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Abstract 

Nonparametric control charts have received increasing attention in process monitoring. In this 

paper, a new nonparametric sign (SN) control chart with variable sample size (VSS) for a 

finite horizon process is developed. The novelty of this research lies in the incorporation of 

the VSS technique into the nonparametric SN chart for a finite horizon process, hence, 

resulting in the development of a more sensitive nonparametric short run chart. The statistical 

performance of the new nonparametric VSS SN control chart is evaluated and compared with 

the existing fixed sample size (FSS) SN chart for a finite horizon process. The charts’ 

performances are compared using the truncated average run length (TARL) and truncated 

standard deviation of the run length (TSDRL) criteria. The results obtained show that the 

nonparametric VSS SN short run chart is always quicker than the FSS SN short run chart in 

detecting process shifts for various underlying process distributions, hence, reducing scrap 

and rework cost. Finally, an application of the proposed control charting scheme is shown 

through a real-life example on the fill volume of soft drink beverage bottles. 

 

Keywords: nonparametric, variable sample size, finite production horizon, Markov chain, 

truncated average run length 

 

1 Introduction 

In Statistical Process Control (SPC), control charts are extensively implemented to monitor 

and improve the quality of a process. In a typical design of control charts for continuous data, 

the process observations are assumed to follow a specified probability distribution. Control 

charts established under the normality assumption may provide more frequent false alarms 

when the quality characteristic of interest actually follows a non-normal or an unknown 

distribution. Therefore, nonparametric control charts have been introduced to address this 



problem. Over the last decade or so, nonparametric (or distribution-free) control charts that 

allow many assumptions about the process distribution to be relaxed, have become quite 

popular and have been widely investigated in the SPC literature. The following studies are 

some of the existing research works present in the literature. Parent 
1
 and Reynolds 

2
 

developed control charts based on the signed sequential ranks of the observations. 

Meanwhile, Bakir 
3
 and Bakir and Reynolds 

4 
developed a cumulative sum (CUSUM) chart 

based on the Wilcoxon signed rank statistic. Park 
5
 proposed Shewhart sign charts and 

Wilcoxon signed rank charts for asymmetrical distributions. Furthermore, Amin and Searcy 
6
 

studied the properties of the exponentially weighted moving average (EWMA) chart for the 

Wilcoxon signed rank statistic. Amin et al. 
7
 designed a nonparametric control chart based on 

the sign statistic. Subsequently, Amin and Widmaier 
8
 proposed a variable sampling interval 

sign control chart.  

Chakraborti, Van der Lann, and Bakir 
9
 presented a review on nonparametric control 

charts. Bakir 
10, 11

 proposed a distribution-free control chart using the signed ranks and sign 

rank-like statistics. Chakraborti and Eryilmaz 
12

 proposed the nonparametric Shewhart type 

sign rank control chart based on runs rules while Chakraborti and Graham 
13

 presented some 

nonparametric control charts. Das, and Bhattacharya 
14

 proposed a nonparametric control 

chart to monitor the process variability, while Li, Tang, and Ng 
15

 proposed two 

nonparametric counterparts of the CUSUM and EWMA control charts based on the Wilcoxon 

signed-sum test for detecting process mean shifts. Moreover, Human, Chakraborti, and Smit 

16
 proposed nonparametric Shewhart-type sign control charts based on runs rules. Graham, 

Chakraborti, and Human 
17

 investigated the nonparametric EWMA control chart for 

independent and identically distributed individual observations based on the sign statistic. 

Additionally, Yang, Lin, and Cheng 
18

 developed a new control chart using the EWMA sign 

statistic. Aslam, Azam, and Jun 
19

 proposed an EWMA sign chart using repetitive sampling. 



Meanwhile, Lu 
20

 proposed an extended nonparametric EWMA sign control chart and 

Asghari et al. 
21

 developed a sign control chart based on ranked set sampling. Chakraborti and 

Graham 
22

 explained some of the latest developments on univariate and multivariate 

nonparametric charts. 

For many manufacturers, manufacturing is now done in high-variation/low-volume 

environments. There are many situations where the production horizon is very short, i.e. a 

few hours or a few days, and it is considered as finite. The first control charting scheme 

designed for the finite production horizon was introduced by Ladany 
23

 who presented the 

economic optimization design of a p chart for short run. This pioneering work was extended 

by Ladany and Bedi, 
24

 who introduced a similar model where the duration of the production 

run is a variable. Control charts specifically designed for processes with finite production 

horizon have been discussed in Del Castillo and Montgomery. 
25, 26

 Bayesian type control 

charts for monitoring the sample mean during a short run have been proposed by Calabrese, 

27
 Tagaras, 

28
 Tagaras and Nikolaidis, 

29
 Nenes and Tagaras, 

30
 and Kooli and Limam. 

31
 

Nenes and Tagaras 
32

 investigated the performance of the CUSUM control chart under the 

assumption of a finite run. Additionally, Celano et al. 
33

 investigated the statistical 

performances of the Shewhart and EWMA t control charts for a finite horizon process. 

Subsequently, Celano et al. 
34

 studied the statistical performances of the Shewhart, EWMA 

and CUSUM t charts for short production runs when the shift size is unknown. Li and Pu 
35

 

developed performance measures for the two-sided Shewhart, CUSUM and EWMA charts 

for finite production horizon. Castagliola et al. 
36

 investigated one-sided Shewhart-type charts 

for monitoring the CV in a finite horizon context.  

According to Montgomery 
37

, if there is no knowledge about the distribution of 

observations and its parameters, an easy approach is to monitor a statistic that deviates from a 

nominal (or target) value of the quality characteristic. This target value can refer to any 



parameter of the distribution of observations or any quantile of interest. In the literature, only 

Celano et al. 
38, 39

 presented a nonparametric (Shewhart sign) chart for a finite production 

horizon. In the context of incorporating adaptive procedure into a control chart for finite 

production horizon, Castagliola et al. 
40

 developed the VSS version of the t chart for short 

production run using the Markov chain approach. Nenes et al. 
41

 introduced a control chart 

for short production runs with variable sampling interval. Amdouni et al. 
42

 proposed an 

adaptive Shewhart chart with a VSS strategy to monitor the coefficient of variation in short 

production runs. In addition, Park and Choi 
43

, and Park and Reynolds
 44, 45 

investigated the 

economic designs of VSS type charts. On similar lines, the double sampling (DS) chart 

enables the sample size to be varied at each sampling stage. The DS X  chart was introduced 

by Croasdale 
46

 and improved upon by Daudin 
47

. The DS chart utilizes information from 

either the first sample or the combined first and second samples in making a decision about 

the status of a process, hence, it allows the sample size to be varied. Subsequently, Irianto and 

Shinozaki 
48

, Carot et al. 
49

, and He and Grigoryan 
50

 presented numerous designs and 

extensions of the univariate DS charts.  

The in-control performance of the SN short run chart is distribution-free. Typically, 

only the target value is known and the set-up activities are conducted to position the process 

exactly on the target. Information about the target value for the median is sufficient to 

implement the SN short run chart, without any reference to the distributional shape of the 

process. In processes with short production runs, a moderately small sample size, n can be 

adopted to implement the SN chart with a sufficiently low false alarm rate by the end of the 

run.  

