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Isaac Gonzalez∗,† , Emma Horton‡ and Andreas E. Kyprianou∗

December 20, 2021

Abstract

Suppose that X = (Xt, t ≥ 0) is either a superprocess or a branching Markov process
on a general space E, with non-local branching mechanism and probabilities Pδx , when
issued from a unit mass at x ∈ E. For a general setting in which the first moment
semigroup of X displays a Perron-Frobenius type behaviour, we show that, for k ≥ 2
and any positive bounded measurable function f on E,

lim
t→∞

g(t)Eδx [〈f,Xt〉k] = Ck(x, f),

where the constant Ck(x, f) can be identified in terms of the principal right eigen-
function and left eigen-measure and g(t) is an appropriate determinisitic normalisation,
which can be identified explicitly as either polynomial in t or exponential in t, depending
on whether X is a critical, supercritical or subcritical process. The method we employ
is extremely robust and we are able to extract similarly precise results that additionally
give us the moment growth with time of

∫ t
0 〈g,Xt〉ds, for bounded measurable g on E.

Key words: Moments, branching processes, superprocesses, non-local branching, asymp-
totic behaviour

MSC 2020: 60J68, 60J80.

1 Introduction and main results
A fundamental question concerning general spatial branching processes, both superprocesses
and branching Markov processes, pertains to their moments. Whilst the setting of first
and second moments has received quite some attention, limited information seems to be
known about higher moments, in particular, their asymptotic behaviour with time. Relevant
references that touch upon this topic include [11, 7, 15, 18, 12]. In this paper, we provide
a single general result that pertains to both superprocesses and spatial branching Markov
processes and which provides a very precise and somewhat remarkable result for moment
growth.
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We show that, under the assumption that the first moment semigroup of the process
exhibits a natural Perron Frobenious type behaviour, the k-th moment functional of either
a superprocess or branching Markov process, when appropriately normalised, limits to a
precise constant. The setting in which we work is remarkably general, even allowing for the
setting of non-local branching; that is, where mass is created at a different point in space
to the position of the parent. Moreover, the methodology we use appears to be extremely
robust and we show that the asymptotic k-th moments of the running occupation measure
are equally accessible using essentially the same approach. Our results will thus expand on
what is known for branching diffusions and superdiffusions e.g. in [5], [17], as well as giving
precise growth rates for the moments of occupations.

To this end, let us spend some time providing the general setting in which we wish to
work. Let E be a Lusin space. Throughout, will write B(E) for the Banach space of bounded
measurable functions on E with norm ‖·‖, B+(E) for non-negative bounded measurable
functions on E and B+

1 (E) for the subset of functions in B+(E) which are uniformly bounded
by unity. We are interested in spatial branching processes that are defined in terms of a
Markov process and a branching operator. The former can be characterised by a semigroup
on E, denoted by P = (Pt, t ≥ 0). We do not need P to have the Feller property, and it is not
necessary that P is conservative. That said, if so desired, we can append a cemetery state
{†} to E, which is to be treated as an absorbing state, and regard P as conservative on the
extended space E ∪ {†}, which can also be treated as a Lusin space. Equally, we can extend
the branching operator to E ∪{†} by defining it to be zero on {†}, i.e. no branching activity
on the cemetery state.

1.1 Branching Markov processes

Consider now a spatial branching process in which, given their point of creation, particles
evolve independently according to a P-Markov process. In an event which we refer to as
‘branching’, particles positioned at x die at rate β(x), where β ∈ B+(E), and instantaneously,
new particles are created in E according to a point process. The configurations of these
offspring are described by the random counting measure

Z(A) =
N∑
i=1

δxi(A),

for Borel A in E. The law of the aforementioned point process depends on x, the point of
death of the parent, and we denote it by Px, x ∈ E, with associated expectation operator
given by Ex, x ∈ E. This information is captured in the so-called branching mechanism

(1) G[f ](x) := β(x)Ex

[
N∏
i=1

f(xi)− f(x)

]
, x ∈ E,

where we recall f ∈ B+
1 (E) := {f ∈ B+(E) : supx∈E f(x) ≤ 1}. Without loss of generality

we can assume that Px(N = 1) = 0 for all x ∈ E by viewing a branching event with one
offspring as an extra jump in the motion. On the other hand, we do allow for the possibility
that Px(N = 0) > 0 for some or all x ∈ E.
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Henceforth we refer to this spatial branching process as a (P, G)-branching Markov process.
It is well known that if the configuration of particles at time t is denoted by {x1(t), . . . , xNt(t)},
then, on the event that the process has not become extinct or exploded, the branching Markov
process can be described as the co-ordinate process X = (Xt, t ≥ 0) in the space of atomic
measures on E with non-negative integer total mass, denoted by N(E), where

Xt(·) =
Nt∑
i=1

δxi(t)(·), t ≥ 0.

In particular, X is Markovian inN(E). Its probabilities will be denoted P := (Pµ, µ ∈ N(E)).
With this notation in hand, it is worth noting that the independence that is manifest in the
definition of branching events and movement implies that if we define,

(2) vt[f ](x) = Eδx

[
Nt∏
i=1

f(xi(t))

]
, f ∈ B+

1 (E), t ≥ 0,

then for µ ∈ N(E) given by µ =
∑n

i=1 δyi , we have

(3) Eµ

[
Nt∏
i=1

f(xi(t))

]
=

n∏
i=1

vt[f ](yi), t ≥ 0.

Moreover, for f ∈ B+(E) and x ∈ E,

(4) vt[f ](x) = P̂t[f ](x) +

∫ t

0

Ps [G[vt−s[f ]]] (x)ds, t ≥ 0,

where P̂t is a slight adjustment of Pt which returns a value of 1 on the event of killing.
Branching Markov processes enjoy a very long history in the literature, dating back as far

as [23, 22, 24], with a broad base of literature that is arguably too voluminous to give a fair
summary of here. Most literature focuses on the setting of local branching. This corresponds
to the setting that all offspring are positioned at their parent’s point of death (i.e. xi = x in
the definition of G). In that case, the branching mechanism reduces to

G[s](x) = β(x)

[
∞∑
k=1

pk(x)sk − s

]
, x ∈ E,

where s ∈ [0, 1] and (pk(x), k ≥ 0) is the offspring distribution when a parent branches at
site x ∈ E. The branching mechanism G may otherwise be seen in general as a mixture of
local and non-local branching.

1.2 Superprocesses

Superprocesses can be thought of as the high-density limit of a sequence of branching Markov
processes, resulting in a new family of measure-valued Markov processes; see e.g. [19, 3, 25,
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6, 4]. Just as branching Markov processes are Markovian in N(E), the former are Markovian
in the space of finite Borel measures on E topologised by the weak convergence topology,
denoted by M(E). There is a broad literature base for superprocesses, e.g. [19, 3, 25, 11, 9],
with so-called local branching mechanisms, and later broadened to the more general setting
of non-local branching mechanisms in [4, 19]. Let us now introduce these concepts with an
autonomous definition of what we mean by a superprocess.

A Markov process X := (Xt : t ≥ 0) with state space M(E) and probabilities P :=
(Pµ, µ ∈M(E)) is called a (P, ψ, φ)-superprocess if it has transition semigroup (Êt, t ≥ 0) on
M(E) satisfying

(5) Eµ
[
e−〈f,Xt〉

]
=

∫
M(E)

e−〈f,ν〉Êt(µ, dν) = e−〈Vt[f ],µ〉, µ ∈M(E), f ∈ B+(E).

Here, we work with the inner product on B+(E)×M(E) defined by 〈f, µ〉 =
∫
E
f(x)µ(dx)

and (Vt, t ≥ 0) is a semigroup evolution that is characterised via the unique bounded positive
solution to the evolution equation

(6) Vt[f ](x) = Pt[f ](x)−
∫ t

0

Ps [ψ(·, Vt−s[f ](·)) + φ(·, Vt−s[f ])] (x)ds.

Here ψ denotes the local branching mechanism

(7) ψ(x, λ) = −b(x)λ+ c(x)λ2 +

∫
(0,∞)

(
e−λy − 1 + λy

)
ν(x, dy), λ ≥ 0,

where b ∈ B(E), c ∈ B+(E) and (x∧ x2)ν(x, dy) is a bounded kernel from E to (0,∞), and
φ is the non-local branching mechanism

(8) φ(x, f) = β(x) (f(x)− ζ(x, f)) ,

where β ∈ B+(E) and ζ has representation

(9) ζ(x, f) = γ(x, f) +

∫
M(E)◦

(1− e−〈f,ν〉)Γ(x, dν),

such that γ(x, f) is a bounded function on E×B+(E) and ν(1)Γ(x, dν) is a bounded kernel
from E to M(E)◦ := M(E) \ {0} with

(10) γ(x, f) +

∫
M(E)◦

〈1, ν〉Γ(x, dν) ≤ 1.

Lemma 3.1 in [4] tells us that the functional ζ(x, f) has the following equivalent representa-
tion

(11) ζ(x, f) =

∫
M0(E)

[
γ(x, π) 〈f, π〉+

∫ ∞
0

(
1− e−u〈f,π〉

)
n(x, π, du)

]
G(x, dπ),
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where M0(E) denotes the set of probability measures on E, d ≥ 0 is a bounded function on
E ×M0(E), un(x, π, du) is a bounded kernel from E ×M0(E) to (0,∞) and G(x, dπ) is a
probability kernel from E to M0(E) with

(12) γ(x, π) +

∫ ∞
0

un(x, π, du) ≤ 1.

The reader will note that we have deliberately used some of the same notation for both
branching Markov processes and superprocesses. In the sequel there should be no confusion
and the motivation for this choice of repeated notation is that our main result is indifferent
to which of the two processes we are talking about.

1.3 Main results: k-th moments

As alluded to above, in what follows, (X,P) is taken as either a branching Markov process or
a superprocess as defined in the previous section. Our main results concern understanding
the growth of the k-th moment functional in time

T
(k)
t [f ](x) := Eδx

[
〈f,Xt〉k

]
, x ∈ E, f ∈ B+(E), k ≥ 1, t ≥ 0.

For convenience, we will write T in preference of T(1) throughout.

Before stating our main theorem, we first introduce some assumptions that will be crucial
in analysing the moments defined above. First, we have a Perron-Frobenius-type assumption.

(H1): There exists an eigenvalue λ ∈ R and a corresponding right eigenfunction ϕ ∈ B+(E)
and finite left eigenmeasure ϕ̃ such that, for f ∈ B+(E),

〈Tt[ϕ], µ〉 = eλt〈ϕ, µ〉 and 〈Tt[f ], ϕ̃〉 = eλt 〈f, ϕ̃〉 ,

for all µ ∈ N(E) (resp. M(E)) if (X,P) is a branching Markov process (resp. a superprocess).
Further let us define

∆t = sup
x∈E,f∈B+

1 (E)

|ϕ(x)−1e−λtTt [f ] (x)− 〈ϕ̃, f〉 |, t ≥ 0.

We suppose that

(13) sup
t≥0

∆t <∞ and lim
t→∞

∆t = 0.

The second assumption is a moment condition on the offspring distribution.

(H2): Suppose k ≥ 1. If (X,P) is a branching Markov process,

(14) sup
x∈E
Ex(〈1,Z〉k) <∞
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and if (X,P) is a superprocess,

(15) sup
x∈E

(∫ ∞
0

|y|kν(x, dy) +

∫
M(E)◦

〈1, ν〉kΓ(x, dν)

)
<∞.

Let us spend a little time considering these two assumptions in more detail. For a lot
of literature surrounding spatial branching processes, there has been emphasis on results for
which an underlying assumption of exponential ergodic growth in the first moment is present
as in (H1); see e.g. [21, 10, 1, 20, 16, 14]. Due to this, we may characterise the process as
supercritical if λ > 0, critical if λ = 0 and subcritical if λ < 0.

One way to understand (13), is through the martingale that comes hand-in-hand with
the eigenpair (λ, ϕ), i.e.

(16) Mϕ
t := e−λt〈ϕ,Xt〉, t ≥ 0.

Normalising this martingale and using it as a change of measure results in the ubiquitous
spine decomposition; cf. [16, 15, 21]. Roughly speaking, under the change of measure,
the process is equal in law to a copy of the original process with a superimposed process
of immigration, which occurs both in space and time along the path of a single particle
trajectory in E, the spine. If the process is issued from e.g. µ ∈M(E), then the semigroup
of the latter, is given by e−λt〈Tt[fϕ], µ〉/〈ϕ, µ〉, t ≥ 0. We see then that an assumption of
the type (13) implies that the spine has a stationary limit with stationary measure ϕϕ̃.

The assumptions (14) and (15) of (H2) are natural to ensure that k-moments are well
defined for all t ≥ 0. If not explicitly stated in the literature, their need to ensure that the
functional moments T(k)t [f ](x) are finite for all t ≥ 0, f ∈ B+(E) and x ∈ E is certainly folk-
lore. The two conditions (14) and (15) are clearly natural analogues of one another. Indeed,
whereas for superprocesses, it is usual to separate out the non-diffusive local branching be-
haviour from non-local behaviour, i.e via the measures ν(x, dy) and Γ(x, dν), the analogous
behaviour is captured in the single point process Z for branching Markov processes.

