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Side-sensitive modified group runs charts with and without measurement errors for 

monitoring the coefficient of variation 

 

Abstract 

The coefficient of variation (CV) is used in process monitoring when the process mean and 

standard deviation are proportional to each other. In this work, a side-sensitive modified group 

runs CV (SSMGR CV) chart is proposed for monitoring the process CV. The run length 

performance of the SSMGR CV chart is compared with those of the existing CV charts in terms 

of the average and standard deviation of the run length criteria. The SSMGR CV chart is found to 

outperform the existing CV charts. In addition, the run length performance of the SSMGR CV 

chart is also evaluated in the presence of measurement errors, as these errors are not only 

unavoidable in practice but they also affect the sensitivity of a control chart in detecting an out-of-

control situation. The results obtained show that the accuracy and precision errors affect the 

performance of the SSMGR CV chart in detecting an out-of-control situation.  

 

Keywords: Coefficient of variation; side-sensitive modified group runs (SSMGR); average run 

length; standard deviation of the run length; measurement error 

 

1. Introduction 

A control chart is the most important tool in Statistical Process Control (SPC) to detect process 

shifts, in order to reduce process variability in manufacturing or service industries. The X  and S 

charts are commonly used to ensure that the process mean and standard deviation, respectively, 

remain in-control at their nominal values, 0  and 0 , respectively. However, there are many 



processes where the mean is not constant and/or the standard deviation is a function of the mean. 

In such processes, the process mean and standard deviation may change but as long as the ratio of 

the process standard deviation to the mean is constant, the said processes are assumed to be in-

control. For this type of processes, the conventional X  and S charts are no longer suitable in 

process monitoring because these two charts monitor the process mean and process standard 

deviation separately and neither of them monitors the ratio of the process standard deviation to the 

mean. Instead, the CV (denoted as /   ), which is a ratio of the process standard deviation to 

the mean, is a suitable quality characteristic in process monitoring for the aforesaid type of 

processes.  

Kang et al 1 introduced the Shewhart CV chart and showed that this chart is an effective quality 

control tool for quality improvement, when neither the process mean nor the process variance is 

constant. However, the Shewhart CV chart is not efficient in detecting small and moderate CV 

shifts. To improve the efficiency of the Shewhart CV chart, Hong et al 2 proposed a two-sided 

exponentially weighted moving average (EWMA) CV chart that is efficient in detecting small and 

moderate CV shifts. Later, Castagliola et al 3 presented a one-sided EWMA CV chart and showed 

that the new chart is more efficient than the two-sided EWMA CV chart of Hong et al 2 in detecting 

CV shifts. To incorporate adaptive features into the Shewhart CV chart, Castagliola et al 4 and 

Castagliola et al 5 proposed the variable sampling interval CV and variable sample size CV charts, 

respectively, where they found that these CV charts outperform the Shewhart CV chart.  

On similar lines, Calzada and Scariano 6 proposed the synthetic CV chart and compared its 

performance with the Shewhart CV and one-sided EWMA CV charts. The synthetic CV chart was 

found to outperform the Shewhart CV chart but the EWMA CV chart is superior to the synthetic 

CV chart in detecting small CV shifts. You et al 7 studied the performance of the side-sensitive 



group runs (SSGR) chart for monitoring the CV and compared its performance with the Shewhart 

CV, synthetic CV and EWMA CV charts. The findings showed that the SSGR CV chart surpasses 

the basic CV and synthetic CV charts. Noor-ul-Amin et al 8 proposed a blended control chart with 

and without auxiliary information for a simultaneous monitoring of the process mean and CV and 

found that the sensitivity of the proposed chart is enhanced by incorporating auxiliary information. 

An EWMA chart for multivariate CV was introduced by Giner-Bosch 9 and it was shown that the 

aforementioned chart outperforms its existing counterparts. For recent research works on the CV 

charts, readers may refer to Teoh et al, 10 Khaw et al, 11 Yeong et al, 12 Yeong et al 13 and Chew et 

al 14 

Numerous group runs (GR) schemes were introduced to enhance the sensitivity of the 

synthetic X  chart proposed by Wu and Spedding 15. This paragraph discusses the GR schemes 

that exist in the literature. Gadre and Rattihalli 16 introduced the GR X  chart by combining the 

X  chart with the conforming run length (CRL) chart. The CRL sub-chart is a type of lower-sided 

chart that is used to determine whether the process being monitored is in-control or otherwise. The 

GR X  chart signals an out-of-control if 1CRL L  or both CRL
r  and 1CRL

r  (for r >1) are less 

than L, where L is the lower limit of the CRL sub-chart (of the GR X  chart). Here, CRL
r  

represents the number of conforming samples, inspected between the (r  1)th and rth non-

conforming samples, including the rth non-conforming sample. It was found that the GR X  chart 

outperforms the synthetic X  and Shewhart X  charts.  

Gadre and Rattihalli 17 extended the GR X  charting concept to the modified GR (MGR) X  

chart by adding an additional lower limit to the CRL sub-chart (of the MGR X  chart). The MGR 

X  chart signals an out-of-control if 1 2CRL L  or for some r (> 1), 1CRL
r

L  and 1 2CRL
r

L  . 



Here, 1L  and 2L  are the lower limits of the CRL sub-chart (of the MGR X  chart). Note that if 

1 2L L L  , the MGR X  chart reduces to the GR X  chart. On similar lines, by adding the side-

sensitive feature to the GR X  and MGR X  charts, Gadre and Rattihalli 18 and Gadre et al 19 

introduced the side-sensitive GR (SSGR) X  and the side-sensitive MGR (SSMGR) X  charts, 

respectively. Both the SSGR and SSMGR charts signal an out-of-control if the sample means  X  

corresponding to the two successive CRLs that contribute to the out-of-control signal plot on the 

same side of the target value on the X  sub-chart (of the respective SSGR X  and SSMGR X  

charts). In terms of the effectiveness of the charts in detecting process mean shifts, Gadre et al 19 

showed that the SSMGR X  chart outperforms the Shewhart X , synthetic X , GR X , MGR X  

and SSGR X  charts. More recent extensions on the GR type charts include You et al, 20 Khoo et 

al, 21 Chong et al, 22 Saha et al, 23 Chong et al, 24 Mim et al, 25 and Gadre and Kakade. 26 

Note that in the Shewhart X  chart, a decision about the state of the process being monitored 

is dependent on where the sample mean plots on the chart. If the sample mean plots beyond the 

limits of the X  chart, the process is out-of-control, otherwise, it is in-control. On the other hand, 

for the X  sub-chart of a GR X  type chart (such as the MGR X , SSGR X  and SSMGR X  

charts), a sample mean that plots beyond (within) the limits of the X  sub-chart is considered as a 

non-conforming (conforming) sample, instead of an out-of-control (in-control) sample. A decision 

as to whether a process being monitored using a GR X  type chart is in-control or out-of-control 

is made according to the outcome given by the conforming run length (CRL) sub-chart, where the 

points on the CRL sub-chart are plotted based on the information provided by the X  sub-chart.  

Control charts are usually designed with the assumption that the measurements on the quality 

characteristics are obtained without any measurement error. However, in usual practice, 



measurement errors often exist and affect the performances of the control charts. Linna and 

Woodall 27 introduced the linear covariate error model to investigate the effect of measurement 

errors on the X  and 2
S  charts, and they recommended taking multiple measurements per item in 

order to reduce the effect of measurement errors. Using the same covariate error model of Linna 

and Woodall, 27 Linna et al 28 studied the performance of multivariate control charts in the presence 

of measurement errors, where they found that the ability of the control charts to detect shifts in 

one direction is better than in the other direction due to the loss of the directional invariance 

property. Costa and Castagliola 29 studied the performance of the X  chart in the presence of 

measurement errors and autocorrelated data, and they showed that the effect of autocorrelation can 

be reduced by taking samples with non-neighboring items. The effects of measurement errors on 

the two one-sided Shewhart charts for monitoring the ratio of two normal variables were 

investigated by Nguyen and Tran 30, where it was found that the two one-sided charts are more 

advantageous than the two-sided Shewhart chart for the ratio. Additionally, Tran et al 31 proposed 

the synthetic median chart to improve the efficiency of the Shewhart median chart in detecting 

small and moderate mean shifts, followed by conducting an investigation of the effects of 

measurement errors on the synthetic median chart. Additional researches that investigated the 

effect of measurement errors on different types of control charts were made by Maravelakis, 32 Hu 

et al, 33 Noorossana and Zerehsaz, 34 Tran et al, 35 Tran et al, 36 Yeong et al 37 and Tran et al. 38 

Due to the sensitivity of the SSMGR chart towards process shifts and the widespread use of 

CV in real life, the SSMGR chart for monitoring the process CV (called the SSMGR CV chart) is 

developed in this research. The charting statistic, optimal design and implementation procedure of 

the proposed chart are presented. The SSMGR CV chart is compared with the existing EWMA 

CV, run sum (RS) CV and SSGR CV charts, in terms of the average run length (ARL) and standard 



deviation of the run length (SDRL) criteria, where the results show that the SSMGR CV chart 

generally outperforms the existing charts. Additionally, the detection ability of the SSMGR CV 

chart in the presence of measurement errors (called the SSMGR CV-ME chart) is also investigated 

in detail. The charting statistic, optimal design and implementation procedure of the SSMGR CV-

ME chart are also discussed. Moreover, a step-by-step implementation procedure of the SSMGR 

CV-ME chart using a real industrial dataset is given to explain the working of the proposed chart 

in usual practice.  