 Over the last decade or so, nonparametric charts have gained increasing attention in 

process monitoring. Although various types of adaptive parametric charts exist in the 

literature, the same is not true for nonparametric charts in short runs. Adaptive charts are 



implemented by varying the charts’ parameters (such as sample size, sampling interval and 

limits’ constants) based on the quality level of the process given by the prior sample. 

Findings have shown that adaptive charts are substantially more efficient than traditional 

charts with fixed parameters.  

The aim of this paper is to propose a nonparametric sign (SN) chart with variable 

sample size (VSS), for process monitoring in finite production horizon. The VSS technique is 

incorporated into the SN chart for finite production horizon to develop an efficient 

nonparametric chart in short runs for a quicker detection of process shifts. The contribution of 

this paper lies in the development of a new nonparametric control chart for monitoring a 

manufacturing process with a non-normal or an unknown distribution, coupled with a 

manufacturing environment producing high-variation/low-volume products.    

The remainder of this paper is structured as follows: In Section 2, the proposed VSS 

SN short run chart is discussed. In Section 3, the statistical measures of performance are 

outlined. Meanwhile, Section 4 presents the methodology and a discussion of the results. An 

illustrative example is given in Section 5 to show the implementation of the VSS SN short 

run chart. Finally, conclusions and suggestions for future research are discussed in Section 6. 

 

2 The VSS SN Control Chart for a Finite Production Horizon 

Assume that a manufacturing process produces a small number N of parts in a production 

horizon of limited length, which is equal to H hours. The location of a quality characteristic 

of interest, X around a specified target value is monitored during the production run. Note 

that X is assumed to be a continuous random variable with an unknown distribution. We 

select the median,  of the distribution of the random variable, as the location parameter to be 

monitored with the VSS SN short run chart. Let 
M

T  and 
0

  denote the target and in-control 

values of the median, respectively. At the beginning of a process setup, adjustments are made 



before the production run starts with the objective of putting the in-control process median 
0

  

on the target 
M

T . In a perfect initial setup, 
0 M

T , otherwise, the process starts shifted away 

from the target value and the control chart should trigger a signal as soon as possible. It is 

assumed that the in-control operating condition for a process with finite production horizon 

starts without any setup error and runs without the occurrence of any assignable cause. 

Let I be the number of scheduled inspections within the production horizon H. The 

interval between two successive inspections is 
1

H
h

I



 hours. It is assumed that no 

inspection takes place at the end of the run. If the run ends without any signal in the I 

inspections, then the total number of inspections is assigned with the value I + 1. At each 

inspection, i = 1, 2, …,  I, the sample size  n i  is adopted. Hence, when a fixed parameter 

short run chart is used to monitor a process, the fixed sample size   0
n i n  is adopted. In 

contrast, if a VSS SN short run chart is implemented, the sample size  n i  is varied at two 

levels, 
S

n  (small sample size) and 
L

n  (large sample size), with 
S L

n n . It is worth noting 

that 
0

( 1)n N I   and  ( 1)
L

n N I   for the fixed parameter and VSS SN short run charts, 

respectively. We also assume that there is independence among the inspected parts within a 

sample and among samples. Let   ,1 ,2 ,
, ,...,

i i i n i
X X X  be a sample of size  n i , at inspection i 

= 1, 2, …, I. Each observation ,i j
X  follows an unknown continuous process distribution with 

cumulative distribution function (cdf),  X
F  . The following statistic is considered for the 

VSS SN short run chart: 

                
 

,

1

sign ,

n i

i i j M

j

SN X T


                                                                             (1) 

where 



        
1 if 0

sign 0 if 0

1 if 0

x

x x

x




 
 

.                     (2) 

Note that the condition sign(x) = 0 will supposedly not happen when the process 

distribution of the inspected parts is continuous. Additionally, it should be pointed out that 

following the definitions in Equations (1) and (2), the values assumed by 
i

SN  are 
i

SN   

{n(i), n(i) + 2, …, n(i)  2, n(i)}. When the process starts in-control, the distribution of 

i
SN  can be easily obtained by considering the relationship  2

i i
SN D n i   (Amin, 

Reynolds, and Saad 
7
), which is valid for continuous observations (inspected parts), ,

,
i j

X  

where 
i

D  is the number of observations that exceed the in-control median, 
M

T , in a sample of 

size  n i , i.e. the count of positive signs within a sample. When the process is in-control, 
i

D  

is a binomial random variable with parameters  n i  and 
0

p , i.e. 
i

D     0
,Bin n i p . Note 

that 
0

p  is the in-control probability for an observation to be larger than  0
 =

M
T , i.e. 

 0 , 0
0.5

i j M M
p P X T T    , for i = 1, 2, ..., I and j = 1, 2, ...,  n i . When the process 

has shifted away from the target value of the median,  
M

T  due to the occurrence of a setup 

error and/or an assignable cause, the out-of-control process median is 
1 0M

T    , where 

0
  is the in-control process standard deviation. Let  

   , 1 0 1 0
1

i j M M X M M
p P X T T F T T               as the out-of-control 

probability of having an observation larger than 
M

T . The value of p  depends on the 

distribution of the observations and the shift size .  

The VSS SN short run chart has two warning limits, i.e. 

 UWL = k,                  (3a) 

 LWL = k,                                                                                                    (3b)                                          



and two control limits, i.e. 

 UCL = c,                  (4a) 

LCL =  c,                  (4b) 

under the assumption that 
S

c n  (so that it is possible for 
i

SN  to be less than c or greater 

than c, irrespective of whether 
S

n  or 
L

n  is adopted, in order for the chart to signal an out-of-

control when the process shifts) and k c . The VSS SN short run chart is implemented as 

follows: 

 If the discrete value 
i

SN  falls in the interval 
S

I   {k, k + 1, …, k  1, k} (the control 

region), the process is declared as in-control and the sample size adopted for the next 

inspection is  1
S

n i n  . 

 If the discrete value 
i

SN  falls in the interval 
L

I   {c, c + 1, …, k  1}  {k + 1, k + 

2, …, c} (the warning region), the process is also declared as in-control but the sample 

size adopted for the next inspection is  1 .
L

n i n   

 If 
i

SN c   or 
i

SN c , the process is declared as out-of-control and a search for the 

assignable cause(s) that lead to the out-of-control signal must be conducted. After the 

detection and removal of the assignable cause(s), process monitoring is resumed with a 

sample size of  1
S

n i n  .  

For the FSS SN short run chart,   0
n i n  is always considered, for i = 1, 2, …, I. 

Then the FSS SN short run chart’s control limits are defined as follows (Celano et al. 
38

): 

 UCL
f f

c ,                   (5a) 

 LCL
f f

c  ,                   (5b) 

where 0f
c n . The FSS SN short run chart signals an out-of-control when the 

i
SN  statistic in 

Equation (1) exceeds the limits in Equations (5a) and (5b). 



 

3  Statistical Measures of Performance  

The Markov chain approach can be used to derive the performance measures of the VSS SN 

short run chart. Three Markov chain states are defined. States 1, 2 and 3 represent the cases 

i S
SN I , 

i L
SN I  and 

i
SN c    

i
SN c . Consequently, a 3  3 transition probability 

matrix, P, representing the probabilities of shifting from one state to another is given as 

 
   

 
   

T

( ) 1 ( )

1
1

0 0 1

S S L S S S L S

S L L L S L L L

p n p n p n p n

p n p n p n p n

   
         
   

 

Q r
P

0
.                          (6) 

Here,      S i S
p n i P SN I n i   and      L i L

p n i P SN I n i   with    ,
S L

n i n n . 

