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Abstract

The objective of this article is to show how daily hospital data can be used to
monitor the evolution of the COVID-19 epidemic in France. A piecewise defined
dynamic model allows to fit very well the available hospital admission, death
and discharge data. The change-points detected correspond to moments when
the dynamics of the epidemic changed abruptly. It is therefore a surveillance
tool, not a forecasting tool. In other words, it can be used effectively to warn
of a restart of epidemic activity, but it is not designed to assess the impact of a
new lockdown or the emergence of a new variant. The model, data and fits are
implemented in an interactive web application.
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1. Introduction
After some early cases detected in China in late 2019, the COVID-19 outbreak spread
very quickly around the world in early 2020 (Velavan and Meyer 2020).
This global pandemic quickly gave rise to numerous studies to try to understand the
factors that could explain its spread, such as the effect of climate (Briz-Redón and
Serrano-Aroca 2020; Wu et al. 2020) or of human mobility (Kraemer et al. 2020).
Many mathematical models have been developed to describe the dynamics of this pan-
demic and possibly to predict the future epidemiological situation. Among all these
approaches, we can mention the agent-based models used, for instance, for simulating
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the spread of COVID-19 among the inhabitants of a city (Silva et al. 2020).
But the most used approaches for the modeling of the dynamics of COVID-19 remain
undoubtedly the SIR-type (or SEIR-type) epidemiological models (He et al. 2020).
Such models allow, among other things, to simulate different scenarios (Carcione et al.
2020), in order to predict what would be, for example, the effect on the epidemic of
a public health intervention (Di Domenico et al. 2020; López and Rodo 2021; Yang
et al. 2020). On the other hand, these compartmental epidemiological models offer the
advantage of being able to take into account different subgroups in the population, such
as asymptomatic individuals (Chen et al. 2020).
These different models that have been proposed claim to describe "the reality", i.e.
how the pandemic evolves over time in the population. In order to get as close as
possible to this reality, the models are necessarily complex, with many compartments,
transfers between these compartments, and therefore many parameters. The use of
these models to simulate the evolution of the epidemic or to evaluate the impact of a
sanitary measure requires choosing the values of these parameters. Model calibration
allows one to find empirically a set of parameters that provides a good fit between the
model calculations and the observed data, but the complexity of the model makes it
unidentifiable in practice. Indeed, the data available to fit the model are limited and
do not allow to determine univocally the set of parameters. Then, although a set of
parameters produces a good fit to the observed data, there is no guarantee that the
predictions proposed by the model are reliable.
Our approach here is quite different. We do not claim to develop a model that accurately
describes the dynamics of the epidemic, but rather a simple, robust model that fits the
data very well. The objective of such a model is not to predict the evolution of the
epidemic in the future, to determine the date of the next peak or to define the best
strategy to implement to contain the epidemic. We will only try to describe the past
dynamics, and predict what should happen in the near future if no change occurs in
the dynamics of the epidemic, and above all to detect as soon as possible a change in
these dynamics when it exists.
Consequently, the choice of data to be used is fundamental to our approach. The data
we have chosen to use for this monitoring are the daily hospitalization and death data
published daily by Santé Publique France, the French national public health agency.
(Salje et al. 2020; Paireau et al. 2021).
We propose to describe these data by means of a statistical model that allows to
combine several effects such as epidemic dynamics, a weekly pattern and irregular
variations. The dynamics of hospital admissions (normal therapy and intensive care
units) is described by considering an exponential dynamics, but for which the rate
function is defined piecewise linearly, which allows to describe very well the different
phases of growth and decrease of these admission numbers. Fitting this model to the
data then consists in detecting change-points in the admissions data. The fitted model
allows to identify the different epidemic waves observed in France since March 2020.

2. Which data to use?
Monitoring the dynamics of the pandemic in real time naturally requires reliable and
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regularly updated data. The question is to determine which data can best describe
these dynamics and also detect changes in these dynamics as quickly as possible.

