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Abstract

Nonparametric control charts have received increasing attention in process monitoring. In this
paper, a new nonparametric sign (SN) control chart with variable sample size (VSS) for a
finite horizon process is developed. The novelty of this research lies in the incorporation of
the VSS technique into the nonparametric SN chart for a finite horizon process, hence,
resulting in the development of a more sensitive nonparametric short run chart. The statistical
performance of the new nonparametric VSS SN control chart is evaluated and compared with
the existing fixed sample size (FSS) SN chart for a finite horizon process. The charts’
performances are compared using the truncated average run length (TARL) and truncated
standard deviation of the run length (TSDRL) criteria. The results obtained show that the
nonparametric VSS SN short run chart is always quicker than the FSS SN short run chart in
detecting process shifts for various underlying process distributions, hence, reducing scrap
and rework cost. Finally, an application of the proposed control charting scheme is shown

through a real-life example on the fill volume of soft drink beverage bottles.

Keywords: nonparametric, variable sample size, finite production horizon, Markov chain,

truncated average run length

1 Introduction

In Statistical Process Control (SPC), control charts are extensively implemented to monitor
and improve the quality of a process. In a typical design of control charts for continuous data,
the process observations are assumed to follow a specified probability distribution. Control
charts established under the normality assumption may provide more frequent false alarms
when the quality characteristic of interest actually follows a non-normal or an unknown

distribution. Therefore, nonparametric control charts have been introduced to address this



problem. Over the last decade or so, nonparametric (or distribution-free) control charts that
allow many assumptions about the process distribution to be relaxed, have become quite
popular and have been widely investigated in the SPC literature. The following studies are
some of the existing research works present in the literature. Parent ' and Reynolds >
developed control charts based on the signed sequential ranks of the observations.
Meanwhile, Bakir * and Bakir and Reynolds * developed a cumulative sum (CUSUM) chart
based on the Wilcoxon signed rank statistic. Park ° proposed Shewhart sign charts and
Wilcoxon signed rank charts for asymmetrical distributions. Furthermore, Amin and Searcy °
studied the properties of the exponentially weighted moving average (EWMA) chart for the
Wilcoxon signed rank statistic. Amin et al. ’ designed a nonparametric control chart based on
the sign statistic. Subsequently, Amin and Widmaier ® proposed a variable sampling interval
sign control chart.

Chakraborti, Van der Lann, and Bakir ° presented a review on nonparametric control
charts. Bakir ' '' proposed a distribution-free control chart using the signed ranks and sign
rank-like statistics. Chakraborti and Eryilmaz '* proposed the nonparametric Shewhart type
sign rank control chart based on runs rules while Chakraborti and Graham ' presented some
nonparametric control charts. Das, and Bhattacharya '* proposed a nonparametric control
chart to monitor the process variability, while Li, Tang, and Ng " proposed two
nonparametric counterparts of the CUSUM and EWMA control charts based on the Wilcoxon
signed-sum test for detecting process mean shifts. Moreover, Human, Chakraborti, and Smit
' proposed nonparametric Shewhart-type sign control charts based on runs rules. Graham,
Chakraborti, and Human '’ investigated the nonparametric EWMA control chart for
independent and identically distributed individual observations based on the sign statistic.
Additionally, Yang, Lin, and Cheng '® developed a new control chart using the EWMA sign

statistic. Aslam, Azam, and Jun " proposed an EWMA sign chart using repetitive sampling.



Meanwhile, Lu *° proposed an extended nonparametric EWMA sign control chart and
Asghari et al. ! developed a sign control chart based on ranked set sampling. Chakraborti and
Graham ** explained some of the latest developments on univariate and multivariate
nonparametric charts.

For many manufacturers, manufacturing is now done in high-variation/low-volume
environments. There are many situations where the production horizon is very short, i.e. a
few hours or a few days, and it is considered as finite. The first control charting scheme
designed for the finite production horizon was introduced by Ladany ** who presented the
economic optimization design of a p chart for short run. This pioneering work was extended
by Ladany and Bedi, ** who introduced a similar model where the duration of the production
run is a variable. Control charts specifically designed for processes with finite production

25

horizon have been discussed in Del Castillo and Montgomery. > ** Bayesian type control

charts for monitoring the sample mean during a short run have been proposed by Calabrese,
*" Tagaras, *® Tagaras and Nikolaidis, ** Nenes and Tagaras, *° and Kooli and Limam. *'
Nenes and Tagaras >* investigated the performance of the CUSUM control chart under the
assumption of a finite run. Additionally, Celano et al. ** investigated the statistical
performances of the Shewhart and EWMA ¢ control charts for a finite horizon process.
Subsequently, Celano et al. ** studied the statistical performances of the Shewhart, EWMA
and CUSUM ¢ charts for short production runs when the shift size is unknown. Li and Pu *
developed performance measures for the two-sided Shewhart, CUSUM and EWMA charts

for finite production horizon. Castagliola et al. *°

investigated one-sided Shewhart-type charts
for monitoring the CV in a finite horizon context.
According to Montgomery ', if there is no knowledge about the distribution of

observations and its parameters, an easy approach is to monitor a statistic that deviates from a

nominal (or target) value of the quality characteristic. This target value can refer to any



parameter of the distribution of observations or any quantile of interest. In the literature, only
Celano et al. ** *? presented a nonparametric (Shewhart sign) chart for a finite production
horizon. In the context of incorporating adaptive procedure into a control chart for finite
production horizon, Castagliola et al. ** developed the VSS version of the 7 chart for short
production run using the Markov chain approach. Nenes et al. *' introduced a control chart
for short production runs with variable sampling interval. Amdouni et al. ** proposed an
adaptive Shewhart chart with a VSS strategy to monitor the coefficient of variation in short

44, 45 .

production runs. In addition, Park and Choi **, and Park and Reynolds investigated the

economic designs of VSS type charts. On similar lines, the double sampling (DS) chart
enables the sample size to be varied at each sampling stage. The DS X chart was introduced
by Croasdale *° and improved upon by Daudin *’. The DS chart utilizes information from
either the first sample or the combined first and second samples in making a decision about
the status of a process, hence, it allows the sample size to be varied. Subsequently, Irianto and

I. ¥, and He and Grigoryan *° presented numerous designs and

Shinozaki 48, Carot et a
extensions of the univariate DS charts.

