to the physical
reality. The prior also conditions the interpretation of the posterior distribution, because the posterior
distribution has to be understood and usedwhile having inmind the chosen prior.

Figure 1. Left: high resolution PETphantom,Center andRight: PETphantomdownsampled to the PET system resolution and the
associated downsampledMRI image.
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• U: uniformprior, the optimization algorithm isMLEM.

• MRF-Q:Markov randomfield prior with the quadratic potential function, theMAP algorithm isMAP-EM,
(DePierro 1995).

• MRF-Q-MRI: the samewith the addition of an associatedMRI image, using the asymmetric Bowshermethod,
(Vunckx andNuyts 2010).

• MRF-RD:Markov random field prior with the relative differences potential function, theMAP algorithm is
the preconditioned gradient-based algorithm as inNuyts et al (2002).

• MRF-RD-MRI: the same using anMRI image, using the asymmetric Bowshermethod.

The posterior distributions in thesemodels are convex and differentiable functions.

3.3. Reminder
Aposterior image distribution differs by definition from the distribution of aMAP image estimate over dataset
realizations. A posterior distribution expresses the uncertainty of the PET image, given the single acquired
dataset and given themodel (likelihood+ prior, given the assumptions about the systemmatrixA and random/

scattered coincidences). The distribution of aMAP image estimate over dataset realizations (estimator
distribution) expresses the uncertainty of theMAP image estimator for a givenmodel when data acquisition is
repeated on the same patient in the exact same conditions.When several dataset realizations are available, it
should be noted that for each Bayesianmodel there are several posterior distributions (each corresponding to a
dataset realization), while there is only one distribution of theMAP image estimate over dataset realizations, see
figure 2.

3.4. Implementation
All theMAP reconstructionmethodswere fully quantitative and contained image PSF resolutionmodelling and
the corrections (randomand scattered coincidences, attenuation, normalization). Theywere entirely
implemented using theCASToR (Customizable andAdvanced Software for Tomographic Reconstruction)
platform inC++, (CAS 2017,Merlin et al 2018). The voxel size for reconstructed images was set to
2.2 mm× 2.2 mm× 2.8 mm tomatch the simulated PET scanner spatial resolution (4 mm FWHM). Figure 1
center shows the PET phantomdownsampled to the PET scanner resolution. ForMAPmethods that use the
associatedMRI image, theMRI imagewas downsampled to the PET scanner resolution before being input into
the reconstruction. The color scales for all the PET images related to the simulated data have the same unit as the
PETphantom (relative uptake value, Belzunce andReader 2020).

Figure 2. Illustration of the production of posterior distributions and of the distribution of theMAP image estimate over dataset
realizations for a single Bayesianmodel, with simulated data.
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The number of posterior realizations (the size of the posterior sample)B for a single posterior distribution
was set to 1000. The number of dataset realizations for the distribution of aMAP image over dataset realizations
(estimator distribution)was also set to 1000. All the dataset realizations were reconstructed with all the different
MAP reconstructionmethods. As a posterior distribution is computed froma single dataset realization,
posterior distributions were computed for 10 dataset realizations for eachmodel, to appreciate how posterior
distributions vary over dataset realizations. Figure 2 shows the overall simulation and reconstruction procedure
and an illustration of posterior distributions versus the distribution of theMAP image over dataset realizations
for a singlemodel.

All theMAP (includingML) algorithmswere run for 1000 iterations, both forMAP image reconstruction
and inside the posterior bootstrap algorithm. The chosen number of iterations achieved an empirical
convergence forMRFMAP algorithms, and resulted in a relatively early stopping forMLEM.MAPmethods
have in addition hyperparameters (parameters of the prior distribution)which tune the characteristics and the
strength of prior smoothness/roughness assumptions, such as the general weightβ inMRF priors (Qi and
Leahy 2006), the tradeoff γ between allowing for edges and reducing noise forMRF-RD (Nuyts et al 2002), the
size of the voxel neighbourhood (defined here as a sphere with a radius inmm (CAS 2017)) and the percentage of
neighbourhood voxels selected by the Bowshermethod (Bowsher et al 2004, CAS 2017). The hyperparameter
valueswere fixed by running eachMAPmethod on a single dataset for a wide range of hyperparameters values
and choosing the values thatminimize the RMSEwith respect to the true phantom image downsampled to the
PET system resolution. They are given in table 1.