A few weeks after the emergence of the virus, an online interactive dashboard was
developed and hosted by the Center for Systems Science and Engineering (CSSE) at
Johns Hopkins University, Baltimore, MD, USA, to visualise and track reported cases
of COVID-19 in real time (Dong et al. 2020). The data collected and made freely
available include the number of confirmed COVID-19 cases, deaths, and recoveries
for all affected countries. These data have been widely used to track and model the
pandemic, whether through visual exploratory data analysis (Dey et al. 2020), random
processes (Benvenuto et al. 2020), or epidemiological models (Lavielle et al. 2021).

French data are displayed Fig. 1. Although a general trend seems to be visible in
these graphs, there are several problems with their use. First, the data appear to be
extremely noisy and contain a significant number of outliers, both negative values and
isolated abnormally high values. A second problem comes from the definition of some
of these series. Indeed, the numbers of confirmed cases and recoveries that are reported
represent only a fraction of the total infections and recoveries. These fractions are not
homogeneous over time. For example, the number of confirmed cases in France during
the first wave (between March and May 2020) corresponds to the number of patients
whose infection was confirmed in hospital. From the second wave onwards (September
to November 2020), confirmed cases include positive tests and are therefore much higher
than during the first wave.

One can then imagine using the results of the virological tests represented on Fig. 2
as a marker since they are directly related to the incidence rate of COVID-19 in the
population. It should be noted that the definition of the incidence rate, widely used
by the authorities as well as the media, is simply the number of positive tests over one
week, related to 100,000 inhabitants. This definition obviously does not correspond to
the real incidence rate since not all the population is tested (Pullano et al. 2021). Its
evolution does not necessarily reflect the evolution of the epidemic in France either,
since the number of tests performed daily changes over time. For example, the large
increases in positive tests in October 2020 and March 2021 are partly explained by a
large increase in the number of tests performed during these periods. The positivity
rate (i.e. the proportion of positive tests among the tests performed) seems to be a
better indicator, since it takes into account, by definition, variations in the number
of tests performed. Although it provides relevant and complementary information,
this positivity rate is unfortunately not homogeneous over time because the tested
population is not homogeneous over time. We see a spectacular drop in the positivity
rate in December 2020. This drop is probably not due to a sudden drop in infections,
but rather to a one-time increase in the number of tests by people who are not at risk,
but who nevertheless wished to be tested before the end-of-year festivities and family
gatherings.

We will finally use hospital data obtained from the SI-VIC database, the national
inpatient surveillance system used during the pandemic. Data are sent daily to Santé
Publique France, the French national public health agency in charge of making them
publicly available:
https://www.data.gouv.fr/fr/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19.

https://www.data.gouv.fr/fr/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19
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These data are shown Fig. 3. These are the daily numbers of patients i) newly admitted
to normal therapeutic wards, ii) newly admitted to intensive care units, iii) deceased
in the hospital, iv) allowed to leave the hospital (hospital discharges).
There are several advantages to using this data. First of all, these data are regu-
larly consolidated and can therefore be considered reliable. Furthermore, apart from a
clearly visible weekly pattern, the data are homogeneous over time: values at different
dates are directly comparable. Finally, the dynamics of admissions are directly linked,
with a certain time lag, to the dynamics of new infections: an increase in admissions
necessarily reflects a prior increase in infections, and the same applies to decreases. We
can therefore reasonably expect to detect changes in the dynamics of the epidemic by
detecting changes in the dynamics of admissions.

3. The model

3.1. The statistical model
Fig. 3 shows variations over time in the data due to several combined effects: an over-
all trend (epidemic dynamics), a periodic component (weekly pattern), and irregular
variations.
For each of the four series (z`j, 1 ≤ ` ≤ 4, 1 ≤ j ≤ n) observed at time (tj, 1 ≤ j ≤ n),
we propose the following model

z`j = f`(tj) + fα`
` (tj)(s`j + ε`j) (1)

where f` is the trend for the `-th series, (s`j, 1 ≤ j ≤ n) is a weekly periodic compo-
nent such that s`,j+7 = s`j for any j and (ε`j) is a sequence of residual errors. The
multiplicative term fα`

` (tj) allows us to take into account the fact that the amplitude
of both the periodic and irregular variations varies with the value of the trend. The
exponent α` allows here to control the link between these amplitudes.
We propose to represent the trends (f`, 1 ≤ ` ≤ 4) by means of a dynamic system. It
is the construction of this system and its estimation that represents the most delicate
part of this modeling work.