In terms of the eigenvalue in (H1), the following suite of results give us the precise growth
rates for k-th moments in each of the critical (λ = 0), supercritical (λ > 0) and subcritical
(λ < 0) settings. In all three results, (X,P) is either a (P, G)-branching particle system or a
(P, ψ, φ)-superprocess on E.

Theorem 1 (Critical, λ = 0). Suppose that (H1) holds along with (H2) for some k ≥ 2 and
λ = 0. Define

∆
(`)
t = sup

x∈E,f∈B+
1 (E)

∣∣∣t−(`−1)ϕ(x)−1T
(`)
t [f ](x)− 2−(`−1)`! 〈f, ϕ̃〉` 〈V[ϕ], ϕ̃〉`−1

∣∣∣ ,
where

V[ϕ](x) = β(x)Ex
(
〈ϕ,Z〉2 − 〈ϕ2,Z〉

)
,

if (X,P) is a branching Markov process or

V[ϕ](x) = ψ′′(x, 0+)ϕ(x)2 + β(x)

∫
M(E)◦

〈ϕ, ν〉2Γ(x, dν)
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if (X,P) is a superprocess. Then, for all ` ≤ k

(17) sup
t≥0

∆
(`)
t <∞ and lim

t→∞
∆

(`)
t = 0.

The novel contribution of Theorem 1 is both the fact that no such result currently exists
in the literature as well as the general and precise polynomial growth of the k-th moment.
The only other comparable result is that of [13], which inspired this paper and deals with
the special case of a general critical branching particle processes and that the test function
f is specifically taken to be the eigenfunction ϕ. There are two facts that stand out in this
result. The first is the polynomial scaling, which is quite a delicate conclusion given that
there is no exponential growth to rely on. The second is that, for k ≥ 3, the scaled moment
limit is expressed not in terms of the k-th moments in (14) and (15), but rather the second
order moments.

In some sense, however, both the polynomial growth and the nature of the limiting con-
stant are not entirely surprising given the folklore for the critical setting. More precisely,
in at least some settings (see e.g. [13]), one would expect to see a Yaglom-type result at
criticality. The latter would classically see convergence of t−1〈f,Xt〉 in law to an exponen-
tially distributed random variable as t→∞, whose parameter is entirely determined by the
second moments of X.

The next results present a significantly different picture for the supercritical and sub-
critical cases. For those settings, the exponential behaviour of the first moment semigroup
becomes a dominant feature of the higher expected moments.

Theorem 2 (Supercritical, λ > 0). Suppose that (H1) holds along with (H2) for some k ≥ 2
and λ > 0. Redefine

∆
(`)
t = sup

x∈E,f∈B+
1 (E)

∣∣∣ϕ(x)−1e−`λtT
(`)
t [f ](x)− `! 〈f, ϕ̃〉` L`

∣∣∣ ,
where L1 = 1 and we define iteratively for k ≥ 2

Lk =
1

λ(k − 1)

〈
βE·
[ ∑

[k1,...,kN ]2k

N∏
j=1
j:kj>0

ϕ(xj)Lkj

]
, ϕ̃

〉
,

where [k1, . . . , kN ]2k is the set of all non-negative N-tuples (k1, . . . , kN) such that
∑N

i=1 ki = k
and at least two of the ki are strictly positive1 if (X,P) is a branching Markov process, or

Lk(x) =
∑

{m1,...,mk−1}k

1

m1! . . .mk−1!
(m1 + . . .+mk−1 − 1)!ϕ(x)m1+...+mk−1−1

k−1∏
j=1

(−Lj(x))mj

+
1

λ(k − 1)
〈Vk [ϕ] , ϕ̃〉

1We interpret
∑

∅ = 0 and
∏

∅ = 1.
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and iteratively with V2 [ϕ] (x) = V [ϕ] (x) (defined in the previous theorem) and for k ≥ 3

Vk[ϕ](x)

=
∑

{m1,...,mk−1}k

1

m1! . . .mk−1!

k−1∏
j=2

(
〈Vj [ϕ] , ϕ̃〉
λ(j − 1)

)mj

×
[
ψ(m1+...+mk−1)(x, 0+)(−ϕ(x))m1+...+mk−1 + β(x)

∫
M(E)◦

〈ϕ, ν〉m1+...+mk−1 Γ(x, dν)

]
if (X,P) is a superprocess. Here the sums run over the set {m1, . . . ,mk − 1}k of positive
integers such that m1 + 2m2 + . . .+ (k − 1)mk−1 = k. Then, for all ` ≤ k

(18) sup
t≥0

∆
(`)
t <∞ and lim

t→∞
∆

(`)
t = 0.

As with the critical setting, we could not find any existing result of this kind in the
literature. While Jensen’s inequality easily shows that this is the minimal rate of growth, it
turns out that it is the exact rate of growth. If we again appeal to folkore then this is again
not necessarily surprising. In a number of settings, we would expect X to obey a strong law
of large numbers (cf. [14, 10, 1, 20]) in the sense that

lim
t→∞

e−λt〈f,Xt〉 = 〈ϕ̃, f〉Mϕ
∞,

where (Mϕ
t , t ≥ 0) was defined in (16) and the limit holds either almost surely or in the sense

of Lp moments, for p > 1. It is also worth remarking on the fact that there is dependency on
x for the limit in the superprocess setting but not in the branching Markov process setting.
Thinking in terms of the skeletal decomposition (see e.g. [8, 2]), in principle the superprocess
issued from a unit mass at x can be seen as the aggregation of a Poisson point process of
‘superprocess excursions’. In the supercritical setting, a finite Poisson number of these will
contribute to the overall growth of the process which are sampled at a rate proportional to
p(x)δx, where p(x) is rate of survival of an excursion issued from x ∈ E. This may go part
way to explaining the dependency of Lk on x in that setting.

Finally we turn to the growth of moments in the subcritical setting, which offers the
heuristically appealing result that the k-th moment decays slower than the k-th moment of
the linear semigroup.

Theorem 3 (Subcritical, λ < 0). Suppose that (H1) holds along with (H2) for some k ≥ 2
and λ < 0. Redefine

∆
(`)
t = sup

x∈E,f∈B+
1 (E)

∣∣∣ϕ(x)−1e−λtT
(`)
t [f ](x)− `! 〈f, ϕ̃〉` L`

∣∣∣ ,
where we define iteratively L1 = 1 and for k ≥ 2,

Lk =
〈fk, ϕ̃〉
〈f, ϕ̃〉k k!

+

〈
βE·
[ k∑
n=2

1

|λ|(n− 1)

∑
[k1,...,kN ]nk

N∏
j=1
j:kj>0

ϕ(xj)Lkj

]
, ϕ̃

〉
,
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where [k1, . . . , kN ]nk is the set of all non-negative N-tuples (k1, . . . , kN) such that
∑N

i=1 ki = k
and exactly 2 ≤ n ≤ k of the ki are strictly positive if (X,P) is a branching Markov process,
or Lk = 〈Vk[ϕ], ϕ̃〉, where V1[ϕ](x) = ϕ(x) and for k ≥ 2,

Vk[ϕ](x) =
∑

{m1,...,mk−1}k

1

m1! . . .mk−1!

1

λ(1−m1 − . . .−mk−1)

k−1∏
j=1

〈Vj [ϕ] , ϕ̃〉mj

×
[
ψ(m1+...+mk−1)(x, 0+)(−ϕ(x))m1+...+mk−1 + β(x)

∫
M(E)◦

〈ϕ, ν〉m1+...+mk−1 Γ(x, dν)

]
if (X,P) is a superprocess. Here the sums run over the set {m1, . . . ,mk−1}k of positive
integers such that m1 + 2m2 + . . .+ (k − 1)mk−1 = k. Then, for all ` ≤ k

(19) sup
t≥0

∆
(`)
t <∞ and lim

t→∞
∆

(`)
t = 0.

As alluded to above, it is heuristically appealing that the the k-th moment does not grow
at the rate exp(−kλt). On the other hand the actual growth rate exp(−λt) is slightly less
obvious but nonetheless the obvious candidate. The decay in mass to zero in the branching
system would suggest that the k-th moment similarly does so, but no slower that the first
moment.

The robustness of our methods in the following sections means that the principal ideas
used to prove the above theorems are essentially the same for both branching particle systems
and superprocesses, regardless of the criticality. The main idea is to study the non-linear
semigroup, Eδx [e−θ〈f,Xt〉], θ, t ≥ 0, f ∈ B+(E), associated with (X,P). The relation

(20) T(k)[f ](x) = (−1)k
∂

∂θ
Eδx [e−θ〈f,Xt〉]

∣∣∣∣
θ=0

then means that we can use knowledge of the non-linear semigroup to study the moments of
(X,P). Indeed, the first step is to write an evolution equation for Eδx [e−θ〈f,Xt〉] in terms of
the linear semigroup T. We will show that differentiating this equation and using (20) means
that we can write the k-th moment of the process in terms of the lower order moments. An
inductive argument will then yield the final results.

Despite this generic approach, the proof for each of the two processes requires slightly
different technicalities due to the fact that, on the one hand, superprocesses have Lévy-
Khintchine branching mechanisms but no particles, whereas on the other hand, branching
particle systems do have individual particles but less regular branching mechanisms. Due
to these discrepancies, we require a different toolbox to deal with the evolution equation of
the k-th moment. To compute the derivatives in (20) for the branching particle systems,
we use the Leibniz rule, however, in the case of superprocesses, we use Fàa di Bruno’s
rule. This yields different equations for the k-th moment evolutions, resulting in slightly
different combinatorial arguments when completing the proofs of the theorems. Moreover,
the different normalisation required in each of the three theorems, as well as the different
limits requires some care. For this reason, we will prove Theorem 1 in detail, since this case
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requires the most delicate analysis, and in the remaining non-critical cases, we will give an
outline of the proofs, leaving the details to the reader.

It also transpires that our method is remarkably robust. Indeed, again taking an agnostic
position on whether X is a branching Markov process or a superprocess, as we will show,
careful consideration of the proofs of Theorems 1, 2 and 3 demonstrate that we can also
conclude results for the quantities

M
(k)
t [g](x) := Eδx

[(∫ t

0

〈g,Xs〉 ds
)k]

, x ∈ E, g ∈ B+(E), k ≥ 1, t ≥ 0.

We can think of
∫ t
0
〈g,Xs〉 ds as characterising the running occupation measure

∫ t
0
Xs(·)ds of

the process X and hence we refer to M(k)t [g](x) as the k-th moment of the running occupation.
The following results also emerge from our calculations, mirroring Theorems 1, 2 and 3
respectively.

Theorem 4 (Critical, λ = 0). Suppose that (H1) holds along with (H2) for k ≥ 2 and λ = 0.
Define

∆
(`)
t = sup

x∈E,f∈B+
1 (E)

∣∣∣t−(2`−1)ϕ(x)−1M
(`)
t [g](x)− 2−(`−1)`! 〈g, ϕ̃〉` 〈V[ϕ], ϕ̃〉`−1L`

∣∣∣ ,
where L1 = 1 and Lk is defined through the recursion Lk = (

∑k−1
i=1 LiLk−i)/(2k− 1) if (X,P)

is a branching Markov process or Lk = (
∑
{k1,k2}+ Lk1Lk2)/(2k − 1) where {k1, k2}+ is the

set of positive integers k1, k2 such that k1 + k2 = k if (X,P) is a superprocess. Then, for all
` ≤ k

(21) sup
t≥0

∆
(`)
t <∞ and lim

t→∞
∆

(`)
t = 0.

Theorem 5 (Supercritical, λ > 0). Suppose that (H1) holds along with (H2) for some k ≥ 2
and λ > 0. Redefine

∆
(`)
t = sup

x∈E,f∈B+
1 (E)

∣∣∣ϕ(x)−1e−`λtM
(`)
t [g](x)− `! 〈g, ϕ̃〉` L`

∣∣∣ ,
where Lk was defined in Theorem 2, albeit that L1 = 1/λ.

Then, for all ` ≤ k

(22) sup
t≥0

∆
(`)
t <∞ and lim

t→∞
∆

(`)
t = 0.

Theorem 6 (Subcritical, λ < 0). Suppose that (H1) holds along with (H2) for some k ≥ 2
and λ < 0. Redefine

∆
(`)
t = sup

x∈E,f∈B+
1 (E)

∣∣∣ϕ(x)−1M
(`)
t [g](x)− `! 〈g, ϕ̃〉` L`

∣∣∣ ,
10



where L1 = 1/|λ| and for k ≥ 2, the constants Lk are defined recursively via

Lk =
1

|λ|

〈
βE

[ ∑
[k1,...,kN ]2k

N∏
j=1
j:kj>0

ϕ(xj)Lkj

]
, ϕ̃

〉
− 〈gϕ, ϕ̃〉
|λ|〈g, ϕ̃〉

Lk−1,

if X is a branching Markov process and

Lk(x) = (−1)k 〈Uk [ϕ] , ϕ̃〉 − Rk(x),

where

Rk(x) =
∑

{m1,...,mk−1}k

(−1)k

m1! . . .mk−1!
(−ϕ(x))m1+...+mk−1−1(m1 + . . .+mk−1 − 1)!

k−1∏
j=1

Lj(x)mj ,

and where we define recursively, U1 [ϕ] (x) = −ϕ(x)/|λ| and for k ≥ 2,

Uk [ϕ] (x)

=
1

|λ|

Uk−1 [ϕ] (x) +
∑

{m1,...,mk−1}k

1

m1! . . .mk−1!

k−1∏
j=1

〈Uj [ϕ] , ϕ̃〉mj

×
[
ψ(m1+...+mk−1)(x, 0+)(−ϕ(x))m1+...+mk−1 + β(x)

∫
M(E)◦

〈ϕ, ν〉m1+...+mk−1 Γ(x, dν)

])

if X is a superprocess. Then, for all ` ≤ k

(23) sup
t≥0

∆
(`)
t <∞ and lim

t→∞
∆

(`)
t = 0.