3.5. Characteristics of posterior distributions
Weexplore and present the characteristics of posterior distributions, as well as their relationshipwith the
distribution of the correspondingMAP solution over dataset realizations (estimator distribution).

3.5.1. Results overview
Figure 3 shows the voxel-wise posteriormean, posterior variance and posterior interval size for a dataset
realization, for all the Bayesianmodels. Figure 4 shows the voxel-wisemean, variance and interval size
corresponding to the distribution of theMAP image over dataset realizations (also called estimatormean and
variance, and confidence intervals), for all the Bayesianmodels. The interval size for a voxel is computed as the
difference between themaximumandminimumvoxel intensity realization in the sample, see section 3.6 for
more details.

3.5.2.Mean
The posteriormean image (obtainedwith the posterior bootstrap) is visually indistinguishable from the
posteriormaximum (MAP) image (obtainedwith the correspondingMAP algorithm, not shown), for the same
dataset realization. The quantitative difference is low (rootmean square difference< 0.01). This is due to the
convexity and to a degree of symmetry of posterior distributions for the Bayesianmodels used here.Hence, the
posteriormean shows here the same properties (e.g. image noise) as theMAP solution.

The estimatormean image (the average ofMAP images over dataset realizations) presents lower image noise
than a singleMAP solution, which is expected because the estimatormean image approaches theMAP image
reconstructed fromnoiseless data, as discussed in Fessler (1996). This estimatormean image is thus less noisy
but shows the estimator bias. It could be argued that this imagewould be useful for diagnostic purposes, but it is
not exactly obtainable from a single dataset.

The posteriormean shows the propagation of data noise due to the ill-posedness of the PET inverse problem,
which depends on the given single noisy dataset and on themodel. This implies that the posteriormean from
one dataset realizationmay present visible differences compared to the posteriormean from a different dataset
realization, as illustrated infigure 5. These differences aremost obvious in the nuclei caudate area, possibly
because of the proximity of high and lowuptake (high contrast) and of a low system sensitivitymostly due to
attenuation: for thefirst dataset realization, the nuclei have a similar intensity for all themodels, and for the

Table 1.Hyperparameter values.

MRF-Q MRF-RD MRF-Q-MRI MRF-RD-MRI

β 61 50 350 160

Neighbourhood sphere radius (mm) 3 3 8 8

Bowsher threshold / / 30% 30%

Relative differences γ / 0 / 3
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second dataset realization, the left nucleus has a visibly higher intensity than the right one. In other image
regions, the differences between dataset realizations are less noticeable.

The differences between the posteriormean and the estimatormean should be kept inmindwhen
interpreting other distribution characteristics, e.g. (co)variance, intervals.

Figure 3.Posterior distribution: voxel-wise posteriormean, posterior variance, posterior interval size for a dataset realization, for
differentmodels. The colorscalemaximumdiffers acrossmodels for the variance and the interval size.

Figure 4.Distribution of theMAP image estimate over dataset realizations: voxel-wise estimatormean, estimator variance and
confidence interval size for differentmodels. The colorscalemaximumdiffers acrossmodels for the variance and the interval size.
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3.5.3. Variance
The voxel-wise posterior variance image is similar to theMAP estimator voxel-wise variance image in terms of
structures, intensities andmodel-dependent characteristics. However, it presentsmore local variations and a
‘noisier’ appearancewith respect to the estimator variance. The reason is that the posterior variance is
meaningful with respect to the posteriormean, which shows some characteristics intrinsic to inverse problem
noise propagation from the given single dataset realization, as illustrated infigure 5, while the estimator variance
ismeaningful with respect to an almost noiselessmean image. This effect ismore visible for theUmodel than for
models with spatial smoothness priors. Both types of variance decrease with stronger priors. This is expected
because both types of variance aremostly due to the Poisson noise in the dataset and to its propagation in the
inverse problem,while the spatial smoothness priorsmitigate this noise. The overall variance intensity ranks
fromhigher to lower for differentmodels (having inmind the fixed hyperparameter values and theMLEMearly
stopping) as: U,MRF-RD,MRF-Q,MRF-RD-MRI,MRF-Q-MRI. TheMRF-Q variance is rather flat, as already
observed inQi and Leahy (1999). TheMRF-RDvariance presents some local smoothness with amplification
near some strong edges, e.g. the edge between the graymatter and the skull, which is reminiscent of the
behaviour of total variation type regularization. TheMRF-RD-MRI variance presents clearer edges, because of
the influence of theMRI image, and higher intensities in some regions such as the nuclei caudate.