3.2. The dynamical model
We consider that the study starts at a time t0 and we will arbitrarily set t0 = 0. We
note Intw(t) and Iicu(t), the total numbers of patients admitted, respectively in normal
therapy services and in intensive care units, between time t0 and time t. We also
note D(t) and O(t), the numbers of patients who died in hospital and were discharged
recovered from hospital between time t0 and t, respectively. Finally, we note H(t) the
number of patients present in the hospital (in normal care or in intensive care) at time
t.
The variations of the number of hospitalized patients thus depend on the admissions
and discharges according to the following dynamics:

.
H(t) =

.
Intw(t) +

.
Iicu(t) −

.
D(t) −

.
O(t) (2)
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Our goal is now to build a model for each of these 4 terms.
So let’s start with the admissions. But rather than modeling the total admissions
Intw(t) and Iicu(t), it is their variations that we will model, since it is, by definition,
these functions that directly describe the dynamics of admissions over time, i.e., how
admissions increase at the beginning of an epidemic wave or decrease at the end of a
wave. We propose to use exponential-type dynamics for each of these series, but for
which the rate functions can vary over time:

..
Intw(t) = kntw(t)

.
Intw(t) (3)..

Iicu(t) = kicu(t)
.
Iicu(t) (4)

A constant and positive (resp. negative) rate function kntw, or kicu, means that the
number of admissions increases (resp. decreases) exponentially fast. The fact of using
a rate that can vary with time allows then to transition between different regimes of
exponential growth and decay. We will consider that these transitions are linear, using
for kntw and kicu piecewise linear functions. We therefore suppose that there exist Kntw
and Kicu instants, called change-points, τntw,1, τntw,1,. . . , τntw,Kntw and τicu,1, τicu,1,. . . ,
τicu,Kicu such that

kntw(t) = bntw + 2 cntwt+ 2
Kntw∑
k=1

hntw,k max(t− τntw,k , 0)

kicu(t) = bicu + 2 cicut+ 2
Kicu∑
k=1

hicu,k max(t− τicu,k , 0)

Assuming that the rate functions kntw and kicu are piecewise linear functions allows to
compute the solution of the equations (3) and (4) and verify that log(

.
Intw) and log(

.
Iicu)

are piecewise quadratic functions:

log(
.
Intw(t)) = antw + bntwt+ cntwt

2 +
Kntw∑
k=1

hntw,k max(t− τntw,k , 0)2

log(
.
Iicu(t)) = aicu + bicut+ cicut

2 +
Kicu∑
k=1

hicu,k max(t− τicu,k , 0)2

where antw = log(
.
Intw(t0)) and aicu = log(

.
Iicu(t0))

It is now assumed that the numbers of deaths and discharges between times t and t+dt
depend on the number of patients hospitalized at time t:

.
D(t) = γdeaths(t)H(t) (5).
O(t) = γout(t)H(t) (6)

The mortality rate γdeaths and the discharge rate γout are not constant over time. Again,
we consider that the logarithms of these functions are piecewise quadratic functions:

log(γdeaths(t)) = adeaths + bdeathst+ cdeathst
2 +

Kdeaths∑
k=1

hdeaths,k max(t− τdeaths,k , 0)2

log(γout(t)) = aout + boutt+ coutt
2 +

Kout∑
k=1

hout,k max(t− τout,k , 0)2
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Now that the model is defined, all that remains is to fit it to the data at our disposal.