Note that Q is a  2 2  transition probability matrix of transient probabilities and the vector 

r satisfies  r 1 Q1  (i.e. row probabilities must have a sum of one), with  T
= 1,  11 . 

By definition, we have 

     ( ),
S i

p n i P k SN k n i p     

                                        
   

( ),
2 2

i

n i k n i k
P D n i p

  
   

 
       

                                        
   

( ), 1 ( ),
2 2

B B

n i k n i k
F n i p F n i p 

    
     

   
,                      (7) 

        ( ), ( ),
L i i

p n i P k SN c n i p P c SN k n i p          

                                       
   

( ),
2 2

i

n i k n i c
P D n i p

  
   

 
 

                                                            
   

( ),
2 2

i

n i c n i k
P D n i p

  
   

 
 



                                       
   

( ), ( ),
2 2

B B

n i c n i k
F n i p F n i p 

    
    

   
 

                                                      
   

1 ( ), 1 ( ), ,
2 2

B B

n i k n i c
F n i p F n i p 

    
      

   
   (8) 

where  (  , )
B

F n i p  is the cdf of a binomial distribution with parameters  n i  and p . 

When the process is in-control, 
0

0.5p p    in Equations (7) and (8).  

The production run ends after the fixed rolling horizon H, which coincides with the 

production lot cycle time. Thus, the statistical measures of performance of the chart are 

functions of the finite number I of scheduled inspections. The performance measures of 

control charts for a finite production horizon were developed by Nenes and Tagaras. 
32

 

Consequently, the classical average run length (ARL) formula for an infinite production 

horizon is replaced by the TARL formula for a finite production horizon. Here, TARL 

represents the average number of inspections (or samples) required until an out-of-control 

signal is triggered or until the completion of the process, whichever occurs first. Let 
0

TARL  

and 
1

TARL  denote the in-control and out-of-control TARLs, respectively. Note that if the 

run ends without any signal in the I inspections, then the truncated run length (TRL) value is 

equal to I + 1. The TARL value can be computed as follows: 

 T

0

TARL .
I

m

m



 
  

 
q Q 1                    (9) 

Under the assumption of a perfect initial setup, the process always starts under the on-target 

condition. For this reason, we choose the initial probability vector,  T
= 1,0q , i.e. the initial 

sample size is set as 
S

n . Otherwise, an initial setup can be accounted for by selecting

 T
= 0,1q , i.e. the initial sample size is set as 

L
n .  



Since Q is the transition probability matrix for the transient states, then (Castagliola et 

al. 
40

) 

    1 1

0

I
m I

m

 



  Q I Q I Q ,                 (10) 

where I is the 2  2 identity matrix. The second non-central moment of TRL, i.e. 

 2
TRL2 = E TRL  is obtained as 

  T

0

TRL2 2 1 .
I

m

m

m


 
  

 
q Q 1                            (11) 

It follows that TSDRL is 

 
2

TSDRL TRL2 TARL .                   (12)  

In order to ensure a fair comparison between the VSS SN and FSS SN short run 

charts, we have to make sure that the in-control average sample size  0
ASS  of the VSS SN 

short run chart is equal to the fixed sample size, 0
n  selected for the FSS SN short run chart. 

The ASS is the ratio between the expected total number of observations taken during a short 

production run and the number I of scheduled inspections, i.e. 

     
1 1

1 1
E EASS

I I

i i

n i n i
I I 

 
  

 
  .                (13) 

For estimating the ASS, Castagliola et al. 
40

 suggested modifying P in Equation (6) by 

assuming that after an out-of-control point falls beyond the control limits, the quality 

practitioner completes the actions designed for searching and if necessary, eliminating the 

assignable cause before the next inspection i + 1 with  1
S

n i n  . Therefore, all states are 

now considered as accessible and the modified transition probability matrix,  ̃ is defined as 

follows:        



  ̃ = 

       
       
       

1

1

1

S S L S S S L S

S L L L S L L L

S S L S S S L S

p n p n p n p n

p n p n p n p n

p n p n p n p n

  
   
   

.           (14) 

Using the matrix  ̃,   E n i  is computed as follows: 

                        E(n(i)) =  ̃  ̃              ,                                                          (15) 

where  ̃  = (1, 0, 0) is the vector of initial probabilities of the modified Markov chain. 

Consequently, by substituting Equation (15) into Equation (13), the average sample size is  

                        ASS = 
   ̃ (∑  ̃       )           .                                                           (16) 

The in-control ASS  0
ASS  is computed using Equation (16) by letting 

0
0.5p p   in 

Equations (7) and (8).  

 

4 Numerical Analysis 

4.1 Methodology 

In this section, we evaluate the robustness of the VSS SN short run chart with observations 

from non-normal distributions and the performance of the VSS SN short run chart for 

different process conditions with finite number of inspections. A performance comparison 

between the FSS SN and VSS SN short run charts is conducted to demonstrate the 

advantages of incorporating the VSS approach into the distribution-free SN short run chart. 

Similar to Celano et al., 
33

 Castagliola et al. 
40

 and Nenes et al., 
41

 the sensitivity of the FSS 

SN and VSS SN short run charts to a shift of size   in the process mean due to a setup error 

or an assignable cause occurring before the first scheduled inspection is evaluated. 

Consequently, the performances of the FSS SN and VSS SN short run charts are computed by 

considering an assignable cause occurring immediately after the start-up of the short run. 

Given the small number of possible inspection epochs in short production run, no steady state 



condition is achieved, hence, the zero-state 
1

TARL  and 
1

TSDRL  performance measures are 

computed only.  

The out-of-control performances of these two charts are compared for the same 

nominal values of 
0

TARL  = I  {10, 30, 50} and 
0 0

ASS n  {11, 15, 20} to ensure a fair 

comparison. In the manufacturing context, it is a common practice to use moderately small 

sample sizes. Consequently, we restrict the choice of the sample sizes for 
S

n  and 
L

n  to 

0
5 31.

S L
n n n     The VSS SN short run chart’s parameters 

S
n , 

L
n , c and k are chosen to 

satisfy the selected values of I (or 
0

TARL ) and 
0

n  (or 0
ASS ).  Sometimes, the 

0
TARL  and 

0
ASS  values may be larger than their anticipated value 0

TARL I and 
0 0

ASS n , 

respectively. However, 
0

TARL  cannot exceed its bounding value, 0,max
TARL 1I   and 

0
ASS  cannot exceed its bounding value, 0,max 0

ASS 1n  . A VSS type chart is considered 

better than its competing chart if the 
1

TARL  value of the former is lower than that of the 

latter, for a specified  , when the values of 
0

TARL  and 0
ASS  are the same for all the charts 

under comparison. 

The following underlying distributions considered by Celano et al. 
38

 are also 

considered here to investigate the out-of-control performance of the VSS SN short run chart: 

 Symmetric distributions   Standard normal N(0,1), Student’s t(4) and t(8), and 

laplace  0,  1 2 . The Student’s t and laplace (or double exponential) distributions 

are heavy-tailed and symmetric. 