The in-control performance of the SN short run chart is distribution-free. Typically,
only the target value is known and the set-up activities are conducted to position the process
exactly on the target. Information about the target value for the median is sufficient to
implement the SN short run chart, without any reference to the distributional shape of the
process. In processes with short production runs, a moderately small sample size, n can be
adopted to implement the SN chart with a sufficiently low false alarm rate by the end of the
run.

Over the last decade or so, nonparametric charts have gained increasing attention in

process monitoring. Although various types of adaptive parametric charts exist in the

literature, the same is not true for nonparametric charts in short runs. Adaptive charts are



implemented by varying the charts’ parameters (such as sample size, sampling interval and
limits’ constants) based on the quality level of the process given by the prior sample.
Findings have shown that adaptive charts are substantially more efficient than traditional
charts with fixed parameters.

The aim of this paper is to propose a nonparametric sign (SN) chart with variable
sample size (VSS), for process monitoring in finite production horizon. The VSS technique is
incorporated into the SN chart for finite production horizon to develop an efficient
nonparametric chart in short runs for a quicker detection of process shifts. The contribution of
this paper lies in the development of a new nonparametric control chart for monitoring a
manufacturing process with a non-normal or an unknown distribution, coupled with a
manufacturing environment producing high-variation/low-volume products.

The remainder of this paper is structured as follows: In Section 2, the proposed VSS
SN short run chart is discussed. In Section 3, the statistical measures of performance are
outlined. Meanwhile, Section 4 presents the methodology and a discussion of the results. An
illustrative example is given in Section 5 to show the implementation of the VSS SN short

run chart. Finally, conclusions and suggestions for future research are discussed in Section 6.

2 The VSS SN Control Chart for a Finite Production Horizon

Assume that a manufacturing process produces a small number N of parts in a production
horizon of limited length, which is equal to H hours. The location of a quality characteristic
of interest, X around a specified target value is monitored during the production run. Note
that X is assumed to be a continuous random variable with an unknown distribution. We
select the median, @ of the distribution of the random variable, as the location parameter to be

monitored with the VSS SN short run chart. Let 7,, and 6, denote the target and in-control

values of the median, respectively. At the beginning of a process setup, adjustments are made



before the production run starts with the objective of putting the in-control process median 6,
on the target T, . In a perfect initial setup, 6, =T,, , otherwise, the process starts shifted away

from the target value and the control chart should trigger a signal as soon as possible. It is
assumed that the in-control operating condition for a process with finite production horizon
starts without any setup error and runs without the occurrence of any assignable cause.

Let I be the number of scheduled inspections within the production horizon H. The

) ) . ) ) H )
interval between two successive inspections is s =—— hours. It is assumed that no
I+1

inspection takes place at the end of the run. If the run ends without any signal in the /

inspections, then the total number of inspections is assigned with the value 7 + 1. At each

inspection, i = 1, 2, ..., I, the sample size n(i) is adopted. Hence, when a fixed parameter
short run chart is used to monitor a process, the fixed sample size n(i)=n, is adopted. In

contrast, if a VSS SN short run chart is implemented, the sample size n(i ) 1s varied at two
levels, ng (small sample size) and n, (large sample size), with ng <n, . It is worth noting

that n, < N/(I+1) and n, <N/(I+1) for the fixed parameter and VSS SN short run charts,

respectively. We also assume that there is independence among the inspected parts within a

sample and among samples. Let {X 19 Xigrer X ,.,n(i)} be a sample of size n (i), at inspection i

=1, 2, ..., I. Each observation X ;; follows an unknown continuous process distribution with

cumulative distribution function (cdf), Fy ( : ) The following statistic is considered for the

VSS SN short run chart:
n(i)
SN, =Y sign(X, T, ), (1)

j=1

where



1 ifx>0
0 ifx=0. 2)

sign(x)=
[—1 ifx<0

Note that the condition sign(x) = 0 will supposedly not happen when the process
distribution of the inspected parts is continuous. Additionally, it should be pointed out that

following the definitions in Equations (1) and (2), the values assumed by SN, are SN, €
{-n(i), —n(@) + 2, ..., n(i) — 2, n(i)}. When the process starts in-control, the distribution of
SN, can be easily obtained by considering the relationship SN, =2D,-n(i) (Amin,
Reynolds, and Saad 7), which is valid for continuous observations (inspected parts), X i
where D, is the number of observations that exceed the in-control median, 7, , in a sample of
size n (i), i.e. the count of positive signs within a sample. When the process is in-control, D,
is a binomial random variable with parameters n(i) and p,,ie. D, ~ Bin(n(i).p,). Note
that p, is the in-control probability for an observation to be larger than 6, (=T,,), i.e.
Po = P(Xi’j >T, |<90 = TM)= 0.5,fori=1,2,..,landj=1,2, .. n(i). When the process
has shifted away from the target value of the median, 7, due to the occurrence of a setup
error and/or an assignable cause, the out-of-control process median is 6, =7,, + 5 o, , where
o, is the in-control process standard deviation. Let
pézP(X,.’j>TM 91=TM+5GO)=1—FX (TM|91=TM+50'0) as the  out-of-control
probability of having an observation larger than 7, . The value of p, depends on the

distribution of the observations and the shift size o.
The VSS SN short run chart has two warning limits, i.e.
UWL =k, (3a)

LWL = -k, (3b)



and two control limits, i.e.