The results in Theorems 4, 5 and 6 are slightly less predictable. Let us discuss this point
a little further in the particle setting for convenience. For the supercritical case, the extra
“linear” term arising from the time integral does not affect the exponential growth of the
process, and hence the leading order behaviour is still dominated by ekλt. In the critical case,
we know from Theorem 1 that the first moment does not require normalisation, and hence
integrating up to time t will induce a linear growth in time. As we will shortly see, one can
determine the k-th moment from a combination of the lower order moments and as such,
this linear growth will propagate through the recursion, which along with the time integral,
yields the t2k−1 scaling. Finally, in the subcritical case, we know that the total occupation∫ ζ
0
〈g,Xs〉ds, where ζ = inf{t > 0 : 〈1, Xt〉 = 0}, is finite, behaving like an average spatial

distribution of mass, i.e. 〈g, ϕ̃〉, multiplied by ζ, meaning that no normalisation is required
to control the “growth” of the running occupation moments in this case.

The rest of this paper can be summarised as follows. In the next section, we focus on
the case where (X, P) is a branching particle process. We first prove Theorem 1, followed by
an outline of the proofs of Theorems 2 and 3. We then turn to the case where (X, P) is a

11



superprocess in section 3. Following a similar format, we first prove the result for the critical
case, followed by a sketch of the proofs for the non-critical cases. As indicated above, both
approaches follow a similar pattern and thus both sections are laid out to reflect this. First
of all, we study the linear and non-linear evolution equations associated with (X,P). The
relation (20) then yields an evolution equation for the k-th moment in terms of the lower
order moments. Using this and an inductive argument, along with several crucial results
that we house in the appendix, yields the result of the three theorems.

2 Proofs for branching Markov processes
The proof is a mixture of analytical and combinatorial computations which are based around
the behaviour of the linear and non-linear semigroups of X.

2.1 Linear and non-linear semigroup equations

For f ∈ B+(E), it is well known that the mean semigroup evolution satisfies

(24) Tt[f ](x) = Pt[f ] +

∫ t

0

Ps [FTt−s[f ]] (x)ds t ≥ 0, x ∈ E,

where

F[f ](x) = β(x)Ex

[
N∑
i=1

f(xi)− f(x)

]
=: β(x)(m[f ](x)− f(x)), x ∈ E.

See for example the calculations in [16]. Associated with every linear semigroup of a branch-
ing process is a so-called many-to-one formula. Many-to-one formulae are not necessarily
unique and the one we will develop here is slightly different from the usual construction
because of non-locality.

Suppose that ξ = (ξt, t ≥ 0), with probabilities P = (Px, x ∈ E), is the Markov process
corresponding to the semigroup P. Let us introduce a new Markov process ξ̂ = (ξ̂t, t ≥ 0)
which evolves as the process ξ but at rate β(x)m[1](x) the process is sent to a new position in
E, such that for all Borel A ⊂ E, the new position is in A with probability m[1A](x)/m[1](x).
We will refer to the latter as extra jumps. Note the law of the extra jumps is well defined
thanks to the assumption (14), which ensures that supx∈E m[1](x) = supx∈E Ex(〈1,Z〉) <∞.
Accordingly we denote the probabilities of ξ̂ by (P̂x, x ∈ E). We can now state our many-
to-one formula.

Lemma 1. Write B(x) = β(x)(m[1](x)− 1), x ∈ E. For f ∈ B+(E) and t ≥ 0, we have

(25) Tt[f ](x) = Êx

[
exp

(∫ t

0

B(ξ̂s)ds

)
f(ξ̂t)

]
.

The proof is classical and follows standard reasoning for semigroup integral equations e.g.
as in [16, 14]: First conditioning the right-hand side of (25) on the time of the first extra

12



jump, then using the principle of transferring between multiplicative and additive potentials
in the resulting integral equation (cf. Lemma 1.2, Chapter 4 in [6]) shows that (24) holds.
Grönwall’s Lemma, the fact that β ∈ B+(E) and (14) for k = 1 ensure that the relevant
integral equations have unique solutions.

We now define a variant of the non-linear evolution equation (2) associated with X via

(26) ut[f, g](x) = Eδx
[
1− e−〈f,Xt〉−

∫ t
0 〈g,Xs〉ds

]
, t ≥ 0, x ∈ E, f, g ∈ B+(E).

For f ∈ B+
1 (E), define

A[f ](x) = β(x)Ex

[
N∏
i=1

(1− f(xi))− 1 +
N∑
i=1

f(xi)

]
, x ∈ E.

Our first preparatory result relates the two semigroups (ut, t ≥ 0) and (Tt, t ≥ 0).

Lemma 2. For all f, g ∈ B+(E), x ∈ E and t ≥ 0, the non-linear semigroup ut[f, g](x)
satisfies

(27) ut[f, g](x) = Tt[1− e−f ](x)−
∫ t

0

Ts [A[ut−s[f, g]]− g(1− ut−s[f, g])] (x)ds.

Proof. Again, the proof uses standard techniques for integral evolution equations so we only
sketch the proof. Instead of considering ut[f, g], we will first work instead with

(28) vt[f, g] = Eδx
[
e−〈f,Xt〉−

∫ t
0 〈g,Xs〉ds

]
, t ≥ 0, x ∈ E, f, g ∈ B+(E),

which will turn out to be more convenient for technical reasons.
By splitting the expectation in (28) on the first branching event and appealing to the

Markov property, we get, for f, g ∈ B+(E), t ≥ 0 and x ∈ E,

vt[f, g](x) = Ex

[
e−

∫ t
0 β(ξs)dse−f(ξt)−

∫ t
0 g(ξs)ds

]
+ Ex

[∫ t

0

β(ξs)e
−

∫ s
0 β(ξu)+g(ξu)duH[vt−s[f, g]](ξs)ds

]
,

where

H[g](x) = Ex

[
N∏
i=1

g(xi)

]
, g ∈ B+(E), x ∈ E.

Using similar reasoning to Lemma 1.2, Chapter 4 in [6] we can move the multiplicative
potential with rate β + g to an additive potential in the above evolution equation to obtain

vt[f, g](x) = P̂t[e
−f ](x) +

∫ t

0

Ps [G[vt−s[f, g])− gvt−s[f, g]] (x)ds.(29)

Now define

D[f ](x) = β(x)Ex

[
N∏
i=1

f(xi)−
N∑
i=1

f(xi)

]
= β(x) (H[f ](x)− m[f ](x)) , f ∈ B+

1 (E), x ∈ E

13



and (ṽt, t ≥ 0) via

ṽt[f, g](x) = Tt[e
−f ](x) +

∫ t

0

Ts
[
D
[
ṽt−s[f, g]

]
− gṽt−s[f, g]

]
(x)ds

= Êx

[
e
∫ t
0 B(ξ̂s)dse−f(ξ̂t)

]
+ Êx

[∫ t

0

e
∫ s
0 B(ξ̂u)du

(
D
[
ṽt−s[f, g]

]
(ξ̂s)− g(ξ̂s)ṽt−s[f, g](ξ̂s)

)
ds

]
,(30)

for x ∈ E, t ≥ 0 and f, g ∈ B+(E). Note that for the moment we don’t claim a solution to
(30) exists.

For convenience, we will define

Kt[f, g](x) = Êx

[∫ t

0

e
∫ s
0 B(ξ̂u)du

(
D
[
ṽt−s[f, g]

]
(ξ̂s)− g(ξ̂s)ṽt−s[f, g](ξ̂s)

)
ds

]
,

so that ṽt[f, g](x) = Tt[e
−f ](x) + Kt[f, g](x). By conditioning the right-hand side of (30) on

the first jump of ξ̂ (bearing in mind the dynamics of ξ̂ given just before Lemma 1) with the
help of the Markov property (recalling that B(x)− βm[1] = β), we get

ṽt[f, g](x)

= Ex

[
e−

∫ t
0 β(ξs)dse−f(ξt)

]
+ Ex

[∫ t

0

β(ξ`)m[1](ξ`)e
−

∫ `
0 β(ξs)ds

m[Tt−`[e
−f ]](ξ`)

m[1](ξ`)
d`

]
+ Ex

[
e−

∫ t
0 β(ξu)m[1](ξu)du

∫ t

0

e
∫ s
0 B(ξu)du

(
D
[
ṽt−s[f, g]

]
(ξs)− g(ξs)[ṽt−s[f, g]

)
ds

]
+ Ex

[∫ t

0

β(ξ`)m[1](ξ`)e
−

∫ `
0 β(ξu)m[1](ξu)du(∫ `

0

e
∫ s
0 B(ξu)du

(
D
[
ṽt−s[f, g]

]
(ξs)− g(ξs)vt−s[f, g](ξs)

)
ds

+ e
∫ `
0 B(ξu)du

m[Kt−`[g]](ξ`)

m[1](ξ`)

)
d`

]
.

Gathering terms and exchanging the order of integration in the double integral, this simplifies
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to

ṽt[f, g](x)

= Ex

[
e−

∫ t
0 β(ξs)dse−f(ξt)

]
+ Ex

[∫ t

0

β(ξ`)e
−

∫ `
0 β(ξs)dsm[ṽt−`[f, g](x)](ξ`)d`

]
Ex

[
e−

∫ t
0 β(ξu)m[1](ξu)du

∫ t

0

e
∫ s
0 B(ξu)du

(
D
[
ṽt−s[f, g]

]
(ξs)− g(ξs)[ṽt−s[f, g]

)
ds

]
+ Ex

[∫ t

0

∫ t

0

1(s≤`)β(ξ`)m[1](ξ`)e
−

∫ `
0 β(ξu)m[1](ξu)due

∫ s
0 B(ξu)du

(
D
[
ṽt−s[f, g]

]
(ξs)− g(ξs)ṽt−s[f, g](ξs))

)
d` ds

]

=Ex

[
e−

∫ t
0 β(ξs)dse−f(ξt)

]
+ Ex

[∫ t

0

β(ξ`)e
−

∫ `
0 β(ξs)dsm[ṽt−`[g](x)](ξ`)d`

]
+ Ex

[∫ t

0

e−
∫ s
0 β(ξu)du

(
D
[
ṽt−s[f, g]

]
(ξs)− g(ξs)ṽt−s[f, g](ξs))

)
ds

]
.

Finally, appealing to the change of multiplicative potential to additive potential in the spirit
of e.g. Lemma 1.2, Chapter 4 of [6], we get

ṽt[f, g](x) =P̂t[e
−f ](x) +

∫ t

0

Pt
[
G
[
ṽt−s[f, g]

]
− gṽt−s[f, g]

]
(x)ds

and hence (ṽt, t ≥ 0) is a solution to (29). A standard argument using using β ∈ B+(E), the
assumption (14) for k = 1 and Grönwall’s Lemma tells us that all of the integral equations
thus far have unique solutions. In conclusion, (vt[g], t ≥ 0) and (ṽt[g], t ≥ 0) agree.

To complete the lemma, note that

1− Tt[e
−f ](x) = Tt[1− e−f ](x) + 1− Tt[1](x)

moreover,

1− Tt[1](x) = Êx

[∫ t

0

B(ξ̂s)e
∫ s
0 B(ξ̂u)duds

]
=

∫ t

0

Ts[B]ds.

Hence, working form (30) and the definitions of D and A, which are related via

D[1− f ] = β(x)Ex

[∏
i

(1− f(xi))−
N∑
i=1

(1− f(xi))

]
= A[f ] + B(x), x ∈ E, f ∈ B+

1 (E),

we get

ut[f, g](x) = 1− vt[f, g](x)

= 1− Tt[e
−f ](x)−

∫ t

0

Ts
[
D
[
1− ut−s[f, g]

]
− g(1− ut−s[f, g])

]
(x)ds

= Tt[1− e−f ]−
∫ t

0

Ts
[
A
[
ut−s[f, g]

]
− g(1− ut−s[f, g])

]
(x)ds,

as required.
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2.2 Evolution equations for the k-th moment of branching Markov
processes

Next we turn our attention to the evolution equation generated by the k-th moment func-
tional T(k)t , t ≥ 0. To this end, we start by observing that

(31) T
(k)
t [f ](x) = (−1)k+1 ∂

k

∂θk
ut[e

−θf ](x)

∣∣∣∣
θ=0

.

The following result gives us an iterative approach to writing the k-th moment functional in
terms of lower order moment functionals.