4. Fitting the model to the French hospital data

4.1. Fitting the dynamical model
The objective is now to estimate the parameters of functions

.
Intw,

.
Iicu, γdeaths and γout.

We first remove the weekly pattern and smooth the data using an unweighted 7-day
moving average for the four series (z`j). We then denote the four smoothed series
obtained by (qntw,j), (qicu,j), (dj) and (oj).
On the one hand, the daily series of admissions to the normal therapy wards (qntw,j) and
to intensive care units (qicu,j) will allow us to estimate the derivatives of the cumulative
counts Intw and Iicu using the following model:

log(qntw,j) = log(
.
Intw(tj)) + entw,j

log(qicu,j) = log(
.
Iicu(tj)) + eicu,j

The mortality rate γdeaths and the discharge rate γout can naturally be estimated using
the observed daily rates (dj/hj) and (oj/hj) where hj is the number of hospitalized
patients (all units combined) at time tj. We use for these series the model

log(dj/hj) = log(γdeaths(tj)) + edeaths,j

log(oj/hj) = log(γout(tj)) + eout,j

Let y1,j = log(qntw,j), y2,j = log(qicu,j), y3,j = log(dj/hj) and y4,j = log(oj/hj). For
` = 1, . . . , 4, we then have the following model:

y`j = a` + b` t+ c` t
2 +

K∑̀
k=1

h`,k max(t− τ`,k , 0)2 + e`j (7)

For each of the four series, the problem then becomes a problem of change-points
detection:

• For a given number of change points K`,

– Find the locations of the K` change points τ`,1, . . . , τ`,K`−1,
– Estimate the parameters of the model a`, b`, c`, h`,1, h`,2, . . . , h`,K`

,

• Select the “best” model, i.e. select the number of change points K`.

For each of the series, we propose here to use a penalized least squares criterion to
estimate all the parameters of the model and the number of change-points.
In order not to make the notations unnecessarily heavy, we can remove the subscript `
to describe the estimation procedure used, which is identical for the four series.
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For a given number of change-pointsK, for a set of parameters θK = (a, b, c, h1, . . . , hK)
and a sequence of change-point instants TK = (τ1, . . . , τK), we write down

f(t; θK , TK) = a+ b t+ c t2 +
K∑
k=1

hk max(t− τk , 0)2

We then estimate θK , TK and K by minimizing

U(θK , TK , K) =
n∑
j=1

(yj − f(tj; θK , TK))2 + λK

A high value of the penalty parameter λ favors configurations with few change-points
while a lower value of λ allows a higher number of changes.
The minimization of the penalized criterion U can be decomposed in several steps.
Indeed, for a given series of change-points instants TK , the minimization of U with
respect to θK is immediate since it is simply a matter of computing the least squares
estimate in a linear model. For a given number of changes K and by setting

θ̂(TK) = arg min
θK


n∑
j=1

(yj − f(tj; θK , TK))2

 (8)

The estimator of TK is then defined as

T̂K = arg min
TK


n∑
j=1

(
yj − f(tj; θ̂(TK), TK)

)2
 (9)

The number of changes K is therefore chosen as

K̂ = arg min
K


n∑
j=1

(
yj − f(tj; θ̂(T̂K), T̂K)

)2
+ λK

 (10)

The tricky part is the estimation of the change-points as defined in (9). Indeed, we can-
not use a dynamic programming algorithm because, due to the continuity constraints
imposed on f and its derivative, the criterion to be minimized cannot be decomposed
as a sum of independent criteria on each segment.
As the data series are updated daily, the proposed algorithm is a sequential procedure
that requires little computation. Indeed, the configuration at day j+1 is obtained from
local modifications of the configuration obtained at day j. Let us imagine that T (j)

K is
the optimal configuration obtained on day j. We then compute T (j+1)