UCL =g, (4a)

LCL = -¢, (4b)
under the assumption that ¢ <ng (so that it is possible for SN, to be less than —c or greater
than c, irrespective of whether ng or n, is adopted, in order for the chart to signal an out-of-
control when the process shifts) and k <c¢. The VSS SN short run chart is implemented as
follows:

— If the discrete value SN, falls in the interval I, € {-k, -k + 1, ..., k-1, k} (the control
region), the process is declared as in-control and the sample size adopted for the next
inspection is n(i+1)=ny.

— If the discrete value SN, falls in the interval I, € {-c,—c+1,...,—k—-1} U {k+ 1, k+
2, ..., ¢} (the warning region), the process is also declared as in-control but the sample

size adopted for the next inspection is n(i+1)=n,.

— If SN, <—c or SN, >c, the process is declared as out-of-control and a search for the
assignable cause(s) that lead to the out-of-control signal must be conducted. After the
detection and removal of the assignable cause(s), process monitoring is resumed with a

sample size of n(i+1)=n.
For the FSS SN short run chart, n(z) =n, is always considered, for i = 1, 2, ..., L

Then the FSS SN short run chart’s control limits are defined as follows (Celano et al. **):

UCL, =c,, (5a)

LCL, =—c (5b)

f2

where ¢, <n,. The FSS SN short run chart signals an out-of-control when the SN, statistic in

f

Equation (1) exceeds the limits in Equations (5a) and (5b).



3 Statistical Measures of Performance

The Markov chain approach can be used to derive the performance measures of the VSS SN
short run chart. Three Markov chain states are defined. States 1, 2 and 3 represent the cases

SN,elg, SN,€1, and SN, <—c U SN, >c. Consequently, a 3 x 3 transition probability

matrix, P, representing the probabilities of shifting from one state to another is given as

(ps(ns) Pr (”s) 1-ps(ng)—p, (nS))

Qr

e 1)Lt n|1-p ) | ©
0 0 | 1

Here, py(n(i))=P(SN,el,|n(i)) and p,(n(i))=P(SN,e1,|n(i)) with n(i)e{ngn,}.

Note that Q is a (2x2) transition probability matrix of transient probabilities and the vector

r satisfies r =1— Q1 (i.e. row probabilities must have a sum of one), with 1= (l, I)T .

By definition, we have

Ds (n(z)) = P(—k <8N, < k|n(i),p6)

) —k )+ k
= P(n(ll <D, < n(l;+ |n(i),p5J
i)+ k i)—k
= FB[%Ina),pgj—&("(%—llna), pSJ, (7)

P (I’l(l)) = P(k <8N, < c|n(i),p5)+ P(—c <SN,<-k |n(i),p5)




. Ntk
=Fy (n(lgih(i)a ps] — I [n(li—'— |n(i), ps]

+F3(n(i;—" _1|n(i)»P5}—FB(n(2_C —lln(l')apsj’ ®

where F,( - ‘n(i), ps) is the cdf of a binomial distribution with parameters n(i) and p; .

When the process is in-control, p, = p, =0.5 in Equations (7) and (8).

The production run ends after the fixed rolling horizon H, which coincides with the
production lot cycle time. Thus, the statistical measures of performance of the chart are

functions of the finite number I of scheduled inspections. The performance measures of

control charts for a finite production horizon were developed by Nenes and Tagaras. >

Consequently, the classical average run length (ARL) formula for an infinite production
horizon is replaced by the TARL formula for a finite production horizon. Here, TARL
represents the average number of inspections (or samples) required until an out-of-control

signal is triggered or until the completion of the process, whichever occurs first. Let TARL,
and TARL, denote the in-control and out-of-control TARLS, respectively. Note that if the

run ends without any signal in the I inspections, then the truncated run length (TRL) value is

equal to 7+ 1. The TARL value can be computed as follows:
1
TARquT(ZQ’"jl. 9)
m=0

Under the assumption of a perfect initial setup, the process always starts under the on-target
condition. For this reason, we choose the initial probability vector, q = (1,0)T , 1.e. the initial

sample size is set as n,. Otherwise, an initial setup can be accounted for by selecting

q= (O,I)T, i.e. the initial sample size is set as n, .



Since Q is the transition probability matrix for the transient states, then (Castagliola et

al. ¥

ZQm (I Qm) (10)

m=0

where I is the 2 x 2 identity matrix. The second non-central moment of TRL, i.e

TRL2=E (TRLZ) is obtained as

1
TRL2=qT(Z (2m+1)Q j . (11)
m=0
It follows that TSDRL is
TSDRL = +/TRL2 - TARL?. (12)

In order to ensure a fair comparison between the VSS SN and FSS SN short run

charts, we have to make sure that the in-control average sample size (AS SO) of the VSS SN

short run chart is equal to the fixed sample size, n, selected for the FSS SN short run chart.

The ASS is the ratio between the expected total number of observations taken during a short

production run and the number / of scheduled inspections, 1.e.