Proposition 1. Fix k ≥ 2. Under the assumptions of Theorem 1, with the additional
assumption that

(32) sup
x∈E,s≤t

T(`)s [f ](x) <∞, ` ≤ k − 1, f ∈ B+(E), t ≥ 0,

it holds that

(33) T
(k)
t [f ](x) = Tt[f

k](x) +

∫ t

0

Ts

[
βη

(k−1)
t−s [f ]

]
(x) ds, t ≥ 0,

where

η
(k−1)
t−s [f ](x) = Ex

 ∑
[k1,...,kN ]2k

(
k

k1, . . . , kN

) N∏
j=1

T
(kj)
t−s [f ](xj)

 ,
and [k1, . . . , kN ]2k is the set of all non-negative N-tuples (k1, . . . , kN) such that

∑N
i=1 ki = k

and at least two of the ki are strictly positive.

Proof. Recall from (27) that

(34) ut[θf, 0](x) = Tt[1− e−θf ](x)−
∫ t

0

Ts [A[ut−s[θf, 0]]] (x)ds, t ≥ 0.

It is clear that differentiating the first term k times and setting θ = 0 on the right-hand side
of (34) yields

(35)
∂k

∂θk
Tt[1− e−θf ](x)

∣∣∣∣
θ=0

= (−1)k+1T[fk](x).

Thus it remains to differentiate the second term on the right-hand side of (34) k times. To

this end, without concern for passing derivatives through expectations, using the Leibniz
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rule in Lemma A.2 of the Appendix, we have

− ∂k

∂θk
A[ut[θf, 0]](x)

∣∣∣∣
θ=0

=
∂k

∂θk
β(x)Ex

[
1−

N∏
i=1

Eδxi [e
−θ〈f,Xt〉]−

N∑
i=1

Eδxi [1− e−θ〈f,Xt〉]

]

= −β(x)Ex

[ ∑
k1+···+kN=k

(
k

k1, . . . , km

) N∏
j=1

(−1)kjT
(kj)
t [f ](xj) + (−1)k+1

N∑
i=1

T
(k)
t [f ](xi)

]

= β(x)Ex

[
(−1)k+1

∑
k1+···+kN=k

(
k

k1, . . . , km

) N∏
j=1

T
(kj)
t [f ](xj) + (−1)k

N∑
i=1

T
(k)
t [f ](xi)

]
.(36)

where the sum is taken over all non-negative integers k1, · · · , kN such that
∑N

i=1 ki = k.

Next let us look in more detail at the sum/product term on the righthand (36). Consider
the terms where only one of the ki in the sum is positive, in which case ki = k and(

k

k1, . . . , km

)
= 1.

There are N ways this can happen in the sum of the sum-product term and hence

∑
k1+···+kN=k

(
k

k1, . . . , km

) N∏
j=1

T
(kj)
t [f ](xj)

=
N∑
i=1

T(k)[f ](xi) +
∑

[k1,...,kN ]2k

(
k

k1, . . . , kN

) N∏
j=1

T
(kj)
t [f ](xj),

where [k1, . . . , kN ]2k is the set of all non-negative N -tuples (k1, . . . , kN) such that
∑N

i=1 ki = k
and at least two of the ki are strictly positive. Substituting this back into (36) yields

− ∂k

∂θk
A[ut[e

−θf ]]

∣∣∣∣
θ=0

= (−1)k+1β(x)Ex

 ∑
[k1,...,kN ]2k

(
k

k1, . . . , kN

) N∏
j=1

T
(kj)
t [f ](xj)

 .
Now let us return to the justification that we can pass the derivatives through the expecta-

tion in the above calculation, we first note that derivatives are limits and so an ‘epsilon-delta’
argument will ultimately require dominated convergence. This is where the assumption (14)
and (32) come in. On the right-hand side of (36), each of the T

(kj)
t [f ](xj) in the sum term

are uniformly bounded by the assumption (32) and the collection [k1, . . . , kN ]2k means that
0 ≤ kj ≤ k − 1 for each j = 1, · · · , N . Moreover, there can be at most k items in the
sum/product. Noting that

(37)
∑

k1+···+kN=k

(
k

k1, . . . , km

)
= Nk,
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the assumption (14) allows us to use a domination argument with the k-th order moment.

Combining this with (35) and (34), using an easy dominated convergence argument to
pull the k derivatives through the integral in t, then dividing by (−1)k+1, we get (33), as
required.

2.3 Completing the proof of Theorem 1: critical case

We will prove Theorem 1 by induction, starting with the case k = 1. In this case, (21) reads

sup
t≥0

∆t <∞ and lim
t→∞

∆t = 0,

which holds due to (13).

We now assume that the theorem holds true in the branching Markov process setting for
some k ≥ 1 and proceed to show that (21) holds for all ` ≤ k + 1.

To this end, first note that the induction hypothesis implies that (32) holds. Hence
Proposition 1 tells us that

ϕ(x)−1t−kT
(k+1)
t [f ](x)

= ϕ(x)−1t−kTt[f
(k+1)](x)

+ ϕ(x)−1t−k
∫ t

0

Ts

E·
 ∑

[k1,...,kN ]2k+1

(
k + 1

k1, . . . , kN

) N∏
j=1

T
(kj)
t−s [f ](xj)

 (x)ds

= ϕ(x)−1t−kTt[f
(k+1)](x)

+ ϕ(x)−1t−(k−1)
∫ 1

0

Tut

E·
 ∑

[k1,...,kN ]2k+1

(
k + 1

k1, . . . , kN

) N∏
j=1

T
(kj)

t(1−u)[f ](xj)

 (x)du,(38)

where we have used the change of variables s = ut in the final equality.

We now make some observations that will simplify the expression on the right-hand side
of (38) as t→∞. First note that due to (13), the first term on the righthand side of (38) will
vanish as t→∞. Next, note that, if more than two of the ki in the sum are strictly positive,
then the renormalising by tk−1 will cause the associated summand to go to zero as well. For
example, suppose without loss of generality that k1 and k2 are both strictly positive, we can
write tk−1 = t(k+1)−2 = tk1−1tk2−1tk3 . . . tkN . Now the induction hypothesis tells us that the
correct normalisation of each of the terms in the product is tkj−1, which means that the item
T
(kj)

t(1−u) for a third kj > 0 will be ‘over normalised to zero’ in the limit.

To make this heuristic rigorous, we can employ Theorem A.1 from the Appendix. To this
end, let us set

F [f ](x, u, t) :=
1

ϕ(x)tk−1
Ex

 ∑
[k1,...,kN ]3k+1

(
k + 1

k1, . . . , kN

) N∏
j=1

T
(kj)

t(1−u)[f ](xj)

(39)
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where [k1, . . . , kN ]3k+1 is the subset of [k1, . . . , kN ]2k+1, for which at least three of the ki are
strictly positive (which can be an empty set). We will show that conditions (A.1) and (A.2)
are satisfied via
(40)

sup
x∈E,f∈B+

1 (E),u∈[0,1]
ϕ(x)F [f ](x, u, t) <∞ and lim

t→∞
sup

u∈[0,1],f∈B+
1 (E),x∈E

ϕ(x)F [f ](x, u, t) = 0.

First note that there are no more than k + 1 of the ki that are strictly greater than 1 in
the product in (39). This follows from the fact that it is not possible to partition the set
{1, . . . , k + 1} into more than k + 1 non-empty blocks. Next note that

1

tk−1

N∏
j=1
j:kj>0

T
(kj)

t(1−u)[f ](xj) =
(t(1− u))k+1−#{j:kj>0}

tk−1

N∏
j=1
j:kj>0

ϕ(xj) ·
1

ϕ(xj)

T
(kj)

t(1−u)[f ](xj)

(t(1− u))kj−1
.

The product term on the right-hand side is uniformly bounded in xj and t(1−u) on compact
intervals due to boundedness of ϕ and the fact that (21) is assumed to hold for all ` ≤ k
by induction. Moreover, if #{j : kj > 0} ≤ 1, the set [k1, . . . , kN ]3k+1 is empty, otherwise,
the term (t(1− u))k+1−#{j:kj>0}/tk−1 is finite for all t ≥ 1, say. From (37) and (14), we also
observe that

sup
x∈E
Ex

 ∑
[k1,...,kN ]3k+1

(
k + 1

k1, . . . , kN

) ≤ sup
x∈E
Ex
[
〈1,Z〉k+1

]
<∞.

Taking these facts into account, it is now straightforward to see that the earlier given heuristic
can be made rigorous and (40) holds. In particular, we can use dominated convergence to
pass the limit in t through the expectation in (39) to achieve the second statement in (40).

As F belongs to the class of functions C, defined just before Theorem A.1 in the Appendix,
the aforesaid theorem tells us that

(41) lim
t→∞

sup
x∈E,f∈B+

1 (E)

∣∣∣∣ 1

ϕ(x)

∫ 1

0

Tut[ϕF [f ](·, u, t)](x)du

∣∣∣∣ = 0.

Returning to (38), since the sum there requires that at least two of the ki are positive,
this means that the only surviving terms in the limit are those that are combinations of
two strictly positive terms ki and kj such that i 6= j and ki + kj = k + 1. This can be
thought of as choosing i, j ∈ {1, . . . N} with i 6= j, choosing ki ∈ {1, . . . , k} and then setting
kj = k + 1 − ki. One should take care however to avoid double counting each pair (ki, kj).
Thus, we have

1

tkϕ(x)
T
(k+1)
t [f ](x) =

1

ϕ(x)

∫ 1

0

Tut

[
β(·)
2tk−1

E·

[
N∑
i=1

N∑
j=1
j 6=i

k∑
ki=1

(
k + 1

ki, k + 1− ki

)

× T
(ki)
t(1−u)[f ](xi)T

(k+1−ki)
t(1−u) [f ](xj)

]]
(x)du,(42)
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where the factor of 1/2 appears to compensate for the aforementioned double counting.

In order to show that the right-hand side above delivers the required finiteness and limit
(21), we again turn to Theorem A.1. For x ∈ E, t ≥ 0 and 0 ≤ u ≤ 1, in anticipation of
using this theorem, we now re-define

F [f ](x, u, t) :=
β(x)

2ϕ(x)tk−1
Ex

[
N∑
i=1

N∑
j=1
j 6=i

k∑
ki=1

(
k + 1

ki, k + 1− ki

)
T
(ki)
t(1−u)[f ](xi)T

(k+1−ki)
t(1−u) [f ](xj)

]
.

After some rearrangement, we have

F [f ](x, u, t)

=
β(x)(1− u)k−1

2ϕ(x)
Ex

[
N∑
i=1

N∑
j=1
j 6=i

k∑
ki=1

(
k + 1

ki, k + 1− ki

)

× ϕ(xi)ϕ(xj)
T
(ki)
t(1−u)[f ](xi)

ϕ(xi)(t(1− u))ki−1

T
(k+1−ki)
t(1−u) [f ](xj)

ϕ(xj)(t(1− u))k−ki

]
.(43)

Using similar arguments to those given previously in the proof of (41) may, again, combine
the induction hypothesis, simple combinatorics and dominated convergence to pass the limit
as t→∞ through the expectation and show that

F [f ](x, u) := lim
t→∞

F [f ](x, u, t)

= (k + 1)!(〈ϕ̃,V[ϕ]〉/2)k−1〈ϕ̃, f〉k+1k
(1− u)k−1

2ϕ(x)
V[ϕ](x),(44)

for which one uses that

(k + 1)!(〈ϕ̃, βV[ϕ]〉/2)k−1〈ϕ̃, f〉k+1kV[ϕ](x)

= Ex

[
N∑
i=1

N∑
j=1
j 6=i

k∑
ki=1

(
k + 1

ki, k + 1− ki

)
ϕ(xi)ϕ(xj)

× ki! 〈f, ϕ̃〉ki 〈V[ϕ], ϕ̃〉ki−1

2(ki−1)
(k + 1− ki)! 〈f, ϕ̃〉k+1−ki 〈V[ϕ], ϕ̃〉k−ki

2(k−ki)

]
.

Note that, thanks to the assumption (H2), the expression for F (s, x) clearly satisfies (A.1).

Subtracting the right-hand side of (44) from the right-hand side of (43), again appealing
to the induction hypotheses, specifically the second statement in (21), it is not difficult to
show that, for each ε ∈ (0, 1),

lim
t→∞

sup
x∈E,u∈[0,ε),f∈B+

1 (E)

|ϕ(x)F [f ](x, u, t)− ϕ(x)F [f ](x, u)| = 0.
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On the other hand, the first statement in the induction hypothesis (21) also implies that
three exists a constant Ck > 0 (which depends on k but not ε) such that

lim
t→∞

sup
x∈E,u∈[ε,1],f∈B+

1 (E)

|ϕ(x)F (x, u, t)− ϕ(x)F (x, u)| ≤ Ck(1− ε)k−1.

Since we may take ε arbitrarily close to 1, we conclude that (A.2) holds.

In conclusion, since the conditions of Theorem A.1 are now met, we get the two statements
of (21) as a consequence. �

2.4 Proof of Theorem 4

Next we turn our attention to the evolution equation generated by the k-th moment func-
tional T(k)t , t ≥ 0. To this end, we start by defining observing that

(45) M
(k)
t [g](x) = (−1)k+1 ∂

k

∂θk
ut[0, θg](x)

∣∣∣∣
θ=0

.

Taking account of (27), we see that

(46) ut[0, θg](x) = −
∫ t

0

Ts [A[ut−s[0, θg]]− θg(1− ut−s[0, θg])] (x)ds.