The rest of this paper is organized as follows: Section 2 presents the basic properties of the 

CV. The SSMGR CV chart is presented in Section 3. Section 4 explains the linear covariate error 

model for the CV. Section 5 discusses the SSMGR CV-ME chart. The optimal design procedure 

to minimize the out-of-control value of ARL for the SSMGR CV and SSMGR CV-ME charts are 

discussed in Section 6. The performances of the SSMGR CV and SSMGR CV-ME charts are 

evaluated in Section 7. Section 8 shows the implementation of the SSMGR CV-ME chart using a 

real dataset. Lastly, conclusions are drawn in Section 9.   

 

2. Basic properties of CV 

Let X be a random variable having mean  and standard deviation , then the CV of X is  

                                                                      



 .                                                                   (1) 

Let  1 2, ,...,
n

X X X  be a random sample of size n from the normal  2,N    distribution, i.e. 

 2~ ,
i

X N    for i = 1, 2, …, n. The sample mean X  and sample standard deviation S computed 

from this sample are  
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respectively. Based on X  and S, the sample CV  ̂  is computed as  

                                                                    ˆ .
S

X
    (4) 

In the literature, the probability distribution of ̂  has been investigated by numerous 

researchers, such as McKay, 39 Iglewicz et al 40 and Iglewicz and Myers, 41 to name a few. Iglewicz 

et al 40 showed that ˆn   follows the non-central t distribution with n ‒ 1 degrees of freedom with 

the non-centrality parameter n  . Following this result, Castagliola et al 3 showed that the 

cumulative distribution function (cdf) of ̂  is  

                                                   ˆ | , 1 1,
t

n n
F x n F n

x
 



 
    

 
,  (5) 

where   1,
t

n
F n


 
   

 
 is the cdf of the non-central t distribution with n ‒ 1 degrees of freedom 

and non-centrality parameter n  . The inverse cdf of ̂  is given by (Castagliola et al 3)  
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ˆ
1

,
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3. The SSMGR CV chart 



The SSMGR CV chart consists of the CV sub-chart and an extended version of the CRL sub-chart. 

The upper and lower control limits (UCL and LCL) of the CV sub-chart of the SSMGR CV chart 

are 

                                                    
1

ˆ 0UCL 1 ,
2

k
F n     

 
                                                       (7a) 

and 

                                                       
1

ˆ 0LCL ,
2

k
F n     

 
,                                                         (7b) 

respectively, where k is the limits’ constant that is used to adjust the limits in order to attain the 

desired in-control performance of the chart, while 0  is the target value of the process CV. 

If the charting statistic of the SSMGR CV chart, i.e. ̂ , computed using Equation (4), falls 

beyond the UCL/LCL limits, the current sample CV is declared as non-conforming. Let CRL
r  

represent the number of conforming ̂  samples, inspected between the (r  1)th and rth non-

conforming ̂  samples, including the rth non-conforming ̂  sample. The implementation of the 

SSMGR CV chart is as follows: 

Step 1. Take a sample of size n and compute ̂ . 

Step 2. If  ˆ LCL,UCL  , the sample is classified as conforming, then return to Step 1. Otherwise, 

the sample is non-conforming and proceed to Step 3. 

Step 3. Compute CRL
r , for r = 1, 2, .... If 1 2CRL C  or for 1r  , 1CRL

r
C  and 1 2CRL ,

r
C   

declare the process as out-of-control, where f
C  (for f = 1, 2) are the lower limits of the 

CRL sub-chart (of the SSMGR CV chart). Otherwise, return to Step 1.  

There are three design parameters of the SSMGR CV chart, i.e. k, 1C  and 2C .  



Let P denote the probability of ̂  falling beyond the UCL/LCL limits of the SSMGR CV 

chart. Then 

                                                    ˆ1 Pr LCL UCLP      

                                                          ˆ ˆ1 UCL , LCL ,F n F n     .  (8) 

As the SSMGR CV chart considers the side-sensitive feature, it is necessary to consider the 

conditional probability  

                                               ˆ ˆPr UCL LCL,UCL       

                                                
  

  
ˆ ˆPr UCL LCL,UCL

ˆPr LCL,UCL

 


  



  

                                                
 ˆ1 UCL ,F n

P

 
 .  (9) 

The Markov chain approach, similar to that in Gadre et al 19, is used to compute the ARL 

values of the SSMGR CV chart. The description of the Markov chain states of the samples are 

given in Table 1. Note that the states of the Markov chain model for the SSMGR CV chart depend 

on the values of the positive integers, say 1C  and 2C . As an example, Table 2 shows the complete 

states of the Markov chain model for the SSMGR CV chart when 1C  = 2C  = 3. The following 

steps explain the procedure to obtain the states of the Markov chain model for the SSMGR CV 

chart: 

1. A sequence starting with G  (or G  or G ), followed by a maximum of  2 1C   0̃’s. There are 

23C  such states (see states 1 ‒ 3, 5, 6, 8 ‒ 11 in Table 2). 

2. A sequence of 2C  0̃’s. There is only one state of this type (see state 4 in Table 2). 



3. A sequence starting with G (or H  or H ), followed by a maximum of  1 1C   0’s. There are 

13C  such states (see states 12 ‒ 20 in Table 2). 

4. A sequence of 1C  0’s. Only one state of this type is available (see state 7 in Table 2). 

5. Signal (see state 21 in Table 2). 

The total number of states, including the absorbing state is 23C  + 1 + 13C  + 1 + 1 = 

 2 13 1C C  . Table 2 presents the 21 different states of the Markov chain model for the SSMGR 

CV chart, based on 1 3C   and 2 3C  . In Table 2, states 1 ‒ 20 are non-absorbing states while 

state 21 is an absorbing state. 

Let R be the transition probability matrix (tpm) of the Markov chain model for the SSMGR 

CV chart without the absorbing state. Let 1T P   and S P , then the  , thg h  entry of matrix 

R is obtained as follows (Gadre et al 19): 

𝑅g,ℎ =
{  
  
   
 𝑇 if the gth state leads to the ℎth state and the ℎth state corresponds to the sequence ending with 0 (or 0̃).𝑆 if the gth state leads to the ℎth state and the ℎth state corresponds to thesequence ending with 𝐺.
𝑆 if the gth state leads to the ℎth state and the ℎth state corresponds to thesequence ending with 𝐺 (or 𝐻).(1 −  )𝑆 if the gth state leads to the ℎth state and the ℎth state correspondsto the sequence ending with 𝐺 (or 𝐻).0 otherwise.

 

In general, the tpm R of the SSMGR CV chart is a square matrix with a dimension of 

 1 23( ) 2C C    1 23( ) 2C C  . As an example, Table 3 presents the entries of R corresponding 

to the values 1 2 3C C  . The ARL and SDRL of the SSMGR CV chart, for a shift size , are 

computed as 



                                                1ARL( ) v                                                                       (10) 

and  

                                         
2

2 1 1SDRL( ) v v v    ,                                                       (11)  

respectively, where  

                                                1

1

T
v

  1q I R                                                              (12) 

and 

                                              2

2 2 T
v

  1q I R R .                                                       (13) 

Here, T
q = (1, 0, 0, …, 0) is the initial probability vector and its dimension is   1 23 2C C  1,  

I is the   1 23 2C C     1 23 2C C   identity matrix and 1 is a   1 23 2C C  1 column 

vector whose entries are all ones.  

Let 1  be the value of the out-of-control CV and 1 0    be the standardized CV shift from 

0  to 1 . By definition, an upward shift in the process CV occurs when  > 1 and a downward shift 

in the process CV happens when  < 1. The process CV is said to be in the in-control state when  

= 1. 

 

4. Linear covariate error model for the CV 

Let  ,1i
X , ,2i

X ,…, ,i n
X  denote the ith sample of quality characteristics, where ,i j

X  

 2 2

0 0 0,  N a b   , for j = 1, 2, …, n and n > 1. Here, 0  and 0  are the nominal mean and 

standard deviation, respectively. In addition, a and b denote the sizes of the standardized mean and 

standard deviation shifts, respectively. The process has shifted when a ≠ 0 or/and b ≠ 1. It is 



assumed that the quality characteristic ,i j
X  cannot be observed directly but can only be obtained 

from the results  * * *

, ,1 , ,2 , ,, ,...,
i j i j i j m

X X X  of a set of 1m   characteristics, where each 
*

, ,i j k
X  satisfies 

the following linear covariate error model (Tran et al 38): 

                                            , , , , ,i j k i j i j k
X A BX     .                                                      (14) 

Here, A and B are two known constants and , ,i j k
  is a normal  20,  

M
N   random error term due 

to measurement inaccuracy, which is supposed to be independent of ,i j
X .  