ASS:%E[in(i)]:%iE(n(i)). (13)

i=1 i=1
For estimating the ASS, Castagliola et al. ** suggested modifying P in Equation (6) by
assuming that after an out-of-control point falls beyond the control limits, the quality

practitioner completes the actions designed for searching and if necessary, eliminating the

assignable cause before the next inspection i + 1 with n(i+1)=n,. Therefore, all states are

now considered as accessible and the modified transition probability matrix, P is defined as

follows:



§=LPS(’1L) pL(nL) l_pS(nL)_pL(nL)J' (14)

Using the matrix P, E (n(i)) is computed as follows:

E(n(D) =q P! (ng, ny, ng)", (15)
where T = (1, 0, 0) is the vector of initial probabilities of the modified Markov chain.

Consequently, by substituting Equation (15) into Equation (13), the average sample size is
1 Si—
ASS = 4" (i, PT) (s, )™ (16)
The in-control ASS (ASS,) is computed using Equation (16) by letting p, = p, =0.5 in

Equations (7) and (8).

4 Numerical Analysis

4.1 Methodology

In this section, we evaluate the robustness of the VSS SN short run chart with observations
from non-normal distributions and the performance of the VSS SN short run chart for
different process conditions with finite number of inspections. A performance comparison
between the FSS SN and VSS SN short run charts is conducted to demonstrate the
advantages of incorporating the VSS approach into the distribution-free SN short run chart.
Similar to Celano et al., ** Castagliola et al. ** and Nenes et al., *' the sensitivity of the FSS
SN and VSS SN short run charts to a shift of size ¢ in the process mean due to a setup error
or an assignable cause occurring before the first scheduled inspection is evaluated.
Consequently, the performances of the FSS SN and VSS SN short run charts are computed by
considering an assignable cause occurring immediately after the start-up of the short run.

Given the small number of possible inspection epochs in short production run, no steady state



condition is achieved, hence, the zero-state TARL, and TSDRL, performance measures are
computed only.
The out-of-control performances of these two charts are compared for the same

nominal values of TARL, =1 € {10, 30, 50} and ASS,=n,c {11, 15, 20} to ensure a fair

comparison. In the manufacturing context, it is a common practice to use moderately small

sample sizes. Consequently, we restrict the choice of the sample sizes for ng; and n, to
5<ng <n, <n, <31. The VSS SN short run chart’s parameters n,, n, , ¢ and k are chosen to
satisfy the selected values of  (or TARL,) and n, (or ASS;). Sometimes, the TARL, and
ASS, values may be larger than their anticipated value TARL =1and ASS =n,,

respectively. However, TARL, cannot exceed its bounding value, TARL =I1+1 and

0,max

ASS, cannot exceed its bounding value, ASS, —=n,+1. A VSS type chart is considered

0,max

better than its competing chart if the TARL, value of the former is lower than that of the

latter, for a specified &, when the values of TARL, and ASS are the same for all the charts
under comparison.

The following underlying distributions considered by Celano et al. ¥ are also
considered here to investigate the out-of-control performance of the VSS SN short run chart:

e Symmetric distributions - Standard normal N(0,1), Student’s #(4) and #8), and

laplace(o, 1/ 2 ) The Student’s ¢ and laplace (or double exponential) distributions

are heavy-tailed and symmetric.
e Asymmetric distributions - gamma(a, b), with (a, b) = (0.5, 1) and (1, 1). These
gamma distributions have different levels of symmetry and kurtosis, where a and b

represent shape and scale parameters, respectively.



4.2 Results and Discussions

Table 1 shows the computed parameter combinations (ny, n, ,

¢, k), for the (I,n,) pairs
specified in Section 4.1, satisfying all the constraints mentioned in the said section. Note that
if several parameter combinations (n, n,, ¢, k) satisfying the aforementioned constraints

s> UL

exist, for a particular (1,n,) pair, the parameter combination with a TARL, value closest to
I is shown in Table 1. The corresponding in-control TSDRL (TSDRL,) and ASS, values

for each (7,n,) pair are also shown in Table 1. The Markov chain approach enumerated in

Section 3 is used to compute the parameter combinations (ng, n,, ¢, k) using Matlab

programs. Chakraborti, Van der Laan, and Bakir % noted that a distribution-free chart will
have the same run length distribution for every continuous distribution when the process is
in-control (Chakraborti, Van der Laan, and Bakir °). In Table 1, suppose that a quality

practitioner wants to design a VSS SN short run chart with / = 30 and n, = 15, the chart’s
parameters that should be adopted are n, =13, n, = 21, ¢ = 11 and k = 4. These parameters
produce TARL,= 30.01, TSDRL,= 4.37 and ASS,=15.30. Note that no parameter
combination (n, n,, c, k), for I =150 and n,= 11, satisfying the constraints stipulated in
Section 4.1 1s available. For I = 50, if n, is increased, the parameter combination (ng, n, , c,

k) that satisfies the aforementioned constraints exists, as in the case of n,= 15 and 20 (see
Table 1).
Insert Table 1 here
Tables 2, 3 and 4 show the TARL, and TSDRL, values of the VSS SN short run
chart, based on (Z, n,) = (10, 11), (30, 15) and (50, 20), respectively, and 6 € {0.2, 0.4, 0.6,
0.8, 1, 1.25, 1.5, 1.75, 2, 2.5, 3}, for the various distributions explained in Section 4.1. The

VSS SN short run chart’s parameters ng, n,, ¢ and k, for these (I, n,) pairs are obtained



from Table 1. The simulation approach using Statistical Analysis System (SAS), based on

50,000 trials, is adopted to compute the TARL, and TSDRL, values of the VSS SN short
run chart, for the N(0,1), #(4), #8), gamma(0.5,1), gamma(l,1) and laplace(o,l/\/f)

distributions. Note that simulation is employed in order to generate random observations
from the different types of distributions considered here, for the purpose of computing the
TARL, and TSDRL, values based on these distributions. The simulation approach in
computing TARL, and TSDRL, values is briefly discussed as follows: Firstly, random
observations for the desired distribution are generated. Then using the parameter combination
(ng, n,,c, k) for a desired (I, n,) pair in Table 1, the TRL value for each simulation trial is
computed. The process of computing the TRL value is repeated for 50,000 simulation trials.
Finally, the TARL, and TSDRL, values are obtained by taking the average and standard
deviation of the 50,000 TRL values.