Given the proximity of (46) to (34), it is easy to see that we can apply the same reasoning
that we used for T(k)t [f ](x) to M

(k)
t [g](x) and conclude that, for k ≥ 2,

M
(k)
t [g](x) =

∫ t

0

Ts

[
βη̂

(k−1)
t−s [g]

]
(x)− kTs[gM(k−1)t−s [g]](x)ds,(47)

where η̂k plays the role of ηk albeit replacing the moment operators T(j) by the moment
operators M(j).

We now proceed to prove Theorem 4, also by induction. First we consider the setting
k = 1. In that case,

1

t
M(1)[g](x) =

1

t
Eδx
[∫ t

0

〈g,Xs〉ds
]

=
1

t

∫ t

0

Ts[g](x)ds =

∫ 1

0

Tut[g](x)du.

Referring now to Theorem A.1 in the Appendix, we can take F (x, s, t) = f(x)/ϕ(x), since
f ∈ B+(E), the conditions of the theorem are trivially met and hence

lim
t→∞

sup
x∈E,g∈B+

1 (E)

∣∣∣∣1t M(1)[g](x)− 〈g, ϕ̃〉
∣∣∣∣ = 0.

Note that this limit sets the scene for the polynomial growth in tn(k) of the higher moments
for some function n(k). If we are to argue by induction, whatever the choice of n(k), it must
satisfy n(1) = 1.
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Next suppose that Theorem 4 holds for all integer moments up to and including k − 1.
We have from (47) that

(48)
1

t2k−1
M
(k)
t [g](x) =

1

t2k−1

∫ t

0

Ts

[
βη̂

(k−1)
t−s [g]

]
(x)ds− 1

t2k−1

∫ t

0

kTs[gM
(k−1)
t−s [g]](x)ds.

Let us first deal with the right most integral in (48). It can be written as

1

t2k−2

∫ 1

0

kTut [ϕF (·, u, t)] (x)du :=

∫ 1

0

(1− u)2k−2kTut

[
g

1

(t(1− u))2k−2
M
(k−1)
t(1−u)[g]

]
(x)du.

Arguing as in the spirit of the proof of Theorem 1, our induction hypothesis ensures that

lim
t→∞

F [g](x, u, t) = lim
t→∞

g(1− u)2k−2k
1

(t(1− u))2k−2

M
(k−1)
t(1−u)[g](x)

ϕ(x)
= 0 =: F (x, u)

satisfies (A.1) and (A.2). Theorem A.1 thus tells us that, uniformly in x ∈ E and g ∈ B+
1 (E),

(49) lim
t→∞

1

t2k−1

∫ t

0

kTs[gM
(k−1)
t−s [g]](x) = 0.

On the other hand, again following the style of the reasoning in the proof of Theorem 1,
we can pull out the leading order terms, uniformly for x ∈ E and g ∈ B+

1 (E),

lim
t→∞

1

t2k−1

∫ t

0

Ts

[
βη̂

(k−1)
t−s [g]

]
(x)ds

= lim
t→∞

∫ 1

0

Tut

[
β(·)

2
(1− u)2k−2E·

[
N∑
i=1

N∑
j=1
j 6=i

k−1∑
ki=1

(
k

ki, k − ki

)
ϕ(xi)ϕ(xj)

×
M
(ki)
t(1−u)[g](xi)

ϕ(xi)(t(1− u))2ki−1

M
(k−ki)
t(1−u)[g](xj)

ϕ(xj)(t(1− u))2k−2ki−1

]]
(x)du.

(50)

It is again worth noting here that the choice of the polynomial growth in the form tn(k) also
constrains the possible linear choices of n(k) to n(k) = 2k − 1 if we are to respect n(1) = 1
and the correct distribution of the index across (50).

Identifying

F [g](x, u, t) =
β(x)

2ϕ(x)
(1− u)2k−2Ex

[
N∑
i=1

N∑
j=1
j 6=i

k−1∑
ki=1

(
k

ki, k − ki

)
ϕ(xi)ϕ(xj)

×
M
(ki)
t(1−u)[g](xi)

ϕ(xi)(t(1− u))2ki−1

M
(k−ki)
t(1−u)[g](xj)

ϕ(xj)(t(1− u))2k−2ki−1

]
,
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our induction hypothesis allows us to conclude that F [g](x, u) := limt→∞ F [g](x, u, t) exists
and

ϕ(x)F [g](x, u) = (1− u)2k−2k!
β(x)V[ϕ](x)

2k−1
〈g, ϕ̃〉k〈V[ϕ], ϕ̃〉k−1

k−1∑
`=1

L`Lk−`.

Thanks to our induction hypothesis, we can also easily verify (A.1) and (A.2). Theorem A.1
now gives us the required uniform (in x ∈ E and g ∈ B+

1 (E)) limit

(51) lim
t→∞

1

t2k−1

∫ t

0

Ts

[
βη̂

(k−1)
t−s [g]

]
(x)ds =

k!〈V[ϕ], ϕ̃〉k−1〈g, ϕ̃〉k

2k−1
Lk.

Putting (51) together with (49) we get the statement of Theorem 4. �

2.5 Proofs for the non-critical cases

We now give an outline of the main steps in the proof of Theorem 1 for the sub and su-
percritical cases. As previously mentioned, the ideas used in this section will closely follow
those presented in the previous section for the proof of the critical case and so we leave the
details to the reader. We first note that the Perron Frobenius behaviour in (H1) ensures
the base case for the induction argument, regardless of the value of λ. We thus turn to the
inductive step, assuming the result holds for k − 1.

Proof of Theorem 2 (supercritical case). From the evolution equation (33), we have

lim
t→∞

e−λkt

ϕ(x)
T
(k)
t [f ](x)

= lim
t→∞

e−λkt

ϕ(x)

∫ t

0

Ts

βEx
 ∑

[k1,...,kN ]2k

(
k

k1, . . . , kN

) N∏
j=1

T
(kj)
t−s [f ](xj)

 (x)ds.(52)

It then follows that

lim
t→∞

sup
x∈E,f∈B+

1 (E)

∣∣∣ϕ(x)−1e−kλtT
(k)
t [f ](x)− 〈f, ϕ̃〉k Lk

∣∣∣
= lim

t→∞
sup

x∈E,f∈B+
1 (E)

∣∣∣∣∣ϕ(x)−1e−kλt
∫ t

0

Ts

βEx
 ∑

[k1,...,kN ]2k

(
k

k1, . . . , kN

) N∏
j=1

T
(kj)
t−s [f ](xj)

 (x)ds

−
∫ t

0

e−(k−1)λsds 〈f, ϕ̃〉kλ(k − 1)Lk

∣∣∣∣∣.
(53)
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Noting that
∑N

j=1 kj = k, we may again share the exponential term across the product in
the right-hand side above as follows,

e−λkt

ϕ(x)

∫ t

0

Ts

βE·
 ∑

[k1,...,kN ]2k

(
k

k1, . . . , kN

) N∏
j=1

T
(kj)
t−s [f ](xj)

 (x)ds

= t

∫ 1

0

e−λ(k−1)ut
e−λut

ϕ(x)
Tut

[
k!βE·

( ∑
[k1,...,kN ]2k

N∏
j=1

ϕ(xj)
e−λkjt(1−u)T

(kj)

t(1−u)[f ](xj)

kj!ϕ(xj)

)]
(x)du.

Combining this with to (53) and changing variables in the final integral of the latter, we
have

lim
t→∞

sup
x∈E,f∈B+

1 (E)

∣∣∣ϕ(x)−1e−kλtT
(k)
t [f ](x)− 〈f, ϕ̃〉k Lk

∣∣∣
≤ lim

t→∞
sup

x∈E,f∈B+
1 (E)

t

∣∣∣∣∫ 1

0

e−λ(k−1)ut
(e−λut

ϕ(x)
Tut [ϕF (·, u, t)]− 〈f, ϕ̃〉kλ(k − 1)Lk

)
du

∣∣∣∣ ,(54)

where we have defined

F [f ](x, u, t) := k!
β(x)

ϕ(x)
Ex

 ∑
[k1,...,kN ]2k

N∏
j=1

ϕ(xj)
e−λkjt(1−u)T

(kj)

t(1−u)[f ](xj)

kj!ϕ(xj)

 .
It is easy to see that, pointwise in x ∈ E and u ∈ [0, 1], using the induction hypothesis

and (H2),

F [f ](x, u) := lim
t→∞

F [f ](x, u, t)

= k!
β(x)

ϕ(x)
Ex

 ∑
[k1,...,kN ]2k

(
k

k1, . . . , kN

) N∏
j=1
j:kj>0

ϕ(xj)Lkj

 〈f, ϕ̃〉k
where we have again used the fact that the kjs sum to k to extract the 〈f, ϕ̃〉k term. Similarly
to the critical setting we can also verify using the induction hypothesis and (H2) that (A.1)
and (A.2) hold.

This is sufficient to note that, by using a triangle inequality similar spirit to the one
found in (A.4) and appealing to (13) of the assumption (H1), we have that

sup
x∈E,u∈[0,1],f∈B+

1 (E),t≥0

∣∣∣∣e−λutϕ(x)
Tut [ϕF [f ](·, u, t)]− k!〈f, ϕ̃〉kLk

∣∣∣∣ <∞.
This means that for t sufficiently large, we can control the modulus in the integral on the
right-hand side of (54) by a global constant. The remainder of integral, yields a bound of
ε(1− e−λ(k−1)t)/λ(k − 1), which tends to zero as t→∞.
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Proof of Theorem 3 (subcritical case). We now outline the subcritical case. First note that
since we only compensate by e−λt, the term Tt[f

k](x) that appears in equation (33) does not
vanish after the normalisation. Due to assumption (H1), we have

lim
t→∞

ϕ−1(x)e−λtTt[f
k](x) = 〈fk, ϕ̃〉.

Next we turn to the integral term in (33). Define [k1, . . . , kN ]nk , for 2 ≤ n ≤ k to be the set
of tuples (k1, . . . , kN) with exactly n positive terms and whose sum is equal to k. Similar
calculations to those given above yield

e−λt

ϕ(x)

∫ t

0

Ts

βEx
 ∑

[k1,...,kN ]2k

(
k

k1, . . . , kN

) N∏
j=1

T
(kj)
t−s [f ](xj)

 (x)ds

= t
k∑

n=2

∫ 1

0

eλ(n−1)ut
e−λt(1−u)

ϕ(x)
Tt(1−u)

[
k!βE·

[ ∑
[k1,...,kN ]nk

N∏
j=1

ϕ(xj)
e−λutT

(kj)
ut [f ](xj)

kj!ϕ(xj)

]]
(x)du(55)

Again, we leave the details to the reader but the idea is that the induction hypothesis
will take care of the product of the lower order moments and the second part of (13) in
assumption (H1) will then take care of the asymptotic behaviour semigroup Tt(1−u). The
second part of (13) allows one to control the difference between this term and its limit. In
a similar manner to the final step in the proof of Theorem 2, the difference of (33) and its
limit can be reduced to the limit as t→∞ of ε(1− e−|λ|(n−1)t)/|λ|(n− 1), which is bounded
above by ε.

Proof of Theorem 5. For the case k = 1, we have∣∣∣∣e−λtϕ(x)−1
∫ t

0

Ts[g](x)ds− 〈g, ϕ̃〉
λ

∣∣∣∣
=

∣∣∣∣e−λtt∫ 1

0

eλut
(
e−λutϕ(x)−1Tut[g](x)− 〈g, ϕ̃〉

)
du− e−λt

〈g, ϕ̃〉
λ

∣∣∣∣
≤ e−λtt

∫ 1

0

eλut
∣∣e−λutϕ(x)−1Tut[g](x)− 〈g, ϕ̃〉

∣∣ du+ e−λt
〈g, ϕ̃〉
λ

.(56)

Thanks to (H1) and similar arguments to those used in the proof of Theorem 2, we may
choose t sufficiently large such that the modulus in the integral is bounded above by ε > 0,
uniformly in g ∈ B+

1 (E) and x ∈ E. Then, the right-hand side of (56) is bounded above by
ελ−1(1 − e−λt) + e−λt〈g, ϕ̃〉/λ. Since ε can be taken arbitrarily small, this gives the desired
result and also pins down the initial value L1 = 1/λ.

Now assume the result holds for all ` ≤ k− 1. Reflecting on proof of Theorem 2, we note
that in this setting the starting point is almost identical except that the analogue of (52),
which is derived from (47), is now the need to evaluate

lim
t→∞

e−λkt

ϕ(x)
M
(k)
t [g](x) = lim

t→∞

e−λkt

ϕ(x)

∫ t

0

Ts

βE·
 ∑

[k1,...,kN ]2k

(
k

k1, . . . , kN

) N∏
j=1

M
(kj)
t−s [g](xj)

 (x)ds

− k lim
t→∞

e−λkt

ϕ(x)

∫ t

0

Ts[gM
(k−1)
t−s [g]](x)ds.(57)
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The first term on the right-hand side of (57) can be handled in essentially the same way
as in the proof of Theorem 2. The second term on the right-hand side of (57) can easily
be dealt with along the lines that we are now familiar with from earlier proofs, using the
induction hypothesis. In particular, its limit is zero. Hence combined with the first term on
the right-hand side of (57), we recover the same recursion equation for Lk.