For sample i (i = 1, 2, …), there exists m  n observations 
*

, ,i j k
X , for j = 1, 2, …, n and k = 1, 

2, …, m. Then, the mean ,i j
X


 of the characteristics  * * *

, ,1 , ,2 , ,, ,...,
i j i j i j m

X X X  is computed as (Tran 

et al 38) 

                                                    * *

, , ,

1

1 m

i j i j k

k

X X
m 

    

                                                            , , ,

1

1 m

i j i j k

k

A BX
m




    

                                                          
, , ,

1

1 m

i j i j k

k

A BX
m




    .                                                 (15) 

The mean and standard deviation of 
*

,i j
X  are (Tran et al 38)  
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and 
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respectively. Consequently, the CV of the measured characteristic 
*

,i j
X  is obtained as 
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where 
0

M


 , 
0

A


  and 0
0

0




 . Here,  is called the precision error ratio,  is the accuracy 

error and 0  is the nominal value of the population CV. Note that *  in Equation (18) no longer 

depends on parameter A. 

Let  
*

i
X  and 

*

i
S  be the sample mean and sample standard deviation of  * * *

,1 ,2 ,, ,...,
i i i n

X X X . 

Then (Tran et al 38) 
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It follows that the ith sample CV of the measured characteristic 
*

,i j
X  is  

                                                                       
*

*

*
ˆ i

i

i

S

X
  .                                                             (21) 

The cdf and inverse cdf of 
*̂  can be obtained using Equations (5) and (6), respectively, by 

replacing   with  
 in Equation (18). 

 

5. SSMGR CV chart with measurement errors  



In the presence of measurement errors, the upper and lower control limits of the SSMGR CV-ME 

chart are denoted by MEUCL  and MELCL , respectively. Both of these control limits can be 

computed using Equations (7a) and (7b) but by replacing ̂ , 0  and k with ̂  , 0

 and *

k , 

respectively. Note that the value of the MEUCL  and MELCL  limits’ constant *
k  is chosen to attain 

a desired in-control performance for the SSMGR CV-ME chart. The in-control CV of 
*

,i j
X , i.e. 0



, required in the computation of MEUCL  and MELCL  is calculated using Equation (18) by letting 

a = 0 and b = 1. The probability that the sample CV of 
*

,i j
X  is non-conforming, denoted by 

*
P , is 

computed using Equation (8) but by substituting ̂ , , UCL and LCL with *̂ , 
* , MEUCL  and 

MELCL , respectively. The out-of-control 
* , denoted as 

*

1  is computed using Equation (18) when 

b  1, where 01 a  in Equation (18) can be replaced with b   so that a relation between 
*

1  and 

 exists (Tran et al 38). It should be noted that 
*

1  is used to compute 
*

P  when the process is out-

of-control.                           

The ARL and SDRL values of the SSMGR CV-ME chart are computed using Equations (10) 

and (11), respectively, by means of the Markov chain approach. Here, the computation of the tpm 

R is made in a similar way to that of the SSMGR CV chart discussed in Section 3, except that P 

and  are replaced by 
*

P  and   , respectively. Note that    is computed using Equation (9) but 

by replacing ̂ , P, UCL and LCL with *̂ , 
*

P , MEUCL  and MELCL , respectively. The SSMGR 

CV-ME chart is implemented in the same way as that for the SSMGR CV chart (see the three step 

procedure) discussed in Section 3 but by replacing ̂ , UCL and LCL with *̂ , MEUCL  and MELCL

, respectively. 

 



6. Optimal designs 

The optimal designs of the SSMGR CV and SSMGR CV-ME charts involve the computation of 

the charts’ respective optimal parameters to minimize ARL() for   1. For the SSMGR CV chart, 

the step-by-step procedure in computing the chart’s optimal design parameters k, 1C  and 2C  is as 

follows:   

Step 1. Specify the values of the desired in-control ARL (say ARL(1) = ), 0 , shift size  for 

which a quick detection is important and sample size n. Furthermore, initialize 1 0C  , 

2 0C  , minARL    and optARL   .  

Step 2. Set 1 1 1C C  .  

Step 3.  Set 2 2 1C C  . 

Step 4. Find the value of k by numerically solving the limits UCL and LCL in Equations (7a) and 

(7b), respectively, so that ARL(1) = . 

Step 5. Compute ARL () using Equation (10) using the current values of 1C , 2C  and k. 

Step 6. If ARL() < minARL , then let minARL = ARL() and return to Step 3. Otherwise, proceed 

to Step 7. 

Step 7. If min optARL ARL , then let opt minARL ARL  and return to Step 2, while setting 2 0.C   

Otherwise, proceed to Step 8. 

Step 8. The minimum value of ARL(), based on the values of , 0 ,   and n specified in Step 1 

is given by optARL , while the corresponding values of 1C , 2C  and k that produce this 

optARL  value are the optimal choices of parameters for the SSMGR CV chart.  



The above-mentioned step-by-step procedure can also be used to compute the optimal 

parameter combination (
*

1C , 
*

2C , *
k ) of the SSMGR CV-ME chart. However, for this case, in 

addition to the values of , 0 ,   and n specified in Step 1, the values of  , B, m and θ also need 

to be specified in the same step. Furthermore, in the above eight step procedure, 1C , 2C , k, UCL 

and LCL are replaced by 
*

1C , 
*

2C , *
k , MEUCL  and MELCL , respectively.   

By adopting the above eight step procedure, optimization programs have been written in 

MATLAB to compute the optimal parameters of the SSMGR CV and SSMGR CV-ME charts that 

produce the minimum ARL() value (for   1), based on the desired input parameters specified 

in Step 1. The corresponding SDRL() values are also computed. Table 4 presents the optimal 

parameter combination  1 2, ,C C k  that minimizes ARL() of the SSMGR CV chart for various 

choices of n, 0  and . For example, when  = 370, n = 5, 0  = 0.05 and  = 0.5 are considered, 

the optimal parameter combination of the SSMGR CV chart are  1 2, ,k C C  = (0.0843, 1, 7), where 

these parameters produce the smallest value of ARL(0.25) (= 3.12) (see Table 5) among all 

parameter combinations  1 2, ,k C C  that give  = 370. The SDRL(0.25) value of the SSMGR CV 

chart corresponding to  1 2, ,k C C  = (0.0843, 1, 7) is 4.25 (see Table 5).  

Tables 6 ‒ 9 present the optimal combinations of parameters  * * *

1 2, ,k C C  for the SSMGR 

CV-ME chart that minimize ARL(), as well as the corresponding ARL() and SDRL() values of 

the chart, for the specified 0 , ,  n,  , B, m and θ values. Note that, without loss of generality, b 

= 1 is considered in this research. For example, when the SSMGR CV-ME chart is optimally 

designed to minimize ARL(0.5), i.e. for  = 0.5, the optimal parameter combination  * * *

1 2, ,k C C  



= (0.0843, 1, 7) is obtained with the corresponding ARL(0.5) = 3.12 and SDRL(0.5) = 4.25, when 

n = 5, 0 = 0.05,  = 0.1, B = 1, m = 1 and θ = 0 (see Table 6). 

 

7. Performance evaluation 

There are two objectives of this section. In Section 7.1, the performance of the proposed SSMGR 

CV chart is compared with those of existing CV charts, while in Section 7.2, the performance of 

the SSMGR CV-ME chart is investigated in the presence of measurement errors.  

 

7.1 Performance comparison of SSMGR CV and existing CV charts 

The performances of the proposed SSMGR CV and existing EWMA CV, RS CV and SSGR CV 

charts are compared using the ARL() and SDRL() criteria. The 7 regions (7R) RS CV chart is 

considered as Teoh et al 10 showed that the 7R RS CV chart is more efficient than its 4 regions 

counterpart. Additionally, the synthetic type CV charts are not considered in the comparison as 

You et al 7 already showed that the SSGR CV chart outperforms the former.  

In Table 5, it is obvious that the SSMGR CV chart outperforms the SSGR CV chart for all 

 0 ,   combinations as the former has a smaller ARL() value than the latter for the same  0 ,    

combination. For example, when 0  = 0.1 and    {0.25, 0.5, 0.75, 1.25, 1.5, 2}, ARL() ∈ {1.01, 

3.14, 52.57, 8.89, 3.13, 1.53} for the SSMGR CV chart, while that for the SSGR CV chart are 

{1.01, 4.74, 89.66, 15.22, 4.06, 1.66}, where the ARL() values for the former are all lower than 

that of the latter. In comparison to the EWMA CV and RS CV charts, the SSMGR CV chart 

generally performs better for all  values, except for  = 0.75. For  = 0.75, the EWMA CV and 

RS CV charts provide smaller ARL() values compared to the SSMGR CV chart for all values of 



0 . For instance, when 0  ∈ {0.05, 0.1, 0.15, 0.2}, the ARL(0.75) values of the EWMA CV and 

RS CV charts are {17.19, 17.30, 17.49, 17.78} and {22.21, 22.30, 22.45, 22.72}, respectively, 

while those of the SSMGR CV chart are {51.99, 52.57, 53.50, 54.86}, where it is obvious that the 

ARL(0.75) values of the SSMGR CV chart are all greater than those of the EWMA CV and RS 

CV charts. However, for values of   0.75, the SSMGR CV chart has smaller ARL() values than 

those of the EWMA CV and RS CV charts (see Table 5).  