 Asymmetric distributions   gamma(a, b), with (a, b) = (0.5, 1) and (1, 1). These 

gamma distributions have different levels of symmetry and kurtosis, where a and b 

represent shape and scale parameters, respectively. 

 



4.2   Results and Discussions 

Table 1 shows the computed parameter combinations ( ,
S L

n n , c, k), for the  0
,I n  pairs 

specified in Section 4.1, satisfying all the constraints mentioned in the said section. Note that 

if several parameter combinations ( ,
S L

n n , c, k) satisfying the aforementioned constraints 

exist, for a particular  0
,I n  pair, the parameter combination with a 0

TARL  value closest to 

I is shown in Table 1. The corresponding in-control TSDRL  0
TSDRL  and 0

ASS  values 

for each  0
,I n  pair are also shown in Table 1. The Markov chain approach enumerated in 

Section 3 is used to compute the parameter combinations ( ,
S L

n n , c, k) using Matlab 

programs. Chakraborti, Van der Laan, and Bakir 
9
 noted that a distribution-free chart will 

have the same run length distribution for every continuous distribution when the process is 

in-control (Chakraborti, Van der Laan, and Bakir 
9
). In Table 1, suppose that a quality 

practitioner wants to design a VSS SN short run chart with I = 30 and 
0

n  = 15, the chart’s 

parameters that should be adopted are 
S

n =13, 
L

n = 21, c = 11 and k = 4. These parameters 

produce 
0

TARL = 30.01, 
0

TSDRL = 4.37 and 
0

ASS =15.30. Note that no parameter 

combination (
S

n , 
L

n , c, k), for  I = 50 and 
0

n = 11, satisfying the constraints stipulated in 

Section 4.1 is available. For I = 50, if 
0

n  is increased, the parameter combination (
S

n , 
L

n , c, 

k) that satisfies the aforementioned constraints exists, as in the case of  
0

n = 15 and 20 (see 

Table 1).  

Insert Table 1 here 

Tables 2, 3 and 4 show the 
1

TARL  and 
1

TSDRL  values of the VSS SN short run 

chart, based on (I, 
0

n ) = (10, 11), (30, 15) and (50, 20), respectively, and   {0.2, 0.4, 0.6, 

0.8, 1, 1.25, 1.5, 1.75, 2, 2.5, 3}, for the various distributions explained in Section 4.1. The 

VSS SN short run chart’s parameters 
S

n , 
L

n , c and k, for these (I, 
0

n ) pairs are obtained 



from Table 1. The simulation approach using Statistical Analysis System (SAS), based on 

50,000 trials, is adopted to compute the 
1

TARL  and 
1

TSDRL  values of the VSS SN short 

run chart, for the N(0,1), t(4), t(8), gamma(0.5,1), gamma(1,1) and laplace  0,1 2  

distributions. Note that simulation is employed in order to generate random observations 

from the different types of distributions considered here, for the purpose of computing the 

1
TARL  and 

1
TSDRL  values based on these distributions. The simulation approach in 

computing 
1

TARL  and 
1

TSDRL  values is briefly discussed as follows: Firstly, random 

observations for the desired distribution are generated. Then using the parameter combination 

(
S

n , 
L

n , c, k) for a desired (I, 
0

n ) pair in Table 1, the TRL value for each simulation trial is 

computed. The process of computing the TRL value is repeated for 50,000 simulation trials. 

Finally, the 
1

TARL  and 
1

TSDRL  values are obtained by taking the average and standard 

deviation of the 50,000 TRL values. 

The first and second rows of each shift size,  show the 
1

TARL  and 
1

TSDRL  values, 

respectively, for a particular distribution and type of scheme (FSS or VSS). A simulation 

study has also been conducted for the remaining (I, 
0

n ) pairs in Table 1, where similar results 

to that for (I, 
0

n )  {(10, 11), (30, 15), (50, 20)} are obtained, hence, it suffices to only report 

the results for these three (I, 
0

n ) pairs in Tables 2 – 4. 

Insert Tables 2 – 4 here 

By examining Tables 2 – 4, it is found that the VSS SN short run chart is always 

superior to the FSS SN short run chart, in terms of the 
1

TARL  criterion, for all underlying 

distributions considered. For example, in Table 2 when  = 0.4, 
1

TARL   {9.60, 9.18, 9.45, 

2.31, 2.93, 8.98} for the FSS SN short run chart while the corresponding values for the VSS 

SN short run chart are 
1

TARL   {7.13, 5.65, 5.82, 1.54, 1.68, 5.12}, hence, the percentages 



of improvement are {25.7%, 38.5%, 38.4%, 33.3%, 42.7%, 43.0%}, for the N(0,1), t(4), t(8), 

gamma(0.5, 1), gamma(1, 1) and laplace  0,1 2  distributions, respectively. From the 

1
TARL  values in this example, it is clearly seen that the VSS SN short run chart has a lower 

1
TARL  value than the FSS SN short run chart, for the same  value and underlying 

distribution.  

Higher 
1

TARL  values are generally obtained for symmetric distributions. As an 

example, for symmetric distributions involving the VSS SN short run chart in Table 2 when  

= 0.6, 
1

TARL  = 4.72, 3.28, 3.48 and 3.10 for the N(0, 1), t(4), t(8) and laplace distributions, 

respectively. On the contrary, for asymmetric distributions involving the same chart and shift 

size, , 
1

TARL = 1.13 and 1.20, for the gamma(0.5, 1) and gamma(1, 1) distributions, 

respectively. In Table 2, for all the distributions, 
1

TARL   2 for    1.25, for the VSS SN 

short run chart. Additionally, it is found that the 
1

TARL  value decreases slightly with a 

decrease in the value of the shape parameter a, for the gamma distribution. For example, for 

the VSS SN short run chart in Table 3, when  = 0.4, 
1

TARL  = 1.75 and 1.65, for a = 1 and 

0.5, respectively.  

On the other hand, the TRL distribution of the VSS SN short run chart is more 

dispersed (larger 
1

TSDRL  value) than that of the FSS SN short run chart, for small shifts 

(except for gamma(0.5, 1) and gamma(1, 1) distributions). However, for moderate and large 

shifts, the 
1

TSDRL  values of the VSS SN short run chart are smaller than the corresponding 

ones of the FSS SN short run chart, for all underlying distributions. For example, in Table 2 

when   {0.2, 0.4, 0.6, 0.8, 1, 1.25, 1.5, 1.75, 2, 2.5, 3} and the underlying distribution is N 

(0, 1), 
1

TSDRL   {0.81, 1.54, 2.51, 3.32, 3.35, 2.48, 1.55, 0.97, 0.61, 0.28, 0.12} for the FSS 

SN short run chart while for the VSS SN short run chart, 
1

TSDRL   {2.25, 3.09, 2.77, 1.74, 



1.00, 0.68, 0.56, 0.47, 0.39, 0.23, 0.11}. In this example, it can be seen that the 
1

TSDRL  

values of the VSS SN short run chart are larger than that of the FSS SN short run chart, for   

= 0.2, 0.4 and 0.6, while for larger   values, the opposite is true. 