Proof of Theorem 6. The case k = 1 is relatively straightforward and, again in the interest
of keeping things brief, we point the reader to the fact that, as t→∞, we have

(58)
1

ϕ(x)
M
(1)
t [g](x) =

∫ t

0

Ts[g](x)

ϕ(x)
ds =

∫ t

0

eλse−λs
Ts[g](x)

ϕ(x)
ds ∼ t〈g, ϕ̃〉

∫ 1

0

eλutdu ∼ 〈g, ϕ̃〉
|λ|

.

Now suppose the result holds for all ` ≤ k − 1. We again refer to (47), which means we
are interested in handling a limit which is very similar to (57), now taking the form

M
(k)
t [g](x)

ϕ(x)

=
t

ϕ(x)

∫ 1

0

eλute−λutTut

βE·
 ∑

[k1,...,kN ]2k

(
k

k1, . . . , kN

) N∏
j=1

ϕ(xj)
M
(kj)

t(1−u)[g](xj)

ϕ(xj)

 (x)du

− k t

ϕ(x)

∫ 1

0

eλute−λutTut

[
gϕ

M
(k−1)
t(1−u)[g]

ϕ

]
(x)du.(59)

Again skipping the details, we can quickly see from (59) the argument in (58), and the
induction hypothesis gives us

M
(k)
t [g](x)

ϕ(x)
∼ k!
〈g, ϕ̃〉k

|λ|

〈
βE

[ ∑
[k1,...,kN ]2k

N∏
j=1
j:kj>0

ϕ(xj)Lkj

]
, ϕ̃

〉
− k!
〈gϕ, ϕ̃〉〈g, ϕ̃〉k−1

|λ|
Lk−1,(60)

which gives us the required recursion for Lk.

3 Proofs for superprocesses
For the proof of Theorems 1, 2 and 3 in the setting of superprocesses we follow a similar
approach. One difference is that we cannot work with the k-th moment as a product of an
almost surely finite sum. As such the use of the Leibniz formula as in the previous section is
no longer helpful. Instead, we use the Faà di Bruno formula (see Lemma A.1) to assist with
multiple derivatives of the non-linear evolution equation (5).

3.1 Linear and non-linear semigroup equations

The evolution equation for the expectation semigroup (Tt, t ≥ 0) is well known and satisfies

(61) Tt [f ] (x) = Pt[f ](x) +

∫ t

0

Ps [β(m[Tt−s[f ]]− 1) + b] (x)ds,
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for t ≥ 0, x ∈ E and f ∈ B+(E), where, with a meaningful abuse of our branching Markov
process notation, we now define

m[f ](x) =

∫
M0(E)

[
γ(x, π) 〈f, π〉+

∫ ∞
0

u 〈f, π〉n(x, π, du)

]
G(x, dπ)

= γ(x, f) +

∫
M(E)◦

〈f, ν〉Γ(x, ν).(62)

See for example equation (3.24) of [4].
In the spirit of Lemma 1 we can give a second representation of Tt[f ] in terms of an

auxiliary process, the so called many-to-one formula. To this end, if, as before, we work with
the process (ξ,P) to represent the Markov process associated to the semigroup (Pt, t ≥ 0),
then, although we have redefined the quantity m[f ](x), we can still meaningfully work with
the process (ξ̂, P̂) as defined just before Lemma 1.

Lemma 3. Let ϑ(x) = B(x)+b(x) = β(x)(m[1](x)−1)+b(x), then, for t ≥ 0 and f ∈ B+(E),

(63) Tt [f ] (x) = Êx

[
exp

(∫ t

0

ϑ(ξ̂s)ds

)
f(ξ̂t)

]
.

As with Lemma 1, the proof is classical, requiring only that we take the right-hand side
of (63) and condition on the first extra jump of (ξ̂, P̂) to show that it also solves (62). It is a
straightforward application of Grönwall’s inequality to show that (62) has a unique solution
and hence (61) holds. The reader will note that because we have separated out the local and
non-local branching mechanisms of the superprocess, the deliberate repeat definition of m[f ]
for superprocesses is only the analogue of its counter part for branching Markov processes
in the sense of non-local activity. The mean local branching rate has otherwise been singled
out as the term b.

Similarly to the branching Markov process setting, let us re-write an extended version of
the non-linear semigroup evolution (Vt, t ≥ 0), defined in (6), i.e. the natural analogue of
(27), in terms of the linear semigroup (Tt, t ≥ 0). To this end, define

Vt [f, g] (x) = Ex
[
e−〈f,Xt〉−

∫ t
0 〈g,Xs〉ds

]
,

Analogously to Theorem 2 we have the following result.

Lemma 4. For all f, g ∈ B+(E), x ∈ E and t ≥ 0, the non-linear semigroup Vt[f, g](x)
satisfies

(64) Vt[f, g](x) = Tt[f ](x)−
∫ t

0

Ts [J[Vt−s[f, g]]− gVt−s [f, g]] (x)ds,

where, for h ∈ B+(E) and x ∈ E,

J[h](x) = ψ(x, h(x)) + φ(x, h) + β(x)(m[h](x)− h(x)) + b(x)h(x).

The proof is essentially the same as the proof of Lemma 2 and hence we leave the details to
the reader.
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3.2 Evolution equations for the k-th moment of a superprocesses

Recall that we defined T
(k)
t [f ] (x) := Eδx [〈f,Xt〉k], t ≥ 0, f ∈ B+(E), k ≥ 1. As with

the setting of branching Markov processes, we want to establish an evolution equation for
(T

(k)
t , t ≥ 0), from which we can establish the desired asymptotics. To this end, let us

introduce the following notation.

For x ∈ E, k ≥ 2 and t ≥ 0, define

Rk(x, t) =
∑

{m1,...,mk−1}k

k!

m1! . . .mk−1!
(−1)m1+...+mk−1−1

(m1 + . . .+mk−1 − 1)!
k−1∏
j=1

(
(−1)jT

(j)
t [f ] (x)

j!

)mj

,(65)

and

Kk(x, t) =
∑

{m1,...,mk−1}k

k!

m1! . . .mk−1!
ψ(m1+...+mk−1)(x, 0+)

k−1∏
j=1

(
(−1)j+1T

(j)
t [f ] (x)−Rj(x, t)

j!

)mj

,(66)

and finally

Sk(x, t) =

∫
M(E)◦

∑
{m1,...,mk−1}k

k!

m1! . . .mk−1!
(−1)m1+...+mk−1

k−1∏
j=1


〈

(−1)j+1T
(j)
t [f ]−Rj(·, t), ν

〉
j!

mj

Γ(x, dν),(67)

and the sums run over the set of non-negative integers {m1, . . . ,mk−1} such that m1 +2m2 +
. . .+ (k − 1)mk−1 = k.

Theorem 7. Fix k ≥ 2. Suppose that (H1) and (H2) hold, with the additional assumption
that

(68) sup
x∈E,s≤t

T(`)s [f ](x) <∞, ` ≤ k − 1, f ∈ B+(E), t ≥ 0.

Then,

(69) T
(k)
t [f ] (x) = (−1)k+1Rk(x, t) + (−1)k

∫ t

0

Ts [Uk(·, t− s)] ds,

where

(70) Uk(x, t) = Kk(x, t) + β(x)Sk(x, t).
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Proof. For the proof of this result, recall the definition (5) and let

v
(k)
t [f ](x) :=

∂k

∂θk
Vt[θf, 0](x)

∣∣∣∣
θ=0

, t ≥ 0, f ∈ B+(E), k ≥ 1

as well as
et[f ](x) := Eδx

[
e−〈f,Xt〉

]
, t ≥ 0, f ∈ B+(E).

In that case, Vt[θf ](x) = − log et[θf ](x) and et[0](x) = 1, so that

e
(k)
t [θf ](x) :=

∂k

∂θk
et[θf ](x) = (−1)kEδx

[
〈f,Xt〉k e−θ〈f,Xt〉

]
and

(71) e
(k)
t [θf ](x)|θ=0 = (−1)kT

(k)
t [f ] (x).

Next we can us Faà di Bruno’s Lemma A.1 to get

v
(k)
t [f ](x)

=
∂k

∂θk
− log et[θf ](x)

∣∣∣∣
θ=0

= −
∑

{m1,...,mk}k

k!

m1! . . .mk!

(−1)m1+...+mk−1(m1 + . . .+mk − 1)!

et[θf ](x)m1+...+mk

k∏
j=1

(
e(j)[θf ])

j!

)mj

∣∣∣∣∣∣
θ=0

= −
∑

{m1,...,mk}k

k!

m1! . . .mk!
(−1)m1+...+mk−1(m1 + . . .+mk − 1)!

k∏
j=1

(
(−1)jT

(j)
t [f ] (x)

j!

)mj

,

where the sum runs over the set of non-negative integers {m1, . . . ,mk}k such that

m1 + 2m2 + . . .+ kmk = k.

Note that mk > 0 if and only if mk = 1 and m1 = m2 = . . . = mk−1 = 0, so the k-th
moment term T

(k)
t [f ] appears only once and with a factor (−1)k+1, that is,

(72) v
(k)
t [f ](x) = (−1)k+1T

(k)
t [f ] (x)−Rk(x, t),

where all the terms in Rk(x, t) are products of two or more lower order moments.

Now, we differentiate the evolution equation (64) k times at θ = 0, momentarily not
worrying about passing derivatives through integrals, to get that

v
(k)
t [f ](x) = −

∫ t

0

Ts

[
∂k

∂θk

(
ψ(·, Vt−s [θf, 0] (·)) + φ(·, Vt−s [θf, 0]) + F[Vt−s[θf, 0]]

)∣∣∣∣
θ=0

]
(x)ds,
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where
F[g](x) = β(x)(m[g]− g) + b(x)g, x ∈ E, g ∈ B+(E).

For the kth derivative of ψ(x, Vt [θf, 0] (x)) at θ = 0 we again use Faà di Bruno, Lemma
A.1, to get

∂k

∂θk
ψ (x, Vt [θf, 0] (x))

∣∣∣∣
θ=0

=
∑

{m1,...,mk}k

k!

m1! . . .mk!
ψ(m1+...+mk)(x, Vt [θf, 0])

k∏
j=1

(
∂j

∂θj
Vt [θf, 0] (x)

j!

)mj

∣∣∣∣∣∣
θ=0

=
∑

{m1,...,mk}k

k!

m1! . . .mk!
ψ(m1+...+mk)(x, 0+)

k∏
j=1

(
v
(j)
t [f ](x)

j!

)mj

= −b(x)v
(k)
t [f ](x) +Kk(x, t),

where the last equality holds because mk = 1 if and only if m1 = . . . = mk−1 = 0 and
ψ′(x, 0+) = −b(x). Similarly, for the the kth derivative of the remaining terms recalling (8),
(9) and (62),

∂k

∂θk

(
φ(x, Vt [θf, 0]) + F[Vt [θf, 0]]

)
= b(x)

∂k

∂θk
Vt [θf, 0]

− β(x)

∫
M0(E)

∫ ∞
0

∂k

∂θk
(
1− e−u〈Vt[θf,0],π〉 − u 〈Vt [θf, 0] , π〉

)
n(x, π, du)G(x, dπ),

and using Lemma A.1 we have

∂k

∂θk
(
1− e−u〈Vt[θf,0],π〉 − u 〈Vt [θf, 0] , π〉

)
=

∑
{m1,...,mk−1}k

k!

m1! . . .mk!
(−1)m1+...+mk+1e−u〈Vt[θf,0],π〉

k∏
j=1

u
〈
∂j

∂θj
Vt [θf, 0] , π

〉
j!

mj

+
(
e−u〈Vt[θf,0],π〉 − 1

)
u

〈
∂k

∂θk
Vt [θf, 0] , π

〉
where, in the final equality, we have singled out the case that mk = 1 and m1 = · · · =
mk−1 = 0 in the Faà di Bruno formula. and then, using the definition of m[f ](x) in (62) and
the same observation as above about the mj’s, we get

(73)
∂k

∂θk

(
φ(x, Vt [θf, 0]) + F[Vt [θf, 0]]

)∣∣∣∣
θ=0

= b(x)v
(k)
t [f ](x) + β(x)Sk(x, t).
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Putting the pieces together, we get

(74) v
(k)
t [f ](x) = −

∫ t

0

Ts [Uk(·, t− s)] (x)ds.

Combining this with equation (72) we get that

(−1)k+1T
(k)
t [f ] (x) = Rk(x, t)−

∫ t

0

Ts [Uk(·, t− s)] (x)ds,

which is the desired result.
There is one final matter we must attend to, which is the ability to move derivatives

through integrals. In this setting, this is easier to deal with thanks to the the assumption
(68), (H2) and the Lévy-Khintchine-type formulae for ψ and φ.

3.3 Completing the proof of Theorem 1: critical case

We will prove Theorem 1 for superprocesses using induction, similarly to the setting of
branching Markov processes. The case k = 1 follows from assumption (H1).