In terms of the SDRL() criterion, it is also noticeable in Table 5 that the SSMGR CV chart 

(lower SDRL() values) significantly prevails over the SSGR CV chart (higher SDRL() values), 

for all values of  (except   = 0.75). In addition, for all 0  values based on the SDRL() criterion, 

the SSMGR CV chart is inferior to the EWMA CV chart when 0.5 1.25  , while the RS CV 

chart prevails over the SSMGR CV chart when 0.5 0.75  . For example, when 0  = 0.1 and   

= 0.5, SDRL(0.5) of the EWMA CV, RS CV and SSMGR CV charts are 1.55, 1.51 and 4.30, 

respectively, where the values of SDRL() for the EWMA CV and RS CV charts are lower than 

those of the SSMGR CV chart. For the other values of  not discussed above, the SSMGR CV 

chart outperforms the EWMA CV and RS CV charts based on the SDRL() criterion. For instance, 

when 0  = 0.05 and  = 0.25, SDRL(0.25) = 0.39, 0.99 and 0.10 for the EWMA CV, RS CV and 

SSMGR CV charts, respectively, where the SSMGR CV chart has the smallest SDRL(0.25) value. 

 

7.2. Performance of the SSMGR CV-ME chart in the presence of measurement errors 

Tables 6 ‒ 9 present the optimal combinations of parameters  * * *

1 2, ,k C C , as well as the 

corresponding minimum ARL() values and SDRL() values of the SSMGR CV-ME chart based 



on the linear covariate error model, for fixed 0 ,  ,  n,  , B, m and θ values that satisfy ARL(1) 

= 370.  

Table 6 shows the ARL() and SDRL() values of the SSMGR CV-ME chart for various 

combinations of the precision error ratios  ∈ {0, 0.1, 0.3, 0.5, 1}, 0  ∈ {0.05, 0.1, 0.15, 0.2} and 

 ∈ {0.25, 0.5, 0.75, 1.25, 1.5, 2} when n = 5, m = 1, B = 1 and  θ = 0. Note that  = 0 represents 

the case without measurement error. Additionally, note that when   = θ = 0 and m = B = 1, the 

SSMGR CV-ME chart becomes the basic SSMGR CV chart (as in the case of Table 6). Thus, 

when  = 0 in Table 6, the optimal parameters  * * *

1 2, ,k C C  that minimize ARL() of the SSMGR 

CV-ME chart are not given as they are actually similar to the optimal parameters  1 2, ,k C C  of the 

SSMGR CV chart (without measurement error) in Table 4. It is obvious from Table 6 that the 

precision error ratio () has a negative effect on the performance of the SSMGR CV-ME chart as, 

generally, there are slight increases in the ARL() and SDRL() values when  increases. For 

example, when 0 = 0.1 and  = 0.75, ARL(0.75) ∈ {52.57, 52.76, 53.31} and SDRL(0.75) ∈ 

{212.90, 213.80, 217.40} for  ∈ {0, 0.5, 1}, where it is found that both ARL(0.75) and 

SDRL(0.75) increase slightly with  (see Table 6). However, the results in Table 6 show that the 

precision error ratio () does not have a significant effect on the performance of the SSMGR CV-

ME chart. 

Table 7 presents the ARL() and SDRL() performances of the SSMGR CV-ME chart for 

various combinations of B ∈ {1, 2, 3, 4}, 0  ∈ {0.05, 0.1, 0.15, 0.2} and  ∈ {0.25, 0.5, 0.75, 1.25, 

1.5, 2} when n = 5,   = 0.28, m = 1 and θ = 0.01. The rationale for choosing  = 0.28 is due to 

the assumption of an acceptable value for the signal-to-noise ratio as explained in Tran at al. 33 In 



Table 7, it is noticeable that for the fixed values of n, 0 , , , m and θ, the value of B has some 

positive effects on the performance of the SSMGR CV-ME chart as, generally, the ARL() and 

SDRL() values decrease slightly when B increases. As an example, when 0  = 0.15,  = 0.75, 

ARL(0.75) = 55.14 and SDRL(0.75) = 225.91 for B = 1, while ARL(0.75) = 53.88 and SDRL(0.75) 

= 220.08 for B = 4 (see Table 7), i.e. both ARL(0.75) and SDRL(0.75) decrease when B increases 

from 1 to 5. 

Linna and Woodall 27 noted that it is better to take multiple measurements per item in each 

sample to reduce the effect of measurement errors. Table 8 presents the ARL() and SDRL() 

values of the SSMGR CV-ME chart for various combinations of m ∈ {1, 3, 5, 7}, 0  ∈ {0.05, 0.1, 

0.15, 0.2} and  ∈ {0.25, 0.5, 0.75, 1.25, 1.5, 2} when n = 5,  = 0.28, B = 1 and θ = 0.01. Table 

8 shows that increasing the number of measurements per item (m) gives some positive effect on 

the SSMGR CV-ME chart by slightly reducing the ARL() and SDRL() values of the chart when 

0 ,  , n, , B and θ are fixed, though the reduction is not large. For example, when 0 = 0.2 and  

= 0.75, ARL(0.75) = 56.62 and SDRL(0.75) = 232.77 for m = 1, while ARL(0.75) = 56.41 and 

SDRL(0.75) = 231.80 for m = 7 (see Table 8). It is obvious that the values of ARL(0.75) and 

SDRL(0.75) reduce when m increases from 1 to 7. 

Table 9 shows that the ARL() and SDRL() values of the SSMGR CV-ME chart are slightly 

negatively influenced by the accuracy error (θ) when 0 , , n (=5),  (=0.28), B (= 1) and m (= 1) 

are fixed. For instance, when 0 = 0.2 and  = 1.25, ARL(1.25) = 9.31 and SDRL(1.25) = 17.70 

for θ = 0, while ARL(1.25) = 10.24 and SDRL(1.25) = 20.30 for θ = 0.05 (see Table 9), where the 

values of ARL(1.25) and SDRL(1.25) increase with . 

 



8. Implementations 

To illustrate the implementation of the SSMGR CV and SSMGR CV-ME charts, real life data 

from a Tunisian company that manufactures sanitary parts from zinc alloy in a die casting hot 

chamber process are adopted from Castagliola et al 4 The quality characteristic of interest X is the 

weight (in grams) of scrap zinc alloy material (see Castagliola et al 4 for details of the process). 

Table 10 gives the Phase-I and Phase-II datasets of this quality characteristic. A regression study 

was conducted by Castagliola et al 4 on the 30 Phase-I samples, each having 5 observations, where 

a constant proportionality ( =   ) between the process standard deviation  and the process 

mean  of the weight of scrap zinc alloy was found to exist. Castagliola et al 4 also showed that 

the Phase-I data are in-control. By adopting the root mean square method on the Phase-I samples, 

the estimated in-control CV  0̂  is computed as   

                                  
30

2

0
1

1ˆ ˆ
30

i
i

 


   = 0.0108, 

which can be rounded to 0̂  = 0.01.  

Suppose that a process engineer has decided to implement the SSMGR CV and SSMGR CV-

ME charts for monitoring the Phase-II process. It is assumed that the SSMGR CV chart is 

optimally designed, based on ARL(1) = 370, n = 5 and 0  = 0.01 (as 0̂   0.01); while the SSMGR 

CV-ME chart is optimally designed based on ARL(1) = 370, n = 5, 0  = 0.01, η = 0.28, B = 1, m 

= 1 and θ = 0. An upward shift in the process CV, where a quick detection is important is set as  

= 1.5, for both the charts. Consequently, the optimal parameters k = 0.0701, 1C = 1 and 2C = 11 

are computed using the Matlab optimization program for the SSMGR CV chart, where the limits 

of the chart are computed to be UCL = 0.0161 and LCL = 0.0038. Similarly, the optimal parameters 



of the SSMGR CV-ME chart, i.e. *
k = 0.0701, 

*

1C  = 1 and 
*

2C  = 11, are computed, which result in 

MEUCL  = 0.0167 and MELCL  = 0.0040.  

From the control limits of the two charts given in the previous paragraph, it is found that the 

SSMGR CV chart has tighter limits (narrower width between UCL and LCL, where UCL – LCL 

= 0.0123) than the SSMGR CV-ME chart (wider width between MEUCL  and MELCL , where 

MEUCL  – MELCL  = 0.0127). Therefore, in general, it becomes easier for the SSMGR CV chart to 

issue an out-of-control signal, either due to the occurrence of an assignable cause or the presence 

of measurement errors or both, as the chart’s limits have become tighter. However, for the SSMGR 

CV-ME chart, as its limits have become looser (compared to the SSMGR CV chart), it is in general 

more difficult to detect an out-of-control signal (compared to the SSMGR CV chart). Hence, when 

the SSMGR CV-ME chart detects an out-of-control signal, the signal is more likely due to actual 

process shifts, instead of measurement errors, as its limits have been computed by considering the 

presence of measurement errors.  

The 30 Phase-II sample CVs ( ˆ
i

 , for i = 1, 2, …, 30) are plotted in Figure 1. From Figure 1, 

it is obvious that the 1st non-conforming ˆ
i

  occurs at sample no., i = 9, for both the SSMGR CV 

and SSMGR CV-ME charts. Thus, 1CRL  = 9 is obtained. The 2nd, 3rd and 4th non-conforming 

samples are observed at sample nos., i = 10, 12 and 13, hence, 2CRL 1 , 3CRL 2  and 4CRL 1  

are computed for both the charts. Since 1CRL  (= 9)  2C =
*

2C  (= 11), then according to Step 3 of 

the implementation procedure in Section 3, the SSMGR CV and SSMGR CV-ME charts issue the 

first out-of-control signal at sample 9 (i = 9) (see Figure 1). Following this out-of-control signal, 

corrective actions should be taken so that the out-of-control process returns to the in-control 

situation again.   