The first and second rows of each shift size, 6 show the TARL, and TSDRL, values,
respectively, for a particular distribution and type of scheme (FSS or VSS). A simulation

study has also been conducted for the remaining (I, n,) pairs in Table 1, where similar results
to that for (1, n,) € {(10, 11), (30, 15), (50, 20)} are obtained, hence, it suffices to only report

the results for these three (7, n,) pairs in Tables 2 — 4.

Insert Tables 2 — 4 here
By examining Tables 2 — 4, it is found that the VSS SN short run chart is always

superior to the FSS SN short run chart, in terms of the TARL, criterion, for all underlying
distributions considered. For example, in Table 2 when 6= 0.4, TARL, € {9.60, 9.18, 9.45,

2.31, 2.93, 8.98} for the FSS SN short run chart while the corresponding values for the VSS

SN short run chart are TARL, € {7.13, 5.65, 5.82, 1.54, 1.68, 5.12}, hence, the percentages



of improvement are {25.7%, 38.5%, 38.4%, 33.3%, 42.7%, 43.0%}, for the N(0,1), #(4), #(8),

gamma(0.5, 1), gamma(l, 1) and laplace(O,l/ 2 ) distributions, respectively. From the

TARL, values in this example, it is clearly seen that the VSS SN short run chart has a lower
TARL, value than the FSS SN short run chart, for the same ¢ value and underlying
distribution.

Higher TARL, values are generally obtained for symmetric distributions. As an
example, for symmetric distributions involving the VSS SN short run chart in Table 2 when ¢
=0.6, TARL, =4.72,3.28, 3.48 and 3.10 for the N(0, 1), #(4), #8) and laplace distributions,
respectively. On the contrary, for asymmetric distributions involving the same chart and shift
size, o, TARL,= 1.13 and 1.20, for the gamma(0.5, 1) and gamma(l, 1) distributions,
respectively. In Table 2, for all the distributions, TARL, < 2 for 6 > 1.25, for the VSS SN
short run chart. Additionally, it 1s found that the TARL, value decreases slightly with a
decrease in the value of the shape parameter a, for the gamma distribution. For example, for

the VSS SN short run chart in Table 3, when 6= 0.4, TARL, = 1.75 and 1.65, for a = 1 and

0.5, respectively.

On the other hand, the TRL distribution of the VSS SN short run chart is more
dispersed (larger TSDRL, value) than that of the FSS SN short run chart, for small shifts
(except for gamma(0.5, 1) and gamma(l, 1) distributions). However, for moderate and large
shifts, the TSDRL, values of the VSS SN short run chart are smaller than the corresponding
ones of the FSS SN short run chart, for all underlying distributions. For example, in Table 2
when 6 € {0.2,0.4,0.6,0.8, 1, 1.25, 1.5, 1.75, 2, 2.5, 3} and the underlying distribution is N

(0, 1), TSDRL, € {0.81, 1.54, 2.51, 3.32, 3.35, 2.48, 1.55, 0.97, 0.61, 0.28, 0.12} for the FSS

SN short run chart while for the VSS SN short run chart, TSDRL, € {2.25, 3.09, 2.77, 1.74,



1.00, 0.68, 0.56, 0.47, 0.39, 0.23, 0.11}. In this example, it can be seen that the TSDRL,

values of the VSS SN short run chart are larger than that of the FSS SN short run chart, for &
=0.2, 0.4 and 0.6, while for larger 6 values, the opposite is true.

The TRL distribution is generally less dispersed when the underlying distribution is
gamma or laplace than the N(0, 1) distribution, as the gamma and laplace distributions result

in smaller values of TSDRL, . For example, in Table 3 when 6 = 0.4, TSDRL,=4.33 (9.54)

for the VSS SN short run chart with the laplace (N(0, 1)) distributions. The N(0,1)

distribution results in a smaller TSDRL, value only when & = 0.2. Note that for 0.20 < 6 <
0.80, the TSDRL, values for the FSS SN short run chart increases with ¢, for the N(0, 1),

#(4), t(8) and laplace distributions. However, for 6 > 1, the TSDRL, value decreases when 6

increases, for both FSS and VSS SN short run charts.

The proposed VSS SN short run chart can be adopted in short production runs when
the normality assumption of the underlying process cannot be satisfied or the underlying
process distribution is unknown and when there is flexibility in varying the sample size. In
comparison to the FSS SN short run chart, the VSS SN short run chart generally shows
superior TARL, and TSDRL, performances. Hence, the VSS SN short run chart provides
practitioners with a process monitoring tool which is efficient and can be used in any

production process without any specific knowledge about the distribution of the continuous

quality characteristic.