Now assume that the statement of Theorem 1 holds in the superprocess setting for all
` ≤ k. Our aim is to prove that the result holds for k + 1. Using Theorem 7 and a change
of variables, we have that

(75)
1

ϕ(x)tk
T
(k+1)
t [f ] (x) =

(−1)k

ϕ(x)tk
Rk+1(x, t) +

(−1)k+1

ϕ(x)tk−1

∫ 1

0

Tst [Uk+1(·, t(1− s))] (x)ds,

where R and U were defined in equations (65) and (70), respectively. We will prove first
that, for each x ∈ E,

lim
t→∞

1

ϕ(x)tk
T(k+1) [f ] (x)

= lim
t→∞

1

2ϕ(x)tk−1

∫ 1

0

Tst

[
K

(2)
k+1(·, t(1− s)) + β(·)S(2)

k+1(·, t(1− s))
]

(x)ds,(76)

where

(77) K
(2)
k+1(x, t) :=

∑
{k1,k2}+

(k + 1)!

k1!k2!
ψ′′(x, 0+)T

(k1)
t [f ] (x)T

(k2)
t [f ] (x)

and

(78) S
(2)
k+1(x, t) =

∫
M(E)◦

∑
{k1,k2}+

(k + 1)!

k1!k2!
〈T(k1)t [f ] , ν〉〈T(k2)t [f ] , ν〉Γ(x, dν),

such that {k1, k2}+ is defined to be the set of positive integers k1, k2 such that k1+k2 = k+1.
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To this end, writing c(m1, . . . ,mk) for the constants preceding the product summands in
(65), observe that

lim
t→∞

1

tk
Rk+1(x, t) = lim

t→∞

(k + 1)!

tk

∑
{m1,...,mk}k+1

c(m1, . . . ,mk)
k∏
j=1

(
(−1)jT

(j)
t [f ] (x)

j!

)mj

= (−1)k(k + 1)! lim
t→∞

∑
{m1,...,mk}k+1

c(m1, . . . ,mk)

tm1+...+mk−1

k∏
j=1

(
1

j!

T
(j)
t [f ] (x)

tj−1

)mj

= 0,

where the final equality is due to the induction hypothesis and the fact thatm1+. . .+mk > 1,
which follows from the fact that m1 + 2m2 + . . . + . . . + kmk = k + 1. Note, moreover that
the induction hypothesis ensures that the limit is uniform in x ∈ E and, in fact, that

(79) sup
t≥0,x∈E

1

t`−1
R`(x, t) <∞ and lim

t→∞
sup
x∈E

1

t`−1
R`(x, t) = 0 ` = 1, · · · , k + 1.

We now return to (75), to deal with the term involving Uk+1, which we recall is a linear
combination of Kk+1 and Sk+1, which were defined in (65) and (67), respectively. Note that
if any of the summands in either Kk+1 or Sk+1 have more than two of the mj positive, the
limit of that summand, when renormalised by 1/tk−1, will be zero. In essence, the argument
here is analogous to those that led to (41) in the branching Markov process setting. This
implies that the only terms in the sums of (65) and (67) that remain in the limit of (75)
are those for which mk1 = mk2 = 1 and mj = 0 for all j 6= k1, k2, with k1 < k2 such that
k1 + k2 = k + 1, and if k + 1 is even, the terms in which m(k+1)/2 = 2 and mj = 0 for all
j 6= (k + 1)/2.

Let us now convert all of the above heuristics into rigorous computation. We write

(80) F [f ](x, s, t) :=
1

ϕ(x)tk−1

(
K

(3+)
k+1 (x, t(1− s)) + β(x)S

(3+)
k+1 (x, t(1− s))

)
,

where K(3+)
k+1 and S(3+)

k+1 contain the terms in Kk+1 and Sk+1, respectively, for which the sum
m1 + . . . + mk is greater than or equal to 3. We will prove that limt→∞ F (x, s, t) = 0 and
that (A.1) and (A.2) hold.

Due to (15) and boundness of ϕ, dominated convergence implies that

lim
t→∞

1

ϕ(x)tk−1
K

(3+)
k+1 (x, t(1− s))

=
(k + 1)!

ϕ(x)

∑
{m1,...,mk}3k+1

ψ(m1+...+mk)(x, 0+)

m1! . . .mk!

lim
t→∞

1

tm1+...+mk−2

k∏
j=1

(
(−1)j+1T

(j)
t(1−s) [f ] (x)−Rj(x, t(1− s))

j!tj−1

)mj

,
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where the set {m1, . . . ,mk}3k+1 is the subset of {m1, . . . ,mk}k+1 for which m1 + . . . +mk ≥
3. Using the induction hypothesis and (79), we get that the right-hand side above is
zero. The same arguments also imply that the limit of S(3+)

k+1 is zero. Thus F [f ](x, s) :=
limt→∞ F [f ](x, s, t) = 0. The condition (A.1) trivially holds. For (A.2), the required unifor-
mity follows from the induction hypothesis and (79).

Using Theorem A.1 in the Appendix, we conclude that

lim
t→∞

sup
x∈E

∣∣∣∣ 1

ϕ(x)tk−1

∫ 1

0

Tts [ϕF [f ](·, s, t)] (x)ds

∣∣∣∣ = 0.

Let us now define {k1 < k2} to be the elements in Kk+1 for which mk1 = mk2 = 1 with
k1 < k2 such that k1 + k2 = k + 1 and mj = 0 for all other indices and, in the case where
k + 1 is even, m(k+1)/2 = 2 and mj = 0 for all j 6= (k + 1)/2. Restricting the sum to this set
in Kk+1 we get the following expression

K
(2)
k+1(x, t) =

∑
{k1<k2}

(k + 1)!

k1!k2!
ψ′′(x, 0+)(−1)k+1T

(k1)
t [f ] (x)T

(k2)
t [f ] (x)

+ 1(k+1 is even)
1

2

(
k + 1

k/2

)
ψ′′(x, 0+)(−1)k+1

(
T
(k/2)
t [f ] (x)

)2
=

(−1)k+1

2

∑
{k1,k2}+

(k + 1)!

k1!k2!
ψ′′(x, 0+)T

(k1)
t [f ] (x)T

(k2)
t [f ] (x),

where we recall {k1, k2}+ is the set of positive integers k1, k2 such that k1 + k2 = k + 1.
Similarly, we obtain the following expression for Sk+1:

K
(2)
k+1(x, t) =

∫
M(E)◦

∑
k1<k2

(k + 1)!

k1!k2!
(−1)k+1〈T(k1)t [f ] , ν〉〈T(k2)t [f ] , ν〉Γ(x, dν)

+ 1(k+1 is even)

∫
M(E)◦

(
k + 1

k/2

)
(−1)k+1

2
〈T((k+1)/2)
t [f ] , ν〉2Γ(x, dν)

=
(−1)k+1

2

∫
M(E)◦

∑
{k1,k2}+

(k + 1)!

k1!k2!
〈T(k1)t [f ] , ν〉〉T(k2)t [f ] , ν〉Γ(x, dν).

Combining this with (75), we obtain (76). To conclude the proof define

(81) F [f ](x, s, t) :=
1

2ϕ(x)tk−1

(
K

(2)
k+1(x, t(1− s)) + β(x)S

(2)
2 (x, t(1− s))

)
.
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Due to (15) and the induction hypothesis,

lim
t→∞

1

2ϕ(x)tk−1
K

(2)
k+1(x, t(1− s))

=
(1− s)k−1

2ϕ(x)

∑
{k1,k2}+

(k + 1)!

k1!k2!
ψ′′(x, 0+) lim

t→∞

T
(k1)
t(1−s)f(x)

(t(1− s))k1−1
T
(k2)
t(1−s)f(x)

(t(1− s))k2−1

=(1− s)k−1ϕ(x)
∑
{k1,k2}+

(k + 1)!2−kψ′′(x, 0+) 〈f, ϕ̃〉k+1 〈V [ϕ] , ϕ̃〉k−1

=k(1− s)k−1ϕ(x)(k + 1)!2−kψ′′(x, 0+) 〈f, ϕ̃〉k+1 〈V [ϕ] , ϕ̃〉k−1 ,

where the last equality holds because the total number of ways of splitting one set of size
k + 1 into two non empty sets is equal to k. To obtain the limit for S(2)

k+1, we use (15), the
induction hypothesis, dominated convergence and linearity to obtain

lim
t→∞

S
(2)
k+1(x, t(1− s))

2ϕ(x)tk−1

=
(1− s)k−1

2ϕ(x)

∫
M(E)◦

∑
{k1,k2}+

(k + 1)!

k1!k2!
lim
t→∞

〈T(k1)t(1−s) [f ] , ν〉
(t(1− s))k1−1

〈T(k2)t(1−s) [f ] , ν〉
(t(1− s))k2−1

Γ(x, dν)

=
(1− s)k−1

2kϕ(x)

∫
M(E)◦

∑
{k1,k2}+

(k + 1)! 〈f, ϕ̃〉k+1 〈V [ϕ] , ϕ̃〉k−1 〈ϕ, ν〉2 Γ(x, dν)

=
k(1− s)k−1

2kϕ(x)
(k + 1)! 〈f, ϕ̃〉k+1 〈V [ϕ] , ϕ̃〉k−1

∫
M(E)◦

〈ϕ, ν〉2 Γ(x, dν).

Combining these two limits, we get that

F [f ](x, s) := lim
t→∞

F [f ](x, s, t) =
k(1− s)k−1

ϕ(x)

(k + 1)!

2k
〈f, ϕ̃〉k+1 〈V [ϕ] , ϕ̃〉k−1V [ϕ] (x).

In order to complete the proof, we will use Theorem A.1 to deal with (76). By now the
reader will be familiar with the arguments required to verify assumptions (A.1) and (A.2)
and thus, we exclude the details. Hence, it follows that

lim
t→∞

1

ϕ(x)tk
T(k+1) [f ] (x) =

(k + 1)!

2k
〈f, ϕ̃〉k+1 〈V [ϕ] , ϕ̃〉k−1

∫ 1

0

k(1− s)k−1 〈V [ϕ] , ϕ̃〉 ds

=
(k + 1)!

2k
〈f, ϕ̃〉k+1 〈V [ϕ] , ϕ̃〉k ,

where the limit is uniform in x ∈ E. Moreover, supt≥0,x∈E T(k+1) [f ] (x)/ϕ(x)tk <∞.

3.4 Proofs for the non-critical cases

In this section we present the main ideas behind the proof of Theorems 2 and 3. The methods
follow a similar reasoning to the critical case and the details are left to the reader. The base
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case is given by the Perron Frobenius behaviour in (H1) for both sub and supercritical cases.
Thus, we assume the result for k− 1 and proceed to give the outline of the inductive step of
the argument.

Proof of Theorem 2 (supercritical case). The main difference now compared to the critical
case is that all the terms in Rk(x, t) will survive after the normalization e−λkt as the expo-
nential term shares across the product. From the evolution equation (69) and the definition
of Lk we have that

|ϕ(x)−1e−λktT
(k)
t [f ] (x)− k! 〈f, ϕ̃〉k Lk(x)|

≤

∣∣∣∣∣ϕ(x)−1e−λkt(−1)k+1Rk(x, t)

−〈f, ϕ̃〉k
∑

{m1,...,mk−1}

k!

m1! . . .mk−1!
(m1 + . . .+mk−1 − 1)!ϕ(x)m1+...+mk−1−1

k−1∏
j=1

(−Lj(x))mj

∣∣∣∣∣∣
+

∣∣∣∣∣ϕ(x)−1e−λkt(−1)k
∫ t

0

Ts [Uk(·, t− s)] (x)ds− k! 〈f, ϕ̃〉k

λ(k − 1)
〈Vk [ϕ] , ϕ̃〉

∣∣∣∣∣ .
The first terms in the right hand side goes to zero uniformly since

e−λkt

ϕ(x)
(−1)k+1Rk(x, t) =

∑
{m1,...,mk−1}k

k!

m1! . . .mk−1!
(−1)m1+...+mk−1

×(m1 + . . .+mk−1 − 1)!
k−1∏
j=1

(
e−λjtT

(j)
t [f ] (x)

ϕ(x)j!

)mj

ϕ(x)m1+...+mk−1−1,

and the induction hypothesis implies that

lim
t→∞

e−λkt

ϕ(x)
(−1)k+1Rk(x, t) = 〈f, ϕ̃〉k

∑
{m1,...,mk−1}k

k!

m1! . . .mk−1!

(82)

× (m1 + . . .+mk−1 − 1)!ϕ(x)m1+...+mk−1−1
k−1∏
j=1

(−Lj(x))mj .

For the second term, define for k ≥ 2

Ik(x, t) :=

∫ t

0

Ts [Uk(·, t− s)] (x)ds = (−1)kT
(k)
t [f ] (x) +Rk(x, t).

We will use induction to prove that for k ≥ 2

(83) lim
t→∞

sup
x∈E,f∈B+

1 (E)

∣∣∣∣∣e−λktϕ(x)
(−1)kIk(x, t)−

k! 〈f, ϕ̃〉k

λ(k − 1)
〈Vk [ϕ] , ϕ̃〉

∣∣∣∣∣ = 0,
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which will complete the proof of the theorem.
First notice that for any k ≥ 2 due to a change of variable, we have that

e−λkt

ϕ(x)
(−1)kIk(x, t) = t

∫ 1

0

e−λ(k−1)ut
e−λut

ϕ(x)
Tut
[
(−1)ke−λkt(1−u)Uk(·, t(1− u))

]
(x)du,

where
(−1)ke−λktUk(x, t) = (−1)ke−λktKk(x, t) + β(x)(−1)ke−λktSk(x, t).