The TRL distribution is generally less dispersed when the underlying distribution is 

gamma or laplace than the N(0, 1) distribution, as the gamma and laplace distributions result 

in smaller values of 
1

TSDRL . For example, in Table 3 when   = 0.4, 
1

TSDRL = 4.33 (9.54) 

for the VSS SN short run chart with the laplace (N(0, 1)) distributions. The N(0,1) 

distribution results in a smaller 
1

TSDRL  value only when   = 0.2. Note that for 0.20 ≤  ≤ 

0.80, the 
1

TSDRL  values for the FSS SN short run chart increases with , for the N(0, 1), 

t(4), t(8) and laplace distributions. However, for    1, the 
1

TSDRL  value decreases when  

increases, for both FSS and VSS SN short run charts.  

The proposed VSS SN short run chart can be adopted in short production runs when 

the normality assumption of the underlying process cannot be satisfied or the underlying 

process distribution is unknown and when there is flexibility in varying the sample size. In 

comparison to the FSS SN short run chart, the VSS SN short run chart generally shows 

superior 
1

TARL  and 
1

TSDRL  performances. Hence, the VSS SN short run chart provides 

practitioners with a process monitoring tool which is efficient and can be used in any 

production process without any specific knowledge about the distribution of the continuous 

quality characteristic. 

 

5 An Illustrative Example 

A dataset from Montgomery 
37

 is adopted to illustrate the implementation of the VSS SN 

short run chart. In this example, the fill volume of soft drink beverage bottles is the quality 

characteristic of interest. The volume is measured by placing a gage over the crown and 



comparing the height of the liquid in the neck of the bottle against a coded scale. On this 

scale, a reading of zero corresponds to the correct fill height, hence, 
M

T  = 0.  

To ensure a fair comparison between the FSS and VSS SN short run charts, both 

charts are designed to have I = 10. For the FSS SN short run chart, 
0

n  is set as 11, while for 

the VSS SN short run chart, 
S

n  = 9 and 
L

n  = 13 are considered. Consequently, the UCL/LCL 

and UWL/LWL of the VSS SN short run chart are c = 7 and k = 2, respectively (see 

Table 1), while the UCL LCL
f f

 of the FSS SN short run chart are f
c  = 9 . The values 

of the 
i

SN  statistic of the FSS and VSS SN short run charts are computed using Equation (1). 

For the VSS SN short run chart, the initial sample size is set as 
S

n . 

In the implementation of the VSS SN short run chart, if the discrete value 
i

SN   
S

I   

{k, k + 1, …, k  1, k} = {2, 1, 0, 1, 2}, the next sample of size 
S

n  (= 9) should be 

taken, while if the discrete value 
i

SN   
L

I   {c, c + 1, …, k  1}  {k + 1, k + 2, …, c} 

= {7, 6, …, 3}  {3, 4, …, 7}, the next sample of size
 L

n  (= 13) is taken. However, if 

 7
i

SN c     or  7
i

SN c  , an out-of-control signal will be issued, where an 

investigation of the underlying process is made so that assignable causes are identified and 

removed in order to bring the process back into an in-control state. Then process monitoring 

is resumed by adopting a small sample size  S
n  in taking the next sample. Contrastingly, for 

the FSS SN short run chart, an out-of-control signal is issued when  9
i f

SN c     or 

 9
i f

SN c  . 

For the purpose of illustration for the VSS SN short run chart, see the following 

discussion. Initially, the first sample  9
S

n   is taken. Then 
1

SN  = 5 is computed (see Table 

5). As 
1

SN   
L

I , the process is declared as in-control and the second sample (
L

n  = 13) is 



taken. As 
2

SN  = 5  
L

I , the process is still in-control, where the third sample (
L

n = 13) is 

taken. Consequently, 
3

SN  =  7 is obtained. As 
3

SN   
L

I , the process is concluded as in-

control and the fourth sample (
L

n = 13) is taken. AS 
4

SN  = 1  
S

I , the process is still in-

control. Subsequently, the fifth sample of size 
S

n = 9 is taken. The same process of taking the 

next sample, based on the current sample information, followed by computing the 
i

SN  

statistic continues until the eighth sample. At the eighth sample 
8

SN  = 3  is obtained.  

Insert Table 5 here 

As 
8

SN   
L

I , the process is concluded as in-control and the ninth sample (
L

n = 13) is 

taken. Then 
9

SN  = 9  is computed. Clearly, the process is declared as out-of-control by the 

VSS SN short run chart at the ninth sample as  9
7SN c    . Suppose that corrective 

actions are taken to rectify the out-of-control process, then the following sample (tenth 

sample) is taken with a small sample size of 
S

n  = 9 (see Table 5). Figure 1 shows the VSS 

SN short run chart plotted using the fill volume data of soft drink beverage bottles in Table 5.  

Insert Figure 1 here 

For comparison, the FSS SN short run chart is plotted in Figure 2. This chart is plotted 

using the 
i

SN  statistics in Table 5. Figure 2 shows that the FSS SN short run chart does not 

issue any out-of-control signal as 
i

SN  ,
f f

c c    = [ 9, 9]. This example shows that the 

VSS SN short run chart is more sensitive than the FSS SN short run chart in detecting an out-

of-control process. 

Insert Figure 2 here 

 

6       Conclusion 



The paper proposes the VSS SN short run chart for use in a finite production horizon when 

the underlying distribution of the quality characteristic being monitored is nonnormal or 

unknown. The Markov chain approach is employed to derive the performance measures and 

compute the parameters of the proposed VSS SN short run chart. The proposed VSS SN chart 

is compared with the fixed sample size (FSS) SN chart in a short production runs 

environment. Simulation studies indicate that the nonparametric VSS SN short run chart 

outperforms the FSS SN short run chart in detecting all sizes of shifts in the process mean 

and the outperformance increases as the value of 0
n  increases, for several symmetric and 

asymmetric underlying distributions. The charts’ performances are compared in terms of the 

1
TARL  and 

1
TSDRL  criteria.  

Future research can focus on extending the study on short run to other types of 

distribution-free control charts, including investigations on sign ranked charts. New research 

works can be conducted to investigate the EWMA, CUSUM and multivariate nonparametric 

charts for process monitoring in short run. Runs rules and adaptive sampling strategies can be 

adopted in short run control charts using the sign statistic. Finally, distribution-free control 

charts for monitoring process dispersion in short run can also be developed in a future 

research.  

  

References 

1. Parent EA Jr. Sequential Ranking Procedures, Technical Report No. 80, Department 

of Statistics, Stanford University, Stanford, California:1965. 

2. Reynolds Jr MR. A Sequential Nonparametric Test for Symmetry with Applications to 

Process Control (No. TR-148), Stanford University, California, Department of 

Operations Research:1972. 



3. Bakir ST. Nonparametric Procedures for Process Control, Ph.D. Dissertation, 

Department of Statistics, Virginia Polytechnic Institute and State University, 

Blacksburg, Virginia. 1977. 

4. Bakir ST, Reynolds Jr MR. A nonparametric procedure for process control based on 

within-group ranking. Technometrics. 1779;21:175-183. 

5. Park C. Some control procedures useful for one-sided asymmetrical distributions. J 

Korean Stat Soc. 1985;14:76-86. 

6. Amin RW, Searcy AJ. A nonparametric exponentially weighted moving average 

control scheme. Commun Stat-Simul C. 1991;20:1049-1072. 