For the Bayesianmodels used here, and as obtainedwith the proposed posterior bootstrap approach, the
posterior variance andmore generally the uncertainty conveyed by the posterior distribution showsmostly the
uncertainty related to the noise in the data and to its propagation through the chosenmodel. It conveys some
spatial regularization properties of themodels and so can be used to comparemodels between them.Higher
variancemay point out some areas in the imagewhere the inversion or the spatial regularization struggle, for
instance areas with strong contrast or sharp edges.

3.5.4. Covariance
The voxel-wise posterior covariance is similar to the estimator covariance for all themodels in the samemanner
as the variance. It ismore difficult to visualize because there are asmany covariance images as there are voxels.
An example of posterior covariance images is shown for a voxel in the graymatter infigure 6. It is consistent with
the already known spatial regularization properties of themodels used here.Without prior information (U), the
covariance of a voxel with its neighbourhood is substantially lower than the covariance of the voxel with itself (its
variance). TheMRF-Q covariance is isotropically highwithin the voxel neighbourhood. TheMRF-RD
covariance is lower in edges and higher in smoother areas. TheMRF-Q-MRI andMRF-RD-MRI covariance is
high in a larger neighbourhood that appears smooth in theMRI image. The absolute covariance values decrease
with stronger priors and someGibbs ringing pattern can be seen around the voxel, especially forMRF-Q and
MRF-RD.

3.5.5.Whole distribution
Examples of both posterior and estimator distributions for several graymatter voxels are given infigure 7 and for
several nuclei caudate voxels infigure 8. For each voxel, the figures show two posterior distributions, obtained
from two different dataset realizations, and the distribution of theMAP solution over dataset realizations, for
differentmodels. Both distributions forU are skewed and have long tails. The posterior distributions forU vary
themost over dataset realizations, because of high image noise and dataset dependent noise propagation. The

Figure 5.Posteriormean and variance for two different dataset realizations, for somemodels.
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Figure 6.Posterior andMAP estimator covariance images for a graymatter voxel (shown in the left in red) for differentmodels. The
colorscalemaximumdiffers acrossmodels.

Figure 7.Examples of entire distributions for several graymatter voxels for 3models: posterior distributions from two dataset
realizations and the distribution of theMAP solution over dataset realizations.

Figure 8.Examples of entire distributions for several nuclei caudate voxel for 3models: posterior distributions from two dataset
realizations and the distribution of theMAP solution over dataset realizations.
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distributions tend to concentrate around theirmaximumwith stronger spatial regularization and present slight
skewness.

3.5.6. Discussion
Posterior distributions presented here conveymostly the uncertainty due to the noise in the data and to its
propagation through themodel. Hence, they cannot auto assessmodelmisspecification (imperfectmatch to
reality, e.g. systemmatrixA, mismatch of smooth areas inMRI and PET images), nor themodel bias. However,
the posterior bootstrap framework has an other interpretation in the context ofmisspecifiedmodels which can
take into account the uncertainty of somemodelling assumptions, but this is subject for futurework, see
section 3.6 question (ii) formore details. All the distributions in thesemodels are convex, but it should be noted
that the posterior bootstrap is applicable to non convex posteriors with possiblymultiplemaxima, provided a
correspondingMAPoptimization algorithm is available.

The posterior bootstrap framework implies that all the optimization algorithms are run to convergence. In
practice, convergence is never strictly achieved due to limited computational resources and to the properties of
optimization algorithms.MLEMandMAP-EMhave strict convergence proofs, while the algorithmused for
MRF-RDdoes not.MAP algorithms forMRFpriors usually converge faster thanMLEM.Also, U,MRF-Q and
MRF-RDmodels arewell definedBayesianmodels, while the asymmetric Bowsher approach is an empirical
modification of the originalMRI Bowsher prior (Vunckx andNuyts 2010). In this work, formodels withMRF
priors, an empirical convergence was achievedwith the chosen number of iterations (1000). For theUmodel,
the convergencewould requiremuchmore iterations andwould produce substantially noisier images, so the
presented results correspond to a relatively early stoppedMLEM. IfMLEMwere run to convergence, it could be
argued that the uncertainty, both posterior and estimator,may not be useful for diagnostic and quantitative
purposes, because it conveys an amount of uncertainty so high that it becomes useless (e.g. the variance becomes
approximately proportional to the square of themean image (Barrett et al 1994)). Some illustrative results using
MLEMwithmuchmore (10 000) iterations are presented in the supplementarymaterial available online
at stacks.iop.org/PMB/66/125018/mmedia. The effect of choosing a lower number of iterations forMRF
models depends on and can be anticipated according to the convergence behaviour of correspondingMAP
algorithms for the given dataset. An example is shown in the supplementarymaterial.