Recalling the definitions of Kk and Sk given in (66) and (67) respectively, and using the
fact that Ij(x, t) = −((−1)j+1Tt [f ] (x) − Rj(x, t)) for j = 2, . . . , k − 1, after sharing the
exponential term across the products, we obtain

(−1)ke−λktKk(x, t) =
∑

{m1,...,mk−1}k

k!

m1! . . .mk−1!
ψ(m1+...+mk−1)(x, 0+)

(
−e−λtTt [f ] (x)

)m1

k−1∏
j=2

(
− 1

j!
(−1)je−λjtIj(x, t)

)mj

and

(−1)ke−λktSk(x, t) =

∫
M(E)◦

∑
{m1,...,mk−1}k

k!

m1! . . .mk−1!
(−1)m1+...+mk−1

〈
−e−λtTt [f ] , ν

〉m1

k−1∏
j=2

1

j!

〈
−(−1)je−λjtIj(·, t), ν

〉mj
Γ(x, dν).

From these expressions and the definition of V2, the case k = 2 follows easily. Now we
assume (83) holds for ` = 1, . . . , k − 1, then similarly to the Markov branching process case
it follows that

lim
t→∞

sup
x∈E,f∈B+

1 (E)

∣∣∣∣∣e−λktϕ(x)
(−1)kIk −

k! 〈f, ϕ̃〉k

λ(k − 1)
〈Vk [ϕ] , ϕ̃〉

∣∣∣∣∣
≤ lim

t→∞
sup

x∈E,f∈B+
1 (E)

t

∣∣∣∣∫ 1

0

e−λ(k−1)ut
(

e−λut

ϕ(x)
Tut [ϕF (·, u, t)]− k! 〈f, ϕ̃〉k 〈Vk [ϕ] , ϕ̃〉

)
du

∣∣∣∣ ,(84)

where we have defined

F [f ](x, u, t)

= ϕ(x)−1
(
(−1)ke−λkt(1−u)Kk(x, t(1− u)) + β(x)(−1)ke−λkt(1−u)Sk(x, t(1− u))

)
=

1

ϕ(x)

∑
{m1,...,mk−1}k

k!

m1! . . .mk−1!

×

[
ψ(m1+...+mk−1)(−ϕ)m1+...+mk−1

(
e−λt(1−u)Tt(1−u) [f ] (x)

ϕ(x)

)m1 k−1∏
j=2

(
(−1)je−λjt(1−u)Ij(x, t(1− u))

ϕ(x)j!

)mj

+β(x)

∫
M(E)◦

〈
eλt(1−u)Tt(1−u) [f ]

ϕ
ϕ, ν

〉m1 k−1∏
j=2

1

j!

〈
(−1)je−λjt(1−u)Ij(·, t(1− u))

ϕ
ϕ, ν

〉mj

Γ(x, dν)

]
.
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It is easy to see that, pointwise in x ∈ E and for u ∈ (0, 1), using the induction hypothesis
for Ik and the assumed Perron Frobenius behaviour (H1) for Tt(1−u) [f ] (x) we have

F [f ](x, u) := lim
t→∞

F [f ](x, u, t)

=
1

ϕ(x)

∑
{m1,...,mk−1}k

k!

m1! . . .mk−1!
〈f, ϕ̃〉m1

k−1∏
j=2

(
〈f, ϕ̃〉j 〈Vj [ϕ] , ϕ̃〉

λ(j − 1)

)mj

×
[
ψ(m1+...+mk−1)(x, 0+)(−ϕ(x))m1+...+mk−1 + β(x)

∫
M(E)◦

〈ϕ, ν〉m1+...+mk−1 Γ(x, dν)

]
=

k!

ϕ(x)
〈f, ϕ̃〉k Vk[ϕ](x).

We again verify that the conditions (A.1) and (A.2) hold using the induction hypothesis
and (H2). To complete the proof of (83), we again proceed along the same lines as in
the branching Markov processes setting. Similar arguments to those given in the proof of
Theorem A.1

sup
x∈E,u∈[0,1],
f∈B+

1 (E),t≥0

∣∣∣∣e−λutϕ(x)
Tut [ϕF [f ](x, u, t)]− k! 〈f, ϕ̃〉k Vk [ϕ]

∣∣∣∣ <∞,
it follows that the remainder of the integral in (84) can be bounded by ε(1−e−λ(k−1)t)/λ(k−1),
which can be bounded by ε. Combining this with (82) we get the desired result.

Proof of Theorem 3 (subcritical case). We now outline the proof for the subcritical case.
Again we use an inductive argument. The case k = 1 follows from (H1) and the fact
that 〈ϕ, ϕ̃〉 = 1. Now assume the result to be true for ` = 1, . . . , k − 1. We first note first
that the term Rk(x, t) in (69) vanishes in the limit after the normalisation e−λt. To see this,
note from (65) that∣∣∣∣ e−λt

ϕ(x)
Rk(x, t)

∣∣∣∣ ≤ ∑
{m1,...,mk−1}k

c(m1, . . . ,mk−1)
k−1∏
j=1

∣∣∣∣∣e−λtT(j)t [f ] (x)

ϕ(x)j!

∣∣∣∣∣
mj

× ϕ(x)m1+...+mk−1eλ(m1+...+mk−1−1)t,

where c(m1, . . . ,mk−1) is a constant depending only on m1, . . . ,mk−1. Since each of the
terms in the product is bounded, λ < 0, and m1 + . . . + mk−1 > 1 for any partition, the
limit of the right-hand side above is zero. Using this, along with the induction hypothesis,
assumption (H1) and the evolution equation (69) we see that

lim
t→∞

sup
x∈E,f∈B+

1 (E)

∣∣∣ϕ(x)−1e−λtT
(k)
t [f ] (x)− k! 〈f, ϕ̃〉k 〈Vk [ϕ] , ϕ̃〉

∣∣∣
= lim

t→∞
sup

x∈E,f∈B+
1 (E)

∣∣∣∣ e−λt

ϕ(x)

∫ t

0

Ts [U∗k (·, t− s)] (x)ds− k! 〈f, ϕ̃〉k 〈Vk [ϕ] , ϕ̃〉
∣∣∣∣ ,(85)
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where

U∗k (x, t) =
∑

{m1...,mk−1}k

k!

m1! . . .mk−1!

[
ψ(m1+...+mk−1)(x, 0+)

k−1∏
j=1

(
−T

(j)
t [f ] (x)

j!

)mj

+β(x)

∫
M(E)◦

k−1∏
j=1

(
1

j!

〈
T
(j)
t [f ] , ν

〉)mj

Γ(x, dν)

]
.

Then, similar calculations to those above yield

e−λt

ϕ(x)

∫ t

0

Ts [U∗k (·, t− s)] (x)ds = t
∑

{m1,...,mk−1}k

k!

m1! . . .mk−1!

∫ 1

0

e−λt(1−u)(1−m1−...−mk−1))

e−λtu

ϕ(x)
Ttu

[
ψ(m1+...+mk−1)(·, 0+)(−ϕ(·))m1+...+mk−1

k−1∏
j=1

(
e−λt(1−u)T

(j)
t(1−u) [f ] (·)

ϕ(·)j!

)mj

+β(·)
∫
M(E)◦

k−1∏
j=1

〈
ϕ

e−λt(1−u)

ϕj!
T
(j)
t [f ] , ν

〉mj

Γ(x, dν)

]
(x)du.

To finish the proof, we use induction hypothesis to deal with the lower order moments,
dominated convergence and (H1) to deal with the limit of Tt(1−u). Similarly to the last part of
the proof of Theorem 2 we get that (85) is bounded as t→∞ by ε(1−e−λt(1−m1−...−mk))/λ(1−
m1 − . . .−mk), which is bounded by ε since m1 + . . .+mk−1 > 1. We once more leave the
details of the rest of the proof to the reader.

Proofs of Theorems 4, 5 and 6. Given the proofs we have now seen for the branching particle
setting for these three theorems, as well as the proofs of Theorem 1, 2 and 3, we mention
only that a similar calculation to the one presented in Theorem 7 tells us that

M
(k)
t [g] (x) = (−1)k+1R̃k(x, t) + (−1)k

∫ t

0

Ts

[
Ũk(·, t− s)

]
(x)ds

− k
∫ t

0

Ts

[
g[M

(k−1)
t−s [g] + (−1)k−1R̃k−1(·, t− s)]

]
(x)ds,

where
Ũk(x, t) = K̃k(x, t) + β(x)S̃k(x, t)

and R̃, K̃ and S̃ are defined as R, K and S in (65), (66), (67), respectively, albeit replacing
T(j) by M(j). From here we can consider the claimed asymptotics using the the inductive
reasoning as in the proof of Theorems 1, 2 and 3, respectively.
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Appendix
We first state two fundamental combinatorial results for complex derivatives, the classical
Faà di Bruno and Leibniz rules. In both cases, for a sufficiently smooth function g on R, we
will denote by g(k) by its k-th derivative.

Lemma A.1 (Faà di Bruno rule). Let f and g k-times continuously differentiable functions
on R. Then the k-th derivative is given by the following formula

dk

dxk
f(g(x)) =

∑
{m1,...,mk}k

k!

m1! . . .mk!
f (m1+...+mk)(g(x))

k∏
j=1

(
g(j)(x)

j!

)mj

,

where the sum goes over the set {m1, . . . ,mk}k of non-negative integers such that

m1 + 2m2 + . . .+ kmk = k.

Lemma A.2 (Leibniz rule). Suppose g1, . . . , gm are k-times continuously differentiable func-
tions on R, for k ≥ 1. Then

dk

dxk

(
m∏
i=1

gi(x)

)
=

∑
k1+···+km=k

(
k

k1, . . . , km

) m∏
`=1

g
(k`)
` (x),

where the sum is taken over all non-negative integers k1, · · · , km such that
∑m

i=1 ki = k.

The third result of the appendix is a general ergodic limit theorem which is key to the
moment convergence. We will only state the result in the critical case, since we will only
apply it in the proof of Theorem 1, however, the result can easily be extended to the non-
critical case by including the normalisation e−λut in the first integral.

In order to state it, let us introduce a class of functions C on B+
1 (E)×E × [0, 1]× [0,∞)

such that F belongs to class C if

F [g](x, s) := lim
t→∞

F [g](x, s, t), g ∈ B+
1 (E), x ∈ E, s ∈ [0, 1],

exists,

(A.1) sup
x∈E,s∈[0,1],g∈B+

1 (E)

|ϕF [g](x, s)| <∞,

and

(A.2) lim
t→∞

sup
x∈E,s∈[0,1],g∈B+

1 (E)

ϕ(x)|F [g](x, s)− F [g](x, s, t)| = 0.

Theorem A.1. Assume (H1) holds, λ = 0 and that F ∈ C. Define

Ξt = sup
x∈E,g∈B+

1 (E)

∣∣∣∣ 1

ϕ(x)

∫ 1

0

Tut[ϕF [g](·, u, t)](x)du−
∫ 1

0

〈F [g](·, u), ϕϕ̃〉du
∣∣∣∣ , t ≥ 0.

Then

(A.3) sup
t≥0

Ξt <∞ and lim
t→∞

Ξt = 0.
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Proof. We will show that

lim
t→∞

sup
x∈E,g∈B+

1 (E)

∣∣∣∣ 1

ϕ(x)
Tut[ϕF [g](·, u, t)](x)− 〈ϕ̃ϕ, F [g](·, u)〉

∣∣∣∣ = 0,

since then

lim
t→∞

sup
x∈E,g∈B+

1 (E)

∣∣∣∣∫ 1

0

1

ϕ(x)
Tut[ϕF [g](·, u, t)](x)du−

∫ 1

0

〈ϕ̃ϕ, F [g](·, u)〉du
∣∣∣∣

≤
∫ 1

0

lim
t→∞

sup
x∈E,g∈B+

1 (E)

∣∣∣∣ 1

ϕ(x)
Tut[ϕF [g](·, u, t)](x)− 〈ϕ̃ϕ, F [g](·, u)〉

∣∣∣∣ du = 0.

First note that, ∣∣∣∣ 1

ϕ(x)
Tut[ϕF [g](·, u, t)](x)− 〈ϕ̃ϕ, F [g](·, u)〉

∣∣∣∣
≤ 1

ϕ(x)
Tut[|ϕF [g](·, u, t)− ϕF [g](·, u)|](x)

+

∣∣∣∣ 1

ϕ(x)
Tut[ϕF [g](·, u)](x)− 〈ϕ̃, ϕF [g](·, u)〉

∣∣∣∣
Due to assumption (A.2), for t sufficiently large, the first term on the right-hand side above
can be controlled by ϕ−1(x)Tut[ε](x). Combining this with the above inequality yields

sup
x∈E,g∈B+

1 (E)

∣∣∣∣ 1

ϕ(x)
Tut[ϕF [g](·, u, t)](x)− 〈ϕ̃ϕ, F [g](·, u)〉

∣∣∣∣
≤ sup

x∈E

∣∣ϕ−1(x)Tut[ε](x)− 〈ϕ̃, ε〉
∣∣+ ε‖ϕ̃‖1

+ sup
x∈E,g∈B+

1 (E)

∣∣∣∣ 1

ϕ(x)
Tut[ϕF [g](·, u)](x)− 〈ϕ̃, ϕF [g](·, u)〉

∣∣∣∣ .(A.4)

We note that (A.1) and the first (resp. second) statement of (13) in (H1), together with
dominated convergence, immediately imply that the first (resp. second) statement in (A.3)
holds.
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