7. Amin RW, Reynolds Jr MR, Saad B. Nonparametric quality control charts based on 

the sign statistic. Commun Stat-Theor M. 1995;24:1597-1623. 

8. Amin RW, Widmaier O. Sign control charts with variable sampling intervals. 

Commun Stat-Theor M. 1999;28:1961-1985. 

9. Chakraborti S, Van der Laan P, Bakir ST. Nonparametric control charts: an overview 

and some results. J Qual Technol. 2001;33:304-309. 

10. Bakir ST. A distribution-free Shewhart quality control chart based on signed-ranks. 

Qual Eng. 2004;16:613-623. 

11. Bakir ST. Distribution-free quality control charts based on signed-rank-like statistics. 

Commun Stat-Theor M. 2006;35:743-757. 

12. Chakraborti S, Eryilmaz S. A nonparametric Shewhart-type signed-rank control chart 

based on runs. Commun Stat-Simul C. 2007;36:335-356. 

13. Chakraborti S, Graham MA. Nonparametric Control Charts, Encyclopedia of Quality 

and Reliability. New York: John Wiley & Sons;2007. 

14. Das N, Bhattacharya A. A new non-parametric control chart for controlling 

variability. Qual Technol Quant M. 2008;5:351-361. 



15. Li SY, Tang LC, Ng SH. Nonparametric CUSUM and EWMA control charts for 

detecting mean shifts. J Qual Technol. 2010;42:209-226. 

16. Human SW, S Chakraborti, CF Smit. Nonparametric Shewhart-type sign control 

charts based on runs. Commun Stat-Theor M. 2010;39:2046-2062. 

17. Graham MA, Chakraborti S, Human SW. A nonparametric EWMA sign chart for 

location based on individual measurements. Qual Eng. 2011;23:227-241. 

18. Yang SF, Lin JS, Cheng SW. A new nonparametric EWMA sign control chart. Expert 

Syst Appl. 2011;38:6239-6243. 

19. Aslam M, Azam M, Jun CH. A new exponentially weighted moving average sign 

chart using repetitive sampling. J Process Contr. 2014;24:1149-1153. 

20. Lu SL. An extended nonparametric exponentially weighted moving average sign 

control chart. Qual Reliab Eng Int. 2015;31:3-13. 

21. Asghari S, Sadeghpour Gildeh B, Ahmadi J, Mohtashami Borzadaran G. Sign control 

chart based on ranked set sampling. Qual Technol Quant M. 2018;15:568-588. 

22. Chakraborti S, Graham MA. Nonparametric (distribution-free) control charts: An 

updated overview and some results. Qual Eng. 2019;31:523-544. 

23. Ladany S. Optimal use of control charts for controlling current production. Manage 

Sci. 1973;19:763-772. 

24. Ladany SP, Bedi DN. Selection of the optimal setup policy. Nav Res Logist. 

1976;23:219-233. 

25. Del Castillo E, Montgomery DC. Optimal design of control charts for monitoring 

short production runs. Econ Qual Contr. 1993;8:225-240. 

26. Del Castillo E, Montgomery DC. A general model for the optimal economic design of 

X  charts used to control short or long run processes. IIE Trans. 1996;28:193-201. 

27. Calabrese JM. Bayesian process control for attributes. Manage Sci. 1995;41:637-645. 



28. Tagaras G. Dynamic control charts for finite production runs. Eur J Oper Res. 

1996;91:38-55. 

29. Tagaras G, Nikolaidis Y. Comparing the effectiveness of various Bayesian X  control 

charts. Oper Res. 2002;50:878-888. 

30. Nenes G, Tagaras G. The economically designed two-sided Bayesian X  control 

chart. Eur J Oper Res. 2007;183:263-277. 

31. Kooli I, Limam M. Bayesian np control charts with adaptive sample size for finite 

production runs. Qual Reliab Eng Int. 2009;25:439-448. 

32. Nenes G, Tagaras G. Evaluation of CUSUM charts for finite-horizon processes. 

Commun Stat-Simul C. 2010;39:578-597. 

33. Celano G, Castagliola P, Trovato E, Fichera S. Shewhart and EWMA t control charts 

for short production runs. Qual Reliab Eng Int. 2011;27:313-326. 

34. Celano, G, Castagliola P, Fichera S, Nenes G. Performance of t control charts in short 

runs with unknown shift sizes. Comput Ind Eng. 2013;64:56-68. 

35. Li Y, Pu X. On the Performance of Two-sided Control Charts for Short Production 

Runs. Qual Reliab Eng Int. 2012;28:215-232. 

36. Castagliola P, Amdouni A, Taleb H, Celano G. One-sided Shewhart-type charts for 

monitoring the coefficient of variation in short production runs. Qual Technol Quant 

M. 2015;12:53-67. 

37. Montgomery DC. Introduction to Statistical Quality Control. 6
th

 Edition. New York: 

John Wiley & Sons:2009. 

38. Celano G, Castagliola P, Chakraborti S, Nenes G. The performance of the Shewhart 

sign control chart for finite horizon processes. Int J Adv Manuf Tech. 2016a;84:1497-

1512. 



39. Celano G, Castagliol P, Chakraborti S, Nenes G. On the implementation of the 

Shewhart sign control chart for low-volume production. Int J Prod Res. 

2016b;54:5886-5900. 

40. Castagliola P, Celano G, Fichera S, Nenes G. The variable sample size t control chart 

for monitoring short production runs. Int J Adv Manuf Tech. 2013;66:1353-1366. 

41. Nenes G, Castagliola P, Celano G, Panagiotidou S. The variable sampling interval 

control chart for finite-horizon processes. IIE Trans. 2014;46:1050-1065. 

42. Amdouni A, Castagliola P, Taleb H, Celano G. Monitoring the coefficient of variation 

using a variable sample size control chart in short production runs. Int J Adv Manuf 

Tech. 2015;81:1-14. 

43. Park C, Choi K. Economic design of control charts with variable sample size 

schemes. In Annual Meeting of the American Statistical Association, Boston, 

MA.1992. 

44. Park C, Reynolds MR. Economic design of a variable sample size-chart. Commun 

Stat-Simul C. 1994;23:467-483. 

45. Park C, Reynolds MR. Economic design of a variable sampling rate X  chart. J Qual 

Technol. 1999;31:427-443. 

46. Croasdale R. Control charts for a double-sampling scheme based on average 

production run lengths. Int. J. Prod. Res. 1974;12:585-592. 

47. Daudin JJ. Double sampling X  charts. J Qual Technol. 1992;24:78-87. 

48. Irianto D, Shinozaki N. An optimal double sampling X  control chart. Int. J. Ind. 

Eng. -Theory.1998;5:226-234. 

49. Carot V, Jabaloyes JM, Carot T. Combined double sampling and variable sampling 

interval X  chart. Int. J. Prod. Res. 2002;40:2175-2186. 



50. He D, Grigoryan A. Construction of double sampling S control charts for agile 

manufacturing. Qual Reliab Eng Int. 2002;18:343-355. 

 

 

Data Availability Statement  

The data that support the findings of this study are openly available in reference number 37. 