S An Illustrative Example

A dataset from Montgomery *’ is adopted to illustrate the implementation of the VSS SN
short run chart. In this example, the fill volume of soft drink beverage bottles is the quality

characteristic of interest. The volume is measured by placing a gage over the crown and



comparing the height of the liquid in the neck of the bottle against a coded scale. On this

scale, a reading of zero corresponds to the correct fill height, hence, 7,, = 0.

To ensure a fair comparison between the FSS and VSS SN short run charts, both

charts are designed to have / = 10. For the FSS SN short run chart, n, is set as 11, while for
the VSS SN short run chart, n;, =9 and n, = 13 are considered. Consequently, the UCL/LCL

and UWL/LWL of the VSS SN short run chart are £¢ = £7 and tk = 2, respectively (see
Table 1), while the UCL, / LCLf of the FSS SN short run chart are £¢, = +9. The values
of the SN, statistic of the FSS and VSS SN short run charts are computed using Equation (1).
For the VSS SN short run chart, the initial sample size is set as n; .

In the implementation of the VSS SN short run chart, if the discrete value SN, € I €
{~k, —k+1, ..., k—-1,k} = {=2,-1,0, 1, 2}, the next sample of size n, (= 9) should be
taken, while if the discrete value SN, € I, € {-c,—c+1,...,—k—-1} U{k+1,k+2,..., ¢}
={-7,-6, ..., -3} U {3, 4, ..., 7}, the next sample of size n, (= 13) is taken. However, if
SN, <—c(=-7) or SN,>c(=7), an out-of-control signal will be issued, where an

investigation of the underlying process is made so that assignable causes are identified and

removed in order to bring the process back into an in-control state. Then process monitoring

is resumed by adopting a small sample size (ng) in taking the next sample. Contrastingly, for
the FSS SN short run chart, an out-of-control signal is issued when SN, <-c, (=-9) or
SN;>c¢, (=9).

For the purpose of illustration for the VSS SN short run chart, see the following

discussion. Initially, the first sample (n, =9) is taken. Then SN, =5 is computed (see Table

5). As SN, € I,, the process is declared as in-control and the second sample (n, = 13) is



taken. As SN, =5 € I,, the process is still in-control, where the third sample (n, = 13) is
taken. Consequently, SN, = — 7 is obtained. As SN, € I,, the process is concluded as in-
control and the fourth sample (n, = 13) is taken. AS SN, =1 e I, the process is still in-
control. Subsequently, the fifth sample of size n, =9 is taken. The same process of taking the
next sample, based on the current sample information, followed by computing the SN,

statistic continues until the eighth sample. At the eighth sample SN, = -3 is obtained.
Insert Table 5 here
As SN, € I,, the process is concluded as in-control and the ninth sample (n, = 13) is

taken. Then SN, = -9 is computed. Clearly, the process is declared as out-of-control by the

VSS SN short run chart at the ninth sample as SN, <—c (=-7). Suppose that corrective

actions are taken to rectify the out-of-control process, then the following sample (tenth

sample) is taken with a small sample size of n, = 9 (see Table 5). Figure 1 shows the VSS

SN short run chart plotted using the fill volume data of soft drink beverage bottles in Table 5.
Insert Figure 1 here

For comparison, the FSS SN short run chart is plotted in Figure 2. This chart is plotted

using the SN, statistics in Table 5. Figure 2 shows that the FSS SN short run chart does not

issue any out-of-control signal as SN, € [—c € f] =[-9, 9]. This example shows that the

VSS SN short run chart is more sensitive than the FSS SN short run chart in detecting an out-
of-control process.

Insert Figure 2 here

6 Conclusion



The paper proposes the VSS SN short run chart for use in a finite production horizon when
the underlying distribution of the quality characteristic being monitored is nonnormal or
unknown. The Markov chain approach is employed to derive the performance measures and
compute the parameters of the proposed VSS SN short run chart. The proposed VSS SN chart
is compared with the fixed sample size (FSS) SN chart in a short production runs
environment. Simulation studies indicate that the nonparametric VSS SN short run chart

outperforms the FSS SN short run chart in detecting all sizes of shifts in the process mean
and the outperformance increases as the value of n, increases, for several symmetric and

asymmetric underlying distributions. The charts’ performances are compared in terms of the
TARL, and TSDRL, criteria.

Future research can focus on extending the study on short run to other types of
distribution-free control charts, including investigations on sign ranked charts. New research
works can be conducted to investigate the EWMA, CUSUM and multivariate nonparametric
charts for process monitoring in short run. Runs rules and adaptive sampling strategies can be
adopted in short run control charts using the sign statistic. Finally, distribution-free control
charts for monitoring process dispersion in short run can also be developed in a future

research.
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Table 1. The VSS SN short run chart’s parameter combination ( ng, n, , ¢, k) and corresponding
TARL,, TSDRL, and ASS, values for I € {10, 30, 50} and n, € {11, 15, 20}

I n, ng n, c k TARL, TSDRL, ASS,
10 11 9 13 7 2 10.16 1.97 10.91
15 12 20 10 3 10.76 1.21 15.07
20 15 31 13 4 10.83 1.04 20.06
30 11 10 19 8 7 30.21 5.33 10.18
15 13 21 11 4 30.01 4.37 15.30
20 15 23 13 2 30.27 5.48 20.02
50 11 - - - - - -
15 14 26 12 7 50.14 6.40 14.75
20 16 24 14 3 50.05 6.00 20.00