 

9. Conclusions  

There are many circumstances where the mean and standard deviation of a manufacturing process 

vary in a proportional manner. The CV is a suitable quality characteristic for monitoring the 

process stability of this type of process. In this research, we have introduced a new CV chart, called 

the SSMGR CV chart, for efficiently monitoring the CV. The SSMGR CV chart has been 

compared with the existing EWMA CV, RS CV and SSGR CV charts using the ARL and SDRL 

as performance criteria. The ARL results have shown that the SSMGR CV chart outperforms the 

three aforementioned existing CV charts in detecting increasing CV shifts ( > 1); while for 

detecting decreasing CV shifts ( < 1), the SSMGR CV-ME chart still prevails, except for  = 0.75, 

where the EWMA CV and RS CV charts beat the former. Based on the findings in this research, 

we recommend the use of the SSMGR CV chart when the process engineer is interested to monitor 

upward shifts ( > 1) or moderate-to-large downward shifts ( < 1), in the process CV.  

When a process being monitored is in-control, ideally the ratio of the standard deviation to 

the mean, i.e. 0 0 0    should be small so that the process is operating reliably. Note that the 

data employed to illustrate the implementations of the CV charts in practice by Kang et al, 1 Khaw 

et al, 11 and Yeong et al, 42 all deal with small 0  values, namely 0.075, 0.005645 and 0.001042, 

respectively. Thus, small 0  values, i.e. 0   {0.05, 0.1, 0.15, 0.2} are adopted in this article.  

This research has also investigated the effect of measurement errors on the SSMGR CV 

(referred to as the SSMGR CV-ME) chart. The findings has revealed that the increases in the 

precision error ratio () or accuracy error (θ) has a negative effect on the SSMGR CV-ME chart’s 

performance by slightly increasing its ARL() and SDRL() values for a similar shift size . 

Furthermore, increasing the number of measurements per item (m) or the parameter B has a 



positive effect on the ARL() and SDRL() performances of the SSMGR CV-ME chart as their 

values decrease slightly when m or B increases. 

In this research, the univariate SSMGR CV and SSMGR CV-ME charts have been developed 

to monitor the process CV. In the future, research may be conducted to develop the multivariate 

SSMGR CV and SSMGR CV-ME charts. Moreover, univariate and multivariate SSMGR CV and 

SSMGR CV-ME charts with estimated process parameters, i.e. when the target values of the 

process parameters are unknown or cannot be specified, can also be proposed.  
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Table 1. Descriptions of the Markov chain states of the samples for the SSMGR CV chart 

 

State Description State Description 

G  The sample at time zero is non-

conforming and the corresponding 

CRL does not exceed 
1

C , where 

there is either an upward or a 

downward process mean shift. 

 G H  A sequence showing the non-

absorbing state, ending with the 

sample in the first (second) level of 

sample inspection being non-

conforming with an upward process 

mean shift. 

G  The non-conforming sample in the 

first level of sample inspection has a 

process mean shift on any side with 

CRL > 
1

C . 

 G H  A sequence showing the non-

absorbing state, ending with the 

sample in the first (second) level of 

sample inspection being non-

conforming with a downward process 

mean shift. 

0 ( ̃  The sample in the first (second) 

level of sample inspection is 

conforming. 

  

 



Table 2. The Markov chain states of the SSMGR CV chart for 
1

C  = 
2

C  = 3 

State no. State State no. State State no. State 

1 G  8 G  ̃ 15 H  

2 G  ̃ 9 G  ̃ ̃ 16 0H  

3 G  ̃ ̃ 10 G  ̃ 17 00H  

4  ̃ ̃ ̃ 11 G  ̃ ̃ 18 H  

5 G  12 G  19 0H  

6 G  13 0G  20 00H  

7 000  14 00G  21 Signal 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. The tpm of the Markov chain model of the SSMGR CV chart for 
1

C  = 
2

C  = 3 

State 
g  

State h  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 0 T  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 T  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 T  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 T  0 0 0 0 0 0 0 S  0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 T  0 0 0 0 0 0 0 0 0 (1 )S  0 0 

6 0 0 0 0 0 0 0 0 0 T  0 0 0 0 S  0 0 0 0 0 

7 0 0 0 0 0 0 T  0 0 0 0 S  0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 T  0 0 0 0 0 0 0 0 (1 )S  0 0 

9 0 0 0 T  0 0 0 0 0 0 0 0 0 0 0 0 0 (1 )S  0 0 

10 0 0 0 0 0 0 0 0 0 0 T  0 0 0 S  0 0 0 0 0 

11 0 0 0 T  0 0 0 0 0 0 0 0 0 0 S  0 0 0 0 0 

12 0 0 0 0 S  (1 )S  0 0 0 0 0 0 T  0 0 0 0 0 0 0 

13 0 0 0 0 S  (1 )S  0 0 0 0 0 0 0 T  0 0 0 0 0 0 

14 0 0 0 0 S  (1 )S  T  0 0 0 0 0 0 0 0 0 0 0 0 0 

15 0 0 0 0 S  (1 )S  0 0 0 0 0 0 0 0 0 T  0 0 0 0 

16 0 0 0 0 S  (1 )S  0 0 0 0 0 0 0 0 0 0 T  0 0 0 

17 0 0 0 0 S  (1 )S  T  0 0 0 0 0 0 0 0 0 0 0 0 0 

18 0 0 0 0 S  (1 )S  0 0 0 0 0 0 0 0 0 0 0 0 T  0 

19 0 0 0 0 S  (1 )S  0 0 0 0 0 0 0 0 0 0 0 0 0 T  

20 0 0 0 0 S  (1 )S  T  0 0 0 0 0 0 0 0 0 0 0 0 0 

 

 

 

 



 

Table 4. Optimal parameters of the SSMGR CV chart when  = 370 

  n = 5  n = 7  n = 10 

0
    k 1

C  
2

C   k 1
C  

2
C   k 1

C  
2

C  

0.05 0.25 0.1359 1 2  0.1359 1 2  0.1359 1 2 

 

0.5 0.0843 1 7 
 

0.1169 1 3 
 

0.1359 1 2 

0.75 0.0254 1 92  0.0365 1 46  0.0530 1 21 

1.25 0.0430 1 33 
 

0.0499 1 24 
 

0.0582 1 17 

1.5 0.0701 1 11 
 

0.0799 1 8 
 

0.0896 1 6 

2 0.0962 1 5 
 

0.1049 1 4 
 

0.1169 1 3 

  
           

0.1 0.25 0.1359 1 2 
 

0.1359 1 2 
 

0.1359 1 2 

 

0.5 0.0843 1 7 
 

0.1169 1 3 
 

0.1359 1 2 

0.75 0.0254 1 92  0.0361 1 47  0.0530 1 21 

1.25 0.0430 1 33 
 

0.0499 1 24 
 

0.0582 1 17 

1.5 0.0701 1 11 
 

0.0799 1 8 
 

0.0896 1 6 

2 0.0962 1 5 
 

0.1049 1 4 
 

0.1169 1 3 

  
           

0.15 0.25 0.1359 1 2 
 

0.1359 1 2 
 

0.1359 1 2 

 

0.5 0.0843 1 7 
 

0.1049 1 4 
 

0.1359 1 2 

0.75 0.0251 1 94  0.0357 1 48  0.0519 1 22 

1.25 0.0424 1 34 
 

0.0489 1 25 
 

0.0582 1 17 

1.5 0.0701 1 11 
 

0.0799 1 8 
 

0.0896 1 6 

2 0.0962 1 5 
 

0.1049 1 4 
 

0.1169 1 3 

  
           

0.2 0.25 0.1359 1 2 
 

0.1359 1 2 
 

0.1359 1 2 

 

0.5 0.0843 1 7 
 

0.1049 1 4 
 

0.1359 1 2 

0.75 0.0251 1 94  0.0350 1 50  0.0508 1 23 

1.25 0.0418 1 35 
 

0.0489 1 25 
 

0.0567 1 18 

1.5 0.0701 1 11 
 

0.0799 1 8 
 

0.0896 1 6 

2 0.0962 1 5 
 

0.1049 1 4 
 

0.1169 1 3 

 



 

Table 5. ARL() and SDRL() values of the EWMA CV, RS CV, SSGR CV and SSMGR CV charts  

when  = 370 and n = 5 

  EWMA CV 
 

RS CV 
 

SSGR CV 
 

SSMGR CV 

0
    ARL() SDRL() 

 
ARL() SDRL() 

 
ARL() SDRL() 

 
ARL() SDRL() 

0.05 0.25 3.10 0.39 
 

2.72 0.99 
 

1.01 0.19 
 

1.01 0.10 

 0.5 5.92 1.54 
 

5.42 1.50 
 

4.70 6.62 
 

3.12 4.25 

 0.75 17.19 7.03  22.21 17.12  88.90 122.69 
 

51.99 210.20 

 1.25 15.58 11.38 
 

18.92 16.96 
 

15.02 22.02 
 

8.79 16.22 

 1.5 5.64 4.00 
 

5.94 4.53 
 

4.00 4.68 
 

3.09 3.42 

 2 2.32 1.51 
 

2.34 1.51 
 

1.64 1.28 
 

1.52 1.00 

  
           