The choice for the posterior sample sizeB (the number of realizations drawn from the posterior distribution)
depends on the shape of the posterior distribution and onwhich posterior characteristics are of interest (e.g.
covariance, intervals, quantiles). For instance, if the posterior distribution has very long tails andwewish to
characterize them accurately, a larger sample size will be needed. If wewish to estimate the variance,B can be
lower. Also, convex posteriors put lower requirements onB thanmultimodal posteriors. In this work, we
empirically observed that the posteriormean and variance stabilize beyond the chosenB (1000) for all the
models. The effect of choosing a lower number of posterior realizations depends on and can be anticipated
according to the overall shape of the posterior distribution and the posterior characteristic of interest for the
given dataset. An example is shown in the supplementarymaterial.

2D simulationwas chosen over 3D for computational reasons: a large number of dataset realizations and of
posterior realizations was required for a thorough analysis and it was of interest to show results for several
different Bayesianmodels. The posterior bootstrap framework itself is independent of the dataset dimensions
and of the influence of 2D versus 3Ddata onMAP solution andMAP algorithmperformance.

Posterior distributions depend on the chosen values for the parameters of the image prior. The dependence
of theMAP solution on hyperparameter values has already been studied in the literature and it applies also to the
posteriormean. The (co)variance and the intervals tend to increase when the strength of prior smoothness/
roughness assumptions descreases (lowerβ) and vice-versa. An example for theMRF-RD-MRImodel is shown
for lower and higherβ values in the supplementarymaterial. The general conclusions in this work do not depend
on the choice of hyperparameter values.

3.6. Assessment
There are no standardmethods for validating posterior distributions. Several questions can be addressed:

(i) Do the computed posterior realizations match the corresponding ‘true’ posterior distribution, where ‘true’
meanswith respect to the postulated Bayesianmodel and to the available dataset?

(ii) Towhat extent does themodelmatch the reality?

(iii) Are the produced posterior distributions ‘well calibrated’, i.e. behave consistently in different cases (more
explanations in the answer)?

(iv) Howdoes the posterior bootstrap compare to othermethods for generating posterior distributions?
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It should be noted that there is no ‘true’ posterior distribution outside of the context of the givenmodel and
dataset. Bayesian inference can be viewed as updating our current prior assumptions about the PET image using
the available acquired data, i.e.more as amethod of reasoning and inference than a search for an absolute truth.
Some answers and some discussion are provided inwhat follows.

(i) It should be noted that there are currently no established figures of merit for the performance of the
posterior bootstrap and that there is no gold standard for posterior distribution estimation, especially in the
context of high-dimensional ill-posed inverse problems such as PET. Some validation approaches consist in
checking the relevance of posterior distributions by using them to predict newPETdata, (Gelman et al
1996). The data predicted by themodel can then be compared to the actual acquired dataset but it is not
clear yet which comparison criteria would bemost relevant and reliable for PET. This ismaterial for future
work.
Some theoretical proofs for the posterior bootstrap currently exist only for the asymptotic case, when the
amount of data (the number of counts in the dataset) approaches infinity, (Fong et al 2019,Newton et al
2020).