Table 2. TARL, (first line of 6) and TSDRL, (second line of o) values for the FSS and VSS SN short run charts when /=10 and n, = 11 with

the chart’s parameters ng =9, n, =13, ¢ =7 and k = 2, for different underlying distributions

ff;lf NO, 1) NO,1)| «4) 4 | «8)  «8) ga“i()o's ’ ga“i()o's ’ garln)(l’ garlr;(l’ laplace  laplace
5 | FSS VSS | FSS VSS | FSS  VSS |  FSS VSS FSS vss | FSs  VssS
02 | 989 896 | 983 858 | 986 859 | 7.65 338 836 212 | 979 8.5
081 225 | 101 253 | 094 252 | 3.5 1.97 2.83 2.48 113 277
04 | 960 713 | 918 565 | 945 582 | 231 1.54 2.93 168 | 898 512
154 309 | 214 307 | 178 304 | 165 0.57 2.20 063 | 236 288
06 | 882 472 | 758 328 | 835 348 | 119 113 131 120 | 743 310
251 277 | 320 192 | 285 200 | 048 0.34 0.64 040 | 321 1.79
08 | 723 307 | 543 226 | 666 238 | 1.02 1.01 1.05 104 | 544 226
332 174 | 334 LIl | 338 109 | 014 0.12 0.22 018 | 334 1.08
1| 544 223 | 366 183 | 471 193 |  1.00 1.00 1.00 100 | 3.89 1.88
335 100 | 271 074 | 312 072 | 003 0.03 0.07 006 | 285 0.7
125 | 331 176 | 237 155 | 291 163 |  1.00 1.00 1.00 100 | 263 1.61
248 068 | 174 058 | 222 058 | 0.0 0.00 0.00 000 | 200 06l
15 | 215 150 | 176 138 | 197 145 | 1.00 1.00 1.00 1.00 1.96 1.43
155 056 | 115 051 | 137 052 | 000 0.00 0.00 0.00 138 053
175 | 158 131 | 147 128 | 154 130 |  1.00 1.00 1.00 1.00 1.59 131
097 047 | 083 046 | 092 047 |  0.00 0.00 0.00 000 | 099 047
2 | 130 119 | 131 120 | 132 120 | 1.00 1.00 1.00 1.00 138 1.23
061 039 | 063 040 | 065 041 | 0.00 0.00 0.00 000 | 074 042
25 | 107 106 | 114 LIl | 112 109 | 1.00 1.00 1.00 1.00 117 112
028 023 | 039 031 | 037 029 | 0.0 0.00 0.00 000 | 045 032
3| 102 101 | 108 106 | 105 104 |  1.00 1.00 1.00 1.00 1.09 1.07
012 011 | 029 024 | 022 020 | 0.00 0.00 0.00 000 | 032 025




Table 3. TARL, (first line of 6) and TSDRL, (second line of o) values for the FSS and VSS SN short run charts when /=30 and n, = 15 with

the chart’s parameters ng =13, n, =21, ¢ =11 and k = 4, for different underlying distributions

fgeﬂ NO,1) NO,1)| 14) w4 | «8)  «8) garri()O.S ’ ga“i()o'S ’ garln)(l’ garln)(l, laplace laplace
b FSS  VSS | FSS VSS | FSS  VSS FSS VSS FSS VSS FSS VSS
020 | 29.87 26.03 | 29.79 2323 | 29.86 23.70 | 22.28 3.28 25.20 428 2965 2022
149 787 | 203 945 | 1.67 921 9.90 1.74 8.62 2.67 2.61 10.09
040 | 2927 14.09 | 28.04 7.58 | 28.86  8.05 3.10 1.65 4.42 1.75 27.31 5.97
368 954 | 589 579 | 464  6.10 2.53 0.50 3.87 0.51 6.85 433
0.60 | 2671 531 | 21.99 320 | 2519 3.35 1.27 1.19 1.46 1.28 20.65 3.00
740 378 | 10.03 165 | 861 172 0.58 0.39 0.83 0.45 10.39 1.45
0.80 | 20.67 295 | 1243 223 | 1742 234 1.03 1.02 1.07 1.05 12.39 2.22
1032 143 | 949 081 | 10.66 0.81 0.17 0.15 0.26 0.23 9.44 0.79
1.00 | 1220 220 | 620 188 | 952 196 1.00 1.00 1.01 1.01 6.87 1.91
930 074 | 560 054 | 801 052 0.04 0.03 0.08 0.07 6.16 0.56
125 | 536 1.82 | 331 166 | 435 1.74 1.00 1.00 1.00 1.00 3.81 1.71
479 052 | 278 050 | 3.84 048 0.00 0.00 0.00 0.00 3.22 0.50
1,50 | 2.80  1.60 | 2.19 1.50 | 252  1.55 1.00 1.00 1.00 1.00 2.52 1.55
226 050 | 1.64 050 | 1.98  0.50 0.00 0.00 0.00 0.00 1.98 0.50
175 | 1.85 141 | 170 136 | 1.80  1.40 1.00 1.00 1.00 1.00 1.89 1.43
128 049 | 1.11 048 | 122 049 0.00 0.00 0.00 0.00 1.31 0.50
200 | 143 127 | 143 127 | 145 127 1.00 1.00 1.00 1.00 1.56 1.32
078 044 | 079 044 | 082 044 0.00 0.00 0.00 0.00 0.93 0.47
250 | 110 110 | 120 1.15 | 116 1.12 1.00 1.00 1.00 1.00 1.25 1.18
034 027 | 049 035 | 044 033 0.00 0.00 0.00 0.00 0.55 0.38
300 | 1.02 101 | 1.I0 1.08 | 1.06 1.05 1.00 1.00 1.00 1.00 1.13 1.10
0.15 0.14 | 033 028 | 026 022 0.00 0.00 0.00 0.00 0.38 0.29