K and T (j+1)
K+1 the

best configurations with, respectively, K and K+1 breaks when a new observation yj+1
is available at time tj+1. These configurations are obtained by iterative optimization,
the position of a single break being modified at each iteration.
The best of these two configurations is then selected using the penalized criterion (10).
The value of the penalty parameter λ is here manually adjusted in such a way as to
obtain as a result a segmentation that visually "looks like" the segmentation that one
would build oneself by looking at the data. In other words, we make sure that all the
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changes that we consider significant are well detected, while the smaller, more irregular
variations are not associated with the signal but considered as random fluctuations.
The results proposed below were all obtained by choosing λ = 10−4.
Fig. 5 represents the fits obtained for the series (qntw,j) and (qicu,j). We have also
represented on this figure the relative variations (rntw,j) and (ricu,j) where

rntw,j = qntw,j − qntw,j−1

qntw,j−1
; ricu,j = qicu,j − qicu,j−1

qicu,j−1

By construction, while the series (qntw,j) and (qicu,j) fluctuate around the functions.
Intw and

.
Iicu, the series (rntw,j) and (ricu,j) fluctuate around the rate functions kntw =..

Intw/
.
Intw and kicu =

..
Iicu/

.
Iicu also shown on the two bottom graphs of the figure.

We can see very well on these graphs that it is reasonable to consider for kntw and kicu
piecewise linear functions. It is finally the variations of these rate functions that give a
synthetic picture of the dynamics of the epidemic in France.
Once the γdeaths and γout functions have been estimated, equations (2), (5) and (6)
allow us to obtain the D and O functions. The mortality and discharge rates are
plotted Fig. 6 as well as the daily numbers of deaths and discharges. These graphs
confirm that mortality rates vary over time and that these variations must be taken
into account in order to correctly model deaths and discharges.
The sudden drop observed during the second half of March 2020 corresponds to the
implementation of the first lockdown which was very strict. The decrease in admissions
was of course not instantaneous since it took several days for the rate functions to
become negative. This was followed by a period of more than two months during which
admissions continued to decline, until about mid-June while the lockdown had ended
in mid-May.
Although admissions remained at a very low level until early September, the rate func-
tions clearly show a change in dynamics from mid-June onwards: the increase in the
rate functions reflects a gradual slowdown in the decline of admissions, before reaching
a minimum in early July and slowly rising again. The rapid increase in admissions is
then very visible in early September, but especially in early October. Both the author-
ities and the media placed the start of the second wave at this time, when it was most
visible, but the change in dynamics was much earlier!
A sudden decrease in the rate functions around October 18 shows that the increase in
the daily number of hospitalizations started to weaken around this date. It is interesting
to note that the measures to contain this second wave were put in place after the change
in dynamics had occurred (generalized curfew on October 24 and then new confinement
on October 30). This slowdown continued until the first days of November, when the
number of new hospitalizations started to decrease and the variations became negative.
Between mid-November and mid-March, there was a succession of periods of fairly slow
growth and decline in the rate functions, which are difficult to associate with particular
events. For several months, France was in a relatively stable regime, since the measures
in place prevented a new explosion of contaminations - and therefore of hospitalizations
- but did not allow a return to a normal situation either.
The decrease in the rate functions observed from the end of March onwards led to neg-
ative values of these functions from mid-April onwards, and thus a continuous decrease
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in hospitalizations until today (i.e. end of June). It is reasonable to believe that the
increase in vaccination coverage from 10% to 50% (for at least one dose) during this
period explains in part this significant decrease in epidemic activity.
It is important to remember that the role of the model proposed here is not to predict
how the epidemic will evolve in France in the coming weeks or months. It has not been
developed for this purpose since it only uses hospitalization data and these data do
not contain any information related to possible changes in behavior, health measures,
vaccination policy, etc. The model simply predicts what would happen in the absence
of change: the different estimated functions can be used and evaluated at times after
the last observation time.
By using a linear Gaussian model for the model (7), it is also possible to construct a
confidence interval for the estimated regression function and a prediction interval for
future observations, in the absence of new changes. But again, it is not a question of
evaluating the performance of the model by checking that future observations are indeed
within the constructed prediction interval, but rather by checking that the prediction
interval does not contain the observed data after a change in dynamics. Examples of
such intervals are shown in Fig. 7. Data were considered to be available until March
4, 2021 on the left and until March 24 on the right. Confidence intervals were then
calculated for the functions