(ii) A posterior distribution, as defined here, is based on the assumption that the underlying Bayesian model is
true, in the sense that there exists an imageλ, supported by the prior, for which the likelihood distribution
generates the acquired data.However, the posterior bootstrap has an other theoretical interpretation in
which the produced posterior distributions are exact (no longer approximate), but they do not have the
samemeaning. First, a vocabulary reminder. All the Bayesianmodels used in this and in previous works in
PET image reconstruction are called parametric: the noisy acquired data are assumed to follow a probability
distribution of known type (i.e. Poisson) and of unknown parameters. Another kind of Bayesianmodels is
called nonparametric: themeasured data follow an unknown type of probability distribution, which is itself
a realization drawn fromprobability distributions capable of generating probability distributions (e.g. a
Dirichlet process), so there are no direct notions of unknownparameters. The other interpretation of the
posterior bootstrap is nonparametric and provides useful insights. The produced posterior distribution is
exact (no longer an approximation) but refers to a differentmodelling context: the usual parametric
Bayesianmodel is no longer viewed as true. It is instead viewed asmisspecified to some degree, i.e. as an
imperfect approximation of the reality: we assert openly thatwe are not sure about this parametric Bayesian
model.We build a different independent nonparametric Bayesianmodel focused on the data distribution
and use the parametricmodel only as an imperfect but convenient image estimator. The nonparametric
Bayesianmodel contains a prior on the data distribution, which is here a uniformDirichlet distribution
(usingweightsw), which does not carry assumptions about the data probability distribution (except the
i.i.d. assumption of list-mode counts). In this context, the produced posterior distributions represent
posterior distributions of imperfect image estimators with respect to a noninformative prior (no prior
assumptions) on the data distribution andwith respect to the acquired dataset. See Fong et al (2019), Lyddon
et al (2018, 2019) formore explanations. This interpretation can be viewed as a generalization of parametric
posterior image distributions and of image estimators, and ismaterial for further exploration of the
uncertainty in PET reconstruction.

(iii) It is argued in Rubin (1984) and Bayarri and Berger (2004) that it is desirable in practice that posterior
distributions bewell calibrated, i.e. that the (Bayesian) posterior distributionsmeet (frequentist) estimator
distributions in some aspects: for instance, that (e.g. 95%) posterior intervals contain the ‘true’ value in the
same percentage (e.g. 95%) of ‘cases’, where a ‘case’ is a realization of the joint distribution of the acquired
dataset and of the image. Some theoretical considerations and proofs about themeeting point between
Bayesian and frequentist approaches for inverse problems such as in PET in the limit case of infinite amount
of data are given in Bochkina andGreen (2014).
First, a quick reminder about interval names:

• A ‘posterior interval’ refers to an interval on the posterior distribution of voxel intensity for each voxel, so
each voxel has a posterior interval for eachmodel and for each dataset realization.

• A ‘confidence interval’ refers to an interval on theMAP estimator distribution of voxel intensity over
dataset realizations for each voxel, so each voxel has a confidence interval for eachmodel.
Hence, for a givenmodel, each voxel has a single confidence interval and several posterior intervals (each
corresponding to a dataset realization), which can be confusing, see figure 2.
As here the number of realizations (1000)was relatively low from a statistical point of view and as the
distribution tails are long due to the Poisson nature of the data, computing intervals with a precise
percentage contents (e.g. 95%)would not be reliable. Hence, we settle for approximate intervals: we
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compute intervals for each voxel by taking the difference between themaximumand theminimum
values in the sample and assume that these intervals correspond to approximate high percentage intervals
(90%–100%), with some possible positive bias.
As theMAP estimator presents some estimator bias for all themodels, the confidence intervals by
definition contain the biased true value (theMAP estimatormean) in a high percentage of dataset
realizations, but contain the actual true value (from the undersampled phantom) in a lower percentage of
dataset realizations. The good calibration of posterior distributions implies that the coverage of the true
and of the biased true value shouldmatch between confidence and posterior intervals. Figure 9 shows in
red the voxels whose true value is not contained in confidence or posterior intervals. Thesemaps are
similar for confidence and posterior intervals and showmostly areaswith 0 or very lowuptake values
(e.g. CSF, background), which can be explained by some positive bias in lowuptake areas due to the
positivity constraint inherent in theMAP algorithms.
We checked the following calibration properties of the posterior intervals:

• The posterior intervals should contain the biased true value in a high percentage of dataset realizations.

• The posterior intervals should contain the true value in the same percentage of dataset realizations as the
confidence intervals.

• The posterior intervals should contain the biased true value in a high percentage of brain voxels.

• The posterior intervals should contain the true value in the same percentage of brain voxels as the
confidence intervals.
Given the approximate intervals computation, we regard these properties as reasonably fulfilled. The
coverage of the biased value is in average above 90%. The table 2 shows the average percentage of
coverage of the true value by posterior and confidence intervals (for voxels with true value>0): the
posterior intervals’ coverage is a couple of percents lower than the confidence interval percentage. In
terms of coverage,MRF-Q andMRF-RDmodels behave similarly, as well asMRF-Q-MRI andMRF-
RD-MRI.