0.1 0.25 3.13 0.38 
 

2.78 1.04 
 

1.01 0.19 
 

1.01 0.10 

 0.5 5.99 1.55 
 

5.44 1.51 
 

4.74 6.69 
 

3.14 4.30 

 0.75 17.30 7.04  22.30 17.19  89.66 123.67 
 

52.57 212.90 

 1.25 15.64 11.44 
 

19.09 17.16 
 

15.22 22.37 
 

8.89 16.60 

 1.5 5.69 4.02 
 

6.01 4.60 
 

4.06 4.78 
 

3.13 3.50 

 2 2.35 1.53 
 

2.38 1.54 
 

1.66 1.32 
 

1.53 1.03 

  
           

0.15 0.25 3.19 0.41 
 

2.89 1.13 
 

1.01 0.20 
 

1.01 0.10 

 0.5 6.09 1.54 
 

5.46 1.53 
 

4.81 6.80 
 

3.18 4.39 

 0.75 17.49 7.17  22.45 17.33  90.93 125.31 
 

53.50 218.31 

 1.25 15.75 11.55 
 

19.41 17.42 
 

15.56 22.96 
 

9.05 16.92 

 1.5 5.77 4.06 
 

6.14 4.71 
 

4.15 4.95 
 

3.18 3.64 

 2 2.41 1.57 
 

2.44 1.60 
 

1.70 1.38 
 

1.56 1.08 

  
           

0.2 0.25 3.28 0.46 
 

3.02 0.99 
 

1.01 0.20 
 

1.01 0.11 

 0.5 6.25 1.54 
 

5.49 1.55 
 

4.91 6.96 
 

3.23 4.52 

 0.75 17.78 7.29  22.72 17.57  92.69 127.58 
 

54.86 224.65 

 1.25 15.90 11.70 
 

19.87 17.93 
 

16.04 23.51 
 

9.27 17.53 

 1.5 5.88 4.13 
 

6.31 4.86 
 

4.29 5.20 
 

3.27 3.86 

 2 2.49 1.62 
 

2.52 1.68 
 

1.75 1.47 
 

1.59 1.14 
 



Table 6. ARL() and SDRL() values of the SSMGR CV-ME chart in the presence of measurement errors for various values of , 0
  

and η when n = 5, m = 1, B = 1 and θ = 0 

  η = 0  η = 0.1  η = 0.3  η = 0.5  η = 1 

0
   ARL() SDRL()  k


 1

C
  

2
C

  ARL() SDRL()  k


 1
C

  
2

C
  ARL() SDRL()  k


 1

C
  

2
C

  ARL() SDRL()  k


 1
C

  
2

C
  ARL() SDRL() 

0.05 0.25 1.01 0.10 
 

0.1359 1 2 1.01 0.10 
 
0.1359 1 2 1.01 0.10 

 
0.1359 1 2 1.01 0.10 

 
0.1359 1 2 1.01 0.10 

 0.5 3.12 4.25 
 

0.0843 1 7 3.12 4.25 
 
0.0843 1 7 3.12 4.25 

 
0.0843 1 7 3.12 4.26 

 
0.0843 1 7 3.13 4.27 

 0.75 51.99 210.20 
 

0.0254 1 92 51.99 210.21 
 
0.0254 1 92 52.00 210.29 

 
0.0254 1 92 52.03 210.43 

 
0.0254 1 92 52.18 211.10 

 1.25 8.79 16.22 
 

0.0430 1 33 8.80 16.22 
 
0.0430 1 33 8.80 16.23 

 
0.0430 1 33 8.80 16.25 

 
0.0430 1 33 8.83 16.35 

 1.5 3.09 3.42 
 

0.0701 1 11 3.09 3.42 
 
0.0701 1 11 3.09 3.42 

 
0.0701 1 11 3.09 3.42 

 
0.0701 1 11 3.10 3.44 

 2 1.52 1.00 
 

0.0962 1 5 1.52 1.00 
 
0.0962 1 5 1.52 1.00 

 
0.0962 1 5 1.52 1.01 

 
0.0962 1 5 1.52 1.01 

  
                          

0.1 0.25 1.01 0.10 
 

0.1359 1 2 1.01 0.10 
 
0.1359 1 2 1.01 0.10 

 
0.1359 1 2 1.01 0.10 

 
0.1359 1 2 1.01 0.10 

 0.5 3.14 4.30 
 

0.0843 1 7 3.14 4.31 
 
0.0843 1 7 3.14 4.31 

 
0.0843 1 7 3.15 4.32 

 
0.0843 1 7 3.17 4.38 

 0.75 52.57 212.90 
 

0.0254 1 92 52.57 212.93 
 
0.0254 1 92 52.64 213.22 

 
0.0254 1 92 52.76 213.80 

 
0.0251 1 94 53.31 217.40 

 1.25 8.89 16.60 
 

0.0430 1 33 8.89 16.61 
 
0.0430 1 33 8.90 16.65 

 
0.0424 1 34 8.92 16.70 

 
0.0424 1 34 9.01 16.79 

 1.5 3.13 3.50 
 

0.0701 1 11 3.13 3.50 
 
0.0701 1 11 3.13 3.51 

 
0.0701 1 11 3.14 3.53 

 
0.0701 1 11 3.17 3.61 

 2 1.53 1.03 
 

0.0962 1 5 1.53 1.03 
 
0.0962 1 5 1.54 1.03 

 
0.0962 1 5 1.54 1.04 

 
0.0962 1 5 1.55 1.07 

  
                          

0.15 0.25 1.01 0.10 
 

0.1359 1 2 1.01 0.10 
 
0.1359 1 2 1.01 0.10 

 
0.1359 1 2 1.01 0.11 

 
0.1359 1 2 1.01 0.11 

 0.5 3.18 4.39 
 

0.0843 1 7 3.18 4.40 
 
0.0843 1 7 3.18 4.41 

 
0.0843 1 7 3.19 4.44 

 
0.0843 1 7 3.24 4.56 

 0.75 53.50 218.31 
 

0.0251 1 94 53.52 218.39 
 
0.0251 1 94 53.66 219.04 

 
0.0251 1 94 53.94 220.35 

 
0.0251 1 94 55.25 226.46 

 1.25 9.05 16.92 
 

0.0424 1 34 9.05 16.93 
 
0.0424 1 34 9.07 17.03 

 
0.0424 1 34 9.12 17.22 

 
0.0418 1 35 9.34 17.81 

 1.5 3.18 3.64 
 

0.0701 1 11 3.18 3.65 
 
0.0701 1 11 3.19 3.67 

 
0.0701 1 11 3.21 3.71 

 
0.0676 1 12 3.29 3.71 

 2 1.56 1.08 
 

0.0962 1 5 1.56 1.08 
 
0.0962 1 5 1.56 1.08 

 
0.0962 1 5 1.57 1.10 

 
0.0962 1 5 1.61 1.16 

  
                          

0.2 0.25 1.01 0.11 
 

0.1359 1 2 1.01 0.11 
 
0.1359 1 2 1.01 0.11 

 
0.1359 1 2 1.01 0.11 

 
0.1359 1 2 1.01 0.12 

 0.5 3.23 4.52 
 

0.0843 1 7 3.23 4.53 
 
0.0843 1 7 3.24 4.55 

 
0.0843 1 7 3.26 4.60 

 
0.0843 1 7 3.35 4.82 

 0.75 54.86 224.65 
 

0.0251 1 94 54.89 224.79 
 
0.0251 1 94 55.14 225.95 

 
0.0251 1 94 55.64 228.27 

 
0.0251 1 94 58.01 239.14 

 1.25 9.27 17.53 
 

0.0418 1 35 9.28 17.55 
 
0.0418 1 35 9.32 17.73 

 
0.0418 1 35 9.41 18.10 

 
0.0407 1 37 9.83 19.19 

 1.5 3.27 3.86 
 

0.0701 1 11 3.27 3.86 
 
0.0676 1 12 3.29 3.70 

 
0.0676 1 12 3.32 3.77 

 
0.0676 1 12 3.47 4.15 

 2 1.59 1.14 
 

0.0962 1 5 1.60 1.14 
 
0.0962 1 5 1.60 1.16 

 
0.0962 1 5 1.62 1.18 

 
0.0962 1 5 1.68 1.31 

 

 



Table 7. ARL() and SDRL() values of the SSMGR CV-ME chart in the presence of measurement errors for various values of , 0
  

and B when n = 5, η = 0.28, m = 1 and θ = 0.01 

  B = 1  B = 2  B = 3  B = 4 

0
   k


 1

C
  

2
C

  ARL() SDRL()  k


 1
C

  
2

C
  ARL() SDRL()  k


 1

C
  

2
C

  ARL() SDRL()  k


 1
C

  
2

C
  ARL() SDRL() 