 

 

 

 



Table 1. The VSS SN short run chart’s parameter combination (
S

n , 
L

n , c, k) and corresponding 

0
TARL , 0

TSDRL  and 0
ASS  values for I {10, 30, 50} and 

0
n {11, 15, 20} 

I  0
n  

S
n  

L
n  c k 0

TARL  
0

TSDRL  
0

ASS  

10 11 9 13 7 2 10.16 1.97 10.91 

 15 12 20 10 3 10.76 1.21 15.07 

 20 15 31 13 4 10.83 1.04 20.06 

30 11 10 19 8 7 30.21 5.33 10.18 

 15 13 21 11 4 30.01 4.37 15.30 

 20 15 23 13 2 30.27 5.48 20.02 

50 11 - -  - - - - 

 15 14 26 12 7 50.14 6.40 14.75 

 20 16 24 14 3 50.05 6.00 20.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. 
1

TARL  (first line of ) and 
1

TSDRL  (second line of ) values for the FSS and VSS SN short run charts when I = 10 and 
0

n  = 11 with 

the chart’s parameters 9, 13
S L

n n  , c = 7 and k = 2, for different underlying distributions 

Shift 

size, 
N(0, 1) N(0, 1) t(4) t(4) t(8) t(8) 

gam(0.5, 

1) 

gam(0.5, 

1) 

gam(1, 

1) 

gam(1, 

1) 
laplace laplace 

δ FSS VSS FSS VSS FSS VSS FSS VSS FSS VSS FSS VSS 

0.2 9.89 8.96 9.83 8.58 9.86 8.59 7.65 3.38 8.36 4.12 9.79 8.15 

 0.81 2.25 1.01 2.53 0.94 2.52 3.15 1.97 2.83 2.48 1.13 2.77 

0.4 9.60 7.13 9.18 5.65 9.45 5.82 2.31 1.54 2.93 1.68 8.98 5.12 

 1.54 3.09 2.14 3.07 1.78 3.04 1.65 0.57 2.20 0.63 2.36 2.88 

0.6 8.82 4.72 7.58 3.28 8.35 3.48 1.19 1.13 1.31 1.20 7.43 3.10 

 2.51 2.77 3.20 1.92 2.85 2.00 0.48 0.34 0.64 0.40 3.21 1.79 

0.8 7.23 3.07 5.43 2.26 6.66 2.38 1.02 1.01 1.05 1.04 5.44 2.26 

 3.32 1.74 3.34 1.11 3.38 1.09 0.14 0.12 0.22 0.18 3.34 1.08 

1 5.44 2.23 3.66 1.83 4.71 1.93 1.00 1.00 1.00 1.00 3.89 1.88 

 3.35 1.00 2.71 0.74 3.12 0.72 0.03 0.03 0.07 0.06 2.85 0.77 

1.25 3.31 1.76 2.37 1.55 2.91 1.63 1.00 1.00 1.00 1.00 2.63 1.61 

 2.48 0.68 1.74 0.58 2.22 0.58 0.00 0.00 0.00 0.00 2.00 0.61 

1.5 2.15 1.50 1.76 1.38 1.97 1.45 1.00 1.00 1.00 1.00 1.96 1.43 

 1.55 0.56 1.15 0.51 1.37 0.52 0.00 0.00 0.00 0.00 1.38 0.53 

1.75 1.58 1.31 1.47 1.28 1.54 1.30 1.00 1.00 1.00 1.00 1.59 1.31 

 0.97 0.47 0.83 0.46 0.92 0.47 0.00 0.00 0.00 0.00 0.99 0.47 

2 1.30 1.19 1.31 1.20 1.32 1.20 1.00 1.00 1.00 1.00 1.38 1.23 

 0.61 0.39 0.63 0.40 0.65 0.41 0.00 0.00 0.00 0.00 0.74 0.42 

2.5 1.07 1.06 1.14 1.11 1.12 1.09 1.00 1.00 1.00 1.00 1.17 1.12 

 0.28 0.23 0.39 0.31 0.37 0.29 0.00 0.00 0.00 0.00 0.45 0.32 

3 1.02 1.01 1.08 1.06 1.05 1.04 1.00 1.00 1.00 1.00 1.09 1.07 

 0.12 0.11 0.29 0.24 0.22 0.20 0.00 0.00 0.00 0.00 0.32 0.25 

 



Table 3. 
1

TARL  (first line of ) and 
1

TSDRL  (second line of ) values for the FSS and VSS SN short run charts when I = 30 and 0
n  = 15 with 

the chart’s parameters 13, 21
S L

n n  , c = 11 and k = 4, for different underlying distributions 

Shift 

size, 
N(0, 1) N(0, 1) t(4) t(4) t(8) t(8) 

gam(0.5, 

1) 

gam(0.5, 

1) 

gam(1, 

1) 

gam(1, 

1) 
laplace laplace 

δ FSS VSS FSS VSS FSS VSS FSS VSS FSS VSS FSS VSS 

0.20 29.87 26.03 29.79 23.23 29.86 23.70 22.28 3.28 25.20 4.28 29.65 20.22 

 1.49 7.87 2.03 9.45 1.67 9.21 9.90 1.74 8.62 2.67 2.61 10.09 

0.40 29.27 14.09 28.04 7.58 28.86 8.05 3.10 1.65 4.42 1.75 27.31 5.97 

 3.68 9.54 5.89 5.79 4.64 6.10 2.53 0.50 3.87 0.51 6.85 4.33 

0.60 26.71 5.31 21.99 3.20 25.19 3.35 1.27 1.19 1.46 1.28 20.65 3.00 

 7.40 3.78 10.03 1.65 8.61 1.72 0.58 0.39 0.83 0.45 10.39 1.45 

0.80 20.67 2.95 12.43 2.23 17.42 2.34 1.03 1.02 1.07 1.05 12.39 2.22 

 10.32 1.43 9.49 0.81 10.66 0.81 0.17 0.15 0.26 0.23 9.44 0.79 

1.00 12.20 2.20 6.20 1.88 9.52 1.96 1.00 1.00 1.01 1.01 6.87 1.91 

 9.30 0.74 5.60 0.54 8.01 0.52 0.04 0.03 0.08 0.07 6.16 0.56 

1.25 5.36 1.82 3.31 1.66 4.35 1.74 1.00 1.00 1.00 1.00 3.81 1.71 

 4.79 0.52 2.78 0.50 3.84 0.48 0.00 0.00 0.00 0.00 3.22 0.50 

1.50 2.80 1.60 2.19 1.50 2.52 1.55 1.00 1.00 1.00 1.00 2.52 1.55 

 2.26 0.50 1.64 0.50 1.98 0.50 0.00 0.00 0.00 0.00 1.98 0.50 

1.75 1.85 1.41 1.70 1.36 1.80 1.40 1.00 1.00 1.00 1.00 1.89 1.43 

 1.28 0.49 1.11 0.48 1.22 0.49 0.00 0.00 0.00 0.00 1.31 0.50 

2.00 1.43 1.27 1.43 1.27 1.45 1.27 1.00 1.00 1.00 1.00 1.56 1.32 

 0.78 0.44 0.79 0.44 0.82 0.44 0.00 0.00 0.00 0.00 0.93 0.47 

2.50 1.10 1.10 1.20 1.15 1.16 1.12 1.00 1.00 1.00 1.00 1.25 1.18 

 0.34 0.27 0.49 0.35 0.44 0.33 0.00 0.00 0.00 0.00 0.55 0.38 

3.00 1.02 1.01 1.10 1.08 1.06 1.05 1.00 1.00 1.00 1.00 1.13 1.10 

 0.15 0.14 0.33 0.28 0.26 0.22 0.00 0.00 0.00 0.00 0.38 0.29 



Table 4. 
1

TARL  (first line of ) and 
1

TSDRL  (second line of ) values for the FSS and VSS SN short run charts when I = 50 and 0
n  = 20 with 