(iv) Relevant comparisons would consist in implementing other methods that produce posterior image
distributions for the exact sameBayesianmodels. Thewidely usedMCMCmethods suffer from
convergence issues, especially for high-dimensional complexmodels (Girolami andCalderhead 2011,

Figure 9. In red are shown the voxels forwhich posterior and confidence intervals fail to cover the true value, for differentmodels.

Table 2.Average%of coverage of the true value by posterior and confidence intervals for differentmodels.

U MRF-Q MRF-RD MRF-Q-MRI MRF-RD-MRI

Posterior 90 70 67 58 51

Confidence 93 74 70 61 50
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Robert andCasella 2013). In addition, direct comparisonwith previouswork that usedMCMC samplers is
difficult. The previously proposedMCMCmethod by our group, (Filipović et al 2019), was designed for a
different prior (ddCRP), which cannot be used in the posterior bootstrap framework because there are no
correspondingMAPoptimization algorithms to our knowledge. Some previousMCMCmethods
(Weir 1995,Higdon et al 1997) developed for SPECT reconstruction used complex samplers and similar
priors though not identical to the ones used in this work. The origin ensemblemethod (Sitek 2011) does not
produce directly posterior distributions, though additional steps were provided for producing posterior
distributions for some specific priors in Sitek (2012), which are different from the commonpriors used in
this work.

3.7. Preliminary discussion for using posterior image distributions
Aposterior distributionmay be closer to an intuitive understanding than an estimator distribution. It can be
used to compute directly the probabilities of pathological features. It can also be obtained as awhole
distribution, whereas one can currently obtain only themaximumand sometimes an analytically approximated
co(variance) for an estimator distribution.

A posterior image distribution provides a posterior distribution for each voxel, as well as a posterior
distribution of any voxel summary. A voxel summary refers to a function of several voxels (e.g. characteristics of
regions of interest (ROIs)). A posterior distribution can be used to extract directly some relevant probabilities of
interest, such as the probability that a voxel or ROI emission concentration is above a certain level or is higher/
lower than some other voxel or ROI emission concentration. For such uses of posterior distributions, a clinically
relevant task needs to be clearly formulated in terms of probabilities in close collaborationwith physicians.
Different Bayesianmodelsmay provide different answers to the same diagnostic question. A posterior image
distribution can also be incorporated into kineticmodelling, by redefining kineticmodels as Bayesianmodels, as
for instance in Sitek et al (2016).We expect that posterior distributions will be useful in the cases of doubtful
diagnosis (e.g. distinguishing a lesion from image noise) and in the case of any quantitative analysis.When
redesigning diagnostic questions in terms of uncertainty, it should be kept inmind that the voxels are correlated
and that their covariance depends on themodel used, as shown infigure 6. It should also be kept inmind that
thesemodels contain some bias, whose value depends onmodel components and on data amount andwhich is
difficult to deal with.

In this work, the simulated PET phantom imagewas produced using a real epilepsy brain 18F-FDG exam
with no associated specific diagnostic information, (Belzunce andReader 2020), which allows for a general
analysis on realistic data. Applications of posterior distributions in different cases of pathology and tracers is
closely related to the redesign of diagnostic tasks in terms of uncertainty and is subject for futurework. For
instance, in view of applying posterior distributions on low-contrast lesion detection tasks, a different phantom
could be built using the samemethodology (Belzunce andReader 2020) and real examswith confirmed lesions.

The choice of voxel summaries is not straightforward in the context of posterior distributions. A common
voxel summary usedwith single estimate reconstructionmethods is themean of a ROI. Inwhat follows, we
discuss the use of the ROImean in the context of posterior distributions.

3.7.1. ROImean
TheROImean has the usually desirable property of being less sensitive to the noise in the image than individual
voxel intensities, though it remains sensitive to the estimator bias. This propertymay actually not be desirable
when the aim is to take into account the uncertainty, because any type of variance is reduced artificially. It should
be noted thatmodels with stronger priors tend to produce smoother voxel intensities inside ROIs, so the ROI
mean tends to be similar to individual voxel intensities in the ROI.