0.05 0.25 0.1359 1 2 1.01 0.11 
 

0.1359 1 2 1.01 0.10 
 

0.1359 1 2 1.01 0.10 
 

0.1359 1 2 1.01 0.10 

 0.5 0.0843 1 7 3.18 4.41 
 

0.0843 1 7 3.15 4.33 
 

0.0843 1 7 3.14 4.30 
 

0.0843 1 7 3.13 4.29 

 0.75 0.0251 1 94 53.45 218.08 
 

0.0254 1 92 52.73 213.65 
 

0.0254 1 92 52.48 212.50 
 

0.0254 1 92 52.36 211.92 

 1.25 0.0424 1 34 8.98 16.64 
 

0.0430 1 33 8.89 16.60 
 

0.0430 1 33 8.86 16.47 
 

0.0430 1 33 8.84 16.41 

 1.5 0.0701 1 11 3.15 3.57 
 

0.0701 1 11 3.12 3.49 
 

0.0701 1 11 3.11 3.47 
 

0.0701 1 11 3.11 3.45 

 2 0.0962 1 5 1.54 1.04 
 

0.0962 1 5 1.53 1.02 
 

0.0962 1 5 1.53 1.02 
 

0.0962 1 5 1.52 1.01 

 
                        

0.1 0.25 0.1359 1 2 1.01 0.11 
 

0.1359 1 2 1.01 0.10 
 

0.1359 1 2 1.01 0.10 
 

0.1359 1 2 1.01 0.10 

 0.5 0.0843 1 7 3.21 4.47 
 

0.0843 1 7 3.17 4.39 
 

0.0843 1 7 3.16 4.36 
 

0.0843 1 7 3.16 4.35 

 0.75 0.0251 1 94 54.08 221.01 
 

0.0251 1 94 53.29 217.31 
 

0.0254 1 92 53.07 215.22 
 

0.0254 1 92 52.94 214.63 

 1.25 0.0424 1 34 9.08 17.06 
 

0.0424 1 34 8.98 16.65 
 

0.0424 1 34 8.95 16.52 
 

0.0424 1 34 8.93 16.46 

 1.5 0.0701 1 11 3.19 3.66 
 

0.0701 1 11 3.16 3.58 
 

0.0701 1 11 3.15 3.55 
 

0.0701 1 11 3.14 3.54 

 2 0.0962 1 5 1.56 1.07 
 

0.0962 1 5 1.55 1.05 
 

0.0962 1 5 1.54 1.04 
 

0.0962 1 5 1.54 1.04 

                         
0.15 0.25 0.1359 1 2 1.01 0.11 

 
0.1359 1 2 1.01 0.11 

 
0.1359 1 2 1.01 0.11 

 
0.1359 1 2 1.01 0.11 

 0.5 0.0843 1 7 3.25 4.57 
 

0.0843 1 7 3.21 4.48 
 

0.0843 1 7 3.20 4.45 
 

0.0843 1 7 3.19 4.44 

 0.75 0.0251 1 94 55.14 225.91 
 

0.0251 1 94 54.28 221.94 
 

0.0251 1 94 54.01 220.69 
 

0.0251 1 94 53.88 220.08 

 1.25 0.0418 1 35 9.25 17.43 
 

0.0418 1 35 9.14 16.98 
 

0.0424 1 34 9.11 17.18 
 

0.0424 1 34 9.09 17.11 

 1.5 0.0701 1 11 3.25 3.82 
 

0.0701 1 11 3.22 3.73 
 

0.0701 1 11 3.20 3.70 
 

0.0701 1 11 3.20 3.68 

 2 0.0962 1 5 1.58 1.12 
 

0.0962 1 5 1.57 1.10 
 

0.0962 1 5 1.57 1.09 
 

0.0962 1 5 1.56 1.09 

                         
0.2 0.25 0.1359 1 2 1.01 0.11 

 
0.1359 1 2 1.01 0.11 

 
0.1359 1 2 1.01 0.11 

 
0.1359 1 2 1.01 0.11 

 0.5 0.0843 1 7 3.30 4.71 
 

0.0843 1 7 3.26 4.61 
 

0.0843 1 7 3.25 4.58 
 

0.0843 1 7 3.25 4.57 

 0.75 0.0251 1 94 56.62 232.77 
 

0.0251 1 94 55.68 228.42 
 

0.0251 1 94 55.39 227.10 
 

0.0251 1 94 55.25 226.46 

 1.25 0.0412 1 36 9.50 18.13 
 

0.0418 1 35 9.37 17.95 
 

0.0418 1 35 9.34 17.80 
 

0.0418 1 35 9.32 17.73 

 1.5 0.0676 1 12 3.34 3.84 
 

0.0676 1 12 3.30 3.74 
 

0.0676 1 12 3.29 3.71 
 

0.0676 1 12 3.28 3.69 

 2 0.0962 1 5 1.62 1.20 
 

0.0962 1 5 1.61 1.17 
 

0.0962 1 5 1.60 1.16 
 

0.0962 1 5 1.60 1.15 

 

 



Table 8. ARL() and SDRL() values of the SSMGR CV-ME chart in the presence of measurement errors for various values of , 0
  

and m when n = 5, η = 0.28, B = 1 and θ = 0.01 
  m = 1  m = 3  m = 5  m = 7 

0
   k


 1

C


 
2

C


 ARL() SDRL()  k


 1
C


 

2
C


 ARL() SDRL()  k


 1

C


 
2

C


 ARL() SDRL()  k
  1

C
  

2
C

  ARL() SDRL() 
0.05 0.25 0.1359 1 2 1.01 0.11 

 
0.1359 1 2 1.01 0.11 

 
0.1359 1 2 1.01 0.11 

 
0.1359 1 2 1.01 0.11 

 0.5 0.0843 1 7 3.18 4.41 
 

0.0843 1 7 3.18 4.41 
 

0.0843 1 7 3.18 4.41 
 

0.0843 1 7 3.18 4.41 

 0.75 0.0251 1 94 53.45 218.08 
 

0.0251 1 94 53.44 218.03 
 

0.0251 1 94 53.44 218.02 
 

0.0251 1 94 53.44 218.01 

 1.25 0.0424 1 34 8.98 16.64 
 

0.0424 1 34 8.98 16.64 
 

0.0424 1 34 8.98 16.64 
 

0.0424 1 34 8.98 16.64 

 1.5 0.0701 1 11 3.15 3.57 
 

0.0701 1 11 3.15 3.57 
 

0.0701 1 11 3.15 3.57 
 

0.0701 1 11 3.15 3.57 

 2 0.0962 1 5 1.54 1.04 
 

0.0962 1 5 1.54 1.04 
 

0.0962 1 5 1.54 1.04 
 

0.0962 1 5 1.54 1.04 

                         
0.1 0.25 0.1359 1 2 1.01 0.11 

 
0.1359 1 2 1.01 0.11 

 
0.1359 1 2 1.01 0.11 

 
0.1359 1 2 1.01 0.11 

 0.5 0.0843 1 7 3.21 4.47 
 

0.0843 1 7 3.21 4.47 
 

0.0843 1 7 3.21 4.47 
 

0.0843 1 7 3.21 4.47 

 0.75 0.0251 1 94 54.08 221.01 
 

0.0251 1 94 54.04 220.82 
 

0.0251 1 94 54.03 220.79 
 

0.0251 1 94 54.03 220.77 

 1.25 0.0424 1 34 9.08 17.06 
 

0.0424 1 34 9.07 17.03 
 

0.0424 1 34 9.07 17.03 
 

0.0424 1 34 9.07 17.02 

 1.5 0.0701 1 11 3.19 3.66 
 

0.0701 1 11 3.19 3.65 
 

0.0701 1 11 3.19 3.65 
 

0.0701 1 11 3.19 3.65 

 2 0.0962 1 5 1.56 1.07 
 

0.0962 1 5 1.56 1.07 
 

0.0962 1 5 1.56 1.07 
 

0.0962 1 5 1.56 1.07 

                         
0.15 0.25 0.1359 1 2 1.01 0.11 

 
0.1359 1 2 1.01 0.11 

 
0.1359 1 2 1.01 0.11 

 
0.1359 1 2 1.01 0.11 

 0.5 0.0843 1 7 3.25 4.57 
 

0.0843 1 7 3.24 4.56 
 

0.0843 1 7 3.24 4.56 
 

0.0843 1 7 3.24 4.56 

 0.75 0.0251 1 94 55.14 225.91 
 

0.0251 1 94 55.04 225.49 
 

0.0251 1 94 55.03 225.40 
 

0.0251 1 94 55.02 225.37 

 1.25 0.0418 1 35 9.25 17.43 
 

0.0418 1 35 9.23 17.37 
 

0.0418 1 35 9.23 17.35 
 

0.0418 1 35 9.23 17.35 

 1.5 0.0701 1 11 3.25 3.82 
 

0.0701 1 11 3.25 3.80 
 

0.0701 1 11 3.25 3.80 
 

0.0701 1 11 3.25 3.80 

 2 0.0962 1 5 1.58 1.12 
 

0.0962 1 5 1.58 1.12 
 

0.0962 1 5 1.58 1.12 
 

0.0962 1 5 1.58 1.12 

                         
0.2 0.25 0.1359 1 2 1.01 0.11 

 
0.1359 1 2 1.01 0.11 

 
0.1359 1 2 1.01 0.11 

 
0.1359 1 2 1.01 0.11 

 0.5 0.0843 1 7 3.30 4.71 
 

0.0843 1 7 3.30 4.70 
 

0.0843 1 7 3.30 4.69 
 

0.0843 1 7 3.30 4.69 

 0.75 0.0251 1 94 56.62 232.77 
 

0.0251 1 94 56.46 232.01 
 

0.0251 1 94 56.42 231.86 
 

0.0251 1 94 56.41 231.80 

 1.25 0.0412 1 36 9.50 18.13 
 

0.0412 1 36 9.47 18.01 
 

0.0412 1 36 9.46 17.99 
 

0.0412 1 36 9.46 17.98 

 1.5 0.0676 1 12 3.34 3.84 
 

0.0676 1 12 3.33 3.81 
 

0.0676 1 12 3.33 3.81 
 

0.0676 1 12 3.33 3.81 

 2 0.0962 1 5 1.62 1.20 
 

0.0962 1 5 1.62 1.19 
 

0.0962 1 5 1.62 1.19 
 

0.0962 1 5 1.62 1.19 

  