the chart’s parameters 16, 24
S L

n n  , c = 14 and k = 3, for different underlying distributions 

Shift 

size, 
N(0, 1) N(0, 1) t(4) t(4) t(8) t(8) 

gam(0.5, 

1) 

gam(0.5, 

1) 

gam(1, 

1) 

gam(1, 

1) 
laplace laplace 

δ FSS VSS FSS VSS FSS VSS FSS VSS FSS VSS FSS VSS 

0.20 49.99 44.55 49.96 39.79 49.98 39.66 43.10 3.96 46.85 5.48 49.87 34.26 

 0.33 12.30 1.18 15.45 0.95 15.54 13.74 2.44 9.74 3.99 2.13 17.25 

0.40 49.82 23.13 48.96 11.09 49.57 11.27 4.52 1.72 7.03 1.86 48.34 8.31 

 2.35 16.33 5.74 9.06 3.70 9.30 3.97 0.49 6.75 0.51 7.28 6.70 

0.60 48.01 7.13 42.75 3.86 46.62 3.89 1.37 1.22 1.83 1.34 41.34 3.51 

 7.90 5.48 13.92 2.35 10.00 2.26 0.69 0.42 1.21 0.47 14.80 1.98 

0.80 40.86 3.47 26.11 2.44 36.11 2.49 1.04 1.03 1.09 1.06 26.06 2.41 

 15.22 1.98 17.34 0.94 17.00 0.93 0.19 0.16 0.31 0.25 17.52 0.91 

1.00 25.23 2.40 11.39 2.00 19.25 2.07 1.00 1.00 1.01 1.01 12.73 2.04 

 17.46 0.90 10.32 0.59 15.50 0.53 0.04 0.04 0.09 0.08 11.50 0.61 

1.25 9.38 1.92 4.82 1.75 7.17 1.82 1.00 1.00 1.00 1.00 5.91 1.80 

 8.62 0.52 4.23 0.49 6.68 0.46 0.00 0.00 0.00 0.00 5.45 0.49 

1.50 3.97 1.69 2.81 1.57 3.47 1.64 1.00 1.00 1.00 1.00 3.41 1.63 

 3.40 0.49 2.26 0.50 2.86 0.49 0.00 0.00 0.00 0.00 2.95 0.50 

1.75 2.25 1.48 2.00 1.44 2.20 1.47  1.00 1.00 1.00 1.00 2.33 1.50 

 1.70 0.50 1.40 0.50 1.61 0.50 0.00 0.00 0.00 0.00 1.77 0.50 

2.00 1.60 1.32 1.61 1.32 1.66 1.33 1.00 1.00 1.00 1.00 1.81 1.38 

 0.98 0.47 0.99 0.47 1.05 0.47 0.00 0.00 0.00 0.00 1.19 0.49 

2.50 1.13 1.10 1.27 1.18 1.23 1.15 1.00 1.00 1.00 1.00 1.34 1.22 

 0.40 0.30 0.59 0.38 0.53 0.35 0.00 0.00 0.00 0.00 0.67 0.41 

3.00 1.03 1.02 1.14 1.10 1.08 1.06 1.00 1.00 1.00 1.00 1.16 1.12 

 0.17 0.15 0.40 0.29 0.30 0.24 0.00 0.00 0.00 0.00 0.42 0.32 



 

Table 5. Fill volume data of soft drink beverage bottles 

Sample 

number 

Data for the VSS SN short run chart Data for the FSS SN short run chart 

,1i
x  

,2i
x  

,3i
x  

,4i
x  

,5i
x  

,6i
x  

,7i
x  

,8i
x  

,9i
x  

,10i
x  

,11i
x  

,12i
x  

,13i
x  i

SN   
,1i

x  
,2i

x  
,3i

x  
,4i

x  
,5i

x  
,6i

x  
,7i

x  
,8i

x  
,9i

x  
,10i

x  
,11i

x  i
SN  

1 2.5 0.5 2.0 -1.0 1.0 -1.0 0.5 1.5 0.5     5 2.5 0.5 2.0 -1.0 1.0 -1.0 0.5 1.5 0.5 -1.5 0.5 5 

2 -1.5 0.5 1.0 1.5 1.0 -1.0 1.0 1.5 -1.0 1.5 1.0 1.0 -1.0 5 1.0 1.5 1.0 -1.0 1.0 1.5 -1.0 1.5 1.0 1.0 -1.0 5 

3 -1.5 -1.0 -1.0 1.0 -1.0 0.5 -2.0 -1.0 1.5 -1.5 -2.0 -1.5 -0.5 -7 -1.5 -1.0 -1.0 1.0 -1.0 0.5 -2.0 -1.0 1.5 -1.5 -2.0 -5 

4 0.5 1.0 -0.5 -0.5 1.0 -0.5 0.5 -1.0 1.0 -2.0 1.0 1.0 -1.0 1 -1.5 -0.5 0.5 1.0 -0.5 -0.5 1.0 -0.5 0.5 -1.0 1.0 -1 

5 -1.0 -1.0 1.5 1.0 -1.5 -0.5 1.5 -1.0 0.5     -1 -2.0 1.0 1.0 -1.0 -1.0 -1.0 1.5 1.0 -1.5 -0.5 1.5 -1 

6 -0.5 -2.0 -1.5 1.5 1.5 0.5 1.0 1.0 -0.5     1 -1.0 0.5 -0.5 -2.0 -1.5 1.5 1.5 0.5 1.0 1.0 -0.5 1 

7 3.5 -1.0 -1.5 -1.5 -1.0 -1.0 1.0 0.5 1.5     -1 3.5 -1.0 -1.5 -1.5 -1.0 -1.0 1.0 0.5 1.5 2.0 -1.5 -1 

8 2.0 -1.5 0.5 -0.5 2.0 -1.0 -2.0 -0.5 -0.5     -3 0.5 -0.5 2.0 -1.0 -2.0 -0.5 -0.5 2.0 -1.5 -0.5 -1.0 -5 

9 2.0 -1.5 -0.5 -1.0 -1.0 -0.5 -0.5 -1.0 0.5 -0.5 -1.0 -1.0 -1.0 -9 -1.0 -0.5 -0.5 -1.0 0.5 -0.5 -1.0 -1.0 -1.0 0.5 1.0 -5 

10 0.5 1.0 -1.0 -0.5 -2.0 -1.0 -1.5 1.5 1.5     -1 -1.0 -0.5 -2.0 -1.0 -1.5 1.5 1.5 1.0 1.5 1.5 1.0 1 

 

 

 



 

Figure 1. VSS SN short run chart for the fill volume of soft drink beverage bottles 

 

 

 

 

Figure 2. FSS SN short run chart for the fill volume of soft drink beverage bottles 