.
Intw and kntw as well as prediction intervals for the series

(qntw,j) and (rntw,j) for the next 14 days, i.e. after the last observation. The intervals are
represented with the data that were actually observed during these forecast periods. We
can see in the left figure that the prediction intervals do contain the two observed series.
Indeed, no change will be detected during this forecast period (March 5 - March 19) and
the model provides predictions consistent with the observations. On the contrary, the
figures on the right show an inconsistency between the predictions and the observations:
while the model assumes that the rate function continues to increase linearly, a change
in dynamics occurred around March 25, 2021 and the rate function started to decrease
from that date. It is clear from this example that this change was detectable only a
few days after it occurred.

4.2. Fitting the statistical model
Let us now return to the original series of daily admissions to conventional therapy
(zntw,j) and intensive care unit (zicu,j).
The regression model (1) suggests that these series decompose into a trend, a periodic
component related to the day of the week, and a series of residual errors. Now that
estimators f̂1 and f̂2 of the trends f1 =

.
Intw and f2 =

.
Iicu have been obtained, we will

be able to use the model (1) to estimate the other components of the model.
Let us assume for simplicity of notation that n = 7h. Then, for ` = 1, 2 and for a
given value of α`, the periodic series (s`j) and the series of residuals (e`j) can easily be
estimated:

w`,j = z`,j − f̂`(tj))
f̂α`
` (tj)

; j = 1, 2, . . . , n

ŝ`,m = 1
h

h−1∑
k=0

w`,m+7k ; m = 1, 2, . . . , 7
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ê`,j = z`,j − f̂`(tj)) − f̂α`
` (tj)ŝ`,j

f̂α`
` (tj)

; j = 1, 2, . . . , n

The exponent α` is chosen so as to obtain a residual error series (εj) that is the least
correlated possible, or, more precisely, such that the empirical correlation between the
series (ê`,j) and (ê`,j+7) is as close to 0 as possible. This criterion leads us to choose
α1 = α2 = 0.8.
Fig. 8 shows the estimated periodic component and the estimated residual errors for
the two series. Not surprisingly, a drop in admissions is evident on week-ends, mainly
on Sundays. The examination of the residuals allows us to highlight the effect of certain
public holidays on admissions, which are difficult to identify in the original data: we
thus see "abnormally" low values on Christmas and New Year’s Day, Easter Monday
(April 5), Ascension Thursday (May 13) and Whit Monday (May 24). These low values
are generally compensated on the following days by "abnormally" high values.

Computational Details
The results in this paper were obtained using R 4.0.3. R itself and all packages used
are available from the Comprehensive R Archive Network (CRAN) at https://CRAN.
R-project.org/.
The model and various data related to COVID-19 are implemented in the interactive
Shiny app http://shiny.webpopix.org/covidix/app3en/.
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Figure 1: French COVID-19 data collected by the Center for Systems Science and
Engineering at Johns Hopkins University: daily numbers of confirmed cases, deaths
and recoveries.
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Figure 2: Data on COVID-19 virological test results in France, produced by Santé
Publique France: daily numbers of tests, positive tests and positivity rate.
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Figure 3: French hospital data for the COVID-19 produced by Santé Publique France:
daily numbers of patients newly admitted to normal therapeutic wards, admitted to
intensive care units, deceased in the hospital, allowed to leave the hospital.
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Figure 4: Unweighted 7-day moving averages for the four series displayed Fig. 3.
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Figure 5: Top: smoothed series of admissions ; bottom: relative variations of these
series. The grey lines are the fits obtained and the vertical dashed lines are the estimated
change-points.
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Figure 6: Top: smoothed series of mortality and discharge rates ; bottom: smoothed
series of daily deaths and discharges. The grey lines are the fits obtained and the
vertical dashed lines are the estimated change-points.
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