To illustrate the behaviour of posterior distributions of ROImeans, two pairs of contralateral ROIswere
drawn on the high resolution PETphantom and then downsampled to the PET system resolution, see figure 10.
The spatial histograms for high-resolution ROIs show an aspect of the ‘true’ difference between the contralateral
ROIs and presumably represent real situations better than strictly uniformROIs. The spatial histograms overlap
slightly for the graymatter ROI pair and strongly for the nuclei caudate ROI pair, representing respectively a
rather different and a rather similar pair of ROIs. The spatial histograms for the ROIs downsampled to PET
system resolution are not shown because they contain few voxels (∼10).

Figure 11 shows the posterior ROImean distribution for 2 dataset realizations and the distribution of the
MAPROImean over dataset realizations, for severalmodels. For eachmodel, the distributions are rather
similar: the posterior distributions do not vary substantially across dataset realizations and are similar to the
estimator distribution. The overlap between the contralateral ROI distributions is low forU and almost non
existent formodels with spatially regularizing prior information. These observations can be explained by the
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tendency of the ROImean summary to lower the variance. This effect ismore visible for U, having a high image
noise, than for the othermodels which produce rather smooth voxel intensities in the ROIs. The vertical dashed
lines show the true values, as computed from the PET phantomdownsampled to the PET system resolution.
Models withMRF priors tend to bemore biased thanU for these ROIs.

Figure 12 showsROImean distributions for the nuclei caudate ROI pair. The overlap of posterior
distributions varies acrossmodels and across data realizations. This is due to the dependency on the specific data
realization and to a high variability in the nuclei caudate area, as explained in detail in section 3.5.2. Themodels
withMRI tend to have a lowerMAP estimator bias for these ROIs. Other voxel summaries could be explored or
designed for taking full advantage of uncertainty information, in conjuctionwith redesigning various diagnostic
tasks in terms of uncertainty.

3.8. Real data
Two real clinical examswere obtained from aGE Signa PET/MRscanner in the histogramdata format, where
the bins represented all the available LORs andTOFbins. The implementation of the reconstructions was
identical to the one presented for simulated data (fully quantitative, including corrections and image PSF
resolutionmodeling), except for the following: only theMRF-RD-MRImodel was used, the reconstruction
voxel size was 1.56 mm× 1.56 mm× 2.78 mmand the hyperparameters were set empirically to a subjective
compromise between spatial regularization and conservation of PET specific features.Making a compromise
between computation time andmethod accuracy (MAPalgorithm convergence and posterior distribution
characterization) resulted in a lower number ofMAP iterations, the use of subsets, and a lower number of
posterior realizations compared to the simulated data: the number ofMAP iterationswas 16, the number of

Figure 10.Contralateral ROI pairs and their spatial histograms: graymatter (left) and nuclei caudate (right).

Figure 11.Posterior distribution of the ROImean for the graymatter ROI pair, for 2 dataset realizations, and the distribution of the
MAPROImean over data realizations, for differentmodels. The dashed lines represent the true values (from the downsampled
phantom).
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subsets 28, the number of posterior realizations 400. A clinical reconstruction is also presented, usingOSEM
with 28 subsets and 8 iterations, without post-smoothing, using the same corrections and resolutionmodeling.
The unit for all the reconstructed images is the standard uptake value (SUV).

Exam characteristics are given below:

•
18F-FDGneurodegenerative disease exam (1.18e8 noise equivalent counts), showing no signs of pathology,
with an associated 3DT1weightedMRI image, and the following hyperparameter values: neighbourhood
sphere radius= 6 mm, γ= 3,β= 0.002, Bowsher percentage= 30%.

• Brain bed step of awhole body 18F-FDGoncological exam (4.5e7 noise equivalent counts), showing a
metastatic lesion in the brain stem,with an associated 3DT1weightedMRI image acquired after Gd contrast
agent injection, and the following hyperparameter values: neighbourhood sphere radius= 6 mm, γ= 3,
β= 0.005, Bowsher percentage= 30%.

Figure 12.Posterior distribution of the ROImean for the nuclei caudate ROI pair, for 2 dataset realizations, and the distribution of the
MAPROImean over data realizations, for differentmodels. The dashed lines represent the true values.