Table 4. TARL, (first line of 8) and TSDRL, (second line of o) values for the FSS and VSS SN short run charts when /= 50 and n, =20 with

the chart’s parameters ng =16, n, =24, c = 14 and k = 3, for different underlying distributions

fgeﬂ NO,1) NO,1)| 14) w4 | «8)  «8) garri()O.S ’ ga“i()o'S ’ garln)(l’ garln)(l, laplace laplace
b FSS VSS | FSS VSS | FSS  VSS FSS VSS FSS VSS FSS VSS
020 | 49.99 4455 | 4996 39.79 | 49.98 39.66 | 43.10 3.96 46.85 5.48 4987  34.26
033 1230 | 1.18 1545 | 095 1554 | 13.74 2.44 9.74 3.99 2.13 17.25
040 | 49.82 23.13 | 48.96 11.09 | 49.57 1127 | 4.52 1.72 7.03 1.86 | 48.34 8.31
235 1633 | 574  9.06 | 3.70  9.30 3.97 0.49 6.75 0.51 7.28 6.70
0.60 | 48.01  7.13 | 4275 3.86 | 46.62 3.89 1.37 1.22 1.83 134 | 41.34 3.51
790 548 | 13.92 235 | 10.00 226 0.69 0.42 1.21 0.47 14.80 1.98
0.80 | 40.86 347 |26.11 244 |36.11 2.49 1.04 1.03 1.09 1.06 26.06 2.41
1522 198 | 1734 094 | 17.00 0.93 0.19 0.16 0.31 0.25 17.52 0.91
1.00 | 2523 240 | 11.39 200 | 1925 2.07 1.00 1.00 1.01 1.01 12.73 2.04
1746 090 | 1032 059 | 1550 0.53 0.04 0.04 0.09 0.08 11.50 0.61
125 | 938 192 | 48 175 | 717  1.82 1.00 1.00 1.00 1.00 5.91 1.80
862 052 | 423 049 | 668 046 0.00 0.00 0.00 0.00 5.45 0.49
1,50 | 397 1.69 | 281 157 | 347 164 1.00 1.00 1.00 1.00 3.41 1.63
340 049 | 226 050 | 2.86  0.49 0.00 0.00 0.00 0.00 2.95 0.50
175 | 225 148 | 200 144 | 220 147 1.00 1.00 1.00 1.00 2.33 1.50
170 050 | 140 050 | 1.61  0.50 0.00 0.00 0.00 0.00 1.77 0.50
200 | 160 132 | 161 132 | 1.66 133 1.00 1.00 1.00 1.00 1.81 1.38
098 047 | 099 047 | 1.05 047 0.00 0.00 0.00 0.00 1.19 0.49
250 | 113 110 | 127 118 | 123 1.15 1.00 1.00 1.00 1.00 1.34 1.22
040 030 | 059 038 | 0.53  0.35 0.00 0.00 0.00 0.00 0.67 0.41
300 | 1.03 102 | 1.14 1.10 | 1.08 1.06 1.00 1.00 1.00 1.00 1.16 1.12
0.17 0.5 | 040 029 | 030 024 0.00 0.00 0.00 0.00 0.42 0.32




Table 5. Fill volume data of soft drink beverage bottles

Data for the VSS SN short run chart

Data for the FSS SN short run chart

Sample

number | x X, X, X, X, X X X, X, X 0 X, X, X_ SN | x, X, X, X, X, X X, X X, X | SN
1 25 05 20 -10 10 -1.0 0S5 1.5 05 5 25 05 20 -10 1.0 -1.0 05 1.5 05 -1.5 05 |5
2 -1.5 0.5 1.0 1.5 10 -10 10 15 -1.0 15 1.0 1.0 -1.0 5 1.0 1.5 1.0 -10 10 15 ~-10 15 1.0 1.0 -1.0 |5
3 -5 -10 -10 10 -10 05 -20 -10 15 -15 -20 -15 -05 -7 -5 -10 -10 10 -10 05 -20 -10 15 ~-1.5 -20]|-5
4 0.5 1o -05 -05 10 -05 05 -10 10 -20 1.0 1.0 -1.0 1 -1.5 -05 05 10 -05 -05 10 -05 05 -10 1.0 |-1
5 -1.0 -1.0 15 .o -15 -05 15 -1.0 05 -1 20 10 10 -10 -10 -1.0 15 1.0 -15 -05 15 |-1
6 -0.5 20 -15 15 1.5 05 1.0 1.0 -05 1 -1.0 05 -05 -20 -15 15 1.5 05 1.0 1.0 05 |1
7 35 -10 -15 -15 -1.0 -1.0 1.0 05 1.5 -1 35 -10 -15 -15 -10 -1.0 1.0 05 .5 20 -1.5 | -1
8 20 -15 05 -05 20 -10 -20 -0.5 -05 -3 05 -05 20 -10 -20 -05 -05 20 -15 -05 ~-10/|-5
9 20 -15 -05 -10 -10 -05 -05 -10 05 -05 -10 -1.0 -1.0 -9 -0 -05 -05 -10 05 -05 -10 -1.0 -1.0 05 1.0 | -5
10 0.5 1o -10 -05 -20 -1.0 -1.5 15 1.5 -1 -1.0 -05 -20 -10 -15 15 1.5 1.0 1.5 1.5 1.0 1
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Figure 1. VSS SN short run chart for the fill volume of soft drink beverage bottles
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Figure 2. FSS SN short run chart for the fill volume of soft drink beverage bottles