 



Table 9. ARL() and SDRL() values of the SSMGR CV-ME chart in the presence of measurement errors for various values  

of , 
0

  and θ when n = 5, η = 0.28, B = 1 and  m = 1 

  θ = 0  θ = 0.01  θ = 0.03  θ = 0.05 

0
   k

  1
C

  
2

C
  ARL() SDRL() 

 
k
  1

C
  

2
C

  ARL() SDRL() 
 

k
  1

C
  

2
C

  ARL() SDRL() 
 

k
  1

C
  

2
C

  ARL() SDRL() 
0.05 0.25 0.1359 1 2 1.01 0.10 

 
0.1359 1 2 1.01 0.11 

 
0.1359 1 2 1.01 0.12 

 
0.1359 1 2 1.01 0.13 

 0.5 0.0843 1 7 3.12 4.25 
 

0.0843 1 7 3.18 4.41 
 

0.0843 1 7 3.32 4.75 
 

0.0799 1 8 3.46 4.91 

 0.75 0.0254 1 92 52.00 210.27 
 

0.0251 1 94 53.45 218.08 
 

0.0251 1 94 56.50 232.21 
 

0.0248 1 96 59.63 247.86 

 1.25 0.0430 1 33 8.80 16.23 
 

0.0424 1 34 8.98 16.64 
 

0.0418 1 35 9.35 17.85 
 

0.0407 1 37 9.73 18.77 

 1.5 0.0701 1 11 3.09 3.42 
 

0.0701 1 11 3.15 3.57 
 

0.0676 1 12 3.28 3.68 
 

0.0676 1 12 3.40 3.99 

 2 0.0962 1 5 1.52 1.00 
 

0.0962 1 5 1.54 1.04 
 

0.0962 1 5 1.59 1.13 
 

0.0962 1 5 1.63 1.22 

                         
0.1 0.25 0.1359 1 2 1.01 0.10 

 
0.1359 1 2 1.01 0.11 

 
0.1359 1 2 1.01 0.12 

 
0.1359 1 2 1.01 0.13 

 0.5 0.0843 1 7 3.14 4.31 
 

0.0843 1 7 3.21 4.47 
 

0.0843 1 7 3.34 4.81 
 

0.0799 1 8 3.48 4.98 

 0.75 0.0254 1 92 52.63 213.18 
 

0.0251 1 94 54.08 221.01 
 

0.0251 1 94 57.14 235.17 
 

0.0248 1 96 60.28 250.85 

 1.25 0.0430 1 33 8.90 16.65 
 

0.0424 1 34 9.08 17.06 
 

0.0412 1 36 9.45 17.93 
 

0.0407 1 37 9.82 19.20 

 1.5 0.0701 1 11 3.13 3.51 
 

0.0701 1 11 3.19 3.66 
 

0.0676 1 12 3.31 3.77 
 

0.0676 1 12 3.44 4.09 

 2 0.0962 1 5 1.54 1.03 
 

0.0962 1 5 1.56 1.07 
 

0.0962 1 5 1.60 1.16 
 

0.0962 1 5 1.65 1.25 

                         
0.15 0.25 0.1359 1 2 1.01 0.10 

 
0.1359 1 2 1.01 0.11 

 
0.1359 1 2 1.01 0.12 

 
0.1359 1 2 1.01 0.13 

 0.5 0.0843 1 7 3.18 4.41 
 

0.0843 1 7 3.25 4.57 
 

0.0843 1 7 3.39 4.91 
 

0.0799 1 8 3.53 5.08 

 0.75 0.0251 1 94 53.64 218.95 
 

0.0251 1 94 55.14 225.91 
 

0.0251 1 94 58.22 240.09 
 

0.0248 1 96 61.38 255.84 

 1.25 0.0424 1 34 9.07 17.01 
 

0.0418 1 35 9.25 17.43 
 

0.0412 1 36 9.62 18.65 
 

0.0401 1 38 9.99 19.58 

 1.5 0.0701 1 11 3.19 3.66 
 

0.0701 1 11 3.25 3.82 
 

0.0676 1 12 3.38 3.92 
 

0.0676 1 12 3.50 4.25 

 2 0.0962 1 5 1.56 1.08 
 

0.0962 1 5 1.58 1.12 
 

0.0962 1 5 1.63 1.21 
 

0.0962 1 5 1.68 1.31 

                         
0.2 0.25 0.1359 1 2 1.01 0.11 

 
0.1359 1 2 1.01 0.11 

 
0.1359 1 2 1.01 0.12 

 
0.1359 1 2 1.02 0.14 

 0.5 0.0843 1 7 3.24 4.55 
 

0.0843 1 7 3.30 4.71 
 

0.0799 1 8 3.44 4.87 
 

0.0799 1 8 3.58 5.23 

 0.75 0.0251 1 94 55.11 225.79 
 

0.0251 1 94 56.62 232.77 
 

0.0248 1 96 59.70 248.17 
 

0.0248 1 96 62.91 262.81 

 1.25 0.0418 1 35 9.31 17.70 
 

0.0412 1 36 9.50 18.13 
 

0.0407 1 37 9.86 19.36 
 

0.0396 1 39 10.24 20.30 

 1.5 0.0676 1 12 3.28 3.69 
 

0.0676 1 12 3.34 3.84 
 

0.0676 1 12 3.47 4.15 
 

0.0653 1 13 3.59 4.27 

 2 0.0962 1 5 1.60 1.16 
 

0.0962 1 5 1.62 1.20 
 

0.0962 1 5 1.67 1.29 
 

0.0962 1 5 1.72 1.39 

 

 



Table 10. Phase-I and Phase-II datasets on the weight of scrap zinc alloy 

material in a die casting hot chamber process 

 Phase-I  Phase-II 

i 
i

X  i
S  ˆ

i
   

i
X  i

S  ˆ
i

  

1 292.6 2.701 0.0092 
 

396.4 4.037 0.0102 

2 289.0 0.707 0.0024 
 

393.2 1.923 0.0049 

3 291.4 2.073 0.0071 
 

404.6 3.049 0.0075 

4 288.0 3.937 0.0137 
 

396.0 2.449 0.0062 

5 290.0 0.707 0.0024 
 

301.4 3.049 0.0101 

6 288.2 1.303 0.0045 
 

295.4 1.816 0.0061 

7 535.4 8.264 0.0154 
 

293.2 1.788 0.0061 

8 518.4 7.224 0.0139 
 

297.4 2.190 0.0074 

9 529.2 9.203 0.0174 
 

642.8 2.280 0.0035* 

10 527.0 9.591 0.0182 
 

640.2 1.095 0.0017 

11 533.6 4.929 0.0092 
 

650.4 3.435 0.0053 

12 439.2 3.114 0.0071 
 

647.8 1.643 0.0025 

13 447.2 2.774 0.0062 
 

646.0 2.345 0.0036 

14 443.4 8.173 0.0184 
 

549.8 3.114 0.0057 

15 434.0 2.549 0.0059 
 

522.6 10.310 0.0197 

16 436.0 1.224 0.0028 
 

519.8 7.259 0.0140 

17 437.6 2.408 0.0055 
 

518.8 8.927 0.0172 

18 419.6 4.037 0.0096 
 

515.4 11.760 0.0228 

19 422.4 4.159 0.0098 
 

550.4 15.678 0.0285 

20 416.8 3.962 0.0095 
 

529.0 10.440 0.0197 

21 420.4 4.979 0.0118 
 

526.8 9.602 0.0182 

22 421.6 2.302 0.0055 
 

529.2 7.949 0.0150 

23 418.4 4.393 0.0105 
 

521.8 7.981 0.0153 

24 410.4 4.219 0.0103 
 

534.0 7.681 0.0144 

25 449.0 6.204 0.0138 
 

525.0 5.656 0.0108 

26 441.6 3.781 0.0086 
 

533.0 5.522 0.0104 

27 393.2 6.220 0.0158 
 

287.8 3.114 0.0108 

28 401.8 1.483 0.0037 
 

287.2 3.271 0.0114 

29 412.6 3.049 0.0074 
 

289.8 1.095 0.0038 

30 461.4 7.700 0.0167 
 

288.4 3.049 0.0106 

 



 
 

Figure 1. SSMGR CV and SSMGR CV-ME charts for monitoring the Phase-II sample CVs ( ˆ
i
 , 

for i = 1, 2, …, 30) on the weights of scrap zinc alloy material in a die casting hot chamber process  

 