Figure 13.Neurodegenerative disease exam: (from left to right) clinical reconstruction,MRI image, and posteriormean, posterior
variance and posterior intervals size forMRF-RD-MRI, for two axial slices.
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For the neurodegenerative disease exam,figure 13 shows a standard clinical reconstruction, theMRI image,
and some characteristics of posteriorMRF-RD-MRI distribution (mean, variance, intervals size) for two
example axial slices located in an anatomical region similar to the phantomused for simulated data, while
figure 14 shows covariance images and entire posterior distributions for several example graymatter voxels. For
the oncological exam,figure 15 shows a standard clinical reconstruction, theMRI image and some
characteristics of posteriorMRF-RD-MRI distribution (mean, variance, intervals size) for two example axial
slices located in the lesion area, whilefigure 16 shows covariance images and entire posterior distributions for
several example lesion voxels.

For both exams, the posteriormean imagewas visually indistinguishable from the correspondingMAP
estimate (not shown), with quantitative differences being low (the rootmean square difference< 0.03). The
posteriormean shows clearer edges thanOSEMbecause of theMRI-influenced spatial regularization. The
variance is higher in areas with higher uptake and near some edges. The covariance is highest in the nearest voxel
neighbourhood. Entire posterior distributions tend to concentrate around theirmaximumand present some
skewness, similarly to the simulated data. For the oncological exam, the posteriormean, variance, and intervals
size images have a noisier appearance than for the neurodegenerative disease exam, because the noise equivalent
count rate is lower.

For a further interpretation and analysis of posterior distribution characteristics from real exams, close
collaborationwith physicians using diagnostic information is required. There are several perspectives for future
work, e.g. buildingmore elaborate priors that include some prior clinical knowledge about the tracer and the

Figure 14.Neurodegenerative disease exam: posterior covariance and entire posterior distributions for several graymatter voxels.

Figure 15.Oncological exam: (from left to right) clinical reconstruction,MRI image, and posteriormean, posterior variance and
posterior intervals size forMRF-RD-MRI, for two axial slices in the lesion area.

17

Phys.Med. Biol. 66 (2021) 125018 MFilipović et al



pathology, or propagating the uncertainty information into quantitative image processing (kineticmodelling,
texture features, biomarkers,machine learning).

4. Conclusion

We show that the posterior bootstrap framework can be easily applied to PET image reconstruction to produce
approximate posterior image distributions for any usual Bayesianmodel for a single patient dataset. Posterior
distributionswere obtained for several Bayesianmodels with spatially regularizing image priors for simulated
data. Theywere assessed, analyzed and described in detail in terms of themean, (co)variance, intervals. Their
relationshipwith the corresponding distributions of theMAP image estimate over dataset realizationswas
exposed. Themethodologywas applied on two real datasets from aPET/MRI scanner. Posterior image
uncertainties provide information about the propagation of the data noise, as dependent on themodelling
assumptions, the chosen image prior, parameter values, and on the available dataset. Pathway is opened for the
use of posterior uncertainties in diagnostic and quantification tasks.
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Appendix. Randomweights

As discussed in section 2.1, the randomweightsw required in equation (4) are drawn from auniformDirichlet
distributionwithK unitary parameters:

( ) ( ) ( )~ ¼w w w, ,..., Dirichlet 1, 1, ,1 . A.1K1 2

According to the properties ofDirichlet distributions, drawing a realization from thisK-dimensional
Dirichlet distribution can be implemented usingKGammadistributions, with their shape parameters equal to
the parameters of theDirichlet distribution, as:

( ) ( )~p Gamma 1, 1 A.2k
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As∑mpm∼Gamma(K, 1), andE(Gamma(K, 1))= K, and asK? 1, the following approximation can be
made for simplifying the implementation:

Figure 16.Oncological exam: posterior covariance and entire posterior distributions for several voxels in the lesion.
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resulting in

( ) ( )~Kw Gamma 1, 1 A.6k

as in algorithm 1.
Aswas already shown in equation (6), the posterior bootstrap can be applied on histogramdata by drawing

randomized histograms yb, where the number of counts in each randomized histogrambin is

( )å=
Î

y Kw A.7ib
k S

kb

i

( )
å å=

Î
y

K

p
p . A.8ib

m
m

k S ki

Following the properties of Gammadistributions,∑käS_ipk∼Gamma(yi, 1), where yi is the number of
counts in the original histogrambin i. Then, using the same approximation as above, the number of counts in
each randomized histogrambin can be obtained as:

( ) ( )~y yGamma , 1 A.9ib i

as in algorithm 2.
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